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a  b  s  t  r  a  c  t

We  propose  a numerical  approach  based  on  the  Lattice-Boltzmann  (LBM)  and  Immersed  Boundary  (IB)
methods  to  tackle  the  problem  of the interaction  of solids  with  an  incompressible  fluid  flow,  and  its
implementation  on  heterogeneous  platforms  based  on data-parallel  accelerators  such  as  NVIDIA  GPUs
and the Intel  Xeon  Phi.  We  explain  in  detail  the  parallelization  of  these  methods  and  describe  a  number
of  optimizations,  mainly  focusing  on  improving  memory  management  and  reducing  the  cost  of  host-
accelerator  communication.  As  previous  research  has  consistently  shown,  pure  LBM  simulations  are  able
to  achieve  good  performance  results  on  heterogeneous  systems  thanks  to  the  high  parallel  efficiency  of
this method.  Unfortunately,  when  coupling  LBM  and IB methods,  the  overheads  of  IB  degrade  the  overall
performance.  As  an alternative,  we have explored  different  hybrid  implementations  that  effectively  hide
such overheads  and  allow  us  to exploit  both  the  multi-core  and the hardware  accelerator  in  a  cooperative
way,  with  excellent  performance  results.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The dynamics of a solid in a flow field is a research topic with a
growing interest in many scientific communities. It is intrinsically
interdisciplinary (structural mechanics, fluid mechanics, applied
mathematics, . . .)  and covers a broad range of applications (e.g.
aeronautics, civil engineering, biological flows, etc.). The number of
works in this field is rapidly increasing, which reflects the growing
importance of studying the dynamics in the solid–fluid interaction
[1–4]. Most of these simulations are compute-intensive and bene-
fit from high performance computing systems. However, they also
exhibit an irregular and dynamic behaviour, which often leads to
poor performance when using emerging heterogeneous systems
equipped with many-core accelerators.

Many computational fluid dynamic (CFD) applications and soft-
ware packages have already been ported and redesigned to exploit
heterogeneous systems. These developments have often involved
major algorithm changes since some classical solvers may  turned
out to be inefficient or difficult to tune [5,6]. Fortunately, other
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solvers are particularly well suited for GPU acceleration and are
able to achieve significant performance improvements. The Lat-
tice Boltzmann method (LBM) is one of those examples thanks to
its inherently data-parallel nature. Certainly, the computing stages
of LBM are amenable to fine grain parallelization in an almost
straightforward way. This fundamental advantage of LBM has been
consistently confirmed by many authors [7–9,11], for a large variety
of problems and computing platforms.

In this paper, we explore the benefits of LBM solvers on hetero-
geneous systems. Our target application is an integrated framework
that uses the Immersed Boundary (IB) method to simulate the influ-
ence of a solid immersed in a incompressible flow [11]. Some recent
works that cover subjects closely related with our contribution are
[9] and [12]. In [9], authors presented an efficient 2D implemen-
tation of the LBM, which deals with geometries, by using curved
boundaries-based methodologies, that is able to achieve a high
performance on GPUs. Curved boundaries are taken into account
via a non equilibrium extrapolation scheme developed in [13]. In
[12], S. K. Layton et al. studied the solution of two-dimensional
incompressible viscous flows with immersed boundaries using the
IB projection method introduced in [14]. Their numerical frame-
work is based on a Navier–Stokes solver and uses the Cusp library
developed by Nvidia [15] for GPU acceleration. Our framework

http://dx.doi.org/10.1016/j.jocs.2015.07.002
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dx.doi.org/10.1016/j.jocs.2015.07.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2015.07.002&domain=pdf
mailto:pedro.valero.lara@gmail.com
dx.doi.org/10.1016/j.jocs.2015.07.002


250 P. Valero-Lara et al. / Journal of Computational Science 10 (2015) 249–261

uses a different Immersed Boundary formulation based on the one
introduced by Uhlmann [16], which is able to deal with complex,
moving or deformable boundaries [11,16–22]. Some previous per-
formance results were presented in [23]. In this contribution we
include a more elaborated discussion about performance results,
and as a novelty, we explore alternative heterogeneous platforms
based on the recently introduced Intel Xeon Phi device. Special
emphasis is given to the implementation techniques adopted to
mitigate the overhead of the immersed boundary correction and
keep the solver highly efficient.

The remainder of this paper is organized as follows. In Section 2
we introduce the physical problem at hand and the general numeri-
cal framework that has been selected to cope with it. In Section 3 we
review some optimizations of the baseline global LBM solver. After
that, we describe the different optimizations and parallel strate-
gies envisaged to achieve high-performance when introducing the
IB correction. In Section 4 we focus on optimising this correction
as it was a standalone kernel. Additional optimisations that take
into account the interaction with the global LBM solver are studied
afterwards in Section 5. Finally, we discuss the performance results
of the proposed techniques in Section 6. We  conclude in Section 7
with a summary of the main contributions of this work.

2. Numerical framework

As mentioned above, we have explored in this work a numerical
framework based on the Lattice Boltzmann method coupled to the
Immersed Boundary method. This combination is highly attractive
when dealing with immersed bodies for two main reasons: (1) the
shape of the boundary, tracked by a set of Lagrangian nodes is a
sufficient information to impose the boundary values; and (2) the
force of the fluid on the immersed boundary is readily available
and thus easily incorporated in the set of equations that govern the
dynamics of the immersed object. In addition, it is also particularly
well suited for parallel architectures, as the time advancement is
explicit and most computations are local [11]. In what follows, we
briefly recall the basic formulation of LBM and then we describe the
investigated LBM-IB framework.

