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a  b  s  t  r  a  c  t

Virus  infection  is a complex  biological  phenomenon  for  which  in  vitro  experiments  provide  a  uniquely
concise  view  where  data  is  often  obtained  from  a single  population  of cells,  under  controlled  environ-
mental  conditions.  Nonetheless,  data  interpretation  and  real understanding  of  viral  dynamics  is  still
hampered  by  the sheer  complexity  of  the  various  intertwined  spatio-temporal  processes.  In  this  paper
we  present  a tool  to address  these  issues:  a cellular  automata  model  describing  critical  aspects  of  in  vitro
eywords:
ellular automata

nfection dynamics
ARS
imulation

viral  infections  taking  into  account  spatial  characteristics  of virus  spreading  within  a  culture  well. The
aim of  the  model  is  to understand  the  key  mechanisms  of  SARS-CoV  infection  dynamics  during  the  first
24  h post  infection.  Using  a simulated  annealing  algorithm  we  tune  free  parameters  with  data  from  SARS-
CoV  infection  of  cultured  lung  epithelial  cells.  We  also  interrogate  the  model  using  a  Latin  Hypercube
sensitivity  analysis  to  identify  which  mechanisms  are  critical  to  the  observed  infection  of  host  cells  and
the release  of  measured  virus  particles.
. Introduction

In the past ten years there has been a growing interest in
odeling viral infections for the study and characterization of

ost infection dynamics. Early mathematical models were typically
ased on ordinary differential equations (ODEs) and focused on
xtracting key parameters of the infections dynamics [1,2]. Later on,
nterest moved to investigating how spatial relations affected the
ystem dynamics, thus moving to cellular automata (CA) models
3–5].

More recently the attention has shifted to viral respiratory
iseases due to the increasing danger of pandemics such as the
Spanish flu” that caused over 50 million deaths worldwide in 1918.
ear pandemics such as severe acute respiratory syndrome (SARS),

esulting in 8096 infected cases and a 9.6% death rate, have provided
nfortunate reminders their continued health risk and significant
conomic impact [6].  New research projects are being funded to
nvestigate the different scales of threat, from the epidemiological
pread of a virus in a population to its early phases of the infection

n a cell culture. Among the papers published on this topic, in par-
icular on the influenza virus [7–9], there are Bocharov’s ODE model
10] and Beauchemin’s CA model [3,4,11]. Both models described
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the dynamics of the influenza infection in the upper epithelial areas
of the lungs and were validated by clinical data. Although they take
into account the effect of the immune system on the dynamics of
the disease, describing the infection until its final outcome (more
than a week after the first infection), none of them analyzed which
mechanisms where critical in the dynamics of the first and second
round of infection. To understand the key mechanisms of viral res-
piratory diseases, we  focus instead on early phases of viral infection
by using in vitro experiments observing lung cells up to 24 h post
infection (PI). The in vitro experiments provide measurements of
virus titer, spatial characteristics of cell growth and, through green
fluorescent protein (GFP) imaging, of the infection spread.

Our computational model focuses on simulating the early stages
of a viral infection in a population of cells plated on a culture well.
The choice of a CA model was natural since the in vitro infections
being studied use host lung cancer cell lines that form a fixed mono-
layer in which spatially dependent aspects of infection may be
present [12,13]. We  developed this computational model using the
Multi-Agent System Visualization (MASyV) platform [3]. In con-
trast to previous models, we explicitly focus on the dynamics of
virus spread on a population of cells, supported by experimental
data from an in vitro model system. We  also explicitly model the
infectious viral particles as discrete entities, whereas in previous

models the infection of cells followed simple CA rules depending
on the states of neighboring cells. These viral particles are released
by infected cells according to a specific function based on time post
infection, and move over the well with a random walk algorithm.

dx.doi.org/10.1016/j.jocs.2011.08.007
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:bankhead@ohsu.edu
dx.doi.org/10.1016/j.jocs.2011.08.007
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Fig. 1. SARS-CoV infection virus titer measurement: virus titer resulting from Calu-
28 A. Bankhead III et al. / Journal of C

his representation allows us to model the mechanisms of virus
pread in an environment where the virus is not confined and can
lso infect cells not adjacent to the infected ones.

