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a b s t r a c t

The polar diagram of a set of points in a plane and its extracted dual EDPD were recently introduced for
static and dynamic cases. In this paper, the near-pole polar diagram NPPD for a set of points is presented.
This new diagram can be considered as a generalization of the polar diagram and has applications in
several communication systems and robotics problems. After reviewing the NPPD of points, we solve
the problem for a set of line segments and simple polygons in optimal time �(n log n), where n is the
eywords:
olar diagram
oronoi diagram
uality
omputational geometry
adar

number of line segments or polygon vertices. We introduce duality for the NPPD of points and identify
some applications.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.
. Introduction

Solutions to visibility and many other important problems in
omputational geometry require some type of angle processing of
he data input. In this paper we introduce a relation between some
isibility problems and a new plane partitioning process we call a
ear-pole polar diagram (NPPD). The problems in question occur

n communication and radio systems, antenna arrangement and
arget detection. The approach proposed can also be applied to illu-

ination problems, robot vision, hidden surface removal, collision
etection and decorative patterning. NPPD is a generalization of the
oronoi diagram and is described in Section 3.

One of the most fundamental concepts in computational geom-
try is the Voronoi diagram, and its algorithms and applications
ave been studied extensively [6,8]. This concept has also been gen-
ralized in a variety of fields by replacing the standard Euclidean
istance with other metrics such as the Lp distance [11], weighted
istances [4,7], the power distance [5], and a skew distance [2].
sing the Euclidean distance, the ˇ-skeleton and proximity graphs
ave been defined and are used to solve other problems [1,3]. As
tated later, these concepts can be redefined using a polar dia-
ram for application in angle-related problems. As the solution to

any problems in computational geometry requires some type of

ngle processing of the input, some other generalizations of the
oronoi diagram based on angles have been studied [9,10,12,13].

∗ Corresponding author. Tel.: +98 2414152183; fax: +98 2414152182

877-7503/$ – see front matter. Crown Copyright © 2011 Published by Elsevier B.V. All ri
oi:10.1016/j.jocs.2011.08.005
Grima et al. proposed a new locus approach for problems with angle
processing, called the polar diagram [9]. For any position q in a
plane (represented by a point), the region in which q lies belongs
to the site with the smallest polar angle. Use of the polar dia-
gram principle can help in solving some important problems that
require angle processing in computational geometry. Grima et al.
proved a preprocessing step using a polar diagram can speed up the
process for many problems in computational geometry [9]. Applica-
tions include the convex hull, visibility problems and path-planning
problems.

Sadeghi et al. introduced a dual of the polar diagram, the
near-pole polar diagram for a set of points, and described some
properties and applications [12,13]. Sadeghi et al. also solved a
dynamic polar diagram in which new sites can be added to or
removed from the point set[14,15]. In the following section we
review some concepts and properties needed in subsequent sec-
tions. In Section 3, the NPPD of points is briefly introduced [13].
In Section 4, the NPPD of line segments and simple polygons is
obtained. We define the duality of the NPPD for points in Section 5
and present an algorithm to find it. Section 6 concludes and iden-
tifies some open problems.

2. Polar diagram and its extracted dual (EDPD)
The polar angle of point p with respect to si, denoted by angsi
(p),

is the angle formed by the positive horizontal line from p and the
straight line linking p and si (Fig. 1a).

ghts reserved.
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(c) corresponding extracted dual of the polar diagram (EDPD).
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and simple polygons in a plane are presented.
Given a set of line segments or a set of polygons, first the NPPD

of endpoints and vertices is found using Algorithm 1 from [13],
then some pieces of the edges in the diagram are removed. As for
Fig. 1. (a) Polar angle, (b) polar diagram of six points and

Given a set S of n sites (fixed points) in the plane, the locus of
oints with a smaller positive polar angle with respect to si ∈ S is
alled the polar region of si. Thus,

S(si) = {(x, y) ∈ E2|angSi
(x, y) < angSj

(x, y); ∀j /= i}.

The plane is divided into different regions in such a way that if
he point (x, y) ∈ E2 lies in PS(si), si is the first site found when per-
orming an angular scan starting from (x, y). The resulting diagram
s called a polar diagram. It is possible to draw an analogy between
his angular sweep and the behavior of a radar [10]. Fig. 1b depicts
he polar diagram of a set of points in a plane. Grima et al. proved
hat for a given set S of n points in a plane, the polar diagram of S
an be computed in time �(nlogn) using an incremental method
9].

