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ABSTRACT

In fluid dynamics, the Buckley-Leverett (BL) equation is a transport equation used

to model two-phase flow in porous media. One application is secondary recovery

by water-drive in oil reservoir simulation. The modified Buckley-Leverett (MBL)

equation differs from the classical BL equation by including a balanced diffusive-

dispersive combination. The dispersive term is a third order mixed derivatives term,

which models the dynamic effects in the pressure difference between the two phases.

The classical BL equation gives a monotone water saturation profile for any Rie-

mann problem; on the contrast, when the dispersive parameter is large enough, the

MBL equation delivers non-monotone water saturation profile for certain Riemann

problems as suggested by the experimental observations.

In this thesis, we first show that the solution of the finite interval [0, L] boundary

value problem converges to that of the half-line [0, +∞) problem for the MBL equation

as L → +∞. This result provides a justification for the use of the finite interval

boundary value problem in numerical studies for the half line problem.

Furthermore, we extend the classical central schemes for the hyperbolic conserva-

tion laws to solve the MBL equation which is of pseudo-parabolic type. This exten-

sion can also be applied to other conservation law solvers. Numerical results confirm
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the existence of non-monotone water saturation profiles consisting of constant states

separated by shocks, which is consistent to the experimental observations.

The two-dimensional physical space is a general setting for the underground oil re-

covery. In this thesis, we also include the derivation of the two-dimensional extension

of the MBL equation.
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CHAPTER 1

INTRODUCTION

For the past fifth years, various research activities have been contacted to assist oil-

reservoir management. The main purpose is to provide an information database that

can help the oil companies maximize the oil and gas recovery. Unfortunately, to

obtain an accurate prediction of reservoir flow scenarios is a challenging task. One

of the reasons is that we can never get a complete and concrete characterization of

the rock parameters that influence the flow pattern. And even if we did, we would

not be able to model the process that utilizes all available information, since this

would require a tremendous amount of computer resources that exceed by far the

capabilities of modern multi-processor computers. On the other hand, we do not

need, nor do we seek a simultaneous description of the flow scenario on all scales

down to the pore scale. For reservoir management it is usually sufficient to provide

the general trends in the reservoir flow pattern.

In this chapter, we will first provide some background knowledge of the underground

oil production process in section 1.1. In section 1.2, we will then introduce the

classical Buckley-Leverett (BL) equation, which models the water-saturation during

secondary recovery by water-drive in oil reservoir simulation. Despite the simplicity,

BL equation has its limitations. To improve the model in the sense of getting a
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CHAPTER 1. INTRODUCTION

saturation profile which is more consist to the experimental observations, we consider

the modified Buckley-Leverett (MBL) equation. In section 1.3, we will show the

derivation of MBL equation.

1.1 Underground Oil Production Process

Initially, an oil reservoir is at an equilibrium stage, and contains oil/gas, and water,

separated by gravity. This equilibrium has been established over millions of years

with gravitational separation and geological and geothermal processes. When a well

is drilled through the upper non-permeable layer and penetrates the upper oil cap,

this equilibrium is immediately disturbed. Oil flows out of the reservoir due to over-

pressure. This in turn, sets up a flow inside the reservoir and oil flows towards the well,

which in turn may induce gravitational instabilities. Also the capillary pressures will

act as a (minor) driving mechanism, resulting in local perturbations of the situation.

During the above process, perhaps 20 percent of the oil present is produced until a

new equilibrium is achieved. This process is called primary production by natural

drives. Notice that a sudden drop in pressure also may have numerous other intrinsic

effects.

As pressure drops, less oil/gas is flowing, and eventually the production is no longer

economically sustainable. Then the operating company may start secondary produc-

tion by engineered drives. These are processes based on injecting water or gas into the

reservoir (see Figure 1.1). The reason for doing this is two folds: some of the pressure

is rebuilt or even increased, and secondly one tries to push out more profitable oil

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Demonstration of secondary recovery during the underground oil produc-
tion process (courtesy to MPG Petroleum, Inc. http://mpgpetroleum.

com/fundamentals.html).

with the injected substance. One may perhaps produce another 20 percent of the oil

by such processes and engineered drives are standard procedure at most locations.

This process is called secondary recovery.

In order to produce even more oil, Enhanced Oil Recovery (EOR, or tertiary recovery)

techniques may be employed. Among these are heating the reservoir or injection of

sophisticated substances like foam, polymers or solvents. Polymers are supposed to

change the flow properties of water, and thereby to more efficiently push out oil.

Similarly, solvents change the flow properties of the oil, for instance by developing

miscibility with an injected gas. In some sense, one tries to wash the pore walls for

most of the remaining oil. The other technique is based on injecting steam, which will

heat the rock matrix, and thereby, hopefully, change the flow properties of the oil. At

present, such EOR techniques are considered too expensive for large-scale commercial

3

http://mpgpetroleum.com/fundamentals.html
http://mpgpetroleum.com/fundamentals.html


CHAPTER 1. INTRODUCTION

use, but several studies have been conducted and the mathematical foundations are

being carefully investigated, and at smaller scales EOR is being performed.

Here, the terms primary, secondary, and tertiary are ambiguous. EOR techniques

may be applied during primary production, and secondary recovery may be performed

from the first day of production.

In this thesis, we focus on the mathematical modeling and numerical simulations

of the secondary recovery process. For the ease of modeling, we start with one-

dimensional model describing the horizontal flow.

1.2 Classical Buckley-Leverett (BL) Equation

The classical Buckley-Leverett (BL) equation [3] is a simple and effective model for

two-phase fluid flow in a porous medium. One application is secondary recovery by

water-drive in oil reservoir simulation. In this case, the two phases are oil and water,

and the flow takes place in a porous medium of rock or sand. In one space dimension

the equation has the standard conservation form

ut + (f(u))x = 0 in Q = {(x, t) : x > 0, t > 0} (1.1)

u(x, 0) = 0 x ∈ (0,∞)

u(0, t) = uB t ∈ [0,∞)

with the flux function f(u) being defined as

f(u) =


0 u < 0,

u2

u2+M(1−u)2
0 ≤ u ≤ 1,

1 u > 1.

(1.2)

4



CHAPTER 1. INTRODUCTION

In this content, u : Q̄ → [0, 1] denotes the water saturation, and so lies between 0

and 1 (e.g. u = 1 means pure water, and u = 0 means pure oil), uB is a constant

which indicates water saturation at x = 0, and M > 0 is a constant representing the

water/oil viscosity ratio. The classical BL equation (1.1) is a prototype for conser-

vation laws with convex-concave flux functions. The graph of f(u) and f ′(u) with

M = 2 is given in Figure 1.2. Notice that in Figure 1.2 (a), at u = α, the tangent

line coincide with the secant line connecting (α, f(α)) and (0, f(0)). We will discuss

the meaning of this point in the later part of this section.

0 0.5 1
0

0.5

1

α
u

f(
u)

(a)

0 0.5 1
0

0.5

1

1.5

2

2.5

u

f′ (u
)

(b)

Figure 1.2: The flux function and its derivative for Buckley-Leverett equation: (a)

f(u) = u2

u2+M(1−u)2
; (b) f ′(u) = 2Mu(1−u)

(u2+M(1−u)2)2
with M = 2.

Due to the possibility of the existence of shocks in the solution of the hyperbolic

5



CHAPTER 1. INTRODUCTION

conservation laws (1.1), the weak solutions are sought. The function u ∈ L∞(Q) is

called a weak solution of the conservation laws (1.1) if∫
Q

{
u
∂φ

∂t
+ f(u)

∂φ

∂x

}
= 0 for all φ ∈ C∞

0 (Q).

Notice that the weak solution is not unique. Among the weak solutions, the entropy

solution is physically relevant and unique. The weak solution that satisfies the Oleinik

entropy condition [18]

f(u)− f(ul)

u− ul

≥ s ≥ f(u)− f(ur)

u− ur

for all u between ul and ur (1.3)

is the entropy solution, where ul, ur are the function values to the left and right of

the shock respectively, and the shock speed s satisfies the Rankine-Hugoniot jump

condition [16, 11]

s =
f(ul)− f(ur)

ul − ur

. (1.4)

Consider the Riemann problem with initial condition

u(x, 0) =

 uB if x = 0

0 if x > 0
,

by following the characteristics, we can construct the triple-valued solution as shown

in Figure 1.3(a). Notice that the characteristic velocities are f ′(u) so that the profile

at time t is simply the graph of tf ′(u) turned sideways [14]. We can use the equal

area rule:

the shaded area on the left of the shock = the shaded area on the right of the shock

6
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 f′(u) t

u
B

0

(a)

 f′(u) t

u
B

u
1

α

0
x

(b)

Figure 1.3: (a): The triple-valued solution of BL; (b): Determination of the shock
location using the equal area rule.

as shown in Figure 1.3(b), i.e.∫ α

u1

tf ′(u) du− x(α− u1) = xu1 −
∫ u1

0

tf ′(u) du,

t(f(α)− f(u1))− xα = −t(f(u1)− f(0)),

x =
f(α)

α
t.

Furthermore, from the triple-valued solution, we have that

x = tf ′(α),

therefore, the post-shock value α satisfies

f ′(α) =
f(α)

α
, (1.5)

7



CHAPTER 1. INTRODUCTION

which gives that

α =

√
M

M + 1
. (1.6)

The location of α and the special property (1.5) that α satisfies are shown in Figure

1.2 (a) for M = 2.

Notice that in this case, ur = 0 and f(ur) = 0, hence the Rankine-Hugoniot condition

(1.4) is automatically satisfies. Hence, replacing the triple-valued solution by a shock

located at

x =
f(α)

α
t

gives the entropy solution. And the entropy solution of the classical BL equation can

be classified into two categories:

1. If 0 < uB ≤ α, the entropy solution has a single shock at x
t

= f(uB)
uB

.

2. If α < uB < 1, the entropy solution contains a rarefaction between uB and α

for f ′(uB) < x
t

< f ′(α) and a shock at x
t

= f(α)
α

.

These two types of solutions are shown in Figure 1.4 for M = 2. In either case, the

entropy solution of the classical BL equation (1.1) is a non-increasing function of x

at any given time t > 0. However, the experiments [8] of two-phase flow in porous

medium reveal complex infiltration profiles, which may involve overshoot, i.e., profiles

may not be monotone as given in Figure 1.5. This suggests the need of modification

to the classical BL equation (1.1).

8
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0 0.5 1
0

0.5

1

x

t

u

uB = 0.7

(a)

0 0.5 1
0

0.5

1

x

t

u

uB = 0.98

(b)

Figure 1.4: The entropy solution of the classical BL equation (M = 2, α =
√

2
3
≈

0.8165). (a) 0 < uB = 0.7 ≤ α, the solution consists of one shock at
x
t

= f(uB)
uB

; (b) α < uB = 0.98 < 1, the solution consists of a rarefaction

between uB and α for f ′(uB) < x
t

< f ′(α) and a shock at x
t

= f(α)
α

.
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Figure 1.5: Courtesy to [8]: Snapshots of the saturation profile versus depth for
six different applied fluxes in initially dry 20/30 sand measured using
light transmission. At the highest (11.8 cm/min) and lowest (7.9×10−4

cm/min) fluxes the profiles are monotonic with distance and no satura-
tion overshoot is observed, while all of the intermediate fluxes exhibit
saturation overshoot.
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1.3 Derivation of the Modified Buckley-Leverett Equation

To better understand the problem, we go back to the origins of (1.1). Let

Si = saturation of oil/water i = o,w

where

So + Sw = 1 (1.7)

that is, the medium is assumed to be completely saturated. The balance of mass

yields

d

dt

∫ x2

x1

φSi(x, t) dx = qi(x1)− qi(x2) for any x1, x2, and i = 0, w,

where

φ = porosity of the medium

= relative volume occupied by the pores, so lies between 0 and 1,

qi = discharge of oil/water.

Since x1, x2 are arbitrary, if Si and qi are smooth, we have the differential form of the

conservation law

φ
∂Si

∂t
+

∂qi

∂x
= 0. (1.8)

Notice that due to the complete saturation assumption (1.7), we have that

qo + qw = q = const in space. (1.9)

11
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Throughout of this thesis, we consider it constant in time as well. The discharge of

each phase is modeled by Darcy’s law [20]

qi = −k
kri(Si)

µi

∂Pi

∂x
, i = o, w. (1.10)

where

k = absolute permeability,

kri = relative permeability,

µi = viscosity,

Pi = phase pressure.

For the ease of notation, we denote

λi = −k
kri

(Si)

µi

, (1.11)

then (1.10) becomes

qi = λi
∂Pi

∂x
. (1.12)

Instead of considering constant capillary pressure as adopted by the classical BL

equation (1.1), Hassanizadeh and Gray [9][10] have defined the dynamic capillary

pressure as

Pc = Po − Pw = pc(Sw)− φτ
∂Sw

∂t
(1.13)

where pc(Sw) is the static capillary pressure and τ is a positive constant, and ∂Sw

∂t
is

the dynamic effects. To simplify the notation, let’s write (1.13) as

Po − Pw = r.h.s.

12



CHAPTER 1. INTRODUCTION

where

r.h.s. = pc(Sw)− φτ
∂Sw

∂t
, (1.14)

then

∂Po

∂x
− ∂Pw

∂x
=

∂

∂x
[r.h.s.].

Combine (1.12), we get

qo

λo

− qw

λw

=
∂

∂x
[r.h.s.]. (1.15)

Notice that (1.9) gives

qo

λo

− qw

λw

=
q − qw

λo

− qw

λw

=
q

λo

− λo + λw

λoλw

qw,

and hence (1.15) becomes

q

λo

− λo + λw

λoλw

qw =
∂

∂x
[r.h.s.],

and

qw =
λw

λo + λw

q − λoλw

λo + λw

∂

∂x
[r.h.s.]. (1.16)

Plugging (1.16) into the governing equation (1.8) for Sw, we get that

φ
∂Sw

∂t
+

∂

∂x

[
λw

λo + λw

q − λoλw

λo + λw

∂

∂x
[r.h.s.]

]
= 0,

and hence

∂Sw

∂t
+

∂

∂x

[
λw

λo + λw

q

φ

]
=

∂

∂x

[
λoλw

φ(λo + λw)

∂

∂x
[r.h.s.]

]
.

13
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By the definition of λw, λo, and r.h.s. in (1.11) and (1.14) respectively, we have that

∂Sw

∂t
+

∂

∂x

[
−kkrw(Sw)/µw

−kkro(So)/µo − kkrw(Sw)/µw

q

φ

]
=

∂

∂x

[
(−kkro(So)/µo)(−kkrw(Sw)/µw)

−kkro(So)/µo − kkrw(Sw)/µw

∂

∂x

(
pc(Sw)

φ
− τ

∂Sw

∂t

)]
.

Using Corey [6, 19] expressions,

krw(Sw) = S2
w, kro(So) = S2

o ,

and combining with (1.7), we get

∂Sw

∂t
+

∂

∂x

[
S2

w

S2
w + µw

µo
(1− Sw)2

q

φ

]

=− ∂

∂x

[
k(1− Sw)2S2

w

µw(1− Sw)2 + µoS2
w

∂

∂x

(
pc(Sw)

φ
− τ

∂Sw

∂t

)]
.

If we rescale

x
φ

q
→ x

and let

u = Sw = saturation of water,

we get

∂u

∂t
+

∂

∂x

[
u2

u2 + M(1− u)2

]
= − ∂

∂x

[
φ2

q2

k(1− u)2u2

µw(1− u)2 + µou2

∂

∂x

(
pc(u)

φ
− τ

∂u

∂t

)]
,

(1.17)

where

M =
µw

µo

.

14
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Equation (1.17) can be written as a more general form

∂u

∂t
+

∂f(u)

∂x
= − ∂

∂x

{
H(u)

∂

∂x

(
J(u)− τ

∂u

∂t

)}
. (1.18)

where

f(u) =
u2

u2 + M(1− u)2

is the BL flux. In this thesis, we consider the linearized right hand side. In (1.18) if

we take

H(u) = ε2,

J(u) = −u

ε
,

or equivalently if we assume porosity φ is small in (1.17) by taking

φ2

q2

k(1− u)2u2

µw(1− u)2 + µou2
= ε2,

pc(u)

φ
= −u

ε
,

then the modified Buckley-Leverett equation (MBL) is obtained

∂u

∂t
+

∂f(u)

∂x
= ε

∂2u

∂x2
+ ε2τ

∂2u

∂x2∂t
. (1.19)

Note that, if Pc in (1.13) is taken to be constant, then (1.17) gives the classical BL

equation; while if the dispersive parameter τ is taken to be zero, or equivalently

dynamic effect in the pressure difference between the two phases is neglected, then

(1.19) gives the viscous BL equation, which still displays monotone water saturation

profile. Thus, in addition to the classical second order viscous term εuxx, the MBL

15
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equation (1.19) is an extension involving a third order mixed derivative term ε2τuxxt.