2.1. The LBM method

Lattice Boltzmann has been extensively used in the past decades
(see [24] for a complete overview) and today is widely accepted in
both academia and industry as a powerful and efficient alternative
to classical Navier Stokes solvers for simulating (time-dependent)
incompressible flows [11].

LBM is based on an equation that governs the evolution of a
discrete distribution function fi(x, t) describing the probability of
finding a particle at Lattice site x at time t with velocity v = ei. In
this work, we consider the BGK formulation [25] that relies upon
an unique relaxation time ! toward the equilibrium distribution
f (eq)
i :

fi (x + ei"t,  t + "t) − fi (x, t) = −"t
!

(
f (x,  t) − f (eq)

i (x, t)
)

+ "tFi

(1)

The particles can move only along the links of a regular lattice
defined by the discrete speeds (e0 = c(0, 0) ; ei = c(± 1, 0), c(0, ± 1),
i = 1, . . .,  4 ; ei = c(± 1, ± 1), c(± 1, ± 1), i = 5, . . .,  8 with c = "x/"t) so
that the synchronous particle displacements "xi = ei"t  never take
the fluid particles away from the Lattice. For the present study,
the standard two-dimensional 9-speed Lattice D2Q9 (Fig. 1) is used
[26], but all the techniques that are presented in this work can be
easily applied to three dimensional lattices.

Fig. 1. Standard two-dimensional 9-speed lattice (D2Q9) used in our work.

The equilibrium function f (eq) (x, t) can be obtained by Taylor
series expansion of the Maxwell–Boltzmann equilibrium distribu-
tion [27]:

f (eq)
i = #ωi

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− u2

2c2
s

]
(2)

In Eq. (2), cs is the speed of sound (cs = 1/
√

3), # is the macro-
scopic density, and the weight coefficients ωi are ω0 = 4/9, ωi = 1/9,
i = 1, . . .,  4 and ω5 = 1/36, i = 5, . . .,  8 according to the current normal-
ization. The macroscopic velocity u in Eq. (2) must satisfy a Mach
number requirement |u |/cs ≈ M ≪ 1. This stands as the equivalent
of the CFL number for classical Navier Stokes solvers.

Fi in Eq. (1) represents the contribution of external volume forces
at lattice level that in our case include the effect of the immersed
boundary. Given any external volume force f(ib),  the contributions
on the lattice are computed according to the formulation proposed
in [13] as:

Fi =
(

1 − 1
2!

)
ωi

[
ei − u

c2
s

+ ei · u
c4

s
ei

]
· fib (3)

The multi-scale Chapman Enskog expansion of Eq. (1), neglecting
terms of O(%M2) and using Eq. (3), returns the Navier–Stokes equa-
tions with body forces and the kinematic viscosity related to lattice
scaling as & = c2

s (! − 1/2)"t.
Without the contribution of the external volume forces stem-

ming from the immersed boundary treatment, Eq. (1) is advanced
forward in time in two main stages, known as collision and stream-
ing, as follows:

1. Calculation of the local macroscopic flow quantities # and u from
the distribution functions fi(x, t):

# =
∑

fi(x, t) and #u =
∑

eifi(x, t)

2. Collision:

f ∗
i (x, t + "t) =  fi (x, t) − "t

!

(
f (x, t) − f (eq)

i (x, t)
)

3. Streaming:

fi (x + ei"t,  t + "t) = f ∗
i (x, t + "t)

A large number of researchers have investigated the perfor-
mance aspects of this update process [8,11,28–32] over the past
decade. In Section 3 we review these previous works and describe
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the implementation techniques that we have opted to explore in
our framework.

2.2. The LBM-IB framework

Next, we briefly introduce the Immersed Boundary method
that we use both to enforce boundary values and to recover the
fluid force exerted on immersed objects [16,22]. In the selected
Immersed Boundary approach (as in several others), the fluid is dis-
cretized on a regular Cartesian lattice while the immersed objects
are discretized and tracked in a Lagrangian fashion by a set of mark-
ers distributed along their boundaries. The general setup of the
investigated Lattice Boltzmann-Immersed Boundary method can
be recast in the following algorithmic sketch.

1. Given fi(x, t) compute:

# =
∑

fi(x, t) and #u =
∑

eifi(x, t) + "t
2

fib

2. Collision stage:

f̂ ∗
i (x, t + "t) =  fi (x, t) − "t

!

(
f (x,  t) − f (eq)

i (x, t)
)

3. Streaming stage:

f̂i (x + ei"t,  t + "t) = f̂ ∗
i (x, t + "t)

4. Compute:

#̂ =
∑

f̂i(x + ei"t,  t + "t) and #̂û =
∑

ei f̂i(x + ei"t,  t + "t)

5. Interpolate on Lagrangian markers (volume force):

Û(Xk, t + "t) = I(û) and fib(x, t)

= 1
"t

S
(

Ud(Xk, t + "t) − Û(Xk, t + "t)
)

6. Repeat collision with body forces (see Eq. (3)) and Streaming:

f ∗
i (x, t + "t) =  fi (x, t) − "t

!