Sadeghi et al. defined a dual of the polar diagram for a set of
oints [12]. They also defined another graph named the extracted
ual of the polar diagram (EDPD) (Fig. 1c) and presented an opti-
al algorithm for finding EDPD in time �(n) for sorted sites and
(n log n) for unsorted sites.

. Near-pole polar diagram (NPPD) for a set of points

In the classic definition of the polar diagram, the pole lies on
he left-hand side of the plane at −∞ [12,9]. In NPPD, it is assumed
hat the pole is located on the left-hand side of the sites and close to
hem. Thus, it can be concluded that this problem is a generalization
f the polar diagram. This means that the problem is applicable to
ore situations; for example, the pole can be considered as the

enter of vision (eye) of a robot.
In addition to the given point sites, a point p in the plane is

lso given as a pole and partitioning of the plane will depend on
he position of p. Site si and the arbitrary point x are also given in
he plane. Throughout this paper, we consider the angle formed by
he lines psi and xsi as the polar angle. Without loss of generality,
ssume that pole p is located on the left-hand side of the sites. Fig. 2
hows an example of NPPD for seven points with respect to pole p.

In short, a near-pole polar diagram can be described as follows.
nitially there is a radar at each of the point sites looking at the pole.
hese simultaneously start rotating counterclockwise and scan the
eriphery. The region in the plane observed by radar pi before other
adars is called the region of pi.

To draw NPPD for a set of points, an assumption is made to sim-
lify the problem. It is assumed that the line of view for each site
locks that for any other site that intercepts it later. Fig. 3 depicts
wo sites s1 and s2, the pole p and a point x in the plane as the
nput. In partitioning of the plane, since ˆps1x < ˆps2x, x belongs to
he region of s1. In this figure, the line segment ps2 blocks the line
f vision for s1.
ssumption 1. The line of vision for each site blocks that for any
ther site that intercepts it later.

Sadeghi et al. presented is an algorithm for drawing the NPPD
f points in optimal �(n log n) time [13]. The slope of the line
Fig. 2. Near-pole polar diagram of points.

segments sip : i = 1, . . ., n is first computed and the values are sorted.
Then a ray starting at pole p rotates clockwise around pole p and
sweeps the plane. This algorithm runs in �(n log n) time.

4. NPPD of geometric objects

NPPD of a set of points is reviewed in the previous section. In
this section, two algorithms to find NPPD of a set of line segments
Fig. 3. Assumption: the line segment ps2 blocks the line of vision for s1.
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Fig. 4. Near-pole polar diagram of line segments.

he line segment case, the angular sweep starting at some point
x, y) always finds an endpoint. It may be possible to find two
ndpoints at the same time, but it is not possible to find any mid-
le point for a line segment. Thus, the following lemma can be
erived.

emma 1. Every polar edge associated with the NPPD of a set of line
egments or a set of polygons in the plane is contained in the NPPD
ssociated with the set of endpoints of the line segments or the polygon
ertices, respectively.

roof. The sweep line starts from pole p and sweeps the plane
n a clockwise manner. In detecting a line segment (or poly-
on), it detects one endpoint and continues sweeping to reach
nother endpoint. In other words, the polar regions of middle
oints are included in the polar regions of the endpoints. This
echnique is similar to finding the convex hull of a set of seg-

ents or polygons in the plane, for which it is sufficient to
ompute the convex hull of the endpoints or vertices of the
olygon. �

Similar to the NPPD of a set of points, it is assumed that the
ine segments are all on the right-hand side of the pole (Fig. 4).
o draw NPPD, first the NPPD of endpoints or vertices is drawn
sing Algorithm 1 presented by Sadeghi et al. [13]. Then differ-
nt points for several edges are discarded using a new algorithm.
efore presenting the new method, we define the polar right and

eft.

efinition 4.1. Let p be a pole in the plane. An object O1 is on the
-right (polar right) of an object O2 with respect to pole p if the
onvex hull made up of the pole p and O1 includes O2.

lgorithm 1.
Input: n line segments in a plane and a pole p.
Output: NPPD of line segments.
01: Extract the endpoints of n line segments.
02: Find the NPPD of 2*n endpoints using Algorithm 1 of Sadeghi et al. [13].
03: If there is any obstacle to the p-right of an endpoint, then discard any edge fo

which the line equation does not apply to the coordinates of p (Restriction 1).
04: Eliminate all the polar edges that split two sectors of the same polar region

(Restriction 2).
05: Discard the portions of polar edges that lie in another region (Restriction 3).