Van Dujin et al. [21] showed that the value τ is critical in determining the type of the

profile. In particular, for certain Riemann problems, the solution profile of (1.19) is

not monotone when τ is larger than the threshold value τ∗, where τ∗ was numerically

determined to be 0.61 [21]. The non-monotonicity of the solution profile is consistent

with the experimental observations [8] as given in Figure 1.5.

The classical BL equation (1.1) is hyperbolic, and the numerical schemes for hyper-

bolic equations have been well developed (e.g. [14, 15, 4, 5, 17, 12] ). The MBL

equation (1.19), however, is pseudo-parabolic, we will illustrate how to extend the

central schemes [17, 12] to solve (1.19) numerically. Unlike the finite domain of de-

pendence for the classical BL equation (1.1), the domain of dependence for the MBL

equation (1.19) is infinite. This naturally raises the question for the choice of com-

putational domain. To answer this question, we will first study the MBL equation

equipped with two types of domains and corresponding boundary conditions. One is

the half line problem

ut + (f(u))x = εuxx + ε2τuxxt in Q = {(x, t) : x > 0, t > 0}

u(x, 0) = u0(x) x ∈ [0,∞)

u(0, t) = gu(t), lim
x→∞

u(x, t) = 0 t ∈ [0,∞)

u0(0) = gu(0) compatibility condition

(1.20)

16
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and the other one is the finite interval boundary value problem

vt + (f(v))x = εvxx + ε2τvxxt in Q̃ = {(x, t) : x ∈ (0, L), t > 0}

v(x, 0) = v0(x) x ∈ [0, L]

v(0, t) = gv(t), v(L, t) = h(t) t ∈ [0,∞)

v0(0) = gv(0), v0(L) = h(0) compatibility condition.

(1.21)

Considering

u0(x) =

 v0(x) for x ∈ [0, L]

0 for x ∈ [L, +∞)
, gu(t) = gv(t) ≡ g(t), h(t) ≡ 0,(1.22)

we will show the relation between the solutions of problems (1.20) and (1.21). To

the best knowledge of the author, there is no such study for MBL equation (1.19).

Similar questions were answered for BBM equation [1, 2].

The organization of this thesis is as follows. Chapter 2 will bring forward the exact

theory comparing the solutions of (1.20) and (1.21). The difference between the

solutions of these two types of problems decays exponentially with respect to the

length of the interval L for practically interesting initial profiles. This provides a

theoretical justification for the choice of the computational domain. In chapter 3, high

order central schemes will be developed for MBL equation in finite interval domain.

We provide a detailed derivation on how to extend the central schemes [17, 12] for

conservation laws to solve the MBL equation (1.19). The idea of adopting numerical

schemes originally designed for hyperbolic equations to pseudo-parabolic equations

is not restricted to central type schemes only ([22, 23]). The numerical results in

chapter 4 show that the water saturation profile strongly depends on the dispersive

17
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parameter τ value as studied in [21]. For τ > τ∗, the MBL equation (1.19) gives non-

monotone water saturation profiles for certain Riemann problems as suggested by

experimental observations [8]. In chapter 5, we show the two-dimensional extension

of MBL equation and discuss the preliminary numerical solutions. Chapter 6 gives

the conclusion of the paper and the possible future directions.

18



CHAPTER 2

THE HALF LINE PROBLEM VERSUS THE FINITE

INTERVAL BOUNDARY VALUE PROBLEM

Let u(x, t) be the solution to the half line problem (1.20), and let v(x, t) be the

solution to the finite interval boundary value problem (1.21). We consider the natural

assumptions (1.22). The existence of solution for both the half line problem (1.20)

the finite interval boundary value problem (1.21) can be proven similar to that in [1].

We will therefore omit that proof. The goal of this chapter is to develop an estimate

of the difference between u and v on the spatial interval [0, L] at a given finite time

t. The main result of this section is

Theorem 2.0.1 (The main Theorem). If u0(x) satisfies

u0(x) =

 Cu x ∈ [0, L0]

0 x > L0

(2.1)

where L0 < L and Cu, are positive constants, then

‖u(·, t)− v(·, t) ‖H1
L,ε,τ

≤ D1;ε,τ (t)e
− λL

ε
√

τ + D2;ε,τ (t)e
−λ(L−L0)

ε
√

τ

for some 0 < λ < 1, D1;ε,τ (t) > 0 and D2;ε,τ (t) > 0, where

‖Y (·, t) ‖H1
L,ε,τ

:=

√∫ L

0

Y (x, t)2 + (ε
√

τYx(x, t))2 dx.
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Notice that the initial condition (2.1) we considered is the Riemann problem. Theo-

rem 2.0.1 shows that the solution to the half line problem (1.20) can be approximated

as accurately as one wants by the solution to the finite interval boundary value prob-

lem (1.21) in the sense that D1;ε,τ (t), D2;ε,τ (t),
λL
ε
√

τ
and λ(L−L0)

ε
√

τ
can be controlled.

To prove theorem 2.0.1, we first derive the implicit solution formulae for the half line

problem and the finite interval boundary value problem in section 2.1 and section 2.2

respectively. The implicit solution formulae are in integral form, which are derived

by separating the x-derivative from the t-derivative, and formally solving a first order

linear ODE in t and a second order non-homogeneous ODE in x. In section 2.3, we

use Gronwall’s inequality multiple times to obtain the desired result in theorem 2.0.1.

2.1 Half Line Problem

In this section, we derive the implicit solution formula for the half line problem (1.20).

For ease of reference, the equation is repeated here.

ut + (f(u))x = εuxx + ε2τuxxt in Q = {(x, t) : x > 0, t > 0}

u(x, 0) = u0(x) x ∈ [0,∞)

u(0, t) = gu(t) = g(t), lim
x→∞

u(x, t) = 0 t ∈ [0,∞)

u0(0) = gu(0) = g(0) compatibility condition.

(2.2)

20



CHAPTER 2. HALF LINE V.S. FINITE INTERVAL DOMAIN

To solve (2.2), we first rewrite (2.2) by separating the x-derivative from the t-

derivative, (
I − ε2τ

∂2

∂x2

) (
ut +

1

ετ
u

)
=

1

ετ
u− (f(u))x. (2.3)

Notice that (2.3) can be viewed as a first order linear ODE in t. By multiplying

integrating factor, we get(
I − ε2τ

∂2

∂x2

) (
e

t
ετ ut + e

t
ετ

1

ετ
u

)
=

(
1

ετ
u− (f(u))x

)
e

t
ετ ,(

I − ε2τ
∂2

∂x2

) (
ue

t
ετ

)
t
=

(
1

ετ
u− (f(u))x

)
e

t
ετ . (2.4)

We formally integrate (2.4) over [0, t] to obtain(
I − ε2τ

∂2

∂x2

) (
ue

t
ετ − u0

)
=

∫ t

0

(
1

ετ
u− (f(u))x

)
e

s
ετ ds,(

I − ε2τ
∂2

∂x2

) (
u− e−

t
ετ u0

)
=

∫ t

0

(
1

ετ
u− (f(u))x

)
e−

t−s
ετ ds. (2.5)

Furthermore, we let

A = u− e−
t

ετ u0, (2.6)

then (2.5) can be written as

A− ε2τA′′ =

∫ t

0

(
1

ετ
u− (f(u))x

)
e−

t−s
ετ ds where ′ =

∂

∂x
,

i.e.

A′′ − 1

ε2τ
A =

∫ t

0

(
− 1

ε3τ 2
u +

1

ε2τ
(f(u))x

)
e−

t−s
ετ ds. (2.7)
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Notice that (2.7) is a second-order non-homogeneous ODE in x-variable along with

the boundary conditions

A(0, t) = u(0, t)− e−
t

ετ u0(0)

= g(t)− e−
t

ετ g(0),

A(∞, t) = u(∞, t)− e−
t

ετ u0(∞) = 0.

(2.8)

To solve (2.7), we first solve the corresponding linear homogeneous equation with the

non-zero boundary conditions (2.8).

(Ah)
′′ − 1

ε2τ
Ah = 0,

Ah(0, t) = g(t)− e−
t

ετ g(0),

Ah(∞, t) = 0,

and the solution is

Ah(x, t) = (g(t)− e−
t

ετ g(0))e
− x

ε
√

τ .

We then find a particular solution for the non-homogeneous equation with zero bound-

ary conditions

B′′ − 1

ε2τ
B =

∫ t

0

(
− 1

ε3τ 2
u +

1

ε2τ
(f(u))x

)
e−

t−s
ετ dx, (2.9)

B(0, t) = 0,

B(∞, t) = 0.
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We break the right hand side of (2.9) into two parts and consider them separately.

Let B1 satisfy

B′′
1 −

1

ε2τ
B1 =

∫ t

0

− 1

ε3τ 2
ue−

t−s
ετ dx,

B1(0, t) = 0,

B1(∞, t) = 0.

We look for the Green’s function G(x, ξ) ( ξ ∈ (0,∞)) for B1 that satisfies

G′′ − 1

ε2τ
G = δ(x− ξ),

G(0, ξ) = 0,

G(∞, ξ) = 0,

G(ξ−, ξ) = G(ξ+, ξ),

G′(ξ+, ξ)−G′(ξ−, ξ) = 1, where ′ =
∂

∂x
.

Such a Green’s function G(x, ξ) is

G(x, ξ) =
ε
√

τ

2

(
e
−x+ξ

ε
√

τ − e
− |x−ξ|

ε
√

τ

)
.

Hence,

B1(x, t) = − 1

ε3τ 2

∫ t

0

∫ +∞

0

G(x, ξ)u(ξ, s)e−
t−s
ετ dξ ds

= − 1

2ε2τ
√

τ

∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ − e
− |x−ξ|

ε
√

τ

)
u(ξ, s)e−

t−s
ετ dξ ds.
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Similarly, let B2 satisfy

B′′
2 −

1

ε2τ
B2 =

∫ t

0

1

ε2τ
(f(u))xe

− t−s
ετ ds,

B2(0, t) = 0,

B2(∞, t) = 0.

Since ∫ +∞

0

(f(u))ξG(x, ξ) dξ

=

∫ +∞

0

ε
√

τ

2
(f(u))ξ

(
e
−x+ξ

ε
√

τ − e
− |x−ξ|

ε
√

τ

)
dξ

=

[
ε
√

τ

2
f(u)

(
e
−x+ξ

ε
√

τ − e
− |x−ξ|

ε
√

τ

)]ξ=+∞

ξ=0

−
∫ +∞

0

ε
√

τ

2
f(u)

(
− 1

ε
√

τ
e
−x+ξ

ε
√

τ − 1

ε
√

τ
sgn(x− ξ)e

− |x−ξ|
ε
√

τ

)
dξ

=
1

2

∫ +∞

0

f(u)
(
e
−x+ξ

ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

)
dξ,

let Kernel K(x, ξ) where ξ ∈ (0,∞) be

K(x, ξ) =
1

2

(
e
−x+ξ

ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

)
and hence B2(x, t) is

B2(x, t) =
1

ε2τ

∫ t

0

∫ +∞

0

K(x, ξ)f(u)e−
t−s
ετ dξ ds

=
1

2ε2τ

∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

)
f(u)e−

t−s
ετ dξ ds.
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Therefore, the solution for (2.9) is

B(x, t) =B1(x, t) + B2(x, t)

=− 1

2ε2τ
√

τ

∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ − e
− |x−ξ|

ε
√

τ

)
u(ξ, s)e−

t−s
ετ dξ ds

+
1

2ε2τ

∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

)
f(u)e−

t−s
ετ dξ ds.

Therefore,

A(x, t) = B(x, t) + Ah(x, t)

= B(x, t) +
(
g(t)− e−

t
ετ g(0)

)
e
− x

ε
√

τ .

By (2.6), we get the implicit solution formulae for u(x, t)

u(x, t) =A(x, t) + e−
t

ετ u0(x)

=B(x, t) +
(
g(t)− e−

t
ετ g(0)

)
e
− x

ε
√

τ + e−
t

ετ u0(x)

=− 1

2ε2τ
√

τ

∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ − e
− |x−ξ|

ε
√

τ

)
u(ξ, s)e−

t−s
ετ dξ ds

+
1

2ε2τ

∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

)
f(u)e−

t−s
ετ dξ ds

+
(
g(t)− e−

t
ετ g(0)

)
e
− x

ε
√

τ + e−
t

ετ u0(x). (2.10)

2.2 Finite Interval Boundary Value Problem

In this section, we derive the implicit solution formula for the finite interval boundary

value problem (1.21). For ease of reference, the finite interval boundary value problem
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is repeated here.

vt + (f(v))x = εvxx + ε2τvxxt in Q̃ = {(x, t) : x ∈ (0, L), t > 0}

v(x, 0) = v0(x) x ∈ [0, L]

v(0, t) = gv(t) = g(t) v(L, t) = h(t) t ∈ [0,∞)

v0(0) = gv(0) = g(0) v0(L) = h(0) compatibility condition.

(2.11)

The idea of solving (2.11) is the same as that of solving (2.2). The only difference

is that the additional boundary condition h(t) at x = L in (2.11) gives different

boundary conditions for the non-homogeneous ODE in x-variable.

To solve for the solution of (2.11), we first rewrite (2.11) by separating the x-derivative

from the t-derivative, i.e.,(
I − ε2τ

∂2

∂x2

) (
vt +

1

ετ
v

)
=

1

ετ
v − (f(v))x (2.12)

and then multiply the integrating factor(
I − ε2τ

∂2

∂x2

) (
e

t
ετ vt + e

t
ετ

1

ετ
v

)
=

(
1

ετ
v − (f(v))x

)
e

t
ετ ,(

I − ε2τ
∂2

∂x2

) (
ve

t
ετ

)
t
=

(
1

ετ
v − (f(v))x

)
e

t
ετ . (2.13)

Integrate (2.13) over [0, t], we get(
I − ε2τ

∂2

∂x2

) (
ve

t
ετ − v0

)
=

∫ t

0

(
1

ετ
v − (f(v))x

)
e

s
ετ ds,(

I − ε2τ
∂2

∂x2

) (
v − e−

t
ετ v0

)
=

∫ t

0

(
1

ετ
v − (f(v))x

)
e−

t−s
ετ ds.

Denote

AL = v − e−
t

ετ v0, (2.14)
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then AL satisfies

AL − ε2τ(AL)′′ =

∫ t

0

(
−(f(v))x +

1

ετ
v

)
e−

t−s
ετ ds where ′ =

∂

∂x
(2.15)

i.e.,

(AL)′′ − 1

ε2τ
AL =

∫ t

0

(
− 1

ε3τ 2
v +

1

ε2τ
(f(v))x

)
e−

t−s
ετ dx. (2.16)

The non-homogeneous second order ODE (2.16) has the following boundary condi-

tions

AL(0, t) = v(0, t)− e−
t

ετ v0(0)

= g(t)− e−
t

ετ g(0),

AL(L, t) = v(L, t)− e−
t

ετ v0(L)

= h(t)− e−
t

ετ h(0).

The solution to the corresponding homogeneous equation

(AL
h )′′ − 1

ε2τ
AL

h = 0

with the boundary conditions

AL
h (0, t) = g(t)− e−

t
ετ g(0)

AL
h (L, t) = h(t)− e−

t
ετ h(0)

is

AL
h = c1(t)φ1(x) + c2(t)φ2(x),
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where

c1(t) = g(t)− e−
t

ετ g(0), (2.17)

c2(t) = h(t)− e−
t

ετ h(0), (2.18)

φ1(x) =
e

L−x
ε
√

τ − e
−L+x
ε
√

τ

e
L

ε
√

τ − e
− L

ε
√

τ

, (2.19)

φ2(x) =
e

x
ε
√

τ − e
− x

ε
√

τ

e
L

ε
√

τ − e
− L

ε
√

τ

. (2.20)

Now, we solve the corresponding non-homogeneous equation with zero boundary

conditions:

(BL)′′ − 1

ε2τ
BL =

∫ t

0

(
− 1

ε3τ 2
v +

1

ε2τ
(f(v))x

)
e−

t−s
ετ dx, (2.21)

BL(0, t) = 0,

BL(L, t) = 0.

We break the right hand side of (2.21) into two parts and consider them separately.

Let BL
1 satisfy

(BL
1 )′′ − 1

ε2τ
BL

1 =

∫ t

0

− 1

ε3τ 2
ve−

t−s
ετ dx,

BL
1 (0, t) = 0,

BL
1 (L, t) = 0.
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We look for the Green’s function GL(x, ξ), where ξ ∈ (0, L), for BL
1 that satisfies

(GL)′′ − 1

ε2τ
GL = δ(x− ξ),

GL(0, ξ) = 0,

GL(L, ξ) = 0,

GL(ξ−, ξ) = GL(ξ+, ξ),

(GL)′(ξ+, ξ)− (GL)′(ξ−, ξ) = 1, where ′ =
∂

∂x
.

