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Abstract

In this paper we present two interesting properties of stochastic cellular au-
tomata that can be helpful in analyzing the dynamical behavior of such au-
tomata. The first property allows for calculating cell-wise probability distri-
butions over the state set of a stochastic cellular automaton, i.e. images that
show the average state of each cell during the evolution of the stochastic cellular
automaton. The second property shows that stochastic cellular automata are
equivalent to so-called stochastic mixtures of deterministic cellular automata.
Based on this property, any stochastic cellular automaton can be decomposed
into a set of deterministic cellular automata, each of which contributes to the
behavior of the stochastic cellular automaton.

Keywords: stochastic cellular automata, complexity analysis, continuous
cellular automata, decomposition

1. Introduction

Cellular Automata (CAs) are often used for constructing models in a variety
of fields of application, including chemistry, biology, medicine, physics, ecology
and the study of socioeconomic interactions. In many of these settings, Stochas-
tic CAs (SCAs) are considered due to the stochastic nature of the phenomenon
under study or due to a lack of understanding of the exact rules driving the
phenomenon [1, 2]. Therefore, a better understanding of the dynamics of SCAs
is crucial. Only a few methods for dealing with the analysis of models based on
SCAs have been developed. In many practical applications, especially in cases
where the averaged behavior of the system is of concern, sampling methods,
relying on extensive computer simulations, are sufficient [3, 4, 5]. Techniques
built on the mean–field theory can be used to study the long-term behavior of
SCAs [6]. The theory of Markov chains can be applied to provide analytical
tools for analyzing the model’s behavior [7], although in practice, due to the
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theoretical and computational complexity of such tools, the application scope
is limited.

This paper is devoted to providing effective analytical tools based on de-
terministic CAs for the analysis of multi-state SCAs. Although the theoretical
foundations of the presented results are already (at least partially) known in
the literature [7, 8, 9], so far the applications are limited. Therefore, the main
aim of this paper is to provide a complete, formal description of the discussed
properties in a form that is suitable for applications and that does not require a
strong mathematical background, as well as to present examples that can mo-
tivate further applications in the domain of systems modeling. The methods
presented here are developed in the context of 1D SCAs on finite lattices, but
can be easily generalized to the case of higher dimensions and infinite spaces.

Two main results are presented in this paper. The first one involves con-
structing images that show the cell-wise probability distribution over the state
set, at any time step. The method is based on associating an SCA with a de-
terministic, Continuous CA (CCA). The second result shows the equivalence of
SCAs and stochastic mixtures of deterministic CAs. Based on this finding, any
SCA can be decomposed into a finite set of deterministic CAs, each of them
contributing to the behavior of the stochastic system. An effective method for
finding a decomposition is presented. It allows to uncover the deterministic
component in the mixture with the highest impact on the behavior of the SCA.

This paper is organized as follows. We start with some preliminaries and
definitions in Section 2. In Section 3, we introduce the concept of CCAs and
the formalism enabling the analysis of multi-state CAs. Section 4 contains
the definition of multi-state SCAs and holds the main results of this paper.
The paper is concluded with Section 5, discussing the experimental results that
illustrate our results. A summary is presented in Section 6.

2. Preliminaries

Informally, a CA is a discrete dynamical system in which the space is subdi-
vided into discrete elements, referred to as cells. At every consecutive, discrete
time step, each cell is assigned one of N states using a deterministic rule, which
depends only on the previous state of the considered cell and the states of its
neighboring cells [10].

Formally speaking, let the state set S be a finite set of N > 1 elements.
Elements of the set C = {ci | i = 1, . . . ,M} will be referred to as cells. Ev-
ery cell ci is assigned a state s(ci, t) ∈ S at each time step t ∈ N, according
to a local, deterministic rule. The vector s(·, t) ∈ SM will be referred to as
the configuration, and as the initial configuration when t = 0. The sequence
(s(·, 0), s(·, 1), . . .) will be referred to as the space-time diagram of the CA. For
technical reasons, we impose periodic boundary conditions, but our results do
not depend on this assumption.

The function A : SM → SM satisfying, for every t ∈ N:

s(·, t+ 1) = A(s(·, t)) , (1)
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will be referred to as a global CA rule or simply a CA, if there exists a radius
r ∈ N and a function f : S2 r+1 → S satisfying:

s(ci, t+ 1) = f(s(ci−r, t), . . . , s(ci+r, t)) , (2)

for every i and t ∈ N. Such a function f will be referred to as a local rule. Note
that a local rule uniquely defines the global rule, while for a given global rule,
multiple local rules exist. Additionally, it is assumed that r � M . The vector
(ci−r, ci−r+1, . . . , ci+r−1, ci+r) will be referred to as the neighborhood of cell ci
and R = 2 r + 1 will denote the neighborhood size. For the sake of simplicity,
s(ci−r, . . . , ci+r, t) ∈ SR will denote the state of the neighborhood of cell ci at
time step t, and will be referred to as the neighborhood configuration of ci at
time step t.