(
f (x,  t) − f (eq)

i (x, t)
)

+ "tFi and fi (x + ei"t,  t + "t) = f ∗
i (x, t + "t)

As outlined above, the basic idea is to perform each time step
twice. The first one, performed without body forces, predicts the
velocity values at the immersed boundary markers and the force
distribution that restores the desired velocity boundary values at
their locations. The second one applies the regularized set of sin-
gular forces and repeats the procedure (using Eq. (3)) to determine
the final values of the distribution function at the next time step. A
key aspect of this algorithm is the way by which the interpolation
I and the S operators (termed as spread from now on) are applied.
Here, following [16,22], we perform both operations (interpolation
and spread) through a convolution with a compact support mol-
lifier meant to mimic  the action of a Dirac’s delta. Combining the
two operators we can write in a compact form:

f(ib)(x,  t) = 1
"t

∫

'

(
Ud (s, t +  "t) −

∫

(

û (y) ı̃ (y − s) dy

)
ı̃ (x − s) ds

(4)

where ı̃  is the mollifier, ' is the immersed boundary, ( is the com-
putational domain, and Ud is the desired value on the boundary

Fig. 2. An immersed curve discretized with Lagrangian points (•). Three consecutive
points are considered with the respective supports.

at the next time step. The discrete equivalent of Eq. (4) is simply
obtained by any standard composite quadrature rule applied on the
union of the supports associated to each Lagrangian marker. As an
example, the quadrature needed to obtain the force distribution on
the lattice nodes is given by:

f l
ib

(
xi, yj

)
=

Ne∑

n=1

Fl
ib (Xn) ı̃

(
xi − Xn, yj − Yn

)
%n (5)

where the superscript l refers to the lth component of the immersed
boundary force, (xi, yj) are the lattice nodes (Cartesian points) falling
within the union of all the supports, Ne is the number of Lagrangian
markers and %n is a value to be determined to enforce consistency
between interpolation and the convolution (Eq. (5)). More details
about the method in general and the determination of the %n values
in particular can be found in [22].

In what follows we  will give more details on the construc-
tion of the support cages surrounding each Lagrangian marker
since it plays a key role in the parallel implementation of the IB
algorithm. Fig. 2 illustrates an example of the portion of the lat-
tice units that falls within the union of all supports. As already
mentioned, the embedded boundary curve is discretized into a
number of markers XI, I = 1, . . .,  Ne. Around each marker XI we
define a rectangular cage (I with the following properties: (i) it
must contain at least three nodes of the underlying Eulerian lat-
tice for each direction; (ii) the number of nodes of the lattice
contained in the cage must be minimized. The modified kernel,
obtained as a Cartesian product of the one dimensional function
[33]

ı̃(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
6

(
5 − 3|r| −

√
−3(1 − |r|)2 + 1

)
0.5 ≤ |r| ≤ 1.5

1
3

(
1 +

√
−3r2 + 1

)
0.5|r| ≤ 0.5

0 otherwise

(6)

will be identically zero outside the square (I. We take the edges
of the square to measure slightly more than three lattice spac-
ings " (i.e., the edge size is 3" + ) = 3 + ) in the actual LBM
normalization). With such choice, at least three nodes of the
lattice in each direction fall within the cage. Moreover a value
of ) ł 1 ensures that the mollifier evaluated at all the nine (in
two dimensions) lattice nodes takes on a non-zero value. The
interpolation stage is performed locally on each nine points sup-
port: the values of velocity at the nodes within the support cage
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Fig. 3. Vorticity with Re = 100.

centered about each Lagrangian marker deliver approximate val-
ues (i.e., second order) of velocity at the marker location. The
force spreading step requires information from all the mark-
ers, typically spaced " = 1 apart along the immersed boundary.
The collected values are then distributed on the union of the
supports meaning that each support may  receive information
from supports centered about neighboring markers, as in Eq.
(5). The outlined method has been validated for several test
cases including moving rigid immersed objects and flexible ones
[11].

2.3. Numerical validation of the method

Finally, we close this section presenting several test cases in
order to validate the implementation of the code by compar-
ing the numerical results obtained with other studies. One of
the classical problems in CFD is the determination of the two-
dimensional incompressible flow field around a circular cylinder,
which is a fundamental problem in engineering applications. Sev-
eral Reynolds numbers (20, 40 and 100) have been tested with
the same configuration. The cylinder diameter D is equal to 40.
The flow space is composed by a mesh equal to 40D (1600) × 15D
(600). The boundary conditions are set as: Inlet: u = U, v = 0, Outlet:
∂u
∂x

= ∂v
∂x

= 0, Upper and lower boundaries: ∂u
∂y

= 0, v = 0, Cylin-
der surface: u = 0, v = 0, Volume fraction: 0.5236%. When Reynolds
number is 20 and 40, there is no vortex structure formed during
the evolution. The flow field is laminar and steady. In contrast,
for the Reynolds number of 100, the symmetrical rectangular
zones disappear and an asymmetric pattern is formed. The vor-
ticity is shed behind the circular cylinder, and vortex structures are
formed downstream. This phenomenon is graphically illustrated in
Fig. 3.

Two important dimensionless numbers are studied, the drag
(CD = FD

0.5#U2D
) and lift (CL = FL

0.5#U2D
) coefficients. FD corresponds

to the resistance force of the cylinder to the fluid in the stream-
wise direction and FL is the lifting force of the circular cylinder, # is
the density of the fluid, and U is the velocity of inflow. In order
to verify the numerical results, the coefficients were calculated
and compared with the results of previous studies (Table 1). The

Table 1
Comparison between the numerical results yield by our method and previous
studies.