Such a Green’s function GL(x, ξ) is

GL(x, ξ) =
ε
√

τ

2(e
2L

ε
√

τ − 1)

(
e

x+ξ
ε
√

τ + e
2L−(x+ξ)

ε
√

τ − e
|x−ξ|
ε
√

τ − e
2L−|x−ξ|

ε
√

τ

)
.

Hence,

BL
1 (x, t) = − 1

ε3τ 2

∫ t

0

∫ L

0

GL
1 (x, ξ)v(ξ, s)e−

t−s
ετ dξ ds

= − 1

2ε2τ
√

τ(e
2L

ε
√

τ − 1)

∫ t

0

∫ L

0(
e

x+ξ
ε
√

τ + e
2L−(x+ξ)

ε
√

τ − e
|x−ξ|
ε
√

τ − e
2L−|x−ξ|

ε
√

τ

)
v(ξ, s)e−

t−s
ετ dξ ds.

Similarly, let BL
2 satisfy

(BL
2 )′′ − 1

ε2τ
BL

2 =

∫ t

0

1

ε2τ
(f(v))xe

− t−s
ετ ds,

BL
2 (0, t) = 0,

BL
2 (L, t) = 0.
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Since ∫ L

0

(f(v))ξG
L
1 (x, ξ) dξ

=

∫ L

0

ε
√

τ

2(e
2L

ε
√

τ − 1)
(f(v))ξ

(
e

x+ξ
ε
√

τ + e
2L−(x+ξ)

ε
√

τ − e
|x−ξ|
ε
√

τ − e
2L−|x−ξ|

ε
√

τ

)
dξ

=

[
ε
√

τ

2(e
2L

ε
√

τ − 1)
f(v)

(
e

x+ξ
ε
√

τ + e
2L−(x+ξ)

ε
√

τ − e
|x−ξ|
ε
√

τ − e
2L−|x−ξ|

ε
√

τ

)]ξ=L

ξ=0

−
∫ L

0

ε
√

τ

2(e
2L

ε
√

τ − 1)
f(v)

(
1

ε
√

τ
e

x+ξ
ε
√

τ − 1

ε
√

τ
e

2L−(x+ξ)

ε
√

τ

+
1

ε
√

τ
sgn(x− ξ)e

|x−ξ|
ε
√

τ − 1

ε
√

τ
sgn(x− ξ)e

2L−|x−ξ|
ε
√

τ

)
dξ

=− 1

2(e
2L

ε
√

τ − 1)

∫ L

0

f(v)
(
e

x+ξ
ε
√

τ − e
2L−(x+ξ)

ε
√

τ

+sgn(x− ξ)e
|x−ξ|
ε
√

τ − sgn(x− ξ)e
2L−|x−ξ|

ε
√

τ

)
dξ,

let KL(x, ξ) where ξ ∈ (0, L) be

KL(x, ξ) = − 1

2(e
2L

ε
√

τ − 1)

(
e

x+ξ
ε
√

τ − e
2L−(x+ξ)

ε
√

τ + sgn(x− ξ)e
|x−ξ|
ε
√

τ − sgn(x− ξ)e
2L−|x−ξ|

ε
√

τ

)
,

and hence BL
2 (x, t) is

BL
2 (x, t) =

1

ε2τ

∫ t

0

∫ L

0

KL(x, ξ)f(v)e−
t−s
ετ dξ ds

= − 1

2ε2τ(e
2L

ε
√

τ − 1)

∫ t

0

∫ +∞

0

f(v)e−
t−s
ετ

·
(
e

x+ξ
ε
√

τ − e
2L−(x+ξ)

ε
√

τ + sgn(x− ξ)e
|x−ξ|
ε
√

τ − sgn(x− ξ)e
2L−|x−ξ|

ε
√

τ

)
dξ ds.
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Therefore, the solution for (2.21) is

BL(x, t) =BL
1 (x, t) + BL

2 (x, t)

=− 1

2ε2τ
√

τ(e
2L

ε
√

τ − 1)

∫ t

0

∫ L

0

(
e

x+ξ
ε
√

τ + e
2L−(x+ξ)

ε
√

τ − e
|x−ξ|
ε
√

τ − e
2L−|x−ξ|

ε
√

τ

)
· v(ξ, s)e−

t−s
ετ dξ ds

− 1

2ε2τ(e
2L

ε
√

τ − 1)

∫ t

0

∫ L

0

f(v)e−
t−s
ετ

·
(
e

x+ξ
ε
√

τ − e
2L−(x+ξ)

ε
√

τ + sgn(x− ξ)e
|x−ξ|
ε
√

τ − sgn(x− ξ)e
2L−|x−ξ|

ε
√

τ

)
dξ ds.

Therefore,

AL(x, t) = BL(x, t) + AL
h (x, t)

= BL(x, t) +
(
g(t)− e−

t
ετ g(0)

)
φ1(x) +

(
h(t)− e−

t
ετ h(0)

)
φ2(x).

By (2.14), we get the implicit solution formulae for v(x, t)

v(x, t) =AL(x, t) + e−
t

ετ v0(x)

=BL(x, t) +
(
g(t)− e−

t
ετ g(0)

)
φ1(x) +

(
h(t)− e−

t
ετ h(0)

)
φ2(x) + e−

t
ετ v0(x)

=− 1

2ε2τ
√

τ(e
2L

ε
√

τ − 1)

∫ t

0

∫ L

0

(
e

x+ξ
ε
√

τ + e
2L−(x+ξ)

ε
√

τ − e
|x−ξ|
ε
√

τ − e
2L−|x−ξ|

ε
√

τ

)
· v(ξ, s)e−

t−s
ετ dξ ds

− 1

2ε2τ(e
2L

ε
√

τ − 1)

∫ t

0

∫ L

0

f(v)e−
t−s
ετ

·
(
e

x+ξ
ε
√

τ − e
2L−(x+ξ)

ε
√

τ + sgn(x− ξ)e
|x−ξ|
ε
√

τ − sgn(x− ξ)e
2L−|x−ξ|

ε
√

τ

)
dξ ds

+
(
g(t)− e−

t
ετ g(0)

)
φ1(x) +

(
h(t)− e−

t
ετ h(0)

)
φ2(x) + e−

t
ετ v0(x).
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2.3 Comparisons

With the implicit solution formulae for the half line problem and the finite interval

boundary value problem derived in sections 2.1 and 2.2 respectively, we will prove in

this section that the solution u(x, t) to the half line problem can be approximated as

accurately as one wants by the solution v(x, t) to the finite interval boundary value

problem as stated in Theorem 2.0.1.

The idea of the proof is to decompose u(x, t) (v(x, t) respectively) into two parts:

U(x, t) and uL(x, t) (V (x, t) and vL(x, t) respectively). uL(x, t) (vL(x, t) respec-

tively) consists of terms involving the initial condition u0(x) (v0(x) respectively) and

the boundary conditions g(t) (g(t) and h(t) respectively) for the governing equa-

tion (2.2)((2.11) respectively). U(x, t) (V (x, t) respectively) enjoys zero initial con-

dition and boundary conditions while satisfying a slightly different equation than

(2.2)((2.11) respectively). We estimate the difference between u(·, t) and v(·, t) by es-

timating the differences between uL(·, t) and vL(·, t), U(·, t) and V (·, t), then applying

the triangle inequality.

In section 2.3.1, we will give the definitions of the decomposition of u(x, t) (v(x, t)

respectively) and a list of lemmas that will be used in the proof of Theorem 2.0.1. The

proof of the lemmas can be found in the appendix A. In addition, the norm ‖ · ‖H1
L,ε,τ

to be used in Theorem 2.0.1 will also be introduced in section 2.3.1. In section 2.3.2,

we will prove a critical estimate which is essential to the proof of Theorem 2.0.1.

In section 2.3.3, we will give the maximum difference ‖uL(·, t)− vL(·, t) ‖∞, and use

it to derive ‖uL(·, t)− vL(·, t) ‖H1
L,ε,τ

and ‖U(·, t)− V (·, t) ‖H1
L,ε,τ

by using Gronwall’s
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inequality. In the end, the ultimate difference ‖u(·, t)− v(·, t) ‖H1
L,ε,τ

will be derived

based on the triangle inequality.

2.3.1 Definitions and Lemmas

To assist the proof of Theorem 2.0.1 in section 2.3.3, we introduce some new notations

in this section. We first decompose u(x, t) as sum of two terms U(x, t) and uL(x, t),

such that

u(x, t) = U(x, t) + uL(x, t) x ∈ [0, +∞)

where

uL = e−
t

ετ u0(x) + c1(t)e
− x

ε
√

τ +
(
u(L, t)− c1(t)e

− L
ε
√

τ − e−
t

ετ u0(L)
)

φ2(x) (2.22)

and c1(t) and φ2(x) are given in (2.17) and (2.20) respectively. With this definition,

uL takes care of the initial condition u0(x) and boundary conditions g(t) at x = 0 and

x = L for u(x, t). Then U satisfies an equation slightly different from the equation u

satisfies in (2.2):

Ut − εUxx − ε2τUxxt

=
(
ut − εuxx − ε2τuxxt

)
−

(
(uL)t − ε(uL)xx − ε2τ(uL)xxt

)
=− (f(u))x +

1

ετ
uL(x, t).

(2.23)
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In addition, U(x, t) has zero initial condition and boundary conditions at x = 0 and

x = L, i.e.,

U(x, 0) = 0,

U(0, t) = 0,

U(L, t) = 0.

(2.24)

Similarly, for v(x, t), let

v(x, t) = V (x, t) + vL(x, t) x ∈ [0, L]

where

vL = e−
t

ετ v0(x) + c1(t)φ1(x) + c2(t)φ2(x) (2.25)

and c1(t), c2(t) and φ1(x), φ2(x) are given in (2.17,2.18) and (2.19,2.20) respectively.

With this definition, vL takes care of the initial condition v0(x) and boundary con-

ditions g(t) and h(t) at x = 0 and x = L for v(x, t). Then V satisfies an equation

slightly different from the equation v satisfies in (2.11):

Vt − εVxx − ε2τVxxt

=
(
vt − εvxx − ε2τvxxt

)
−

(
(vL)t − ε(vL)xx − ε2τ(vL)xxt

)
=− (f(v))x +

1

ετ
vL(x, t).

(2.26)

In addition, V (x, t) has zero initial condition and boundary conditions at x = 0 and

x = L, i.e.,

V (x, 0) = 0,

V (0, t) = 0,

V (L, t) = 0.

(2.27)
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Since, in the end, we want to study the difference between U(x, t) and V (x, t), we

define

W (x, t) = V (x, t)− U(x, t) for x ∈ [0, L].

Because of (2.23) and (2.26) , we have

Wt − εWxx − ε2τWxxt = − (f(v)− f(u))x +
1

ετ
(vL − uL). (2.28)

In lieu of (2.24) and (2.27), W (x, t) also has zero initial condition and boundary

conditions at x = 0 and x = L, i.e.,

W (x, 0) = 0,

W (0, t) = 0,

W (L, t) = 0.

(2.29)

Now, in order to estimate ‖u− v ‖, we can estimate ‖W ‖ = ‖V − U ‖ and estimate

‖uL − vL ‖ separately. These estimates are done in section 2.3.3.

Next, we state the lemmas needed in the proof of Theorem 2.0.1. The proof of the

lemmas can be found in the appendix A. In all the lemmas, we assume 0 < λ < 1

and u0(x) satisfies

u0(x) =

 Cu x ∈ [0, L0]

0 x > L0

(2.30)

where L0 < L and Cu are positive constants. Notice that the constraint λ ∈ (0, 1) is

crucial in Lemmmas 2.3.2 and 2.3.3.

Lemma 2.3.1. f(u) = u2

u2+M(1−u)2
≤ Du where D = f(α)

α
and α =

√
M

M+1
.
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Lemma 2.3.2. (i)
∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx−λξ

ε
√

τ dξ ≤ 2ε
√

τ
1−λ2 .

(ii)
∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx−ξ
ε
√

τ dξ ≤ ε
√

τ
e(1−λ)

.

(iii)
∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx

ε
√

τ |u0(ξ)| dξ ≤ 2Cuε
√

τe
λL0
ε
√

τ .

Lemma 2.3.3. (i)
∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx−λξ

ε
√

τ dξ ≤ 2ε
√

τ
1−λ2 .

(ii)
∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx−ξ
ε
√

τ dξ ≤ ε
√

τ + ε
√

τ
e(1−λ)

.

(iii)
∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx

ε
√

τ |u0(ξ)| dξ ≤ 2Cuε
√

τe
λL0
ε
√

τ .

Lemma 2.3.4. (i)
∣∣∣φ1(x)− e

− x
ε
√

τ

∣∣∣ = e
− L

ε
√

τ |φ2(x)| .

(ii) |φ2(x)| ≤ 1 for x ∈ [0, L] .

(iii) |φ′2(x)| ≤ 2
ε
√

τ
if ε � 1 for x ∈ [0, L] .

Last but not least, the norm that we will use in Theorem 2.0.1 and its proof is

‖Y (·, t) ‖H1
L,ε,τ

:=

√∫ L

0

Y (x, t)2 + (ε
√

τYx(x, t))2 dx. (2.31)

2.3.2 A Proposition

In this section, we will give a critical estimate, which is essential in the calculation

of maximum difference ‖uL(·, t)− vL(·, t) ‖∞ in section 2.3.3. By comparing uL(x, t)

and vL(x, t) given in (2.22) and (2.25) respectively, it is clear that the coefficient

u(L, t) − c1(t)e
− L

ε
√

τ − e−
t

ετ u0(L) for φ2(x) appeared in (2.22) needs to be compared
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with the corresponding coefficient c2(t) for φ2(x) appeared in (2.25). In this section,

we will find a bound for u(L, t)− c1(t)e
− L

ε
√

τ − e−
t

ετ u0(L) as follows∣∣∣u(L, t)− c1(t)e
− L

ε
√

τ − e−
t

ετ u0(L)
∣∣∣ ≤ aτ (t)e

bτ t
ετ e

− λL
ε
√

τ + cτ
t

ετ
e

(bτ−1)t
ετ e

−λ(L−L0)

ε
√

τ (2.32)

for some parameter-dependent constants aτ , bτ and cτ . The idea of the proof is to

define a space-dependent function

Uc2(x, t) = u(x, t)− c1(t)e
− x

ε
√

τ − e−
t

ετ u0(x) (2.33)

and show that Uc2(x, t) decays exponentially with respect to x by using Gronwall’s

inequality and then evaluate Uc2 at x = L to obtain (2.32).

Based on the implicit solution formula (2.10) derived in section 2.1, we have

Uc2(x, t) =− 1

2ε2τ
√

τ

∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ − e
− |x−ξ|

ε
√

τ

)
u(ξ, s)e−

t−s
ετ dξ ds

+
1

2ε2τ

∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

)
f(u)e−

t−s
ετ dξ ds,

and based on the relationship between Uc2 and u given in (2.33), we have

Uc2(x, t) =− 1

2ε2τ
√

τ

[∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ − e
− |x−ξ|

ε
√

τ

)
Uc2(ξ, s)e

− t−s
ετ dξ ds

+

∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ − e
− |x−ξ|

ε
√

τ

)
c1(s)e

− ξ
ε
√

τ e−
t−s
ετ dξ ds

+

∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ − e
− |x−ξ|

ε
√

τ

)
u0(ξ)e

− s
ετ e−

t−s
ετ dξ ds

]
+

1

2ε2τ

∫ t

0

∫ +∞

0

(
e
−x+ξ

ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

)
f(u)e−

t−s
ετ dξ ds,
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and based on Lemma 2.3.1, we can get an inequality in terms of Uc2

|Uc2(x, t)| ≤ 1

2ε2τ
√

τ

[∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ |Uc2(ξ, s)| e−
t−s
ετ dξ ds

+

∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ |c1(s)| e−
ξ

ε
√

τ e−
t−s
ετ dξ ds

+

∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ |u0(ξ)| e−
t

ετ dξ ds

]
+

D

2ε2τ

[∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ |Uc2(ξ, s)| e−
t−s
ετ dξ ds

+

∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ |c1(s)| e−
ξ

ε
√

τ e−
t−s
ετ dξ ds

+

∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ |u0(ξ)| e−
t

ετ dξ ds

]
.