3. Continuous CAs

There exist multiple ways of extending the definition of CAs to cover in-
finite state sets. Examples of such approaches include Coupled Map Lattices
(CMLs) [11] and so-called fuzzy CAs [12, 13, 14]. In this section, we present
Continuous CAs (CCAs), which can be seen as a generalization of the ideas
presented in [12]. Our formalism is based on a polynomial representation of
discrete CA rules. We start with formulating the continuous counterparts of
binary CAs. After that we present a generalization to cover multi-state CAs.

3.1. Binary CAs

Binary CAs are widely studied [15, 16], because they allow to evolve complex
patterns and exhibit complex behavior despite their intrinsic simplicity. The
state set of such a CA A is S = {0, 1}. We will now formally define and

characterize its local rule f : SR → S. Let l = (li)
2R

i=1 be a binary vector. We
consider a system of equations:

f(si,1, . . . , si,R) = li , (3)

where (si,1, . . . , si,R) is a binary vector such that i = 1 +
∑R−1
j=0 si,R−j 2j . As

can be seen, such a system of equations is uniquely defined by the vector l. The
vector l will be referred to as the lookup table (LUT) of the local rule f . It is
not difficult to check that such a system uniquely defines the function f , since
it lists all of the possible input configurations, and maps them to corresponding
values by components of the vector l.

Following [12], we know that the function f can be expressed as a polynomial,
which is of interest for our purposes. In order to define it, we introduce two
auxiliary functions. We start with the function ind: {1, . . . , 2R} → {1, 2}R. It
is defined in such a way that ind(i)[m] is the m–th digit, incremented by one,
read from left to right, of the binary representation of the integer i− 1, padded
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with ones on the left, so that it always has length R. Consequently, it holds
that:

i = 1 +

R∑
m=1

(ind(i)[R− (m− 1)]− 1) 2m−1. (4)

The values of ind(i) for R = 3 and i ∈ {1, . . . , 8} are shown below:

ind(1) = (1, 1, 1), ind(2) = (1, 1, 2), ind(3) = (1, 2, 1), ind(4) = (1, 2, 2),

ind(5) = (2, 1, 1), ind(6) = (2, 1, 2), ind(7) = (2, 2, 1), ind(8) = (2, 2, 2).

The function ind is related to the binary representation of integers. In [12] a
simpler formulation using the function bin, which yields the binary represen-
tation of an integer, is used. The construction presented here, although a bit
more complicated in the binary setting, allows for a smoother generalization to
the multi-state case.

Using the function ind, we now define the function n : S×N×N→ S, which
for s ∈ S and m, i ∈ N, is given by:

n(s,m, i) =

{
s , if ind(i)[m] = 2,

1− s , if ind(i)[m] = 1.

Note that we will use vectors of states of the form (s1, . . . , sR) ∈ SR and for
simplicity, for any m ∈ {1, . . . , R}, we will write n(sm, i) instead of n(sm,m, i).
Using the functions ind and n, we can write the polynomial representation of
the local rule f as:

f(s1, . . . , sR) =

2R∑
i=1

li

(
R∏

m=1

n(sm, i)

)
. (5)

The following example shows the explicit form of this polynomial for a member
of the family of Elementary CAs (ECAs).

Example 1 (Elementary CAs). Binary, 1D CAs with neighborhood radius
r = 1 are commonly referred to as ECAs [15]. There are 256 such ECAs.
Treating the LUT entries li as digits of an integer written in base 2, we can
enumerate the local rules of ECAs. By convention, the binary vectors are read
in the reverse order, i.e. (li)

8
i=1 is interpreted as (l8, l7, . . . , l1)2. For example,

given the LUT l = (0, 1, 1, 0, 1, 0, 0, 1) of ECA 150, and denoting the Boolean
complement as s̄ = 1− s, its local rule can be written, according to Eq. (5), as:

f150(s1, s2, s3) = s̄1 s̄2 s3 + s̄1 s2 s̄3 + s1 s̄2 s̄3 + s1 s2 s3 .

Using the above notation, a CCA can be defined analogously to a binary CA,
with two notable differences. Firstly, the state set of a CCA is the unit interval,
i.e. S = [0, 1], and, secondly, the local rule f : [0, 1]R → [0, 1] is given by Eq. (5)

with coefficients li ∈ [0, 1]. We will refer to such a vector (li)
2R

i=1 as a general-
ized LUT. It is easy to check that this definition of a CCA is formally correct.
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Indeed, the values of the function f in Eq. (5) are guaranteed to belong to the
unit interval if li ∈ [0, 1] for all i and sm ∈ [0, 1] for all m ∈ {1, . . . , R}. Note
that this construction is directly related to the one presented in [12], where fuzzy
CAs are constructed as polynomials representing fuzzified logical functions. Fol-
lowing the same line of reasoning, an alternative polynomial representation for
the local rules of binary CAs is presented in [17], which is consistent with a
logical representation of the local rules.