In Section 2 we describe the model design and its main fea-
ures. We  also describe the SARS infection experimental data used
o parameterize the model and how we optimized the free parame-
ers using a simulated annealing algorithm. In Section 3 we present

 sensitivity analysis that identifies the critical mechanisms char-
cterizing the early phases of the infection. We  also show that the
odel can explain the experimentally observed virus titer data and

llows a deeper understanding of the infection dynamics in the
n vitro experiments.

. Materials and methods

.1. Simulation environment

The computational model is built using Beauchemin’s MASyV
latform. The software consists of a server providing I/O and super-
isory services to the various client modules where the simulation
s actually coded. Our choice to use MASyV was partially driven by
exible and powerful graphical visualization routines that facilitate
omparison to images provided by the experimental collaborators.
ASyV has a C-based API and is open source allowing finalized cus-

om models to be easily shared. We  discuss novel contributions and
ifferences from the previous modules. The original module details
re presented in Beauchemin et al. [3].

Our model reproduces a viral infection on a population of cells
lated on a culture well. In our client we consider, as the target of
he viral infection, Calu-3 cells that are a human airway epithelial
ell line derived from human lung cancer. We  model these host cells
sing a 130 × 130-site CA model where each site represents either
ne calu-3 cell or an empty space. At the beginning of the simula-
ion each lattice site is initialized and labelled with “uninfected” or
empty” states as described below in Section 2.2. Uninfected cells
re initially stochastically infected with virus through a first round
f infection at the beginning of the simulation, described in Section
.3, and once infected progress through the following states:

Containing: initial infection state representing viral entry and
hijacking of host cell mechanisms necessary for viral replication.
Expressing: cell is actively producing and assembling virus cap-
sids and genomes internally, but has not begun releasing virion.
Infectious: assembled virion is being released from the host cell
according to the release function (Section 2.4).

By examining the experimental viral titer data shown in
ig. 1 we derived temporal delay of the state transition between
ontaining and Infectious. The ∼log10 3 viral titer measurements
t time points 0, 4 and 7 h post infection are residual virus left
ver from the initial infection after washing. We  set the delay for
elease of new infectious viral particles to 7 h to represent the
ump in observed virus titer between 7 and 12 h. Cells release virus
articles according to a viral release function, described below.
irus particles are entities that diffuse from one lattice point to
nother according to a random walk algorithm (Section 2.4). These
ree-floating virus particles stochastically infect uninfected cells in

 second round of infection. The CA lattice is therefore like a tissue
f immobile cells with infective virions moving over it. We repre-
ent only infectious viral particles to relate their count in the model
ith the viral titer measured in terms of plaque forming unit per

L  (PFU/mL). A PFU is a measure of the number of viral particles

apable of forming plaques per unit of volume, thus only infectious
articles are counted in the viral titer. The CA lattice is updated
ynchronously and the boundary conditions for both the epithelial
3  cells infected with SARS virus using an estimated multiplicity of infection (MOI)
of 2. Measured time points are indicated in hours post infection.

and viral particles are periodic, i.e., epithelial cells and viral par-
ticles can grow or move outside the boundary of the virtual well.
We use a Honeycomb neighborhood: each lattice site is considered
adjacent to six sites and cells can replicate only if a neighboring
site is empty or if it contains a dead cell. Only uninfected cells are
allowed to replicate. When cells on the lattice are initialized all
uninfected cells are stochastically assigned a TIME TO DEATH value
between 1 and an arbitrary CELL LIFESPAN variable. CELL LIFESPAN
was chosen to be large enough such that 5%, a minority of the
cells, die naturally within the simulated 24 h. CELL LIFESPAN is not
affected by infection as in vitro experimental observations showed
no increase in cell death due to infection within 24 h.

2.2. Cell placement simulation environment

In the laboratory before an in vitro infection is performed, 106

cells are first plated in each of the 6 culture wells present in a dish,
and given time to settle down on the well surface to create a cell
mono-layer, before the virus is applied to the cell culture. In the
plating process, a suspension of cells is plated onto the surface of
the well that adhere to the plastic in small clumps or as single cells
forming “islands” that are homogeneously distributed throughout
the well. Cells located on the inside of these islands (surrounded by
other cells) do not replicate due to contact inhibition whereas cells
on the outer edges of each island replicate until they are completely
surrounded by other cells. As a result each island continues to grow
until there is no adjacent empty space on the well surface.