(2.34)

To show that Uc2(x, t) decays exponentially with respect to x, we first pull out an

exponential term by writing

Uc2(x, t) = e
− λx

ε
√

τ e−
t

ετ Ũ(x, t),

where 0 < λ < 1, such that

Ũ(x, t) = e
λx

ε
√

τ e
t

ετ Uc2(x, t), (2.35)
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then (2.34) can be rewritten in terms of Ũ(x, t) as follows∣∣∣Ũ(x, t)
∣∣∣ ≤ 1

2ε2τ
√

τ

[∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx−λξ

ε
√

τ

∣∣∣Ũ(ξ, s)
∣∣∣ dξ ds

+

∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ |c1(s)| e
λx−ξ
ε
√

τ e
s
ετ dξ ds

+

∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx

ε
√

τ |u0(ξ)| dξ ds

]
+

D

2ε2τ

[∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx−λξ

ε
√

τ

∣∣∣Ũ(ξ, s)
∣∣∣ dξ ds

+

∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ |c1(s)| e
λx−ξ
ε
√

τ e
s
ετ dξ ds

+

∫ t

0

∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx

ε
√

τ |u0(ξ)| dξ ds

]
.

(2.36)

Because of Lemmas 2.3.2–2.3.3, we can get the following estimate for
∣∣∣Ũ(·, t)

∣∣∣
∞

based

on (2.36) :∣∣∣Ũ(·, t)
∣∣∣
∞

≤ 1

2ε2τ
√

τ

[
2ε
√

τ

1− λ2

∫ t

0

|Ũ(·, s)|∞ ds +
ε
√

τ

e(1− λ)

∫ t

0

|c1(s)|e
s
ετ ds

+2Cuε
√

τe
λL0
ε
√

τ

∫ t

0

1 ds

]
+

D

2ε2τ

[
2ε
√

τ

1− λ2

∫ t

0

|Ũ(·, s)|∞ ds + ε
√

τ

(
1 +

1

e(1− λ)

) ∫ t

0

|c1(s)|e
s
ετ ds

+2Cuε
√

τe
λL0
ε
√

τ

∫ t

0

1 ds

]
≤

∫ t

0

bτ

ετ
|Ũ(·, s)|∞ ds +

∫ t

0

ãτ (s)

ετ
ds, (2.37)
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where

bτ =
1 + D

√
τ

1− λ2
,

ãτ (t) = aτe
t

ετ + cτe
λL0
ε
√

τ ,

aτ =
|c1(·)|∞(1 + D

√
τ(e(1− λ) + 1))

2e(1− λ)
,

cτ = Cu(1 + D
√

τ).

By Gronwall’s inequality, inequality (2.37) gives that∣∣∣Ũ(·, t)
∣∣∣
∞

≤
∫ t

0

ãτ (t− s)

ετ
e

bτ (t−s)
ετ ds

≤
(

aτe
t

ετ + cτ
t

ετ
e

λL0
ε
√

τ

)
e

bτ t
ετ .

Hence

|Uc2(x, t)| ≤
∣∣∣Ũ(·, t)

∣∣∣
∞

e
−λx
ε
√

τ e−
t

ετ

≤
(

aτe
t

ετ + cτ
t

ετ
e

λL0
ε
√

τ

)
e

bτ t
ετ e

−λx
ε
√

τ e−
t

ετ ,

i.e., Uc2(x, t) decays exponentially with respect to x. In particular, when x = L, we

have

|Uc2(L, t)| ≤ aτe
bτ t
ετ e

− λL
ε
√

τ + cτ
t
ετ

e
(bτ−1)t

ετ e
−λ(L−L0)

ε
√

τ (2.38)

as given in (2.32).

2.3.3 Proof of Theorem 2.0.1

In this section, we will first find the maximum difference of ‖uL(·, t)− vL(·, t) ‖∞ in

proposition 2.3.5, then we will derive ‖uL(·, t)− vL(·, t) ‖H1
L,ε,τ

, and ‖W (·, t) ‖H1
L,ε,τ

=
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‖U(·, t)− V (·, t) ‖H1
L,ε,τ

in propositions 2.3.6 and 2.3.7 respectively, and in turn we

will get ‖u(·, t)− v(·, t) ‖H1
L,ε,τ

in theorem 2.3.8.

Proposition 2.3.5. If u0(x) satisfies (2.30), then ‖uL − vL ‖∞ ≤ E1;ε,τ (t)e
− λL

ε
√

τ +

E2;ε,τ (t)e
−λ(L−L0)

ε
√

τ where E1;ε,τ (t) = |c1(·)|∞ + aτe
bτ t
ετ and E2;ε,τ (t) = cτ

t
ετ

e
(bτ−1)t

ετ .

Proof. By the definition of uL and vL given in (2.22) and (2.25) and the assumption

that u0(x) = v0(x) for x ∈ [0, L], we can get their difference

uL(x, t)− vL(x, t) = c1(t)
(
e
− x

ε
√

τ − φ1(x)
)

+
(
Uc2(L, t)− h(t) + e−

t
ετ h(0)

)
φ2(x)

Combining Lemmas 2.3.4(i), 2.3.4(ii), inequality (2.38), and h(t) ≡ 0, we have

‖uL(·, t)− vL(·, t) ‖∞ ≤ |c1(t)|e−
L

ε
√

τ + |Uc2(L, t)|

≤ E1;ε,τ (t)e
− λL

ε
√

τ + E2;ε,τ (t)e
−λ(L−L0)

ε
√

τ (2.39)

where

E1;ε,τ (t) = |c1(·)|∞ + aτe
bτ t
ετ ,

E2;ε,τ (t) = cτ
t

ετ
e

(bτ−1)t
ετ .

Proposition 2.3.6. If u0(x) satisfies (2.30), and E1;ε,τ (t), E2;ε,τ (t) are as in proposi-

tion 2.3.5, then ‖uL(·, t)− vL(·, t) ‖H1
L,ε,τ

≤
√

5L
(
E1;ε,τ (t)e

− λL
ε
√

τ + E2;ε,τ (t)e
−λ(L−L0)

ε
√

τ

)
.
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Proof. Because of the definition of uL and vL given in (2.22) and (2.25), Lemmas

2.3.4(iii) and inequality (2.38), we have that

‖ (uL(·, t)− vL(·, t))x ‖∞ ≤ |c1(t)| e−
L

ε
√

τ |φ′2(x)|+ |Uc2(L, t)| |φ′2(x)|

≤ 2

ε
√

τ

(
E1;ε,τ (t)e

− λL
ε
√

τ + E2;ε,τ (t)e
−λ(L−L0)

ε
√

τ

)
. (2.40)

Now, combining (2.39) and (2.40), we obtain that

‖uL(·, t)− vL(·, t) ‖H1
L,ε,τ

=

√∫ L

0

|uL − vL|2 +
∣∣ε√τ (uL − vL)x

∣∣2 dx

≤
√

5L
(
E1;ε,τ (t)e

− λL
ε
√

τ + E2;ε,τ (t)e
−λ(L−L0)

ε
√

τ

)
. (2.41)

Proposition 2.3.7. If u0(x) satisfies (2.30), then

‖W (·, t) ‖H1
L,ε,τ

≤ γ1;ε,τ (t)e
− λL

ε
√

τ + γ2;ε,τ (t)e
−λ(L−L0)

ε
√

τ

where the coefficients γ1;ε,τ (t) and γ2;ε,τ (t) are derived as

γ1;ε,τ (t) = e
(M+1)2t

2Mε
√

τ

(
(M + 1)2

√
τ

2M
+ 1

)√
L

(
t

ετ
|c1(·)|∞ +

aτ

bτ

(e
bτ t
ετ − 1)

)
,

γ2;ε,τ (t) = e
(M+1)2t

2Mε
√

τ

(
(M + 1)2

√
τ

2M
+ 1

)√
Lcτ

(
t

ετ(bτ − 1)
e

(bτ−1)t
ετ − 1

(bτ − 1)2
(e

(bτ−1)t
ετ − 1)

)
.

Proof. Multiplying the governing equation of W (2.28) by 2W , integrating over [0, L],∫ L

0

2WWt dx− ε

∫ L

0

2WWxx dx−
∫ L

0

ε2τ2WWxxt dx

= −
∫ t

0

2W (f(v)− f(u))x dx +
1

ετ

∫ L

0

2W (vL − uL) dx,
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and using integration by parts, we get

d

dt

∫ L

0

W 2 + (ε
√

τWx)
2 dx

= −ε

∫ L

0

2W 2
x dx +

∫ L

0

2Wx (f(v)− f(u)) dx +
2

ετ

∫ L

0

W (vL − uL) dx.

Therefore, using the norm we defined earlier in (2.31), we have that

d

dt
‖W (·, t) ‖2

H1
L,ε,τ

≤ 2

∫ L

0

|Wx||f ′(η)||v − u| dx +
2
√

L

ετ
‖ vL − uL ‖∞ ‖W (·, t) ‖H1

L,ε,τ

and notice that

f ′(u) ≤ (M + 1)2

2M

we denote this upper bound by C, i.e.,

C =
(M + 1)2

2M
,

then we have that

d

dt
‖W (·, t) ‖2

H1
L,ε,τ

≤ 2C

∫ L

0

|Wx| (|W |+ ‖ vL − uL ‖∞) dx +
2
√

L

ετ
‖ vL − uL ‖∞ ‖W (·, t) ‖H1

L,ε,τ

≤ 2C

ε
√

τ

(
‖W (·, t) ‖2

H1
L,ε,τ

+ ‖ vL − uL ‖∞
√

L ‖W (·, t) ‖H1
L,ε,τ

)
+

2
√

L

ετ
‖ vL − uL ‖∞ ‖W (·, t) ‖H1

L,ε,τ

=
2C

ε
√

τ
‖W (·, t) ‖2

H1
L,ε,τ

+

(
2C

ε
√

τ
+

2

ετ

)√
L ‖ vL − uL ‖∞ ‖W (·, t) ‖H1

L,ε,τ
.
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Hence,

d

dt
‖W (·, t) ‖H1

L,ε,τ
≤ C

ε
√

τ
‖W (·, t) ‖H1

L,ε,τ
+

(
C

ε
√

τ
+

1

ετ

)√
L ‖ vL − uL ‖∞ .

By Gronwall’s inequality and (2.39)

‖W (·, t) ‖H1
L,ε,τ

≤
∫ t

0

(
C

ε
√

τ
+

1

ετ

)√
L ‖ vL − uL ‖∞ e

C(t−s)

ε
√

τ ds

≤ e
Ct

ε
√

τ

(
C

ε
√

τ
+

1

ετ

)√
L

∫ t

0

E1;ε,τ (s)e
− λL

ε
√

τ + E2;ε,τ (s)e
−λ(L−L0)

ε
√

τ ds

≤
(

e
Ct

ε
√

τ

(
C

ε
√

τ
+

1

ετ

)√
L

∫ t

0

E1;ε,τ (s) ds

)
e
− λL

ε
√

τ

+

(
e

Ct
ε
√

τ

(
C

ε
√

τ
+

1

ετ

)√
L

∫ t

0

E2;ε,τ (s) ds

)
e
−λ(L−L0)

ε
√

τ

≤ e
Ct

ε
√

τ

(
C

ε
√

τ
+

1

ετ

)√
L

(
t|c1(·)|∞ +

aτετ

bτ

(e
bτ t
ετ − 1)

)
e
− λL

ε
√

τ

+e
Ct

ε
√

τ

(
C

ε
√

τ
+

1

ετ

)√
L

cτ

ετ

·
(

ετ

bτ − 1
te

(bτ−1)t
ετ − (

ετ

bτ − 1
)2(e

(bτ−1)t
ετ − 1)

)
e
−λ(L−L0)

ε
√

τ .

Hence

‖W (·, t) ‖H1
L,ε,τ

≤ γ1;ε,τ (t)e
− λL

ε
√

τ + γ2;ε,τ (t)e
−λ(L−L0)

ε
√

τ ,

where

γ1;ε,τ (t) = e
Ct

ε
√

τ
(
C
√

τ + 1
)√

L

(
t

ετ
|c1(·)|∞ +

aτ

bτ

(e
bτ t
ετ − 1)

)
,

γ2;ε,τ (t) = e
Ct

ε
√

τ
(
C
√

τ + 1
)√

Lcτ

(
t

ετ(bτ − 1)
e

(bτ−1)t
ετ − 1

(bτ − 1)2
(e

(bτ−1)t
ετ − 1)

)
.

Now comes the main theorem of this section.
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Theorem 2.3.8. If u0(x) satisfies (2.30), and E1;ε,τ (t), E2;ε,τ (t), γ1;ε,τ (t), γ2;ε,τ (t) are

as in proposition 2.3.5 and 2.3.7, then ‖u(·, t)− v(·, t) ‖H1
L,ε,τ

≤ D1;ε,τ (t)e
− λL

ε
√

τ +

D2;ε,τ (t)e
−λ(L−L0)

ε
√

τ where D1;ε,τ (t) = γ1;ε,τ (t) +
√

5LE1;ε,τ (t) and D2;ε,τ (t) = γ2;ε,τ (t) +
√

5LE2;ε,τ (t).

Proof of the Main Theorem.

‖u(·, t)− v(·, t) ‖H1
L,ε,τ

≤ ‖W (·, t) ‖H1
L,ε,τ

+ ‖ vL(·, t)− uL(·, t) ‖H1
L,ε,τ

= D1;ε,τ (t)e
− λL

ε
√

τ + D2;ε,τ (t)e
−λ(L−L0)

ε
√

τ ,

where

D1;ε,τ (t) = γ1;ε,τ (t) +
√

5LE1;ε,τ (t)

= e
Ct

ε
√

τ
(
C
√

τ + 1
)√

L

(
t

ετ
|c1(·)|∞ +

aτ

bτ

(e
bτ t
ετ − 1)

)
+
√

5L(|c(·)|∞ + aτe
bτ t
ετ ),

D2;ε,τ (t) = γ2;ε,τ (t) +
√

5LE2;ε,τ (t)

= e
Ct

ε
√

τ
(
C
√

τ + 1
)√

Lcτ

(
t

ετ(bτ − 1)
e

(bτ−1)t
ετ − 1

(bτ − 1)2
(e

(bτ−1)t
ετ − 1)

)
+
√

5Lcτ
t

ετ
e

(bτ−1)t
ετ .

This theorem shows that if λL
ε
√

τ
and λ(L−L0)

ε
√

τ
converge to infinity, then the solution

v(x, t) of the finite interval boundary value problem converges to the solution u(x, t)

of the half line problem in the sense of ‖ · ‖H1
L,ε,τ

. This can be achieved either by letting

L → ∞ or ε → 0. For example, in the extreme case, ε = 0, the half line problem

(2.2) becomes hyperbolic and the domain of dependence is finite, so, certainly, one
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only need to consider the finite interval boundary value problem. This is consistent

with the main theorem in the sense that for a fixed final time t, if λL > bτ t and

λ(L − L0) > (bτ − 1)t, i.e., L > max( bτ t
λ

, (bτ−1)t
λ

), then ‖u(·, t)− v(·, t) ‖H1
L,ε,τ

≤

D1;ε,τ (t)e
− λL

ε
√

τ + D2;ε,τ (t)e
−λ(L−L0)

ε
√

τ → 0 as ε → 0. Theorem 2.3.8 gives a theoretical

justification for using the solution of the finite interval boundary value problem to

approximate the solution of the half line problem with appropriate choice of L and ε.

Hence in the next chapter, the numerical scheme designed to solve the MBL equation

(1.19) is given for finite interval boundary value problem.
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CHAPTER 3

NUMERICAL SCHEMES

3.1 Second-Order Schemes

In this section, we show how to apply the central schemes [17] originally designed for

hyperbolic conservation laws to numerically solve the MBL equation (1.19), which

is of pseudo-parabolic type. We first collect all the terms with time derivative and

rewrite MBL equation (1.19) as

(u− ε2τuxx)t + (f(u))x = εuxx. (3.1)

By letting

w = u− ε2τuxx ⇐⇒ u = (I − ε2τ∂xx)
−1w, (3.2)

MBL equation (3.1) can be written as

wt + (f(u))x = εuxx. (3.3)

Now, the new form of MBL equation (3.3) can be viewed as a PDE in terms of w,

and the occurrence of u can be recovered by (3.2). Equation (3.3) can be formally

viewed as

wt + (f((I − ε2τ∂xx)
−1w))x = ε((I − ε2τ∂xx)

−1w)xx, (3.4)
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which is a balance law in term of w. Hence to solve (3.3), we modify the central

scheme [17]. As in [17], at each time level, we first reconstruct a piecewise linear

approximation of the form

Lj(x, t) = wj(t) + (x− xj)
w′j
∆x

xj− 1
2
≤ x ≤ xj+ 1

2
. (3.5)

Second-order accuracy is guaranteed if the so-called vector of numerical derivative

w′
j

∆x
, which will be given later, satisfies

w′j
∆x

=
∂w(xj, t)

∂x
+ O(∆x). (3.6)

We denote the staggered piecewise-constant functions w̄j+ 1
2
(t) as

w̄j+ 1
2
(t) =

1

∆x

∫ xj+1

xj

w(x, t) dx. (3.7)

Evolve the piecewise linear interplant (3.5) by integrating (3.3) over [xj, xj+1]× [t, t+

∆t], we get that

w̄j+ 1
2
(t + ∆t) =w̄j+ 1

2
(t)

− 1

∆x

[∫ t+∆t

t

f(u(xj+1, s)) ds−
∫ t+∆t

t

f(u(xj, s)) ds

]
+

ε

∆x

[∫ t+∆t

t

∫ xj+1

xj

∂2u(x, s)

∂x2
dx ds

]
.