In order to introduce the formalism that is needed in the multi-state setting,
we present a slightly modified way of representing binary CAs compared to the
one obtained through Eq. (5). Let us assume that the state set is given by
S2 = {(1, 0), (0, 1)} ⊂ R2. Then the local rule is a function f : SR2 → S2 and
can be represented as a vector function f = (f1, f2), where fj : SR2 → {0, 1}.
Note that any s = (s1, s2) ∈ S2 satisfies s2 = 1− s1. Similarly, f2 = 1− f1, so

that the local rule f can be defined using f2 only. Let l ∈ S2R2 be given, i.e. for
every i = 1, . . . , 2R, it holds that li = (li,1, li,2) ∈ S2. Let (s1, . . . , sR) ∈ SR2 . We
can define f2 with a formula similar to Eq. (5) as:

f2(s1, . . . , sR) =

2R∑
i=1

li,2

(
R∏

m=1

n(sm,2, i)

)
. (6)

Since sm,1 = 1− sm,2, we can rewrite the formula for the function n as:

n(sm,2, i) =

{
sm,2 , if ind(i)[m] = 2,

sm,1 , if ind(i)[m] = 1,

which can be simplified to:

n(sm,2, i) = sm,ind(i)[m] , (7)

and thus f2 can be written as:

f2(s1, . . . , sR) =

2R∑
i=1

li,2

(
R∏

m=1

sm,ind(i)[m]

)
. (8)

Having defined the function f2, we can prove the following fact, which gives
a direct formula for f1.

Lemma 1. The function f1 can be expressed as:

f1(s1, . . . , sR) =

2R∑
i=1

li,1

(
R∏

m=1

sm,ind(i)[m]

)
. (9)

Due to the above, we can write a general expression for fj , j = 1, 2, as:

fj(s1, . . . , sR) =

2R∑
i=1

li,j

(
R∏

m=1

sm,ind(i)[m]

)
. (10)
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Resorting to this vector notation, a CCA can be defined with a state set:

Sc = {(x1, x2) ∈ [0, 1]2 | x1 + x2 = 1} ⊂ R2 , (11)

and a local rule f : SRc → Sc given by Eq. (10) with (lj)
2R

j=1 ∈ S2R

c .

Example 2. The local rule f150 of ECA 150 presented in Example 1 can be
rewritten in the context of the state set S2, as f : S32 → S2, f = (f1, f2). Note
that for si ∈ S2, it holds that si = (si,1, si,2). The local rule f can be written
as:

f1(s1, s2, s3) = s1,2 s2,2 s3,1 + s1,2 s2,1 s3,2 + s1,1 s2,2 s3,2 + s1,1 s2,1 s3,1

f2(s1, s2, s3) = s1,2 s2,2 s3,2 + s1,2 s2,1 s3,1 + s1,1 s2,2 s3,1 + s1,1 s2,1 s3,2 .

The representation given by Eq. (10) is equivalent to that given by Eq. (5),
but allows for an easier generalization to multi-state CAs. Therefore, we will
use it throughout the remainder of this paper.

3.2. Multi-state CAs

We start with generalizing the state set S2 defined in Section 3.1 to the case
of N states. Let SN ⊂ RN be the set of all base vectors of the N–dimensional
Euclidean space, i.e.

SN =
{
e ∈ {0, 1}N | ‖e‖ = 1

}
. (12)

Let the i–th state in a multi-state CA be represented by the base vector ei which
has zeros everywhere, except at position i, where it has a one. For instance,
if N = 3, then S3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. For the sake of simplicity, in
the remainder of this paper, we will write S instead of SN , assuming that N is
fixed.

We now generalize the function ind: {1, . . . , NR} → {1, . . . , N}R, defined
above for the binary case, to enumerate the NR neighborhood configurations.
Let i ∈ {1, . . . , NR} be the index identifying a neighborhood configuration. We
assume that such a configuration consists of the following states:

(eind(i)[1], eind(i)[2], . . . , eind(i)[R]) . (13)

We assume that ind satisfies the following equation:

i = 1 +

R∑
m=1

(
ind(i)[R− (m− 1)]− 1

)
Nm−1 . (14)

A direct formula for calculating ind is given by:

ind(i)[m] =

⌊
(i− 1) mod NR−(m−1)

NR−m

⌋
+ 1 . (15)
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Essentially, ind(i) yields the positional representation of i − 1 in base N ,
padded with zeros on the left, so that it always has length R, where each of the
digits is incremented by one. Hence, one easily finds:

ind(1) = (1, . . . , 1, 1) ,

ind(2) = (1, . . . , 1, 2) ,

...

ind(N) = (1, . . . , 1, N) ,

ind(N + 1) = (1, . . . , 2, 1) ,

...

ind(NR) = (N, . . . , N,N) .