Author Re = 20 Re = 40 Re = 100

CD CD CD CL

Calhoun [2] 2.19 1.62 1.33 0.298
Rusell [3] 2.22 1.63 1.34 –
Silva et al. [4] 2.04 1.54 1.39 –
Xu  [1] 2.23 1.66 1.423 0.34
Zhou et al. [9] 2.3 1.7 1.428 0.315
This work 2.3 1.7 1.39 0.318

drag coefficient for Reynolds number of 20 and 40 is equal to the
results presented by Zhou et al. [9]. The drag coefficient obtained
for Reynolds number of 100 is identical to the results obtained by
Silva et al. [4], and the lift coefficient is close to the presented by
Zhou et al. [9].

3. Implementation of the global LBM update

3.1. Parallelization strategies

Parallelism is abundant in the LBM update and can be exploited
in different ways. On our GPU implementation, the lattice nodes
are distributed across GPU cores using a fine-grained distribu-
tion. As shown in Fig. 4 (bottom), we  used a 1D Grid of 1D
CUDA Block. Each CUDA-thread performs the LBM update of a
single lattice node. On multi-core processors, cache locality is
a major performance issue and it is better to distribute the
lattice nodes across cores using a 1D coarse-grained distribu-
tion (Fig. 4, top-left). The cache coherence protocol keeps the
boundaries between subdomains updated. On the Intel Xeon Phi,
we also distribute the lattice nodes across cores using a 1D
coarse-grained distribution, but using a smaller block size (Fig. 4,
top-right).

Another important issue is how to implement a single
LBM update. Conceptually, a discrete time step consists of a
local collision operation followed by a streaming operation
that propagates the new information to the neighbour lat-
tice nodes. However, most implementations do not apply those
operations as separate steps. Instead, they usually fuse in a
single loop nest (that iterates over the entire domain), the
application of both operations to improve temporal locality
[28,30].

This fused loop can be implemented in different ways. We  have
opted to use the pull scheme introduced in [28]. In this case, the
body of the loop performs the streaming operation before colli-
sion, i.e. the distribution functions are gathered (pulled) from the
neighbours before computing the collision. Algorithm 1 shows a
sketch of our implementation.

Algorithm 1. LBM pull.
1: Pull (f1,f2,ϖ,cx ,cy)
2: x, y
3: xstream , ystream

4: localux ,localuy ,local#
5: localf[9], feq

6: for i = 1 →9 do
7: xstream = x − cx[i]
8: ystream = y − cy[i]
9: localf[i] = f1[xstream][ystream][i]
10: end for
11: for i = 1 →9 do
12: local# + = localf[i]
13: localux + = cx[i] × localf [i]
14: localuy + = cy[i] × localf [i]
15: end for
16: localux = localux /local#
17: localuy = localuy /local#
18: for i = 1 →9 do
19: feq = ω[i] · # · (1 + 3 · (cx[i] · localux + cy[i] · localuy ) +

(cx[i] · localux + cy[i] · localuy )2 − 1.5 × ((localux )2 + (localuy )2))
20:  f2[x][y][i] = localf [i] · (1 − 1

! ) + feq · 1
!

21: end for

Other implementations [7,9,32,34] have used the traditional
implementation sketched in Algorithm 2, which performs the col-
lision operation before the streaming. It is known as the “push”
scheme [28] since it loads the distribution function from the cur-
rent lattice point and then it “pushes” (scatters) the updated values
to its neighbours.
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Fig. 4. Fine-grained and coarse-grained distributions of the lattice notes.

Algorithm 2. LBM push.
1: Collide Stream (ux ,uy ,#,f1,f2,ϖ,cx ,cy)
2: x, y
3: xstream , ystream

4: feq

5: for i = 1 →9 do
6:

feq = ϖ[i] · # · (1 + 3 · (cx[i] · ux[x][y] + cy[i] · uy[x][y]) + (cx[i] · ux[x][y]
+ cy[i] · uy[x][y])2 − 1.5 × ((ux[x][y])2 + (uy[x][y])2))

7:  f1[x][y][i] = f1[x][y][i] · (1 − 1
! ) + feq · 1

!
8: xstream = x + cx[i]
9: ystream = y + cy[i]
10: f2[xstream][ystream][i] = f1[x][y][i]
11: end for
1: Macroscopic (ux ,uy ,#,f2,cx ,cy)
2: x, y
3: localux ,localuy ,local#
4: for i = 1 →9 do
5:  local# + = f2[x][y][i]
6: localux + = cx[i] × f2[x][y][i]
7: localuy + = cy[i] × f2[x][y][i]
8: end for
9: #[x][y] = local#
10: ux[x][y] = localux /local#
11: uy[x][y] = localuy /local#

3.2. Data layout and memory management

Since LBM is a memory-bound algorithm, another important
optimization problem is to maximize data locality. Many groups
have considered this issue and have introduced several data lay-
outs and code transformations that are able to improve locality on
different architectures [11,28–32,35,36]. Here we  briefly describe
the strategies used by our framework.

Different data structures have been proposed to store the dis-
crete distribution functions fi in memory:

• AoS. This data structure stores all the discrete distribution func-
tions fi of a given lattice point in adjacent memory positions (see
Fig. 5(a)). This way, it optimizes locality when computing the
collision operation [36]. However, it does not provide good per-
formance on GPU architectures since it leads to poor bandwidth
utilization [7,8,32].