(3.8)

Using the definition of Lj(x, t) and Lj+1(x, t) given by (3.5), we have that

1

∆x

∫ x
j+1

2

xj

Lj(x, t) dx =
1

∆x

∫ x
j+1

2

xj

wj(t) + (x− xj)
w′j
∆x

dx

=
1

2
wj(t) +

1

8
w′j,

1

∆x

∫ xj+1

x
j+1

2

Lj+1(x, t) dx =
1

∆x

∫ xj+1

x
j+1

2

wj+1(t) + (x− xj+1)
w′j+1

∆x
dx

=
1

2
wj+1(t)−

1

8
w′j+1,

(3.9)
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and hence

w̄j+ 1
2
(t) =

1

∆x

∫ x
j+1

2

xj

Lj(x, t) dx +
1

∆x

∫ xj+1

x
j+1

2

Lj+1(x, t) dx

=
1

2
(wj(t) + wj+1(t)) +

1

8
(w′j − w′j+1). (3.10)

Moreover, if the CFL condition

λ ·maxxj≤x≤xj+1
ρ(A(w(x, t))) <

1

2
,

where λ =
∆t

∆x
, A =

∂f

∂w
and ρ(A) = spectrum radius of A

is met, then the middle two integrands can be approximated by the midpoint rule∫ t+∆t

t

f(u(xj, s)) ds = f(u(xj, t +
∆t

2
))∆t + O(∆t3)∫ t+∆t

t

f(u(xj+1, s)) ds = f(u(xj+1, t +
∆t

2
))∆t + O(∆t3).

(3.11)

Combining (3.8)-(3.11), we obtain

w̄j+ 1
2
(t + ∆t) =

1

2
[wj(t) + wj+1(t)] +

1

8
[w′j − w′j+1]

− λ[f(uj+1(t +
∆t

2
)− f(uj(t +

∆t

2
))]

+
ε

∆x

[∫ t+∆t

t

∫ xj+1

xj

∂2u(x, s)

∂x2
dx ds

]
.

(3.12)

Nessyahu and Tadmor in [17] have introduced many ways to estimate the derivatives,

so, we won’t reproduce them here. Instead, we will focus on the last integral in (3.12).

There are many ways to numerically calculate the integral
∫ t+∆t

t

∫ xj+1

xj

∂2u(x,s)
∂x2 dx ds.

We will show two ways to do this in the following two subsections. Both of them

achieve second order accuracy.
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3.1.1 Trapezoid Scheme

In this scheme, we use the notion (3.7), the definition (3.2) and the trapezoid rule to

calculate the integral numerically as follows:∫ t+∆t

t

∫ xj+1

xj

∂2u(x, s)

∂x2
dx ds

=∆x

∫ t+∆t

t

(ūxx)j+ 1
2
(s) ds

=
∆x∆t

2

(
(ūxx)j+ 1

2
(t) + (ūxx)j+ 1

2
(t + ∆t))

)
(3.13)

with O(∆t3) error. Combining with (3.12), we can get

(I − ε2τ∂xx)ūj+ 1
2
(t + ∆t)

=w̄j+ 1
2
(t)− λ

[
f(uj+1(t +

∆t

2
))− f(uj(t +

∆t

2
))

]
+

ε∆t

2

(
(ūxx)j+ 1

2
(t) + (ūxx)j+ 1

2
(t + ∆t)

)
.

(3.14)

Using the cell average of w given in (3.10), we have(
I − (ε2τ +

ε∆t

2
)∂xx

)
ūj+ 1

2
(t + ∆t)

=

(
I − (ε2τ − ε∆t

2
)∂xx

)
ūj+ 1

2
(t)

− λ

[
f(uj+1(t +

∆t

2
))− f(uj(t +

∆t

2
))

]
.

(3.15)

The flow char of the trapezoid scheme is given in table 3.1.
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Trapezoid Scheme

Calculate w̄j+ 1
2
(t) = 1

2(wj(t) + wj+1(t)) + 1
8(w′j − w′j+1)

Solve (I − ε2τ∂xx)ūj+ 1
2
(t) = w̄j+ 1

2
(t) for ūj+ 1

2
(t)

Calculate wj(t + ∆t
2 ) = wj(t) + (ε∆2uj

∆x − f ′j)
λ
2

Solve (I − ε2τ∂xx)uj(t + ∆t
2 ) = wj(t + ∆t

2 ) for uj(t + ∆t
2 )

Solve
(
I − (ε2τ + ε∆t

2 )∂xx

)
ūj+ 1

2
(t + ∆t)

=
(
I − (ε2τ − ε∆t

2 )∂xx

)
ūj+ 1

2
(t)

− λ
[
f(uj+1(t + ∆t

2 ))− f(uj(t + ∆t
2 ))

]
for ūj+ 1

2
(t + ∆t)

Table 3.1: Flow chart for Trapezoid Scheme
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3.1.2 Midpoint Scheme

In this scheme, we use the notion (3.7), the definition (3.2) and the midpoint rule to

calculate the integral numerically as follows:∫ t+∆t

t

∫ xj+1

xj

∂2u(x, s)

∂x2
dx ds = ∆x

∫ t+∆t

t

(ūxx)j+ 1
2
(s) ds

= ∆x∆t(ūxx)j+ 1
2
(t +

∆t

2
)

Combining with (3.12) and the definition (3.2), we get

(I − ε2τ∂xx)ūj+ 1
2
(t + ∆t) =

1

2
[wj(t) + wj+1(t)] +

1

8
[w′j − w′j+1]

− λ[f(uj+1(t +
∆t

2
)− f(uj(t +

∆t

2
))]

+ ε∆t(ūxx)j+ 1
2
(t +

∆t

2
).

(3.16)

(3.17)

The flow chart of the midpoint scheme is given in table 3.2.

In both schemes (3.15) and (3.17) introduced so far, the u(·, t + ∆t
2

)’s are used. To

estimate u(·, t + ∆t
2

)’s, we use Taylor expansion and the conservation law (3.3):

w(xj, t +
∆t

2
) = wj(t) +

∂w

∂t

∆t

2
+O(∆t2)

= wj(t) + (ε
∂2u

∂x2
− ∂f

∂x
)
∆t

2
+O(∆t2)

= wj(t) + (ε
∆2uj

∆x
− f ′j)

λ

2
, (3.18)

and the second-order accuracy is met if

f ′j
∆x

=
∂f(u(xj, t))

∂x
+O(∆x). (3.19)
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Midpoint Scheme

Calculate w̄j+ 1
2
(t) = 1

2(wj(t) + wj+1(t)) + 1
8(w′j − w′j+1)

Calculate wj(t + ∆t
2 ) = wj(t) + (ε∆2uj

∆x − f ′j)
λ
2

Solve (I − ε2τ∂xx)uj(t + ∆t
2 ) = wj(t + ∆t

2 ) for uj(t + ∆t
2 )

Calculate w̄j+ 1
2
(t + ∆t

2 ) = 1
2(wj(t + ∆t

2 ) + wj+1(t + ∆t
2 ))

+1
8(w′j(t + ∆t

2 )− w′j+1(t + ∆t
2 ))

Solve (I − ε2τ∂xx)ūj+ 1
2
(t + ∆t

2 ) = w̄j+ 1
2
(t + ∆t

2 ) for ūj+ 1
2
(t + ∆t

2 )

Solve (I − ε2τ∂xx)ūj+ 1
2
(t + ∆t)

= 1
2 [wj(t) + wj+1(t)] + 1

8 [w′j − w′j+1]

−λ[f(uj+1(t + ∆t
2 )− f(uj(t + ∆t

2 ))]

+ε∆t(ūxx)j+ 1
2
(t + ∆t

2 ) for ūj+ 1
2
(t + ∆t)

Table 3.2: Flow chart for Midpoint Scheme
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The choices for {v′j} and {f ′j} can be found in [17], we used

w′j = MM{∆wj+ 1
2
, ∆wj− 1

2
}, f ′j = MM{∆fj+ 1

2
, ∆fj− 1

2
} (3.20)

where MM{x, y} = minmod(x, y) = 1
2
(sgn(x) + sgn(y)) ·Min(|x|, |y|) and ∆wj+ 1

2
=

wj+1 − wj.

Notice that for both schemes, one needs to solve elliptic equation (I − a∂xx)u = r.h.s

three times for one step time advance. The flow charts for the Trapezoid scheme and

Midpoint scheme are given in Tables 3.1 and 3.2.

3.2 A Third Order Semi-discrete Scheme

Similarly, we can extend the third order scheme to solve MBL equation (1.19), how-

ever, it is more involved. But the third order semi-discrete central scheme proposed

in [12] can be extended to solve the MBL equation in a straightforward manner. In

order to make the paper self-contained, we include the formulation below.

dw̄j

dt
= −

Hj+1/2(t)−Hj−1/2(t)

∆x
+ εQj(t),

where w̄(x, t) denotes the cell average of w

w̄j(t) =
1

∆x

∫ xj+1/2

xj−1/2

w(x, t) dx,

Hj+1/2(t) is the numerical convection flux and Qj(t) is a high-order approximation to

the diffusion term uxx.

Hj+1/2(t) =
f(u+

j+1/2(t)) + f(u−j+1/2(t))

2
−

aj+1/2(t)

2

[
w+

j+1/2(t)− w−j+1/2(t)
]
,
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where u−j+1/2(t), u
+
j+1/2(t) denote the left and right intermediate values of u(x, tn) at

xj+1/2, and their values are converted from the w−j+1/2(t), w
+
j+1/2(t) using (3.2). The

way to calculate w−j+1/2(t), w+
j+1/2(t) and aj+1/2(t) is

w+
j+1/2(t) = Aj+1 −

∆x

2
Bj+1 +

(∆x)2

8
Cj+1,

w−j+1/2(t) = Aj +
∆x

2
Bj +

(∆x)2

8
Cj,

aj+1/2(t) = max

{
∂f

∂u
(u−j+1/2(t)),

∂f

∂u
(u+

j+1/2(t))

}
,

where

Aj = w̄n
j −

wC

12
(w̄n

j+1 − 2w̄n
j + w̄n

j−1),

Bj =
1

∆x

[
wR(w̄n

j+1 − w̄n
j ) + wC

w̄n
j+1 − w̄n

j−1

2
+ wL(w̄n

j − w̄n
j−1)

]
,

Cj = 2wC

w̄n
j−1 − 2w̄n

j + w̄n
j+1

∆x2
,

wi =
αi∑
m αm

αi =
ci

(ε0 + ISi)p
, i, m ∈ {C, R, L}

cL = cR = 1/4, cC = 1/2, ε0 = 10−6, p = 2,

ISL = (w̄n
j − w̄n

j−1)
2, ISR = (w̄n

j+1 − w̄n
j )2,

ISC =
13

3
(w̄n

j+1 − 2w̄n
j + w̄n

j−1)
2 +

1

4
(w̄n

j+1 − w̄n
j−1)

2.

The diffusion uxx is approximated using the following fourth-order central differencing

form

Qj(t) =
1

12∆x
[−(ux)j+2,j + 8(ux)j+1,j − 8(ux)j−1,j + (ux)j−2,j] ,
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where

(ux)j+2,j =
1

12∆x
[25uj+2(t)− 48uj+1(t) + 36uj(t)− 16uj−1(t) + 3uj−2(t)] ,

(ux)j+1,j =
1

12∆x
[3uj+2(t) + 10uj+1(t)− 18uj(t) + 6uj−1(t)− uj−2(t)] ,

(ux)j−1,j =
1

12∆x
[uj+2(t)− 6uj+1(t) + 18uj(t)− 10uj−1(t)− 3uj−2(t)] ,

(ux)j−2,j =
1

12∆x
[−3uj+2(t) + 16uj+1(t)− 36uj(t) + 48uj−1(t)− 25uj−2(t)] .

Notice that {uj(t)} can be recovered from {wj(t)} using (3.2), and {wj(t)} are the

point-values of the reconstructed polynomials

wj(t) = Aj + Bj(x− xj) +
1

2
Cj(x− xj)

2.

The unique feature of this scheme is that the discretization is done in space first, and

then the time evolution equation can be solved as a system of ordinary differential

equations using any ODE solver of third order or higher. In this thesis, we simply use

the standard fourth order Runge-Kutta methods. Notice that to achieve the third

order accuracy, the linear solver that converts u from w using (3.2) need also to be

high order. In this thesis, we use the following fourth order discretization of ∂2u
∂x2

∂2u

∂x2
=

−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2

12∆x2
.

Hence to recover u from w, we solve the following linear system

Au = w
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where

A =



c d e

b c d e

a b c d e

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

a b c d e

a b c d

a b c



,

u =



u1

u2

...

...

uN−1

uN


, w =



w1 − buB − auB

w2 − auB

w3

...

wN−1 − e · 0

wN − e · 0− d · 0


,

and

a =
ε2τ

12∆x2
, b = − 16ε2τ

12∆x2
, c = 1 +

30ε2τ

12∆x2
, d = − 16ε2τ

12∆x2
, e =

ε2τ

12∆x2
.
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CHAPTER 4

COMPUTATIONAL RESULTS

In this chapter, we use the proposed second and third order schemes in chapter 3 to

study the numerical solutions to the MBL equation

ut + (f(u))x = εuxx + ε2τuxxt (4.1)

with the initial condition

u0(x) =

 uB if x = 0

0 if x > 0
(4.2)

and the Dirichlet boundary condition.

In section 4.1, we will first test the accuracy of the schemes we will use to perform

computation in the later sections. The solutions we will look for are the traveling-wave

solutions to the MBL equation (4.1). For the completeness of the solution behavior,

we will include Van Duijn et al [21] theorems on the existence of traveling-wave

solution in section 4.2. Van Duijn et al [21] has shown that the solution will display

qualitative different monotonicity behavior for different uB and τ values. Therefore,

before performing the numerical computations, we provide the bifurcation diagram in

section 4.3. Finally, in section 4.4, we will use examples to demonstrate qualitatively

different numerical solution profiles.
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4.1 Accuracy Analysis

To validate the order analysis given in chapter 3 for various schemes proposed, we

first test the order of our schemes numerically. To do this, we solve the MBL equation

ut + (f(u))x = εuxx + ε2τuxxt

and use a smooth initial condition

u0(x) = uBH(x− 5, 5),

where

H(x, ξ) =


1 if x < −ξ

1− 1
2
(1 + x

ξ
+ 1

π
sin(πx

ξ
)) if −ξ ≤ x ≤ ξ

0 if x > ξ

,

and a stop time T = 1 was employed, so that there was no shock created. ε in the MBL

equation (4.1) is taken to be 1, M is taken to be 2, and the computational interval

is [−10, 20]. The L1, L2, L∞ order tests of the trapezoid scheme and the third order

semi-discrete scheme with different parameter τ value and the initial condition uB

are given in Tables 4.1, 4.2. Table 4.1 shows that the trapezoid rule achieved second

order accuracy for all the tested cases in L1, L2, L∞ sense. Table 4.2 shows that the

semi-discrete scheme has the order of accuracy greater than 2.5 for all the cases, and

exceeds 3 for some cases. This confirms the accuracy study given in sections 3.1.1

and 3.2 respectively.
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N
wwwu∆x − u∆x

2

www
1
order

wwwu∆x − u∆x
2

www
2
order

wwwu∆x − u∆x
2

www
∞

order

60 7.5416e-03 - 2.5388e-03 - 1.5960e-03 -
uB = 0.9 120 1.9684e-03 1.9379 6.7288e-04 1.9157 4.4066e-04 1.8568
τ = 0.2 240 4.9891e-04 1.9802 1.7645e-04 1.9311 1.2529e-04 1.8144

480 1.2589e-04 1.9865 4.5366e-05 1.9596 3.3205e-05 1.9158
60 8.0141e-03 - 2.6069e-03 - 1.4989e-03 -

uB = 0.9 120 2.1502e-03 1.8981 7.0452e-04 1.8876 4.2221e-04 1.8279
τ = 1 240 5.5697e-04 1.9488 1.8259e-04 1.9480 1.1283e-04 1.9038