Any local rule f of an N–state, deterministic CA can be uniquely defined
by writing down its outputs for all of the possible neighborhood configurations.
Formally, let us consider the system of equations:

f(eind(i)[1], . . . , eind(i)[R]) = li, (16)

where i ∈ {1, . . . , NR} and li ∈ S. Similarly to the binary case, the matrix

L = (li)
NR

i=1 ∈ SN
R

will be called the LUT of a multi-state CA. Basically, L
is a matrix of NR columns and N rows, containing only zeros and ones, in
such a way that every column contains exactly one non-zero entry. Each of the

matrices L ∈ SNR

uniquely defines an N–state CA in terms of its local rule.
In order to define a CCA in the context of multiple states, we need to formally

define its state set. Let Sc be defined as:

Sc =

{
(x1, . . . , xN ) ∈ [0, 1]N |

N∑
i=1

xi = 1

}
⊂ RN , (17)

which is consistent with the definition for N = 2 given by Eq. (11). Note that
any s ∈ Sc satisfies si = 1 −

∑
j 6=i sj . The set Sc is commonly referred to as a

standard (N − 1)–simplex [18].

Example 3. Let N = 3. The set Sc is a 2D triangle placed in the 3D Euclidean
space, with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1).

In the case of a CCA, the local rule is a vector function f : SRc → Sc, given

by f = (f1, . . . , fN ), for which there exists a matrix P ∈ SNR

c , referred to as
the generalized LUT, such that for j ∈ {1, . . . , N} it holds that fj : SRc → [0, 1]
and:

fj(s1, . . . , sR) =

NR∑
i=1

Pij

(
R∏

m=1

sm,ind(i)[m]

)
. (18)

We will show that the definition given by Eq. (18) is formally correct, mean-
ing that the function f with components fj satisfies f : SRc → Sc, which is
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equivalent to showing that fj(s1, . . . , sR) ∈ [0, 1] and
∑N
j=1 fj(s1, . . . , sR) = 1

for any (s1, . . . , sR) ∈ SRc .

Lemma 2. For any (s1, . . . , sR) ∈ SRc , it holds that

NR∑
i=1

[
R∏

m=1

sm,ind(i)[m]

]
= 1 . (19)

Proof. Let

Θ =

NR∑
i=1

[
R∏

m=1

sm,ind(i)[m]

]
.

Note that for every j ∈ {1, . . . , N}R, there exists exactly one i ∈ {1, . . . , NR}
such that j = ind(i). Due to this, it holds that:

Θ =
∑

j∈{1,...,N}R

[
R∏

m=1

sm,jm

]
.

By regrouping the elements of the above sum, we may write:

Θ =
∑

j∈{1,...,N}R−1

[
R−1∏
m=1

sm,jm

(
N∑
i=1

sR,i

)]
.

Since sR ∈ Sc, we know that
∑N
i=1 sR,i = 1, and thus:

Θ =
∑

j∈{1,...,N}R−1

[
R−1∏
m=1

sm,jm

]
.

By repeating this regrouping procedure R− 1 times, we finally get:

Θ =

N∑
j=1

s1,j = 1 .

Proposition 1. For any j ∈ {1, . . . , N} and any (s1, . . . , sR) ∈ SRc , it holds
that fj(s1, . . . , sR) ∈ [0, 1].

Proof. Firstly, fj(s1, . . . , sR) ≥ 0 is fulfilled since all of the elements in the sum
in Eq. (18) are non-negative. Therefore, showing that fj(s1, . . . , sR) ≤ 1 is
sufficient to prove the proposition. Since Pij ≤ 1, we can write:

fj(s1, . . . , sR) =

NR∑
i=1

Pij

(
R∏

m=1

sm,ind(i)[m]

)
≤

NR∑
i=1

R∏
m=1

sm,ind(i)[m] = 1 .

8



Proposition 2. For any (s1, . . . , sR) ∈ SRc , it holds that:

N∑
j=1

fj(s1, . . . , sR) = 1 .