• SoA. In this alternative data structure, the discrete distribution
functions fi for a particular velocity direction are stored sequen-
tially in the same array (see Fig. 5(b)). Since each GPU thread
handles the update of a single lattice node, consecutive GPU
threads access adjacent memory locations with the SoA layout
[7,8,32]. This way, they can be combined (coalesced) into a single
memory transaction, which is not possible with the AoS counter-
part.

• SoAoS.  We  have also explored a hybrid data structure, denoted
as SoAoS in [36]. As SoA, it also allows coalesced memory
transactions on GPUs. However, instead of storing the discrete
distribution functions fi for a particular velocity direction in a sin-
gle sequential array, it distributes them across different blocks of
a certain block size (see Fig. 5(c)). This size is a tunable parameter
that trades off between spatial and temporal locality.

Apart from the data layout, the memory management of the
different implementations may  also differ in the number of lattices
that are used internally. We  have used a two-lattice implementa-
tion, which is denoted as the AB scheme in [29,32]. Essentially, AB
holds the data of two successive time steps (A and B) and the simu-
lation alternates between reading from A and writing to B, and vice
versa. Other proposals, such as the AA data layout in [29,32], are
able to use a single copy of the distributions arrays and reduce the
memory footprint. Some previous works have shown that those
single lattice schemes outperform the AB scheme on multi-core
processors (AA achieved the best results in [31]). However, on GPUs
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Fig. 5. Different data layouts to store the discrete distribution functions fi in memory.

the performance benefits of these schemes are less clear. In fact, a
recent work has shown that both schemes get similar performance
on GPUs [32] or the AB scheme is typically a little faster on the lat-
est GPUs. On the other hand, AB simplifies the integration with IB
correction, which is the main focus of this research, and is therefore
clearly preferred in our framework.

4. Implementation of the IB correction

In this section we discuss the different strategies that we  have
explored to optimize and parallelize the IB correction, i.e. the com-
putations related with the Lagrangian markers distributed on the
solid(s) surface(s).

4.1. Parallelization strategies

The parallelization of this correction step is only effective as
long as there is sufficient work, which depends on the number of
Lagrangian points in the solid surface and the overlapping among
their supports.

On multi-core processors, we have been able to achieve satis-
factory efficiencies (even for moderate number of points) using a
coarse-grained distribution of (adjacent) Lagrangian points across
all cores. This implementation is relatively straightforward using a
few OpenMP pragmas that annotate the loops that iterate over the
Lagrangian points.

On GPUs, it is better to exploit fine-grained parallelism. Our
implementation consists of two main kernels denoted as IF

(Immersed Forces)  and BF (Body Forces)  respectively. Both of them
use the 1D distribution of threads across Lagrangian points shown
in Fig. 6.

The IF kernel performs three major steps (see Algorithm 3). First,
it assembles the velocity field on the supports. Then, it undertakes
the interpolation at the Lagrangian markers and finally it deter-
mines the Eulerian volume force field on each node of the union
of the supports. Note that forces are updated with atomic opera-
tions. Despite the overhead of such operations, they are necessary

Fig. 6. 1D fine-grained distribution of Lagrangian points across CUDA threads.
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to prevent race conditions since the supports of different Lagrangian
points can share the same Eulerian points, as graphically shown in
Fig. 2.

Once the IF kernel has been completed, the BF kernel (see
Algorithm 4) computes the lattice forces and apply a local LBM
update on the union of the supports, including now the contribution
of the immersed boundary forces. Again, it avoids race conditions
using atomic operations.

Algorithm 3. Pseudo-code of the IF kernel.
1: IFC kernel(solid s,Ux ,Uy)
2: velx , vely , forcex , forcey

3: for i = 1 → numSupport do
4: velx + = interpol(Ux[s.Xsupp[i]], s)
5:  vely + = interpol(Uy[s.Ysupp[i]], s)
6:  end for
7: forcex = computeForce(velx , s)
8:  forcey = computeForce(vely , s)
9:  for i = 1 → numSupport do
10: AddAtom(s.XForceSupp, spread(forcex , s))
11: AddAtom(s.YForceSupp, spread(forcey , s))
12: end for

Algorithm 4. Pseudo-code of the BF kernel.
1: BFC kernel(solid s,fx ,fy)
2:  Fbody(Body Force),x, y,velx , vely
3: for i = 1 → numSupport do
4: x = s.Xsupport[i]
5: y = s.Ysupport[i]
6: velx = s.VelXsupport[i]
7: vely = s.VelYsupport[i]
8: for j = 1 →9 do
9: Fbody = (1 − 0.5 · 1

! ) · w[j] · (3 · ((cx[j] − velx) · (fx[x][y]) + (cy[j] −
vely) · fy[x][y]))

10: AddAtom(fn+1[j][x][y], Fbody)
11: end for
12: end for

4.2. Data layout

Once again, another key aspect affecting performance in this
correction step is the data structure (data layout) that is used
to store the information about the Lagrangian points and their
supports (coordinates, velocities and forces). Using the locality
principle, it is natural to use an array of structures (AoS) to place
all this information at a given Lagrangian point in nearby memory
locations. This is the data structure that we have used on multi-core
processors, since it optimizes cache performance. In contrast, on
GPUs it is more natural to use a SoA data structure that distributes
the information of all Lagrangian points in a set of one-dimensional
arrays. With SoA, consecutive threads access to contiguous memory
locations and memory accesses are combined (coalesced) in a single
memory transaction. Fig. 7 illustrates the difference between those
layouts in a simplified example with only two Lagrangian points.