480 1.4104e-04 1.9815 4.6109e-05 1.9855 2.8719e-05 1.9740
60 1.3102e-02 - 4.1784e-03 - 2.2411e-03 -

uB = 0.9 120 3.6201e-03 1.8557 1.0994e-03 1.9263 6.1060e-04 1.8759
τ = 5 240 9.6737e-04 1.9039 2.8089e-04 1.9686 1.5667e-04 1.9625

480 2.5825e-04 1.9053 7.1250e-05 1.9790 3.9286e-05 1.9956
60 6.4427e-03 - 2.1578e-03 - 1.1682e-03 -

uB = α 120 1.6611e-03 1.9555 5.7775e-04 1.9011 3.6447e-04 1.6804
τ = 0.2 240 4.3643e-04 1.9283 1.5215e-04 1.9250 1.0389e-04 1.8107

480 1.1223e-04 1.9593 3.9170e-05 1.9577 2.7629e-05 1.9109
60 7.5867e-03 - 2.4101e-03 - 1.3364e-03 -

uB = α 120 2.0069e-03 1.9185 6.4998e-04 1.8906 3.7650e-04 1.8277
τ = 1 240 5.1832e-04 1.9531 1.6801e-04 1.9519 1.0062e-04 1.9037

480 1.3136e-04 1.9803 4.2497e-05 1.9831 2.5599e-05 1.9748
60 1.1959e-02 - 3.8026e-03 - 1.9938e-03 -

uB = α 120 3.2940e-03 1.8602 9.9527e-04 1.9338 5.4231e-04 1.8783
τ = 5 240 8.7736e-04 1.9086 2.5358e-04 1.9727 1.3933e-04 1.9606

480 2.3271e-04 1.9146 6.4252e-05 1.9806 3.4967e-05 1.9944
60 5.7714e-03 - 1.9358e-03 - 1.0481e-03 -

uB = 0.75 120 1.5035e-03 1.9406 5.1617e-04 1.9070 2.8061e-04 1.9011
τ = 0.2 240 3.9299e-04 1.9357 1.3616e-04 1.9225 7.9134e-05 1.8262

480 1.0063e-04 1.9655 3.5080e-05 1.9566 2.1035e-05 1.9115
60 7.1823e-03 - 2.2843e-03 - 1.2069e-03 -

uB = 0.75 120 1.8963e-03 1.9213 6.1315e-04 1.8974 3.4013e-03 1.8272
τ = 1 240 4.8284e-04 1.9736 1.5796e-04 1.9567 9.0912e-04 1.9035

480 1.2093e-04 1.9974 3.9783e-05 1.9894 2.3121e-05 1.9753
60 1.1042e-02 - 3.5020e-03 - 1.8299e-03 -

uB = 0.75 120 3.0287e-03 1.8662 9.1181e-04 1.9414 4.8976e-04 1.9016
τ = 5 240 8.0111e-04 1.9186 2.3118e-04 1.9797 1.2593e-04 1.9595

480 2.1076e-04 1.9264 5.8358e-05 1.9860 3.1627e-05 1.9934

Table 4.1: The accuracy test for the trapezoid scheme for the MBL equation (4.1)
with ε = 1 and M = 2.
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N
wwwu∆x − u∆x

2

www
1
order

wwwu∆x − u∆x
2

www
2
order

wwwu∆x − u∆x
2

www
∞

order

120 2.6992e-03 - 1.1300e-03 - 7.2363e-04 -
uB = 0.9 240 4.0403e-04 2.7400 1.7079e-04 2.7260 1.1283e-04 2.6811
τ = 0.2 480 5.7504e-05 2.8127 2.4624e-05 2.7941 1.6242e-05 2.7963

960 8.4934e-06 2.7592 3.0892e-06 2.9948 1.7607e-06 3.2055
120 4.7731e-03 - 2.0192e-03 - 1.7267e-03 -

uB = 0.9 240 8.7205e-04 2.4524 3.6879e-04 2.4529 3.0632e-04 2.4949
τ = 1 480 1.2006e-04 2.8606 5.0480e-05 2.8690 4.1985e-05 2.8671

960 1.5942e-05 2.9129 6.6663e-06 2.9208 5.1464e-06 3.0282
120 3.7573e-03 - 1.2122e-03 - 7.9211e-04 -

uB = 0.9 240 7.4624e-04 2.3320 2.4164e-04 2.3267 1.5061e-04 2.3949
τ = 5 480 1.1994e-04 2.6373 3.8434e-05 2.6524 2.5089e-05 2.5857

960 1.5565e-05 2.9460 4.9190e-06 2.9660 3.1363e-06 2.9999
120 2.1836e-03 - 9.1039e-04 - 5.7219e-04 -

uB = α 240 3.2729e-04 2.7381 1.3760e-04 2.7260 8.9550e-05 2.6757
τ = 0.2 480 4.6856e-05 2.8043 1.9909e-05 2.7890 1.2935e-05 2.7914

960 6.7382e-06 2.7978 2.3182e-06 3.1023 1.4109e-06 3.1965
120 3.9014e-03 - 1.6388e-03 - 1.3873e-03 -

uB = α 240 7.0517e-04 2.4680 2.9669e-04 2.4656 2.4272e-04 2.5149
τ = 1 480 9.6528e-05 2.8690 4.0354e-05 2.8781 3.3125e-05 2.8733

960 1.2890e-05 2.9047 5.3648e-06 2.9111 4.0754e-06 3.0229
120 3.0797e-03 - 9.9202e-04 - 6.4456e-04 -

uB = α 240 6.1133e-04 2.3328 1.9783e-04 2.3261 1.2277e-04 2.3924
τ = 5 480 9.7351e-05 2.6507 3.1222e-05 2.6637 2.0263e-05 2.5990

960 1.2396e-05 2.9733 3.9513e-06 2.9822 2.4962e-06 3.0210
120 1.8244e-03 - 7.5548e-04 - 4.6671e-04 -

uB = 0.75 240 2.7262e-04 2.7425 1.1419e-04 2.7260 7.3299e-05 2.6707
τ = 0.2 480 3.9198e-05 2.7980 1.6562e-05 2.7855 1.0681e-05 2.7788

960 5.4739e-06 2.8401 1.9677e-06 3.0733 1.3232e-06 3.0129
120 3.2727e-03 - 1.3672e-03 - 1.1477e-03 -

uB = 0.75 240 5.8671e-04 2.4798 2.4585e-04 2.4754 1.9866e-04 2.5304
τ = 1 480 7.9974e-05 2.8750 3.3285e-05 2.8848 2.7033e-05 2.8775

960 1.0724e-05 2.8987 4.4466e-06 2.9041 3.3341e-06 3.0193
120 2.5902e-03 - 8.3335e-04 - 5.3882e-04 -

uB = 0.75 240 5.1342e-04 2.3348 1.6611e-04 2.3268 1.0271e-04 2.3913
τ = 5 480 8.1062e-05 2.6630 2.6032e-05 2.6738 1.6813e-05 2.6109

960 1.0173e-05 2.9944 3.2662e-06 2.9946 2.0473e-06 3.0377

Table 4.2: The accuracy test for the third order semi-discrete scheme for the MBL
equation (4.1) with ε = 1 and M = 2.
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4.2 Traveling-Wave Solutions

The numerical solutions to the MBL equation (4.1) we will calculate later in this

chapter are the traveling-wave solutions. Van Duijn et al. [21] have proven the

existence of the traveling wave solution in [21], for the completeness, we include it

here. To look for traveling wave solution. Let

η =
x− st

ε
(4.3)

where s is given by the Rankine-Hugoniot condition (1.4) and ul and ur are the u

values to the left and to the right of the shock respectively.

Substituting (4.3) into (4.1), we obtain

−su′ + (f(u))′ = u′′ − sτu′′′ in R

When we integrate this equation over (η,∞), we obtain the second order boundary

value problem

−s(u− ur) + (f(u)− f(ur)) = u′ − sτu′′ in R

u(−∞) = ul u(∞) = ur (4.4)

There’re two cases to consider

• (I) ur = 0, ul > 0

• (II) ur > rl > 0

Case I: ur = 0

Van Duijn et al. [21] has proven the following proposition.
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Proposition 4.2.1. Let u be a solution of (4.4) such that ur = 0. Then ul < β,

where β is the value of u for which the equal area rule holds (see figure 4.1):∫ β

0

{
f(u)− f(β)

β
u

}
du = 0 (4.5)

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

f

Critial values of u when M=2

α=.8165 β=1.147

Figure 4.1: Critical values of u when M = 2: α ≈ 0.816 and β ≈ 1.147.

Notice that if ul ∈ (α, β), then

s = s(ul, 0) =
f(ul)

ul

> f ′(ul) ≥ f ′(0) for ul > α

and traveling waves, if they exist, lead to an admissibility condition for fast under-

compressive waves. For convenience, it’s denoted as s(ul, 0) = s(ul) and α is given
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in (1.6). In the theorems below Van Duijn et al. showed that for each τ > 0, there

exists a unique value of ul ≥ α, denoted by ū(τ), for which there exists a solution of

problem (4.4) such that ur = 0.

Theorem 4.2.2. Let M > 0 be given. Then there exists a constant τ∗ > 0 such that

the following hold:

• (a) For each 0 ≤ τ ≤ τ∗, problem (4.4) has a unique solution with ul = α and

ur = 0.

• (b) For each τ > τ∗, there exists a unique constant ūl(τ) ∈ (α, β) such that

problem (4.4) has a unique solution with ul = ūl(τ) and ur = 0.

• (c) The function ū : [0,∞) → [α, β) defined by

ū(τ) =

 α for 0 ≤ τ ≤ τ∗

ūl(τ) for τ > τ∗

(4.6)

is continuous, strictly increasing for τ ≥ τ∗, and ū(∞) = β.

The solution in parts (a) and (b) are strictly decreasing.

ū = ū(τ) if usually referred as the plateau value of u, and the speed s(ū) of the shock

{ū, 0} is denoted by s̄. In the case that ul 6= ū(τ), another critical value of u is

introduced and is denoted by u.

• For τ ∈ [0, τ∗], we put u(τ) = α

• For τ > τ∗, we define u(τ) as the unique zero in the interval (0, ū(τ)) of

f(r)− f(ū)

ū
r = 0 0 < r < ū
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Notice that, if τ > τ∗, then

0 < u(τ) < α < ū(τ) < β for τ > τ∗

Theorem 4.2.3. Let M > 0, and τ > 0 be given, and let u = u(τ) and ū = ū(τ).

• (a) For any ul ∈ (0, u), there exists a unique solution of (4.4) problem such that

ur = 0. We have s(ul) < s̄ = s(ū).

• (b) Let τ > τ∗. Then for any ul ∈ (u, ū), there exists no solution of (4.4)

problem such that ur = 0.

The solution in part (a) may exhibit a damped oscillation as it tends to ul.

Case II: ur > 0. The results of Case I raise the question as to how to deal with

the solutions of problem (4.1) when uB ∈ (u, ū), and by Theorem 4.2.3, there is

no traveling wave solution with ur = 0. In this situation, two traveling waves in

succession are used: one from uB to the plateau value ū and one from ū down to

u = 0. The existence of the latter has been established in Theorem 4.2.2. In the next

theorem, Van Duijn et al. dealt with the former, in which ur = ū.

Theorem 4.2.4. Let M > 0 and τ > τ∗ be given, and let u = u(τ) and ū = ū(τ).

• (a) For any ul ∈ (u, ū), there exists a unique traveling-wave solution of problem

(4.4) such that ur = ū. We have s(ul, ū) < s̄.

• (b) For any ul ∈ (0, u), there exists no solution of problem (4.4) such that

ur = ū.
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The solution in part (a) may exhibit a damped oscillation as it tends to ul.

The proofs of Theorems 4.2.2 4.2.3 4.2.4 are given in [21].

4.3 Parameter Regimes

For M = 2, Duijn et al. [21] numerically provided a bifurcation diagram (we re-

produced it in Figure 4.2) of MBL (4.1) equation as the dispersive parameter τ and

the post-shock value uB of the initial condition vary. The solution of (4.1) has been

proven to display qualitatively different profiles for parameter values (τ, uB) falling

in different regimes of the bifurcation diagram. In particular, for every fixed τ value,

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1

1.1

u
B

τ

bifurcation diagram

τ
*

α

β

u(τ)

u(τ)

Figure 4.2: The bifurcation diagram of the MBL equation (4.1) with the bifurcation
parameters (τ, uB), where M = 2.
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there are two critical uB values, namely, ū and u. From the bifurcation diagram (Fig-

ure 4.2), it is clear that, when τ < τ∗, ū = u = α. For a fixed τ value, the solution

has three different profiles.

(a) If uB ∈ [ū, 1], the solution contains a plateau value uB for 0 ≤ x
t
≤ df

du
(uB), a

rarefaction wave connection uB to ū for df
du

(uB) ≤ x
t
≤ df

du
(ū), another plateau

value ū for df
du

(ū) < x
t

< f(ū)
ū

, and a shock from ū down to 0 at x
t

= f(ū)
ū

(see

Figure 4.3(a)).

(b) If uB ∈ (u, ū), the solution contains a plateau value uB for 0 ≤ x
t

< f(ū)−f(uB)
ū−uB

, a

shock from uB up to ū at x
t

= f(ū)−f(uB)
ū−uB

, another plateau value ū for f(ū)−f(uB)
ū−uB

<

x
t

< f(ū)
ū

, and a shock from ū down to 0 at x
t

= f(ū)
ū

(see Figure 4.3(b)). The

solution may exhibit a damped oscillation near u = uB.

(c) If uB ∈ (0, u], the solution consists a single shock connecting uB and 0 at

x
t

= f(uB)
uB

(see Figure 4.3(c)). It may exhibit oscillatory behavior near u = uB.

Notice that when τ > τ∗ and u < uB < ū, the solution profiles (4.3(b)) displays

non-monotonicity, which is consistent with the experimental observations ([8]).

4.4 Examples

In this section, we will use examples to study the solutions to MBL equation (4.1)

using the numerical schemes proposed in chapter 3. We first notice that if we scale t

and x as follows

t̃ =
t

ε
, x̃ =

x

ε
,
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(a) uB > ū

x

t

u

uB

ū

u

df

du
(uB)

df

du
( ū)

f ( ū)

ū

(b) u < uB < ū

x

t

u

uB

u

ū

f ( ū) − f (uB)

ū− uB

f ( ū)

ū

(c) uB < u

uB

x

t

u

u

f (uB)

uB

Figure 4.3: Given a fixed τ , the three qualitatively different solution profiles due to
different values of uB. In particular, when τ > τ∗ and u < uB < ū,
the solution profiles (Figure 4.3(b)) displays non-monotonicity, which is
consistent with the experimental observations ([8]). Figures 4.3(a), 4.3(b)
and 4.3(c) are demonstrative figures.

then MBL (4.1) equation can be written in terms of t̃ and x̃ as follows

ut̃ + (f(u))x̃ = ux̃x̃ + τux̃x̃t̃. (4.7)

The scaled equation (4.7) shows that it is the magnitude of t
ε

and x
ε

that determine

the asymptotic behavior, not t, x, neither ε alone ([21]). In addition, (4.7) also shows

that the dispersive parameter τ denotes the relative importance of the dispersive term

uxxt. The bigger τ is, the more dispersive effect (4.1) equation has. This can be seen

from the computational results to be shown later in this section.

In the numerical computation we show later, we will therefore test the accuracy

and capability of central schemes for different parameter values (τ and uB) that fall

into various regimes of the bifurcation diagram, and therefore display qualitatively

different solution profiles. The numerical experiments were carried out for M = 2,
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ε = 0.001 and T = 4000 × ε, i.e. T̃ = 4000 to get the asymptotic solution profiles,

and ∆x was chosen to be ε
10

and λ = ∆t
∆x

was chosen to be 0.1. The scheme used in

the computation is the second order Trapezoid scheme as shown in section 3.1.1. The

Midpoint scheme delivers similar computational results, hence is omitted here. The

solution profiles at 1
4
T (blue), 2

4
T (green), 3

4
T (magenta) and T (black) are chosen

to demonstrate the time evolution of the solutions. The red dashed lines are used to

denote the theoretical shock locations and plateau values for comparison purpose.

We start with τ > 0. Based on the bifurcation diagram (Figure 4.2), we choose three

representative uB values, i.e. uB = 0.9 > α, uB = α =
√

M
M+1

=
√

2
3

(for M = 2)

and uB = 0.75 < α. For each fixed uB, we choose three representative τ values, i.e.