To represent this behaviour we used a set of images (Fig. 2) that
shows how cells are distributed on the culture well just before the
infection is performed. The number of cells forming each isolated
island was  counted for each image obtaining a distribution of island
sizes with an average of 116 cells/island and a standard deviation of
74 cells/island. This data was used to generate randomly positioned
clusters of cells on the grid, each with a size extracted from the mea-

sured distribution. Islands are placed iteratively until the simulated
confluency matches the experimentally measured confluency.

Fig. 3 shows lattice initialization using different CONFLUENCY
parameter values. A value of 0.45 was derived based on calculations
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Fig. 2. Microscopy images of in vitro Calu-3 cells: images used to determine simulated island size. Cells grow in groups or “islands” with an initial average size of 116 cells.

virtual culture well at different values of the CONFLUENCY parameter.
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Fig. 3. Simulated Calu-3 islands: initial cells distribution on the 

rom well surface area, the total number of cells and the size of a
ingle cell (∼20 �m2 see ATCC catalogue). This value was  used for
imulations performed in Section 3.

A cell line doubling time is defined as the time required for the
opulation of cells to double in number and we used a doubling
ime of 48 h for Calu-3 cells (Ardizzoni Lab, personal communi-
ation). Cell density directly affects local cell growth since cells
ompletely surrounded by other cells are not able to replicate. For
his reason in our model the initial spatial distribution of uninfected
ells affects the overall cell growth on the virtual culture well. In
rder to obtain a correct cell growth in our model we included a
arameter called DIVISION TIME that indicates the time necessary
or a single uninfected cell to duplicate given an empty neighbor-
ng lattice site. We  adjusted DIVISION TIME to match the simulated
oubling time with the experimentally derived doubling time by
nalyzing cell growth of uninfected cells over 48 h as a function of
ime for different DIVISION TIME values (Fig. 4). This led us to fix
he value of DIVISION TIME to 10 h.

.3. First round of infection
During in vitro infection experiments, cells are initially infected
sing a multiplicity of infection (MOI) of 2 (see Section 2.6.2). The
OI  is calculated as the ratio of infectious viral particles to the num-

er of Calu-3 target cells. By definition the proportion of infected

Fig. 4. Deriving a simulated Calu-3 replication time: Calu-3 cells have a population
doubling time of 48 h but due to spatial constraints cell replication time is unknown.
A  DIVISION TIME parameter was adjusted so that our simulated cell population
doubled every 48 h.
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ig. 5. Viral release function: after cells transition to an infectious state virus part
hown  in Eq. (5) and rescaled by the VIRAL RELEASE parameter.

ells is given by the Poisson distribution that describes the infec-
ion process [14]. Using the experimental MOI  would theoretically
ive us the exact percentage of infected cells at the beginning of the
xperiment but even though the number of particles can be mea-
ured with good accuracy not all the viral particles used in this first
nfection process are infectious and the MOI  estimate is derived
sing VeroE6 cells. These two complications require us to define an
ffective MOI, that is the MOI  given by the number of particles able
o truly infect the Calu-3 host cells. Initially viral particles infect

 proportion of the plated Calu-3 cells before being washed away.
e use the resulting proportion of infected cells estimated through

he standard MOI  definition as a starting point of our simulation.
After cells are initialized on the lattice, they are assigned an

nfected state according to Eq. (2),  which describes the probability
f at least one viral particle entering a cell. In the equations below,

 represents the number of virus particles and MOI is the multi-
licity of infection used in the experiment. Eq. (2),  the probability
f a cell being infected by 1 or more virus particles, is derived from
q. (1),  the probability of being infected by a single virus particle,
ommonly used to describe viral infection as a Poisson process [14].
lthough the expected MOI  is experimentally known, as mentioned

n Section 2.6 it is often over-estimated. We  add the free parameter
NFECTIOUSNESS for two purposes: (1) to scale MOI  over-estimation
nd (2) predict the number of initially infected cells when this data
s not available. In the sensitivity analysis we discuss the impor-
ance of this parameter.