5. Coupled LBM-IB on heterogeneous platforms

The complete LBM-IB framework can be fully implemented on
many core processors combining the strategies described earlier for
the global LBM updated and the IB correction. In this approach, the
host processor stays idle most of the time and it is used exclusively
for:

• Pre-processing. The host processor sets up the initial configu-
ration and uploads those initial data to the main memory of the
accelerator.

• Monitoring. The host processor is also in charge of a monitoring
stage that downloads the information of each lattice node (i.e.,
velocity components and density) back to the host main memory
when required.

Fig. 7. Different data layouts used to store the information about the coordinates,
velocities and forces of the Lagrangian points and their supports. On multi-core
processors we use an AoS data structure (top) whereas on GPUs (bottom) we use a
SoA  data structure.

On GPUs, this approach consists of three main kernels, denoted
in Fig. 8 as LBM, IF and BF respectively, which are launched con-
secutively for every time step. The first kernel implements the LBM
update while the other two  perform the IB correction. The overhead
of the pre-processing stage performed on the multi-core proces-
sor has been experimentally shown to be negligible and the data
transfer of the monitoring stage are mostly overlapped with the
execution of the LBM kernel.

Although this approach achieves satisfactory results on GPUs, its
speedups are substantially lower than those achieved by pure LBM
solvers [8,32,29,11]. The obvious reason behind this behavior is the
ratio between the characteristic volume fraction and the fluid field,
which is typically very small. Therefore, the amount of data paral-
lelism in the LBM kernel is substantially higher than in the other
two kernels. In fact, for the target problems investigated, millions
of threads compute the LBM kernel, while the IF and BF kernels
only need thousands of them. But in addition, those kernels also
require atomic functions due to the intrinsic characteristics of the
IB method, and those operations usually degrade performance.

5.1. LBM-IB on hybrid multicore-GPU platforms

As an alternative to mitigate the overheads caused by the IB
correction, we  have explored hybrid implementations that take
advantage of the host Xeon processor to hide them.

In Fig. 9 we  show the hybrid implementation that we proposed
on a previous paper [23] for heterogeneous multicore-GPU plat-
forms. The LBM update is performed on the GPU as in the previous
approach. However, IB and an additional local correction to LBM
on the supports of the Lagrangian points are performed on the host
processor. Both steps are coordinated using a pipeline. This way,
we are able to overlap the prediction of the fluid field for the t + 1
iteration with the correction of the IB method on the previous iter-
ation t. This is possible at the expense of a local LBM computation
of the“t + 1′′ iteration on the multi-core and additional data trans-
fers of the supports between the GPU and the host processor at each
simulation step.
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Fig. 8. Homogeneous GPU Implementation. Both the LBM update and the IB correction are performed on the GPU. The host processors stays idle most of the time.

Fig. 9. Hybrid multicore-GPU implementation. The LBM update is performed on the GPU, whereas the IB correction and an additional step to update the supports of the
Lagrangian points are performed on the multi-core processor.

5.2. LBM-IB on hybrid multicore-Xeon Phi platforms

The homogeneous Xeon Phi implementation suffers from the
same performance problems that the homogeneous GPU coun-
terpart. But again, multicore-Xeon Phi collaboration allows us to
achieve higher performance. It is possible to use the same hybrid
strategy introduced above for the multicore-GPU platform. How-
ever, we have opted to use a slightly different implementation that
simplifies code development. Fig. 10 graphically illustrates the new
partitioning. Essentially, it also consists on splitting the computa-
tional domain into two subdomains, so that one of them (the solid
subdomain) fully includes the immersed solid. With such distribu-
tion, it is possible to perform the IB correction exclusively on the
host Intel Xeon processor. However, in this case the host also per-
forms the global LBM update on that subdomain, which simplifies
the implementation.

As shown in Fig. 10, every time step, it is necessary to exchange
the boundaries between both subdomains. To reduce the penalty
of such data transfers, we  update the boundaries between subdo-
mains at the beginning of each time step. With this transformation,
it is possible to exchange those boundaries with asynchronous
operations that are overlapped with the update of the rest of the
subdomain. In our target simulations, the solid subdomain is much
smaller that the Xeon Phi counterpart. To improve performance, the

size of both subdomains is adjusted to balance the loads between
both processors.

6. Performance evaluation

6.1. Experimental setup

To critically evaluate the performance of the developed LBM-IB
solvers, we  have considered next a number of tests executed on two
different heterogeneous platforms, whose main characteristics are
summarized in Table 2.

On the GPU, the on-chip memory hierarchy has been configured
as 16 KB shared memory and 48 KB L1, since our codes do not ben-
efit from a higher amount of shared memory on the investigated
tests.

Simulations have been performed using double precision, and
we have used the conventional MFLUPS metric (millions of fluid
lattice updates per second) to assess the performance.

6.2. Standalone Lattice-Boltzmann update

Before discussing the performance of our LBM-IB framework, it
is important to determine the maximum performance that we  can
attain. We  can estimate an upper limit omitting the IB correction.

Fig. 10. Hybrid multicore-Phi implementation. The Lx × Ly lattice is split into two 2D sub-domains so that the IB correction is only needed on one of the domains. The
multi-core processor updates the LxIB × Ly subdomain, which fully includes the immersed solid (marked as a circle). The Xeon Phi updates the rest of the lattice nodes (the
LxLBM × Ly subdomain). The grey area highlights the ghost lattice nodes at the boundary between both sub-domains. In our target simulations, LxLBM ≫ LxIB.
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Table  2
Summary of the main features of the platforms used in our experimental evaluation.