τ = 0.2 < τ∗ ≈ 0.61, τ = 1 > τ∗, (in this case, the three representative uB values

0.9, α, 0.75 are separated by ū and u as follows 0.75 < uτ=1 < α < ūτ=1 < 0.9), and

τ = 5 with uB = 0.75, α, 0.9 ∈ [uτ=5, ūτ=5]. We first use these 9 pairs of (τ, uB) values

given in Table 4.3 to validate the solution profiles with the demonstrative solution

profiles given in Figure 4.3.

Example 1 (τ, uB) = (0.2, 0.9), (τ, uB) = (1, 0.9), (τ, uB) = (5, 0.9).

When uB = 0.9 > α is fixed, we increase τ from 0.2 to 1 to 5 (Figure 4.4(a) , 4.4(b)

, 4.4(c)), the dispersive effect starts to dominate the solution profile. When τ = 0.2

(Figure 4.4(a)), the solution profile is similar to the classical BL equation solution

(see Figure 1.4(b)), with a rarefaction wave for x
t
∈ [f ′(u = 0.9), f ′(u = α) = f ′(u =

ūτ=0.2)] and a shock from u = α to u = 0 at x
t

= f ′(α). This corresponds to Figure

4.3(a) with df
du

(ūτ=0.2 = α) = f(ūτ=0.2)
ūτ=0.2

= f(α)
α

. When τ = 1 (Figure 4.4(b)), the

rarefaction wave is between x
t
∈ [f ′(u = 0.9), f ′(u = ūτ=1)] and the solution remains

69



CHAPTER 4. COMPUTATIONAL RESULTS

(τ, uB) Example 4 Example 5 Example 6

Example 1 (0.2, 0.9) (1, 0.9) (5, 0.9)

Example 2 (0.2, α) (1, α) (5, α)

Example 3 (0.2, 0.75) (1, 0.75) (5, 0.75)

Table 4.3: 9 pairs of (τ, uB) values with either fixed τ value varying uB values or
fixed uB value varying τ values used in Examples 1 – 6. Notice that

α =
√

M
M+1

=
√

2
3

for M = 2.

at the plateau value u = ūτ=1 for x
t
∈ [f ′(u = ūτ=1),

f(ūτ=1)
ūτ=1

] and the shock occurs

at x
t

= f(ūτ=1)
ūτ=1

. This corresponds to Figure 4.3(a) with uB = 0.9 > ūτ=1 ≈ 0.86.

When τ = 5 (Figure 4.4(c)), the solution displays the first shock from u = 0.9 to

u = ūτ=5 at x
t

= f(ūτ=5)−f(uB)
ūτ=5−uB

, and then remains at the plateau value u = ūτ=5

for x
t
∈ [f(ūτ=5)−f(uB)

ūτ=5−uB
,

f(ūτ=5)

ūτ=5
] and the second shocks occurs at x

t
=

f(ūτ=5)

ūτ=5
. This

corresponds to Figure 4.3(b) with uτ=5 ≈ 0.68 < uB = 0.9 < ūτ=5 ≈ 0.98. Notice

that as τ increases, the rarefaction region shrinks and the plateau region enlarges.

Example 2 (τ, uB) = (0.2, α), (τ, uB) = (1, α), (τ, uB) = (5, α).

When uB = α is fixed, we increase τ from 0.2 to 1 to 5 (Figure 4.4(d) , 4.4(e) ,

4.4(f)), the dispersive effect starts to dominate the solution profile. When τ = 0.2,

the solution displays one single shock at x
t

= f(α)
α

. For both τ = 1 and τ = 5,

the solution has two shocks, one at x
t

=
f(ūτ=1(τ=5 respectively))−f(α)

ūτ=1(τ=5 respectively)−α
, and another one

at x
t

=
f(ūτ=1(τ=5 respectively))

ūτ=1(τ=5 respectively)
. For both τ = 1 and τ = 5 (Figures 4.4(e) 4.4(f)),
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(a) (τ, uB) = (0.2, 0.9)
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Figure 4.4: Numerical solutions to MBL equation with parameter settings fall in dif-
ferent regimes of the bifurcation diagram (Figure 4.2). The color coding
is for different time: 1

4
T (blue), 2

4
T (green), 3

4
T (magenta) and T (black).

The results are discussed in examples 1 – 6. In figures 4.4(d) – 4.4(f),

α =
√

M
M+1

=
√

2
3

for M = 2.
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the solutions correspond to Figure 4.3(b), which are consistent to the experimental

observations. Notice that as τ increases from 1 to 5, i.e., the dispersive effect increases,

the inter-shock interval length increases at every fixed time (compare Figure 4.4(e)

with Figure 4.4(f)). In addition, for fix τ = 1 (τ = 5 respectively), as time progresses,

the inter-shock interval length increases in the linear fashion (see Figure 4.4(e) (Figure

4.4(f) respectively) ).

Example 3 (τ, uB) = (0.2, 0.75), (τ, uB) = (1, 0.75), (τ, uB) = (5, 0.75).

When uB = 0.75 <= α is fixed, we increase τ from 0.2 to 1 to 5 (Figure 4.4(g) ,

4.4(h) , 4.4(i)), the dispersive effects starts to dominate the solution profile in the

similar fashion as uB = 0.9 and uB = α. Notice that when τ = 1, since uB = 0.75 is

very close to uτ=1, the solution displays oscillation at x
t

= f(uB)
uB

(Figure 4.4(h)). If we

increase τ further to τ = 5, the dispersive effect is strong enough to create a plateau

value at ū ≈ 0.98 (see Figure 4.4(i)).

Example 4 (τ, uB) = (0.2, 0.9), (τ, uB) = (0.2, α), (τ, uB) = (0.2, 0.75).

Now, we fix τ = 0.2, decrease uB from 0.9 to α, to 0.75 (Figures4.4(a) 4.4(d) 4.4(g)).

If uB > α the solution consists a rarefaction wave connecting uB down to α, then a

shock from α to 0, otherwise, the solution consists a single shock from uB down to

0. In all cases, since τ = 0.2 < τ∗, regardless of the uB value, the solution will not

display non-monotone behavior, due to the lack of dispersive effect.

Example 5 (τ, uB) = (1, 0.9), (τ, uB) = (1, α), (τ, uB) = (1, 0.75).

Now, we fix τ = 1, decrease uB from 0.9 to α, to 0.75 (Figures4.4(b) 4.4(e) 4.4(h)).

If uB = 0.9 > ūτ=1, the solution consists a rarefaction wave connecting uB and ū,

and a shock connecting ū down to 0 (Figure 4.4(b)). Even if u < uB < ū, because
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τ = 1 > τ∗, the solution still has a chance to increase to the plateau value ū as seen in

Figure 4.4(e). But, if uB is too small, for example, uB = 0.75 < u, the solution does

not increase to ū any more, instead, it consists a single shock connecting uB down to

0 (Figure 4.4(h)).

Example 6 (τ, uB) = (5, 0.9), (τ, uB) = (5, α), (τ, uB) = (5, 0.75).

Now, we fix τ = 5, decrease uB from 0.9 to α, to 0.75 (Figures4.4(c) 4.4(f) 4.4(i)). For

all three uB, they are between uτ=5 and ūτ=5, hence all increase to the plateau value

ūτ=5 ≈ 0.98 before dropping to 0. Notice that as uB decreases, the inter-shock interval

length decreases at every fixed time (compare Figures 4.4(c), 4.4(f) and 4.4(i)). This

shows that when the dispersive effect is strong (τ > τ∗), the bigger uB is, the bigger

region the solution stays at the plateau value.

Example 7 (τ, uB) = (0, 0.9), (τ, uB) = (0, α), (τ, uB) = (0, 0.75).

We now show the solution profiles for the extreme τ value, i.e. τ = 0 in Figures 4.5(a)

(uB = 0.9), 4.5(b) (uB = α) and 4.5(c) (uB = 0.75). Notice that these are cases of

classical BL equation with small diffusion εuxx. We compare Figures 4.5(a), 4.5(b)

and 4.5(c) with the solution of the classical BL equation given in Figures 1.4(a) and

1.4(b), it is clear that they show qualitatively same solution profiles. The difference

is that due to the diffusion term in the MBL equation, the solutions in Figure 4.5 do

not have sharp edges right at the shock, instead, the solutions smear out a little. If

we compare Figures 4.5(a), 4.5(b) and 4.5(c) with Figures Figures 4.4(a), 4.4(d) and

4.4(g), there is no visible difference. This shows that once τ < τ∗, solution profile will

stay the same for a fixed uB value.

Example 8 (τ, uB) = (5, 0.99), (τ, uB) = (5, 0.98), (τ, uB) = (5, 0.97).
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Figure 4.5: The numerical solutions of the MBL equation at T = 1 with τ = 0 and
different uB values. The results are discussed in example 7.

We also study the solution profiles for uB close to ū. For example, when τ = 5,

ū ≈ 0.98, we hence choose uB = 0.99, uB = 0.98, uB = 0.97 and solutions are shown

in Figure 4.6(a), 4.6(b), 4.6(c). If uB = 0.99 > ūτ=5 ≈ 0.98, the solution drops to

the plateau value ū, then drops to 0 (see Figure 4.6(a)). If uB = 0.98 ≈ ūτ=5, the

solution remains at plateau value ūτ=5 and then drop to 0 (see Figure 4.6(b)). If

uB = 0.97 < ūτ=5, the solution increases to the plateau value ūτ=5 ≈ 0.98, then drops

to 0. In all cases, the transition from uB to ūτ=5 ≈ 0.98 takes very small space. In

the majority space, the solution keeps to be the plateau value ūτ=5 ≈ 0.98.

Example 9 (τ, uB) = (5, 0.7), (τ, uB) = (5, 0.69), (τ, uB) = (5, 0.68), (τ, uB) =

(5, 0.67), (τ, uB) = (5, 0.66).

In addition, we study the solution profiles for uB close to u. For example, when τ = 5,

u ≈ 0.68, we hence choose uB = 0.7, uB = 0.69, uB = 0.68, uB = 0.67, uB = 0.66 and

solutions are shown in Figures 4.7(a), 4.7(b), 4.7(c), 4.7(d), 4.7(e). As uB decreases

crossing uτ=5 ≈ 0.68, the solution gradually stops increasing to the plateau value
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Figure 4.6: Numerical solutions to MBL equation with uB close to ūτ=5 ≈ 0.98. The
color coding is for different time: 1

4
T (blue), 2

4
T (green), 3

4
T (magenta)

and T (black). The results are discussed in example 8.

ūτ=5, and the inter-shock interval length decreases (compare Figures 4.7(a), 4.7(b)

and 4.7(c)). The oscillation in Figures 4.7(d) and 4.7(e) are due to the fact that uB

values are too close to uτ=5. This confirms that even with big dispersive effect (say

τ = 5), if uB is too small (e.g. uB < u), the solution will not exhibit non-monotone

behavior.

Example 10 (τ, uB) = (0.2, 0.6), (τ, uB) = (1, 0.6), (τ, uB) = (5, 0.6).

We fix uB to be small, and in this example, we take it to be uB = 0.6. We vary

the τ value, from τ = 0.2 < τ∗ to τ = 1 barely larger than τ∗ to τ = 5 > τ∗.

The numerical solutions are given in Figure 4.8(a), 4.8(b), 4.8(c). As τ increases,

the post-shock value remains the same, but there will be oscillation generated as τ

becomes larger than τ∗. Figures 4.8(d), 4.8(e) and 4.8(f) show that as τ increases,

the oscillation amplitude increases and oscillates more rounds. Notice that τ is the

dispersive parameter, and this means that even for small uB value, different dispersive
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Figure 4.7: Numerical solutions to MBL equation with uB close to uτ=5 ≈ 0.68. The
color coding is for different time: 1

4
T (blue), 2

4
T (green), 3

4
T (magenta)

and T (black). The results are discussed in example 9.
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parameter values still give different dispersive effects, although none can bring the

solution to the plateau value ū. Comparing Figures 4.8(d), 4.8(e) and 4.8(f) with

Figures 4.8(g), 4.8(h) and 4.8(i), it is clear that the oscillation amplitude remains

steady with respect to time.

Example 11 ε = 0.001, ε = 0.002, ε = 0.003, ε = 0.004, ε = 0.005.

In this example, we will compare the solution profiles for different ε values. Fixing

T = 0.5, ∆x = 0.0001, λ = ∆t
∆x

= 0.1, we show the numerical results in Figure 4.9 for

ε = 0.001 (blue), ε = 0.002 (yellow), ε = 0.003 (magenta), ε = 0.004 (green), and

ε = 0.005 (black). For the purpose of cross reference, we choose the same nine sets of

parameter settings as in examples 1– 6. To assist the observation, the figures in Figure

4.9 are zoomed into the regions where different ε values introduce different solution

profiles. The numerical solutions clearly show that as ε increases, the numerical

solution is smeared out, and the jump location becomes less accurate. Notice that

τ is responsible for the competition between the diffusion and dispersion, which in

turn determines the plateau values. Hence varying ε value doesn’t affect the plateau

location.

77



CHAPTER 4. COMPUTATIONAL RESULTS
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Figure 4.8: Numerical solutions to MBL equation with small constant uB = 0.6 and
different τ values. The figures on the second and third rows are the
magnified versions of the first row at t = 1

4
T and t = T respectively. The

color coding is for different time: 1
4
T (blue), 2

4
T (green), 3

4
T (magenta)

and T (black). The results are discussed in examples 10.
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Figure 4.9: The numerical solutions of MBL equation at T = 0.5 with ε = 0.001
(blue), ε = 0.002 (yellow), ε = 0.003 (magenta), ε = 0.004 (green), and
ε = 0.005 (black). The view windows are zoomed into the regions where
different ε values impose different solution profiles. The results are dis-
cussed in example 11.

79



CHAPTER 5

TWO-DIMENSIONAL MODIFIED

BUCKLEY-LEVERETT EQUATION

5.1 Derivation of the 2D MBL Equation

To derive the two-dimensional extension of MBL equation, we consider the flow where

imbibition takes places under influence of gravity [7]. We assume that the porous

medium is homogeneous and isotropic, hence the mass balance gives

φ∂t(ρiSi) +∇ · (ρi~qi) = 0, i = o, w.

Both phases – oil and water – are considered to be incompressible, so

φ∂t(Si) +∇ · (~qi) = 0, i = o, w. (5.1)

Notice that we again assume completion of saturation, i.e.

So + Sw = 1.

This in turn gives that

∇ · (~qo + ~qw) = ∇ · ~q = 0 (5.2)
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Throughout this thesis, we assume ~q = const. By Darcy’s law, the momentum balance

equation is

~qi = λi(∇Pi + ρig~ez), (5.3)

where

λi = −k
kri

(Si)

µi

, (5.4)

ρi = density of phase i, i = o, w, (5.5)

g = gravitational constant, (5.6)

~ez = unit vector in positive z-direction. (5.7)

As in (1.13), we use the capillary pressure formulation proposed by Hassanizadeh and

Gray [9][10]

Pc = Po − Pw = pc(Sw)− φτ
∂Sw

∂t
(5.8)

where pc(Sw) is the static capillary pressure and τ is a positive constant, and ∂Sw

∂t
is

the dynamic effects. For the ease of notation, we let

r.h.s. = pc(Sw)− φτ
∂Sw

∂t
(5.9)

then

∇Po −∇Pw = ∇r.h.s. (5.10)

From (5.3), we have that

∇Po −∇Pw =
~qo

λo

− ρog~ez −
~qw

λw

+ ρwg~ez. (5.11)
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Combine (5.10) and (5.11), we can get

~qo

λo

− ~qw

λw

= ∇r.h.s.− (ρw − ρo)g~ez. (5.12)

Because of (5.2), we have that

~qo

λo

− ~qw

λw

=
~q − ~qw

λo

− ~qw

λw

=
~q

λo

− λo + λw

λoλw

~qw. (5.13)

Therefore, (5.12) and (5.13) give that

~q

λo

− λo + λw

λoλw

~qw = ∇r.h.s.− (ρw − ρo)g~ez. (5.14)

Simplify (5.14), we have

~qw =
λw

λo + λw

~q − λoλw

λo + λw

(∇r.h.s− (ρw − ρo)g~ez) . (5.15)

Plug (5.15) into the governing equation for Sw (5.1), and assume water is incompress-

ible, we have that

φ∂t(Sw) +∇ ·
[

λw

λo + λw

q − λoλw

λo + λw

(∇r.h.s− (ρw − ρo)gez)

]
= 0,

and hence

∂t(Sw) +∇ ·
[

λw

λo + λw

~q

φ
+

λw

λo + λw

λo

φ
(ρw − ρo)g~ez

]
= ∇ ·

[
λoλw

φ(λo + λw)
∇r.h.s.