(n) = MOIn ∗ e−MOI
(1)
n!

(n > 0) = 1 − P(n = 0) = 1 − e−INFECTIOUSNESS∗MOI (2)
re released with a probability described by this sigmoidal function. Its equation is

2.4. Viral release and diffusion

During an in vitro infection experiment, individual cells release
a given amount of virus per hour. Although we did not have esti-
mates for the amount of SARS virus released per cell, we used an
estimate of virus released from a paper by Ka-Wai et al. [15]. In our
model, after cells transition to an infectious state virus particles
are released with a probability described by a sigmoidal func-
tion shown in Fig. 5. The probability that one or more infectious
viral particles are released in each time step is given by V(t) (Eq.
(3)). In this equation t represents time since the cell was infected
and parameters A, B, and C are derived by fitting an experimen-
tally derived viral release curve produced by Ka-Wai et al. [15].
The fitted sigmoidal function was rescaled with the free parame-
ter VIR RELEASE so that the general function shape was maintained
but the amount of virus released was  adjusted to reflect our SARS
infection experiments. When V(t) > 1 an infectious cell will release
one or more virions with a probability of 1. Decimal digits less than
one are treated as a probability for an additional virus particle to
be released.

V(t) = VIR RELEASE ∗ C

B + e−A∗t
(3)

Once released, virions diffuse into the liquid cell culture media
where they may  go on to infect neighboring cells through addi-
tional rounds of infection (described in Section 2.5). This process is
represented in our simulation by allowing infectious virions to dif-
fuse in our virtual well according to a simple random walk: for each
virion in the virtual well at each time step of the simulation we per-

form a number of Random Walk steps given by the free parameter
NUM DIFF STEPS. Each viral particle has an equal chance to move to
one of the six neighboring lattice sites and at each time step per-
forms NUM DIFF STEPS movements on the lattice. Experimentally,
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his parameter is difficult to measure, especially for BioSafety Level
 viruses like SARS, and so we included it as our third free parameter
epresenting the virion diffusion coefficient in a well with specific
onditions of the cell culture media.

Viral titer measures only infectious particles present in the
edia using plaque forming units (PFU) per mL.  For this reason
e model only infectious particles [14]. In addition it is more com-
utationally efficient to release and diffuse only the infectious viral
articles.

.5. Second round of infection

Once released, virus particles may  infect cells with an unin-
ected state located at the same lattice site. We  assume each viral
article independently infects a nearby cell with a probability
ollowing the binomial distribution. For each lattice site the prob-
bility Psecond round (Eq. (4)) is used to calculate whether or not a
iven uninfected cell is infected by n viral particles given N total
ocal virus particles.

(n) =
(

N
n

)
pn

BP(1 − pBP)N−n (4)

BP represents the probability of a virus-receptor binding event
eading to a cell’s infection by a single viral particle during a given

odel time step. We  refer to the free parameter, pBP, as BIND-
NG PROB below. Once a cell is successfully infected, n viral particles
re removed from the local virtual media located at the cell’s lattice
ite.

.6. Experimental data

.6.1. Viral stocks
For these experiments we used a virus derived from our severe

cute respiratory syndrome coronavirus (SARS-CoV) wild type
nfectious clone in which we engineered the green fluorescent
rotein (GFP) in place of open reading frame 7a/b. SARS-CoV GFP
tock titers were calculated using standard plaque tittering meth-
ds. Briefly, confluent monolayers of VeroE6 cells in 6 well plates
ere infected with serial 1:10 dilutions (usually 10e−1 to 10e−6)

f stock virus for 1 h at 37 ◦C. The monolayers were covered with a
olution of 0.8% low melting point agarose (Seachem), 1× minimal
ssential media high glucose (MEM,  Invitrogen), 10% fetal clone II
Hyclone), and 1× antibiotic/antimycotic (Invitrogen), which solid-
fies trapping the virus to allow cell to cell viral spread but not
elease of virions into the media. Plates were incubated at 37 ◦C for
6 h, stained with neutral red for 2–5 h, the stain removed and the
laques (holes in the monolayer generated when viruses kill the
ost cells) are visualized and counted on a light box. Stock titers
ere calculated as plaque forming units (pfu) per mL.