Proof. Let j ∈ {1, . . . , N}, then it suffices to show that:

1− fj(s1, . . . , sR) =
∑
k 6=j

fk(s1, . . . , sR) . (20)

This identity is proven by the following chain of equalities:

1− fj(s1, . . . , sR) = 1−
NR∑
i=1

Pij

(
R∏

m=1

sm,ind(i)[m]

)

= 1−
NR∑
i=1

1−
∑
k 6=j

Pik

 R∏
m=1

sm,ind(i)[m]

= 1−
NR∑
i=1

R∏
m=1

sm,ind(i)[m] +

NR∑
i=1

∑
k 6=j

Pik

(
R∏

m=1

sm,ind(i)[m]

)

=
∑
k 6=j

NR∑
i=1

Pik

(
R∏

m=1

sm,ind(i)[m]

)
=
∑
k 6=j

fk(s1, . . . , sR) .

We have shown the correctness of the CCA definition. We conclude this
section with the observation that the local rule f : SR → S of any N–state,
deterministic, 1D CA can always be written in the form of Eq. (18), where

(s1, . . . , sR) ∈ SR, fj : SR → {0, 1} and
∑N
j=1 fj(s1, . . . , sR) = 1. This shows

that CCAs are a generalization of N–state, deterministic CAs.

4. Properties of SCAs

In this section, we provide a general definition of an N–state SCA, which
is formulated using the notation introduced in Section 3 for multi-state CAs
and CCAs. Subsequently, we show the nature of the relation between SCAs
and CCAs. Finally, we present a method for decomposing an SCA into a set of
deterministic CAs.

4.1. General construction of multi-state SCAs

We define SCAs, the stochastic counterpart of multi-state CAs. We assume
that the state set S is given by Eq. (12) and contains all the standard base
vectors ei. In such a setting, the states are assigned according to a probability
distribution, which depends on the neighborhood configuration at the previous
time step. Therefore, SCAs are not defined through a local rule, but rather by
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a set of conditional expressions, which for j ∈ {1, . . . , N} and k ∈ {1, . . . , NR}
can be written as:

P
(
s(ci, t+1) = ej | s(ci−r, . . . , ci+r, t) = (eind(k)[1], . . . , eind(k)[R])

)
= pkj . (21)

The conditional probabilities pkj in Eq. (21) do not depend on the choice of i
and t. Obviously, it holds that pk = (pk1, . . . , pkN ) ∈ Sc for all k. Furthermore,

the matrix P = (pkj) can be considered an element of SNR

c . Consequently, every

element in SNR

c uniquely defines the probability distribution of some local rule.
The matrix P will be referred to as the probabilistic lookup table (pLUT). Such
matrices are commonly known as stochastic matrices [19] and are typically used
in the analysis of Markov chains.

Any SCA is uniquely defined by a pLUT belonging to SNR

c . Since we know

from Section 3.2 that every element of SNR

c uniquely defines a CCA, we elaborate

on the relationship between an SCA defined by a pLUT P ∈ SNR

c and a CCA
defined by the same P considered as generalized LUT.

4.2. Relationship between CCAs and SCAs

In contrast to deterministic CAs, only the initial state s(·, 0) is known with
certainty in the case of SCAs, while for s(·, t), t > 0, only a probability distri-
bution can be calculated. Let π(ci, t | I0) denote the probability distribution
over the set of states S for the i–th cell at time step t, given that the evolution
started from the initial condition I0, i.e. s(·, 0) = I0. Whenever it will not bring
confusion, we will omit I0 and write π(ci, t). Since there are N states, we need
to specify N probabilities summing up to 1, to define π(ci, t). For this reason,
let us represent π(ci, t) as a vector of probabilities, i.e. π(ci, t) ∈ Sc, such that:

π(ci, t | I0)[k] = P
(
s(ci, t) = ej | s(·, 0) = I0

)
, (22)

where j = 1, . . . , N .
When using SCAs in practical problem settings, one might be interested in

computing the values of π(ci, t) for any t. Normally, this is achieved by means of
sampling methods [3, 4, 5], i.e. multiple space-time diagrams are generated from
the same initial condition and probability distributions are estimated, based on
the frequencies of reaching any of the states in a given cell. Unfortunately, such
an approach has serious drawbacks, especially in terms of the computational
burden it brings along. Yet, one can calculate π(ci, t) much faster by relying on
CCAs.

Proposition 3. Let P ∈ SNR

c be the pLUT of an SCA, and let f : SRc → Sc be
a function defined according to Eq. (18) using P as generalized LUT, then:

π(ci, t+ 1) = f(π(ci−r, t), . . . , π(ci+r, t)) , (23)

for any i and t.
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Proof. Let k ∈ {1, . . . , NR} and j ∈ {1, . . . , N}, then pkj is the probabil-
ity of reaching state ej if the neighborhood configuration was known to be
(eind(k)[1], . . . , eind(k)[R]), which will be referred to as the k–th neighborhood.
Assuming that π(·, t) is known, the probability of cells (ci−r, . . . , ci+r) being in
the k–th neighborhood can be calculated with the following formula:

P
(
s(ci−r, . . . , ci+r, t) = (eind(k)[1], . . . , eind(k)[R])