Platform Intel Xeon NVIDIA GPU Intel Xeon Phi
Model  E5520/E5-2670 Geforce GTX780 (Kepler) 5510P
Frequency 2.26/2.6 GHz 0.863 1.053 Ghz
Cores  8/16 2304 60
On-chip  Mem.  L1 32 KB (per core) SM 16/48 KB (per MP)  L1 32 KB (per core)

L2  512 KB (unified) L1 48/16 KB (per MP)  L2 256 KB (per core)
L3  20 MB (unified) L2 768 KB (unified) L2 30 MB (coherent)

Memory 64/32GB DDR3 6GB GDDR5 8 GB GDDR5
Bandwidth 51.2 GB/s 288 GB/s 320 GB/s
Compiler Intel Compiler 14.0.3 nvcc 6.5.12 Intel Compiler 14.0.3
Compiler Flags -O3 -fomit-frame-pointer -fopenmp -O3 -arch = sm 35 1

1 -O3 openmp -mcmodel=medium fno-alias -mP2OPT hlo use const pref dist=64 -mP2OPT hlo use const second pref dist=32′′

Fig. 11 shows the performance of this benchmark on a Kepler GPU.
Recall from Section 3 that our implementation is based on the pull
scheme and uses two lattice with the SoA data layout. As a reference
we also show the performance of the Sailfish software package [32],
which includes a LBM solver based on the push scheme, and the
following estimation of the ideal MFLUPS [35]:

MFLUPSideal = B × 109

106 × n × 6 × 8
(7)

where B × 109 is the memory bandwidth (GB/s), n depends on LBM
model (DxQn), for our framework n = 9, D2Q9. The factor 6 is for the
memory accesses, three read and write operations in the spreading
step and three read and write operations in the collision step, and
the factor 8 is for double precision (8 bytes).

Fig. 12(a) and (b) shows the performance on an Intel Xeon server.
Although on multi-core processor it is natural to use the AoS data
layout, SoA and SoAoS (with a block size of 32 elements) turn to be
the most efficient data layouts. The main reason behind these unex-
pected results lies on the vector capabilities of modern processors.
The compiler has been able to vectorize the main loops of the LBM
update and both the AoS and SoAoS layouts allow a better exploita-
tion of vectorization. Fig. 13 shows the scalability on this solver.
The observed speedup factors over the sequential implementation
almost peak with 16 threads, but the application scales relatively
well since its performance is limited by the memory bandwidth.

Fig. 14(a) and (b) shows the performance on the Intel Xeon Phi.
In this platform, SoAoS is able to outperform the other data layouts.
The optimal SoAoS block size in this case is 128 elements, 4× the
block size of the Intel Xeon, which coincides with the ratio between
the vector widths of both architectures.

Fig. 11. Performance of the LBM update on the NVIDIA Kepler GPU.

Fig. 15 analyses the impact of the thread-core affinity on per-
formance using three different pre-defined strategies (see [37] for
details on the rationale of each strategy). The compact affinity pro-
vides the best performance although the differences between them
are not significant.

Finally, Fig. 16 shows the scalability on the Xeon Phi. For large
problems, performance always improves as the number of threads
increases. However, the gap with the ideal MFLUPS estimate is
much larger in this case than in the other platforms. Given that
the codes used for the Intel Xeon Phi and those used for the Intel

Fig. 12. Performance of the LBM update on the Intel Xeon multi-core processor.
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Fig. 13. Scalability of the LBM update on an Intel Xeon multi-core processor.

Fig. 14. Performance of the LBM update on the Intel Xeon Phi.

Fig. 15. Performance of the LBM update with different thread-core affinity strategies
on the Intel Xeon Phi.

Fig. 16. Scalability of the LBM update on an Intel Xeon Phi.

Xeon are essentially the same (only optimal block sizes and minor
optimization parameters change between both implementations)
it is expected that either memory bandwidth is not limiting perfor-
mance in this platform, or better performance values are expected
for larger problem sizes.

Overall, the best performance is achieved on the GPU, which
is able to outperform both the Intel Xeon and the Intel Xeon Phi.
For the largest grid tested, the speed factor is 4.62× and 1.22×,
respectively.

6.3. Standalone IB correction

Our second test uses a synthetic benchmark that focus exclu-
sively on the IB correction, i.e., it omits the global LBM update and
only applies the local IB correction. Fig. 17 shows the speedups
of the parallel implementations over a sequential counterpart for
increasing number of Lagrangian nodes. We  are able to achieve sub-
stantial speedups, even for a moderate number of nodes. Notably,
the best performance is achieved on the GPU, despite the overheads
caused by the atomic updates needed on that implementation.
From 2500 Lagrangian markers, the GPU outperforms the 8-core
multicore counterpart with a 2.5× speedup.
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Fig. 17. Speedups of the IB method on multi-core and GPU for increasing number
of  Lagrangian nodes.

6.4. Coupled LBM-IB on heterogeneous platforms

6.4.1. Multicore-GPU
Fig. 18(a) shows the performance of the hybrid LBM-IB solver on

a multicore-GPU heterogeneous platform for an increasing number
of lattice nodes. As a reference, Fig. 18(b) shows the performance
of the homogeneous GPU implementation. We  have used the same
physical setting studied in Section 2 and we have investigated two
realistic scenarios with characteristic volume fractions of 0.5% and
1% respectively (i.e. the amount of embedded Lagrangian markers
also grows with the number of lattice nodes).