.6.2. Viral infection
Calu-3 cells were plated at a density of 1 × 106/well in 6

ell plates in MEM  containing 10% fetal clone II and 1× antibi-
tic/antimycotic. Cells were incubated at 37 ◦C at 5% CO2 levels for

 days prior to infection with a media change 24 h post plating.
ARS-CoV GFP stocks (7.5 × 107) were used to infect each well at

 multiplicity of infection of 2 or the addition of 2 infectious viri-
ns per cell in each well. At each time point, 100 �L of media was
arvested from each well to titer via plaque assay. (Number of cells
er well assumed to be 2 × 106 at 2 days post plating.)
.6.3. Microscopy
Images shown in Fig. 2 were taken using phase contrast

icroscopy images were taken at standard exposure times at
0× magnification. At the indicated times post infection, images
ational Science 4 (2013) 127–134 131

of the infected and mock-infected Calu-3 cells were taken
in living cells real time using a fluorescent light to excite
GFP [16]. SARS-GFP infected cells were assessed using ImageJ
(http://rsbweb.nih.gov/ij/). In ImageJ, we gated the light signal to
generate spots in each cell and used the spot counting algorithm
determine the total number of cells per field. GFP positive cells were
then counted and averaged.

2.7. Quantifying model fit to experimental data

For each candidate parameter set, �, a simulation fitness (Eq.
(5)) was  calculated based on a comparison of two  experimental
measurements: virus titer and proportion infected cells. Both com-
ponents of simulation fitness, F(�), are normalized by a maximum
error (ME) term to balance their contribution.

F(�) = Ftiter

MEtiter
+ FGFP

MEGFP
(5)

Ftiter =
∑

(log10(VT exp(t)) − log10(  ̨ × VTsim(t)))2 (6)

FGFP =
∣∣Iexp − Isim

∣∣ (7)

Randomized weight bootstrapping (1000 iterations) was used to
determine MEtiter and the derivation of MEGFP is described below.
Eq. (6) shows Ftiter is the sum of squares difference between exper-
imentally derived virus titer, VTexp (Fig. 1) and scaled virus titer
produced by the simulation, VTsim. Only the last three time points
(7, 12, 24 h) are compared because earlier time point titer values
were skewed by residual virus. Simulation output, VTsim, is scaled
by  ̨ to account for differences in the number of simulated cells
versus the number of in vitro cells. Using a lattice size of 130 × 130
an average of 7636 total starting simulated cells were produced. The
virus titer was  scaled by a factor of 106/7636 because the experi-
mental virus titer was  produced from a population of 106 in vitro
cells.

As described in Section 2.7,  in vitro GFP measurements were
used to quantify the proportion of infected cells at 12 h post infec-
tion. This additional biological information was used to constrain
our model’s parameter space. The FGFP portion of simulation fitness
(Eq. (7))  is the absolute value of the difference between simu-
lated proportion of infected cells Isim to experimentally measured
proportion infected, Iexp. Since Iexp was  measured to be 0.11 (on
average 11 of 100 cells are infected) at 12 h, a maximum error,
MEGFP, of 0.89 was  used to normalize FGFP between zero and one.

3. Results

3.1. Model fit to experimental data using simulated annealing

A simulated annealing (SA) algorithm was implemented in R
to fit the model to available experimental data (virus titer and
GFP) SARS infection of Calu3 cells [17,18]. All possible probability
parameter values were considered for INFECTIOUSNESS AND BIND-
ING PROB between 0 and 1. Maximum values for NUM DIFF STEPS
and VIR RELEASE were arbitrarily chosen (12 and 30, respectively).
Each parameter range explored at each temperature iteration was
equal to the parameter range divided by the number of iterations,
20, per temperature.