)
=

R∏
m=1

π(ci−r+m−1, t)
[

ind(k)[m]
]
. (24)

Due to the Total Probability Theorem, the probability of reaching state ej at
time step t+ 1 is expressed as:

P
(
s(ci, t+ 1) = ej

)
=

NR∑
k=1

P
(
s(ci, t+ 1) = ej | s(ci−r, . . . , ci+r, t) = (eind(k)[1], . . . , eind(k)[R])

)
×

P
(
s(ci−r, . . . , ci+r, t) = (eind(k)[1], . . . , eind(k)[R])

)
. (25)

Substituting Eqs. (21) and (24) in Eq. (25), we get:

P
(
s(ci, t+ 1) = ej

)
=

NR∑
k=1

pkj

(
R∏

m=1

π(ci−r+m−1, t)
[

ind(k)[m]
])

. (26)

Taking into account the definition of the function f in Eq. (18), we can rewrite
Eq. (26) as:

P
(
s(ci, t+ 1) = ej

)
= fj(π(ci−r, t), . . . , π(ci+r, t)) .

Since π(ci, t+ 1)[j] = P
(
s(ci, t+ 1) = ej

)
, the following is proven:

π(ci, t+ 1) = f(π(ci−r, t), . . . , π(ci+r, t)) .

As shown above, the construction of CCAs is directly connected to the Total
Probability Theorem, and thus it enables us to better understand the evolution
of cell-wise probability distributions of SCAs. It is important to highlight that
the evolution of those distributions is deterministic in SCAs, although the dy-
namical system itself is stochastic. The finding above agrees with [14], where a
similar result in the case of binary CAs was shown. Yet, this paper was confined
to study the asymptotic behavior of deterministic CAs. Interestingly, in [20] an
SCA is defined as a discrete-time deterministic dynamical system acting on
the set of probability measures on the set of all configurations. Although the
definition presented there is much more abstract, and suits mostly theoretical
applications, it reassembles the main ideas of CCAs.
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4.3. Decomposition of SCAs

In the previous subsection, we have shown that CCAs are directly related
to SCAs, since the evolution of a CCA is equivalent to the evolution of the
cell-wise probability distributions of an SCA. Here, we uncover the relationship
between SCAs and deterministic, N–state CAs, and discuss the possibility of
decomposing an SCA into deterministic CAs. Let us start with an introductory
example motivating our general construction.

Example 4 (α–asynchronous CAs). Classically, states in deterministic CAs
are updated synchronously, i.e. a new state is assigned to all cells simultaneously
at every time step according to the local rule. Yet, different approaches of break-
ing the synchronicity of CAs have been proposed [21]. Interestingly, the choice
of the update scheme, which defines the order or timing of cell state updates,
has very important repercussions on the dynamical properties of CAs [22]. Here
we focus on so-called α-asynchronous CAs (α-ACAs) [23].

Any α-ACA is defined by its deterministic counterpart A and a probability α,
called the synchrony rate, which controls whether or not its cells are updated.
More precisely, α is the probability of applying the local rule f of A, i.e.:

s(ci, t+ 1) =

{
f(s(ci−r, . . . , ci+r, t)) ,with probability α,

s(ci, t) , otherwise.

Note that if α = 0, such a system remains at its initial configuration, whereas
the system is equivalent to CA A if α = 1.

The essential property of the construction presented above is that an α–
ACA can also be seen as a synchronous, stochastic system in which the local
rule of A is selected with probability α, while the identity rule is selected with
probability 1− α. Hence, we may say that the rule of a CA A is stochastically
mixed with the identity rule.

The idea behind α–ACA can be easily extended to the mixing of q ≥ 2
deterministic rules. Consider synchronous, deterministic CAs A1, . . . , Aq and

probabilities α1, . . . , αq that satisfy
∑q
i=1 αi = 1. Then, we define an SCA Ã

in which the state of every cell at every consecutive time step is obtained by
evaluating one of the local rules, corresponding to one of the Ai. The rule
is chosen randomly and independently for every cell at each time step with
the selection probability for CA Ai being αi. Such systems, referred to as
stochastic mixtures of deterministic CAs in the remainder of this paper, hold
very interesting properties that are currently also investigated by others [24].
For technical reasons, we assume that the local rules of A1, . . . , Aq are defined
with a common radius r ≥ 0. Since each local rule with radius r′ < r can
be represented equivalently as a local rule with radius r, we are not loosing
generality with this assumption.

The first observation is a direct consequence of the definition presented
above.
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Fact 1. Assume that r ≥ 0 is the radius of the neighborhood of the local rules of

automata A1, . . . , Aq. Let R = 2 r+1 and suppose that Li ∈ SN
R

is the LUT of

CA Ai, for i = 1, . . . , q. Then the pLUT P ∈ SNR

c of the stochastic mixture Ã
satisfies P =

∑q
i=1 αiLi.