The p-right relation is well defined if and only if object O2 is a
oint. In this paper, O2 is always considered as an endpoint. Accord-

ng to Definition 4.1, the line segment d with endpoints d1 and d2

s on the p-right of a point s with respect to pole p if the triangle

ade up of p, d1 and d2 includes s (Fig. 5).
First, we compute the NPPD of a set of endpoints of line segments

r polygon vertices using Algorithm 1 presented by Sadeghi et al.
Fig. 5. Segment d is on the p-right of point s with respect to pole p.

[13]. Restrictions are then added to discard some edges or portions
thereof. The first three restrictions relate to both line segments and
polygons, and the fourth relates to polygons only. Algorithm 1 is
used to determine the NPPD of line segments.

Fig. 6a shows an example of excluded polar edges (dotted lines)
in an NPPD of a set of two line segments (Fig. 6b). The rules in
Algorithm 1 are numbered according to the four restrictions and
are shown in Figs. 6 and 7.

1. If there is any obstacle to the p-right of an endpoint, any edge for
which the line equation does not apply to the coordinates of p is
discarded (Fig. 6a).

2. A polar edge is eliminated if it splits two sectors of the same polar
region (Fig. 6a).

3. If a portion of a polar edge lies in another region, it must be
discarded (Fig. 6a).

4. If an edge lies in the object it belongs to, it is discarded (Fig. 7).

Algorithm 2.
Input: n polygons in a plane and a pole p.
Output: NPPD of polygons.
01: Extract the vertices of n polygons.
02: Find the NPPD of vertices (only for reflex right, start and end vertices) using

Algorithm 1 of Sadeghi et al. [13].
03: If there is any obstacle to the p-right of a vertex, then discard any edge for wh

the line equation does not apply to the coordinates of p (Restriction 1).
04: Eliminate all polar edges that split two sectors of the same polar region

(Restriction 2).
05: Discard the portions of polar edges that lie in another region (Restriction 3).
06: Discard all edges lying within the object they belong to (Restriction 4).

Nevertheless, the calculation process for polygons can be
improved since not all vertices generate a polar edge. First, we sort
the vertices of a polygon in a clockwise manner and present them
as {v0, v1, . . . , vn−1}. If sl(vip) denotes the slope of vip and |vip| indi-
cates the Euclidean distance between two points p and vi, then the
vertices of the polygon are classified as follows.

• Start: sl(vi−1p), sl(vi+1p) < sl(vip)
• End: sl(vi−1p), sl(vi+1p) > sl(vip)

• Ordinary left: sl(vi−1p) < sl(vip) < sl(vi+1p), |vip| < |vi+1p|, |vi−1p|
• Reflex reft: sl(vi−1p) < sl(vip) < sl(vi+1p), |vip| > |vi+1p|, |vi−1p|
• Ordinary right: sl(vi−1p) > sl(vip) > sl(vi+1p), |vip| >

|vi+1p|, |vi−1p|
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ines)in an NPPD of line segments. (b) NPPD of two line segments.
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Two sites are joined by edge e* in the dual of NPPD if and only if
their corresponding faces are separated by edge e in NPPD. There-
fore, some parallel edges or loops in the dual of NPPD may be
created. If the loops are omitted and the parallel edges are replaced
Fig. 6. (a) NPPD of endpoints and discarded edges (dotted l

Reflex right: sl(vi−1p) > sl(vip) > sl(vi+1p), |vip| < |vi+1p|, |vi−1p|

In the ordinary left and reflex left cases, the resulting polar edges
re completely contained within polar regions that are generated
y end and start vertices. As these points belong to the same poly-
on, then all the polar edges of the left vertices are eventually
mitted. Furthermore, the reflex right vertices are omitted because
f the fourth restriction. Algorithm 2 is used to determine the NPPD
f polygons.

heorem 4.2. The NPPD of a set of line segments or simple polygons
n a plane can be computed in time �(n log n), where n is the number
f line segments or polygon vertices.

roof. The NPPD of a set of sites made up of 2n endpoints can
e computed in time O(nlogn) using Algorithm 1 of Sadeghi et al.
13]. Every discarding operation needs an additional O(log n) time
o search neighbors to the p-left and p-right of every endpoint.

oreover, it should be noted that there exist at most O(n) discard-
ng operations. In the case of polygons (Fig. 8) with a total of n
ertices, the time complexity is the same. Thus, the NPPD of n line
egments or polygons with O(n) vertices can be found in optimal
ime O(n log n), since it has been proved that the problem cannot be
olved for a set of points with time complexity less than O(n log n)
13]. Therefore, the new algorithm is also optimal and consequently
ts time complexity is �(n log n).�

In the next section, the extracted dual of NPPD for a set of points
s introduced and solved. However, the problem is left open for a set
f segments and simple polygons. The results can be used in hid-
en surface removal, in finding the best exit path for a robot from a
pace containing obstacles, in collision detection and in other sim-
lar problems. As mentioned above, the problem is solved for a set
f points and the method presented is not applicable in the case of
bjects.