The effect of simulation stochasticity was  expected to have an
effect on fitness variability for a given parameter set leading to
errors in the solution space and sub-optimal simulated annealing
results. We examined the relationship between simulation fitness

variability and number of simulations used to estimate the average
parameter set fitness. The average fitness variance from 1000 ran-
domized parameter sets was  evaluated for 2,3,4,5 and 6 simulations
per parameter set. The median fitness variance increases from 0.002

http://rsbweb.nih.gov/ij/


132 A. Bankhead III et al. / Journal of Computational Science 4 (2013) 127–134

Fig. 6. Fitting model to experimental data: simulated annealing was  used to identify free parameters that fit the simulation to experimentally derived virus titer. (A)
Advancement of log fitness over progression of the algorithm’s cooling schedule. Legend of (A) lists free parameter values identified by each SA optimization in the following
o  line 

r

t
t
i
e
o

m
p
e
t
o
i

s
c
a
V
i
h
l
V
a
r
g

F
i
fi

rder:  INFECTIOUSNESS, BINDING PROB, NUM DIFF STEPS, VIR RELEASE. The gray
epresents a SA solution.

o 0.003 for two and three simulations per parameter set, respec-
ively. Increasing beyond 3 simulations per parameter set did not
ncrease the fitness variance beyond 0.003. As a result, each param-
ter set simulation fitness value was based on the average fitness
f 3 runs.

One hundred samplings of the parameter space were used to
easure entropy of the solution space and derive a starting tem-

erature based on a 0.9 probability of acceptance of the maximum
ntropy. A cooling schedule was found by repeatedly multiplying
emperatures by a factor of 0.985. Fig. 6(A) shows the progression
f the local best fitness of 5 different simulated annealing runs to
dentify parameter sets that minimize Eq. (5).

Individual simulated annealing runs identify parameter sets that
how strong relative agreement: INFECTIOUSNESS is very small,
orresponding to an initial number of infected cells between 1%
nd 3% of the available cells at time point zero. The optimized
IR RELEASE varies between 1.351 and 2.096 meaning that an

nfected cell releases at most about 2 infectious particles every
our. Optimized parameter values for INFECTIOUSNESS had the

east variance (1.08 × 10−5), followed by BINDING PROB (0.00809),

IR RELEASE (0.0821), and NUM DIFF STEPS (13.05). Simulated
nnealing allows us to describe the specific infection dynamics
elated to the optimized parameters, thus supporting the virolo-
ists in understanding the observed results of in vitro experiments.

ig. 7. Sensitivity analysis results: using Latin Hypercube sampling, we examine the relatio
dentified for INFECTIOUSNESS (A) and VIR RELEASE (D). Spearman correlations and p-valu
tted  curve. (For interpretation of the references to color in this figure legend, the reader
in (B) indicates the experimentally derived virus titer whereas each colored line

For these SARS-CoV experiments, the model predicts that the initial
number of infected cells is small. The contribution to the observed
viral titer is mainly due to the production of viral particles released
by cells infected in the second round, since the % of infected cells
grows from about 2% at 0 h to about 11% after 12 h. This explains
the exponential increase in the viral titer measured between 12
and 24 h, considering that the maximum rate of virions release is
reached after about 12 h post infection.

Fig. 6(B) demonstrates agreement of solutions identified using
simulated annealing and how these solutions compare to the orig-
inal virus titer curve. Note that the 0 and 4 h time points do not
match exactly because our simulation assumes no residual virus at
the time of initial infection.

3.2. Sensitivity analysis of free parameters

To assess the importance of model free parameters to sim-
ulation outcome, a Latin Hypercube sampling (LHS) sensitivity
analysis was  performed [19,20]. This two-tiered sampling method
was implemented by dividing each free parameter’s range into

1000 intervals. Intervals for each parameter were shuffled with-
out replacement and then randomly sampled using a uniform
distribution resulting in 1000 samplings of the parameter space.
All possible probability parameter values were considered for

nship between free parameters and simulation fitness. A significant correlation was
es derived using the AS 89 method are shown. Blue lines indicate Loess regression

 is referred to the web version of the article.)
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Fig. 8. Time-dependent parameter contributions: dynamics of free parameter correlations with virus titer and proportion of infected cells over time are shown above. (A)
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NFECTIOUSNESS and VIR RELEASE parameters are shown to be significantly correla
umber  of infected cells, but eventually becomes insignificant. Spearman correlatio

NFECTIOUSNESS AND BINDING PROB between 0 and 1. Maximum
alues for NUM DIFF STEPS and VIR RELEASE were arbitrarily
hosen (12 and 30, respectively). A Spearman rank correlation was
hen used to measure statistical dependence, Rho, between free
arameter and single run simulation fitness.