Sums of the form
∑q
i=1 αiLi, where αi ∈ [0, 1] and

∑q
i=1 αi = 1 are com-

monly referred to as convex combinations, which allows us to rephrase Fact 1
as: the pLUT of a stochastic mixture of deterministic CAs is the corresponding
convex combination of the LUTs of the mixed CAs.

Having defined the concept of a stochastic mixture, we are interested in
characterizing this class of SCAs. Interestingly, we are able to show that in
general there are no characteristics that distinguish stochastic mixtures from
other SCAs, since any SCA can be represented as a stochastic mixture. This
fact is not surprising if we envisage a stochastic mixture of deterministic CAs
as a convex combination of LUTs of deterministic CAs. We can rely on the
classical Krein–Milman theorem from convex set theory [25]. It states that a
compact convex set is the convex hull of its extreme points. In our context, the

set SNR

containing the LUTs of deterministic CAs is the set of extreme points

of SNR

c , which is convex and compact. The convex hull of SNR

is the set of all

possible convex combinations of elements from SNR

, which is precisely the set
of all stochastic mixtures of deterministic CAs. Due to this, we can state the
following theorem.

Theorem 1. Any SCA can be represented as a stochastic mixture of a finite
number of deterministic CAs.

The decomposition of a stochastic mixture into a convex combination de-
scribed above is not unique, therefore many methods for constructing the de-
composition can be formulated. In the proof of Proposition 4, we introduce one
possible algorithm of which it will be shown in Proposition 5 that it uncovers
the most influential component of the stochastic mixture.

Proposition 4. Let P ∈ SNR

c . Then there exists an integer n∗ such that for

i = 1, 2, . . . , n∗, we can define coefficients αi ∈ [0, 1],
∑n∗

i=1 αi = 1 and matrices

Li ∈ SNR

, that satisfy:

P =

n∗∑
i=1

αi L
i . (27)

Proof. We start by defining auxiliary matrices Pm, for m ≥ 0. Let:

Pm =

{
P , if m = 0,

Pm−1 − αm Lm , if m > 0,
(28)

where, for m > 0:
αm = min

i
max
j
Pm−1ij , (29)
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and Lm = (Lmij ) such that:

Lmij =

{
1, for j = min

{
j | Pm−1il ≤ Pm−1ij , for any l ∈ {1, . . . , N}

}
,

0, otherwise.
(30)

Note that, for any m and i, it holds that Lmij = 1 for a single value of j.

Consequently Lm ∈ SNR

.
Firstly, note that α1 is one of the elements of P 0 = P , so α1 ∈ [0, 1].

Additionally, it holds that α1 > 0, since if α1 = 0, then for some i, we would
have maxj Pij = 0, which contradicts the fact that

∑
j Pij = 1 for any i.

Secondly, note that for any i and j, it holds that P 0
ij ≥ 0. We will show

next that the assumption Pm−1ij ≥ 0 leads to Pmij ≥ 0. Indeed, we know that

Pmij ∈ {P
m−1
ij , Pm−1ij − αm}. If Pmij = Pm−1ij , then obviously Pmij ≥ 0, while

if Pmij = Pm−1ij − αm, it holds that Pm−1ij ≥ Pm−1il for any l, meaning that

Pm−1ij = maxl P
m−1
il . On the other hand, since αm = mini maxl P

m−1
il , it holds

that Pm−1ij ≥ αm. Since it was assumed that Pm−1ij ≥ 0, we see that Pmij ≥ 0 as
well.

Thirdly, following the argument above, we can easily show that for every i,
j and m, it holds that Pmij ≤ Pm−1ij . This means that for every i, it holds that

maxj P
m
ij ≤ maxj P

m−1
ij , and thus αm+1 ≤ αm. Since α1 ∈ ]0, 1], and αm ≥ 0

for any m, we see that αm ∈ [0, 1].

Note that for any i, it holds that
∑
j P

m
ij =

(∑
j P

m−1
ij

)
− αm. Expanding

this recursively, yields
∑
j P

m
ij = (

∑
j P

0
ij) −

∑m
l=1 αl. From the definition of a

stochastic matrix, we know that
∑
j P

0
ij = 1, such that

∑
j P

m
ij = 1−

∑m
l=1 αl,

which means that the column sums in matrix Pm are equal. Since for all m we
have shown that Pmij ≥ 0, we know that for any m, it holds that 1−

∑m
l=1 αl ≥ 0,

therefore
∑m
l=1 αl ≤ 1.