]
(5.16)

Since (5.4) gives that

λw

λo + λw

=
krw(Sw)

krw(Sw) + µw

µo
kro(So)

λo = −k
kro(so)

µo

,
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if we take

kro(So) = S2
o , krw(Sw) = S2

w,

and denote

u = Sw

then (5.16) gets us

∂tu +∇ ·
[
f(u)

~q

φ
− f(u)(1− u)2k(ρw − ρo)g

µoφ
~ez

]
= −∇ · [H(u)∇(J(u)− τ∂tu)]

(5.17)

where

f(u) =
u2

u2 + M(1− u)2
, M =

µw

µo

H(u) =
f(u)k(1− u)2

µ0

, J(u) =
pc(u)

φ
.

This is the general form the two-dimensional extension of the Buckley-Leverett equa-

tion. In [13], the two-dimensional classical BL equation was used as an exam

ut + (f(u))x + (g(u))z = 0, (5.18)

where

f(u) =
u2

u2 + M(1− u)2
, M =

µw

µo

,

g(u) = f(u)(1− 5(1− u)2).

(5.19)

(5.20)
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Two-dimensional MBL equation (5.17) can be taken to a particular form, which is

consistent to 5.18. To do that, we rescale

x
φ

q1

→ x

z
φ

q2

→ z

and take

k(ρw − ρo)g

µoq2

= 5

φ = O(ε),

then (5.17) becomes

∂tu +∇ · [f(u)~1− 5f(u)(1− u)2 ~ez] = ε∆u + ε2τ∆ut,

i.e.

ut + (f(u))x + (g(u))z = ε∆u + ε2τ∆ut (5.21)

where f(u) and g(u) are defined as in 5.20. This equation is the two-dimensional

modified Buckley-Leverett (MBL) equation extension of the 2D classical Buckley-

Leverett equation [13].
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CONCLUSION

We started this thesis with one-dimensional Buckley-Leverett (BL) equation. After

derivation of the modified BL equation (MBL), we proved that the solution to the

infinite domain problem can be approximated by that of the bounded domain problem

for the MBL equation. This provides a theoretical justification for using a finite

domain to calculate the numerical solution of the MBL equation (1.19).

We also extended the classical central scheme originally designed for the hyperbolic

systems to solve the MBL equation, which is of pseudo-parabolic type. The numerical

solutions for qualitatively different parameter values τ and initial conditions uB show

that the jump locations are consistent with the theoretical calculation and the plateau

heights are consistent with the numerically obtained values given in [21]. In particu-

lar, when τ > τ∗, for uB ∈ (u, ū), the numerical solutions give non-monotone water

saturation profiles, which is consistent with the experimental observations. In addi-

tion, the order tests show that the proposed second and third order central schemes

achieved the desired accuracies.

We also provided the derivation of 2D modified BL equation, which is consistent to

the 2D classical BL equation. Many more aspects of the modified BL equation can

be studied. Here, we list three different topics. First, one can develop the bifurcation

85



CHAPTER 6. CONCLUSION

diagram for the 2D modified BL equation and study the connection between the 1D

and 2D cases. Second, one can extend the proposed second and third order schemes

to numerically solve the 2D modified BL equation 5.21, and validate the bifurcation

diagram for the 2D MBL equation. Last but not least, the asymptotical stability

of the traveling wave solutions of the MBL equation can be discussed. The further

study of the MBL equation is not limited to the above mentioned.
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Appendix A

PROOF OF THE LEMMAS

A.1 Proof to lemma 2.3.1

Proof. Let g(u) = f(u)
u

= u
u2+M(1−u)2

, then

g′(u) =
M − (1 + M)u2

(u2 + M(1− u)2)2


> 0 if 0 < u <

√
M

M+1

= 0 if u =
√

M
M+1

< 0 if u >
√

M
M+1

and hence g(u) achieves its maximum at u =
√

M
M+1

. Therefore, f(u)
u

= g(u) ≤ D,

where D = f(α)
α

and α =
√

M
M+1

, and in turn, we have that f(u) ≤ Du for all

0 ≤ u ≤ 1.
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A.2 Proof to lemma 2.3.2

Proof to lemma 2.3.2 (i).∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx−λξ

ε
√

τ dξ

=

∫ +∞

0

(
e
− |x−ξ|

ε
√

τ − e
−x+ξ

ε
√

τ

)
e

λx−λξ
ε
√

τ dξ

=

∫ x

0

(
e
−x−ξ

ε
√

τ − e
−x+ξ

ε
√

τ

)
e

λx−λξ
ε
√

τ dξ +

∫ +∞

x

(
e

x−ξ
ε
√

τ − e
−x+ξ

ε
√

τ

)
e

λx−λξ
ε
√

τ dξ

=

[
e

(λ−1)(x−ξ)

ε
√

τ

]ξ=x

ξ=0

−λ−1
ε
√

τ

−

[
e

(λ−1)x−(λ+1)ξ

ε
√

τ

]ξ=x

ξ=0

−λ+1
ε
√

τ

+

[
e

(λ+1)(x−ξ)

ε
√

τ

]ξ=+∞

ξ=x

−λ+1
ε
√

τ

−

[
e

(λ−1)x−(λ+1)ξ

ε
√

τ

]ξ=+∞

ξ=x

−λ+1
ε
√

τ

=
1− e

(λ−1)x

ε
√

τ

−λ−1
ε
√

τ

− e
−2x
ε
√

τ − e
(λ−1)x

ε
√

τ

−λ+1
ε
√

τ

+
0− 1

−λ+1
ε
√

τ

− 0− e
−2x
ε
√

τ

−λ+1
ε
√

τ

=
1− e

(λ−1)x

ε
√

τ

−λ−1
ε
√

τ

− e
− 2x

ε
√

τ − e
(λ−1)x

ε
√

τ + 1− e
− 2x

ε
√

τ

−λ+1
ε
√

τ

= ε
√

τ
−(λ + 1) + (λ + 1)e

(λ−1)x

ε
√

τ − (λ− 1)e
(λ−1)x

ε
√

τ + (λ− 1)

λ2 − 1

= ε
√

τ
−2 + 2e

(λ−1)x

ε
√

τ

λ2 − 1

≤ 2ε
√

τ

1− λ2
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Proof to lemma 2.3.2 (ii).∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx−ξ
ε
√

τ dξ

=

∫ +∞

0

(
e
− |x−ξ|

ε
√

τ − e
−x+ξ

ε
√

τ

)
e

λx−ξ
ε
√

τ dξ

=

∫ x

0

(
e
−x−ξ

ε
√

τ − e
−x+ξ

ε
√

τ

)
e

λx−ξ
ε
√

τ dξ +

∫ +∞

x

(
e

x−ξ
ε
√

τ − e
−x+ξ

ε
√

τ

)
e

λx−ξ
ε
√

τ dξ

= xe
(λ−1)x

ε
√

τ −

[
e

(λ−1)x−2ξ

ε
√

τ

]ξ=x

ξ=0

−2
ε
√

τ

+

[
e

(λ+1)x−2ξ

ε
√

τ

]ξ=+∞

ξ=x

−2
ε
√

τ

−

[
e

(λ−1)x−2ξ

ε
√

τ

]ξ=+∞

ξ=x

−2
ε
√

τ

= xe
(λ−1)x

ε
√

τ .

Let

F (x) = xe
(λ−1)x

ε
√

τ ,

then

F ′(x) = e
(λ−1)x

ε
√

τ + xe
(λ−1)x

ε
√

τ
λ− 1

ε
√

τ

= e
(λ−1)x

ε
√

τ

(
1 + x

λ− 1

ε
√

τ

)
.

Assume 0 < λ < 1, then

F ′(x)


> 0 if 0 < x < ε

√
τ

1−λ

= 0 if x = ε
√

τ
1−λ

< 0 if x > ε
√

τ
1−λ

Hence,

Fmax = F

(
ε
√

τ

1− λ

)
=

ε
√

τ

e(1− λ)
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Therefore, ∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx−ξ
ε
√

τ dξ ≤ ε
√

τ

e(1− λ)

Proof to lemma 2.3.2 (iii). Based on the assumption on u0 in (2.30)∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx

ε
√

τ |u0(ξ)| dξ

≤
∫ +∞

0

e
− |x−ξ|

ε
√

τ e
λx

ε
√

τ |u0(ξ)| dξ

≤ Cue
λx

ε
√

τ

∫ L0

0

e
− |x−ξ|

ε
√

τ dξ

= Cuy1(x) (A.1)

Calculating y1(x) with the assumption that λ ∈ (0, 1), we get

• case (a): x ∈ [0, L0]

y1(x) =

∫ L0

0

e
− |x−ξ|

ε
√

τ e
λx

ε
√

τ dξ

≤
∫ x

0

e
−x−ξ

ε
√

τ e
λx

ε
√

τ dξ +

∫ L0

x

e
− ξ−x

ε
√

τ e
λx

ε
√

τ dξ

=ε
√

τ
[
e

(λ−1)x+ξ

ε
√

τ

]ξ=x

ξ=0
+ (−ε

√
τ)

[
e

(λ+1)x−ξ

ε
√

τ

]ξ=L0

ξ=x

=ε
√

τ
[
e

λx
ε
√

τ − e
(λ−1)x

ε
√

τ − e
(λ+1)x−L0

ε
√

τ + e
λx

ε
√

τ

]
≤2ε

√
τe

λx
ε
√

τ

≤2ε
√

τe
λL0
ε
√

τ
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• case (b): x ∈ [L0, +∞]

y1(x) =

∫ L0

0

e
−x−ξ

ε
√

τ e
λx

ε
√

τ dξ

=ε
√

τ
[
e

(λ−1)x+ξ

ε
√

τ

]ξ=L0

ξ=0

=ε
√

τ
(
e

(λ−1)x+L0
ε
√

τ − e
(λ−1)x

ε
√

τ

)
≤ε
√

τe
(λ−1)x+L0

ε
√

τ

=ε
√

τe
λL0
ε
√

τ

≤2ε
√

τe
λL0
ε
√

τ

Therefore, we get the desired inequality∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ − e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx

ε
√

τ |u0(ξ)| dξ ≤ 2Cuε
√

τe
λL0
ε
√

τ .
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A.3 Proof to lemma 2.3.3

Proof to lemma 2.3.3 (i).∫ +∞

0

∣∣∣e−x+ξ
ε
√
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− |x−ξ|
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Proof to lemma 2.3.3 (ii).∫ +∞

0

∣∣∣e−x+ξ
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− |x−ξ|

ε
√

τ

∣∣∣ e
λx−ξ
ε
√

τ dξ

=

∫ x

0

∣∣∣e−x+ξ
ε
√

τ + e
−x−ξ

ε
√

τ

∣∣∣ e
λx−ξ
ε
√

τ dξ +

∫ +∞

x

∣∣∣e−x+ξ
ε
√

τ − e
− ξ−x

ε
√

τ

∣∣∣ e
λx−ξ
ε
√

τ dξ

=

[
e

(λ−1)x−2ξ

ε
√

τ

]ξ=x

ξ=0

−2
ε
√

τ

+ xe
(λ−1)x

ε
√

τ +

[
e

(λ+1)x−2ξ

ε
√

τ

]ξ=+∞

ξ=x

−2
ε
√

τ

−

[
e

(λ−1)x−2ξ

ε
√

τ

]ξ=+∞

ξ=x

−2
ε
√

τ

=
e

(λ−3)x

ε
√

τ − e
(λ−1)x

ε
√

τ

−2
ε
√

τ

+ xe
(λ−1)x

ε
√

τ +
0− e

(λ−1)x

ε
√

τ

−2
ε
√

τ

− 0− e
(λ−3)x

ε
√

τ

−2
ε
√

τ

=
2e

(λ−3)x

ε
√

τ − 2e
(λ−1)x

ε
√

τ

−2
ε
√

τ

+ xe
(λ−1)x

ε
√

τ

In the proof of Lemma 2.3.2 (ii), we have shown that

xe
(λ−1)x

ε
√

τ ≤ ε
√

τ

e(1− λ)

Therefore, ∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx−ξ
ε
√

τ dξ ≤ ε
√

τ +
ε
√

τ

e(1− λ)

Proof to lemma 2.3.3 (iii). Based on the assumption on u0 in (2.30)∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx

ε
√

τ |u0(ξ)| dξ

≤ Cue
λx

ε
√

τ

∫ L0

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ dξ

= Cuy3(x) (A.2)

Calculating y3(x) with the assumption that λ ∈ (0, 1), we get
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• case (a): x ∈ [0, L0]

y3(x) =

∫ x

0

(
e
−x+ξ

ε
√

τ + e
−x−ξ

ε
√

τ

)
e

λx
ε
√

τ dξ +

∫ L0

x

(
e
− ξ−x

ε
√

τ − e
−x+ξ

ε
√

τ

)
e

λx
ε
√

τ dξ

≤
∫ x

0

(
e
−x+ξ

ε
√

τ + e
−x−ξ

ε
√

τ

)
e

λx
ε
√

τ dξ +

∫ L0

x

e
− ξ−x

ε
√

τ e
λx

ε
√

τ dξ

=− ε
√

τ
[
e

(λ−1)x−ξ

ε
√

τ

]ξ=x

ξ=0
+ ε
√

τ
[
e

(λ−1)x+ξ

ε
√

τ

]ξ=x

ξ=0
− ε
√

τ
[
e

(λ+1)x−ξ

ε
√

τ

]ξ=L0

ξ=x

=ε
√

τ
(
e

(λ−1)x

ε
√

τ − e
(λ−2)x

ε
√

τ + e
λx

ε
√

τ − e
(λ−1)x

ε
√

τ + e
λx

ε
√

τ − e
(λ+1)x−L0

ε
√

τ

)
≤2ε

√
τe

λx
ε
√

τ

≤2ε
√

τe
λL0
ε
√

τ

• case (b): x ∈ [L0, +∞]

y3(x) =

∫ L0

0

(
e
−x+ξ

ε
√

τ + e
−x−ξ

ε
√

τ

)
e

λx
ε
√

τ dξ

=− ε
√

τ
[
e

(λ−1)x−ξ

ε
√

τ

]ξ=L0

ξ=0
+ ε
√

τ
[
e

(λ−1)x+ξ

ε
√

τ

]ξ=L0

ξ=0

=ε
√

τ
(
e

(λ−1)x

ε
√

τ − e
(λ−1)x−L0

ε
√

τ + e
(λ−1)x+L0

ε
√

τ − e
(λ−1)x

ε
√

τ

)
≤ε
√

τe
(λ−1)x+L0

ε
√

τ

Since 0 < λ < 1,

y3(x) ≤ε
√

τe
λL0
ε
√

τ

≤2ε
√

τe
λL0
ε
√

τ

Therefore, we get the desired inequality∫ +∞

0

∣∣∣e−x+ξ
ε
√

τ + sgn(x− ξ)e
− |x−ξ|

ε
√

τ

∣∣∣ e
λx

ε
√

τ |u0(ξ)| dξ ≤ 2Cuε
√

τe
λL0
ε
√

τ .
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A.4 Proof to lemma 2.3.4

Proof to lemma 2.3.4 (i).

|φ1(x)− e
− x

ε
√

τ | =

∣∣∣∣∣e
L−x
ε
√

τ − e
−L+x
ε
√

τ

e
L

ε
√

τ − e
− L

ε
√

τ

− e
− x

ε
√

τ

∣∣∣∣∣
=

e
L−x
ε
√

τ − e
−L+x
ε
√

τ − e
L−x
ε
√

τ + e
−L+x

ε
√

τ

e
L

ε
√

τ − e
− L

ε
√

τ

= e
− L

ε
√

τ

∣∣∣∣∣e−
x

ε
√

τ − e
x

ε
√

τ

e
L

ε
√

τ − e
− L

ε
√

τ

∣∣∣∣∣
≤ e

− L
ε
√

τ |φ2(x)|

Proof to lemma 2.3.4 (ii).

φ2(x) =
e

x
ε
√

τ − e
− x

ε
√

τ

e
L

ε
√

τ − e
− L

ε
√

τ

gives that

φ′2(x) =
1

ε
√

τ

e
x

ε
√

τ + e
− x

ε
√

τ

e
L

ε
√

τ − e
− L

ε
√

τ

> 0

and hence

φ2(x) ≤ φ2(L) = 1 for x ∈ [0, L]

Proof to lemma 2.3.4 (iii).

φ′2(x) =
1

ε
√

τ

e
x

ε
√

τ + e
− x

ε
√

τ

e
L

ε
√

τ − e
− L

ε
√

τ
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gives that

φ′′2(x) =
1

ε2τ
φ2(x) > 0

and hence

φ′2(x) ≤ φ′2(L)

=
1

ε
√

τ

e
L

ε
√

τ + e
− L

ε
√

τ

e
L

ε
√

τ − e
− L

ε
√

τ

=
1

ε
√

τ

e
2L

ε
√

τ + 1

e
2L

ε
√

τ − 1

≤ 2

ε
√

τ

if ε � 1 for x ∈ [0, L].
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