The following are free parameters (described above) contained
n our model and assessed using LHS:

INFECTIOUSNESS: scales number of infectious viral particles for
the initial infection
BINDING PROB: probability with which a single virion infects an
uninfected cell in a single time step
NUM DIFF STEPS: number of steps for the diffusion of virions at
each iteration (random walk)
VIR RELEASE: scales the number of virus particles released from
each infected cell

Fig. 7 shows that INFECTIOUSNESS and VIR RELEASE were signif-
cantly correlated with the simulation fitness while BINDING PROB
nd NUM DIFF STEPS are not. We  see that lower values of INFEC-
IOUSNESS and VIR RELEASE result in improved fitnesses whereas
arger values result in dramatically poor fitness.

We also examined how free parameters affect simulation output
ith time. Using LHS sampling, we tested relations between free
arameters and two simulation outputs: virus titer and % of infected
ells. Fig. 8(A) shows that INFECTIOUSNESS and VIR RELEASE are sig-
ificant over 24 h of simulated infection and that their correlations
tart to diverge at ∼12 h. Again, BINDING PROB and NUM DIFF STEPS
o not show a significant correlation with virus titer. However,
arameters necessary for the second round of infection do impact
he proportion of infected cells shown in Fig. 8(B) where we  see an
ncrease in BINDING PROB and VIR RELEASE correlation between 7
nd 12 h, corresponding to a decrease in the INFECTIOUSNESS cor-
elation. This decrease can be attributed to the second round of
nfection in which a greater population of cells has been infected.
he simultaneous increase in correlation of BINDING PROB and
IR RELEASE indicates that additional rounds of infection are play-

ng a significant role in viral spread, confirming the results of our SA.

. Discussion
Although simplistic compared to in vivo model systems, the
nterpretation of in vitro experiments is still confounded by biolog-
cal complexity and disparate data types. Explanatory models are
ith virus titer. (B) Indicates that INFECTIOUSNESS has a strong correlation with the
 shown and a gray box indicates a lower quality correlation threshold of |0.2|.

critical for understanding and hypothesis generation. This agent-
based modeling framework may  be used to investigate first and
second round of infection mechanisms using free parameters able
to be tuned to allow the model to incorporate disparate types of
experimental data. We  also take into account spatial aspects of
infection, including biases in culture well cell growth and diffusion
of infectious virions.

Virus titer data and GFP infectivity data from a SARS infec-
tion of Calu-3 cells is used as an example to illustrate the model’s
capacity to interpret experimentally derived data. Model parame-
ter fitting using simulated annealing and LHS sensitivity analysis
indicates that a small population of cells is initially infected and
that additional rounds of infection are responsible for virus titer
measurements.

We show that we  are able to identify free parameters that
fit the model to the dynamics of the SARS infection using sim-
ulated annealing and that the model is useful in supporting the
interpretation of in vitro experiments. LHS sensitivity analysis
and SA optimization results indicate a significant relationship
between INFECTIOUSNESS and both the simulation fitness and
simulation outputs (virus titer and proportion infected cells) indi-
cates the importance of this parameter on the resulting infection
dynamics. This result also demonstrates the importance of the
accurate cell and infectious virus particle counts for the MOI
calculation. Finally our model highlights the importance of intra-
cellular processes leading to virus release. One possible future step
is to include additional detail regarding intracellular processes
of virus replication and move to a multi-scale spatio-temporal
model.

Future work is planned to incorporate microarray data and
make predictions regarding host response and expression in order
to examine connections between infection state and signaling
in the immune response. Simulated annealing has been used to
identify free parameters that fit the described model to virus
titer data and may  be used to predict the number of infected
cells or other un-measured data types to support experimental
modeling efforts. These off-line predictions could then be used
to interpolate a single-cell function representing host response
post-infection.

We also plan to train the model with data from multiple virus

strains to investigate how virus population and host response
dynamics differ. Finally, we also plan to investigate the effects of
initial spatial distribution of infected cells on viral pathogenesis for
multiple virus strains.
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