. Extracted dual of NPPD
In addition to useful applications of NPPD of a set of points, the
DPD has properties that make it more useful. In fact, the dual
f a Voronoi diagram is the Delaunay triangulation, which has
any applications. In this section the duality of a polar diagram is

Fig. 7. The edge lying in the triangle is discarded.
Fig. 8. NPPD of polygons.

described; this is not a triangulation, but it can be applied to visibil-
ity problems. The EDPD for a set of points is defined and an optimal
algorithm to find it is presented. This algorithm can be changed to
find the EDPD for other objects in a plane or space, which is left as
an open problem.
Fig. 9. Extracted dual of NPPD.
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y one edge, then another graph named the EDPD will result (Fig. 9).
e now describe an algorithm to find the EDPD for a set of points.

.1. Algorithm

Assume that n sorted point sites in a plane are given and NPPD
s calculated. The aim is to present an algorithm to draw the EDPD
nd evaluate its validity and complexity.

The regions of two consecutive sites at pole p are adjacent, and
hus all lines drawn in Step 1 belong to the EDPD. When ti is on the
-left of line ti+1ti−1 (the p-right angle ti+1titi−1 is less than �), then
ite ti+1 is in the region of ti−1. Thus, the regions of ti−1 and ti+1 are
djacent and these points connect to each other in Step 6.

Now it must be proved that the algorithm draws all the lines in
he EDPD. Assume that two sites si and sj are not consecutive. Thus,
here exists at least one site between them, named sk. sk can be on
he p-left or p-right of line sisj. If it is on the p-right, then the region
f sk separates the regions of si and sj by the half-line drawn from
k to the pole p. Thus, si and sj cannot be connected to each other in
he EDPD. If sk is on the p-left of line sisj, then the angle sisksj will
e less than � and si and sj are connected to each other. Therefore,
he algorithm yields a valid solution.

Using the NPPD of given sites and sweeping the plane around
ole p, we can sort the slope of lines sip in time �(n). Step 5 is the
ost time-consuming and runs in time �(n). In each step, one site

s added to or omitted from the stack and no site is added twice.
herefore, the results can be summarized as follows.

heorem 5.1. For n given points in a plane and their NPPD, the EDPD
an be found in time �(n).

Calculation of the EDPD is more difficult for objects than for
oints and is still unsolved. The EDPD of objects can be used as
preprocessing step for some visibility problems. The problems
entioned and some other open problems are outlined in the fol-

owing section.

. Conclusion and future work

After reviewing the near-pole polar diagram problem for a set of
oints, the same problem was solved for a set of line segments and
imple polygons. In both cases, the method discussed is optimal
nd runs in time �(n log n). The EDPD of a set of points was also
efined and an optimal algorithm was presented.

lgorithm 3.
Input: n sites in a plane and NPPD of the sites.
Output: EDPD.
01: Sort the sites with respect to the slope of lines sip; i − 0, . . . , n − 1.
02: Draw a straight line between each two consecutive sites si and si+1 for

i = 1, . . . , n − 1.
03: Insert s[1] and s[2] into an empty stack T .
04: For i = 3, . . . , n, repeat.
05: When T /= and (T[top − 1]T[top]s[i]) is less than �, repeat.

06: Draw a straight line between s[i] and T[top − 1].
07: Remove the top of the stack T[top].
08: Insert s[i] in the stack.
tational Science 3 (2012) 127–131 131

Calculation of the EDPD of objects is an open problem with sev-
eral visibility applications. For instance, let S be a set of n disjoint
polygons in a plane, and let p be a point that is not on any of
the polygons of S. Using the EDPD of the polygons with respect
to pole p, all the polygons of S for which p has weak visibility could
be found. The various types of this problem can be seen in com-
munication and radio connection systems, antenna arrangement
and target detection. Another set of related open problems arise
when Assumption 1 is not considered. Without this assumption,
the problem is more difficult and complex. Curved boundaries and
disconnected regions result and solving the NPPD problem for a set
of points (or any objects) is open. Duality and other applications
may be further developed and the angle criterion can be applied in
ˇ-skeleton and proximity graphs in the future to solve a number of
machine vision problems.
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