The performance (MFLUPS) of the homogeneous imple-
mentation (Fig. 18(b)) drops substantially over the pure LBM
implementation (Fig. 11). The slowdown is around 15% for a solid
volume fraction of 0.5%, growing to 25% for the 1% case. In contrast,
for these fractions the hybrid GPU-multicore version is able to hide
the overheads of the IB method, having similar performance to the
pure LBM implementation.

Fig. 19 shows a breakdown of the execution time for the
simulation with a solid volume fraction of 1%. On the hybrid imple-
mentation, the cost of the IB correction is higher than in the
homogeneous counterpart, reaching around 65% of the total exe-
cution time. This is expected since the in this case, the IB correction
includes additional data transfers and local LBM updates. However,
these costs are hidden with the global LBM update.

6.4.2. Multicore-Xeon Phi
Similarly, the performance of the proposed strategy over

the multicore-Xeon Phi heterogeneous platform is analyzed in

Fig. 18. Performance of the complete LBM-IB solver for an increasing number of
lattice nodes.

Fig. 20(a). We have focused on the same numerical scenario
described earlier with a solid volume fraction of 1%. As in the
multicore-GPU platform, the observed performance in MFLUPS
roughly matches the performance of the pure-LBM implementa-
tion on the same platform (Fig. 14(b)), with a peak performance
of 450 MFLUPS for the largest problem size. LxIB,  which defines
the size of the subdomain that is simulated on the multi-core

Fig. 19. Execution time breakdown for a solid volume fraction of 1% of the LBM and IB kernels on the homogeneous GPU implementation (left) and multicore-GPU
heterogeneous (right) platforms.
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Fig. 20. Performance of the complete LBM-IB solver on the multicore-Phi platform
as the size of subdomain that is simulated on the multi-core procesor increases.

processor, is a critical parameter in this implementation. As
expected, there is an optimal value, which depends on the size of
both the immersed solid and the grid, that balances the load in both
processors. For example, the peak performance for the smallest
grid tested (Lx = 2560, Ly = 800) is attained when the Xeon subdo-
main is roughly a 10% of the complete grid (LxIB = 250), growing to
12% for the largest grid tested (Lx = 5120, Ly = 1400; (LxIB = 620)).

Overall, as we have aimed, the overhead of the solid interaction
is mainly hidden thanks to the effective cooperation with the multi-
core processor. The penalty of the data transfers between both
processors is negligible since boundary exchanges are conveniently
orchestrated to allow their overlapping with useful computations.

Finally, as a reference, Fig. 20(b) shows the performance attained
by an equivalent LBM-IB implementation, but without overlapping
the execution on the Intel Xeon and the Intel Xeon Phi, i.e. the Xeon
and the Phi subdomains are updated sequentially, one after the
other. In this case, the peak performance drops to 300 MFLUPS,
which highlights the benefit of overlapping the execution of both
processors. Obviously, the lower LxIB,  the higher performance we
achieve with this synthetic code since it increases the amount of
work delivered to the Intel Xeon Phi.

7. Conclusions

In this paper, we  have investigated the performance of a coupled
Lattice-Boltzmann and Immersed Boundary method that simu-
lates the contribution of solid behavior within an incompressible
fluid. While LBM has been widely studied on heterogeneous plat-
forms, the coupling of LBM with Immersed-Boundary methods has
received less attention.

We  have reviewed different strategies to enhance the perfor-
mance on three state-of-the-art parallel architectures: an Intel
Xeon server, a NVIDIA KeplerGPU and an Intel Xeon Phi accel-
erator. Our baseline LBM solver uses most of the state-of-the-art
code transformations that have been described in previous work.
Notably, performance results (MFLUPS) on the GPU and the multi-
core processor are close to ideal MFLUPS estimations. On the Xeon
Phi, the gap with these ideal estimations is higher, but it also
achieves competitive performance. Overall, the best results are
achieved on the GPU, which peaks at 550 MFLUPs, whereas the
Intel Xeon Phi peaks at 450 MFLUPs.

Our main contribution is the design and analysis of a hybrid
implementation that takes advantage of both the accelerator
(GPU/Xeon Phi) and multi-core in a co-operative way  to solve the
coupled LBM-IB problem. For interesting physical scenarios with
realistic solid volume fractions, these hybrid solvers are able to hide
the overheads caused by the IB correction and match the perfor-
mance (in terms of MFLUPS) of state-of-the-art pure LBM solvers.
This has been possible thanks to the effective cooperation between
the accelerator and the multi-core processor and the overlapping
of data transfers between their memory spaces with useful com-
putations.

Based on the presented LBM-IB framework, we  envision two
main research lines as future work. First, we will investigate
an adaptation of the framework to problems which deal with
deformable and moving bodies. In this type of scenarios, the work
partitioning and assignment among computational resources will
need to follow a dynamic approach instead of a static strategy as
that implemented in this paper, to adapt the workload to the spe-
cific configuration at each timestep. Second, we plan to extend
our work to 3D simulations; for these problems, memory con-
sumption arises as one of the main problems, naturally driving to
distributed-memory architectures, possibly equipped with hard-
ware accelerators. In this case, we believe many of the techniques
presented in this work will be of direct application at each node
level; the scalability and parallelization strategies across nodes is
still a topic under study.
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