We further note that αm = 0, for some m, if and only if Pm−1 contains one
zero column. Since we have shown that the column sums in Pm are equal for
any m, we know that αm = 0 if and only if Pm−1 = 0. Therefore, αm > 0 if
and only if Pm−1 6= 0, which implies that in each of the columns of Pm−1, there
is at least one non-zero entry.

Let z(m) = #{(i, j) | Pmij = 0} denote the number of zeros in matrix Pm.
Note that if Pm 6= 0, then z(m) < z(m + 1), which follows from the fact that
if Pm 6= 0, there exists Pmij = αm+1 > 0, and thus for at least one couple (i, j),

we know that Pm+1
ij = Pmij −αm+1 = 0. Since z(m) cannot be greater than the

total number of elements in Pm, it is not possible that z(m) < z(m + 1) for
all m. As such, we know that there exist n∗ for which Pn

∗
= 0 and Pn

∗−1 6= 0,

and thus
∑n∗

l=1 αl = 1. Using the definition of Pn
∗

multiple times, we get:

0 = Pn
∗

= Pn
∗−1−αn∗ Ln

∗
= . . . = P 0−α1 L

1− . . .−αn∗ Ln∗ = P −
n∗∑
i=1

αi L
i,

such that P =
∑n∗

i=1 αi L
i.
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To illustrate the construction presented in the proof of Proposition 4, every
step of the algorithm is visualized in the following example.

Example 5. Although Proposition 4 deals with stochastic matrices with di-
mensions corresponding to pLUTs, it is obvious that the same method can be
used to decompose a stochastic matrix of arbitrary size. For simplicity, we apply
the method to an exemplary 4× 3 stochastic matrix P given by:

P =

0.6 0 0.2 0.4
0.3 1 0.3 0.4
0.1 0 0.5 0.2

 .
According to Eqs. (28) and (30), we build matrices P 0 and L1:

P 0 = P =

0.6 0 0.2 0.4
0.3 1 0.3 0.4
0.1 0 0.5 0.2

 , L1 =

1 0 0 1
0 1 0 0
0 0 1 0

 .
Note that we highlighted the selected maximal elements in each of the columns
using boldface font. The boldface entries in P 0 correspond to the positions of
the ones in matrix L1. Note that in the last column of P 0, there is no unique
maximal element. Yet, as given by Eq. (30), we pick the first of the entries
from top to bottom. Picking the other possibility would affect the subsequent
matrices Lm and result in a different decomposition, but the coefficients αm
would not change.

Following Eq. (29), we find that α1 = 0.4. We proceed and calculate P 1

and L2:

P 1 = P 0 − α1 L
1 =

0.2 0 0.2 0
0.3 0.6 0.3 0.4
0.1 0 0.1 0.2

 , L2 =

0 0 0 0
1 1 1 1
0 0 0 0

 ,
and from this we see that α2 = 0.3. We continue the procedure:

P 2 = P 1 − α2 L
2 =

0.2 0 0.2 0
0 0.3 0 0.1

0.1 0 0.1 0.2

 , L3 =

1 0 1 0
0 1 0 0
0 0 0 1

 ,
and α3 = 0.2. We proceed one more step and get:

P 3 = P 2 − α3 L
3 =

 0 0 0 0
0 0.1 0 0.1
0.1 0 0.1 0

 , L4 =

0 0 0 0
0 1 0 1
1 0 1 0

 ,
and α4 = 0.1. This is the final step, since: P 4 = P 3 − α4 L

4 = 0. Therefore,
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the decomposition can be written as:

P = 0.4×

1 0 0 1
0 1 0 0
0 0 1 0

+ 0.3×

0 0 0 0
1 1 1 1
0 0 0 0


+0.2×

1 0 1 0
0 1 0 0
0 0 0 1

+ 0.1×

0 0 0 0
0 1 0 1
1 0 1 0

 .
As mentioned earlier, the construction presented in the proof of Proposi-

tion 4 is one of many possibilities of decomposing a pLUT, but in the following
proposition we will show that it enables us to capture the element of the mixture
with the highest possible coefficient.

Proposition 5. Let P ∈ SNR

c , p = 1, . . . , pmax, q = 1, . . . , qmax, and let

αp, βq ∈ [0, 1], Lp,Mq ∈ SNR

be such that
∑
p αp =

∑
q βq = 1. Moreover,

let P =
∑
p αp L

p =
∑
q βqM

q, and let αp, Lp be defined as in the proof of
Proposition 4. It then holds that maxq βq ≤ α1 = maxp αp.

Proof. Let i and j be such that Pij = α1. Then for any k, it holds that
Pik ≤ α1. Let q ∈ {1, . . . , qmax} and let l be such that Mq

il = 1. Since
P =

∑
q βqM

q, we know that βq ≤ Pil, and thus βq ≤ Pil ≤ α1. Therefore,
for any q ∈ {1, . . . , qmax}, it holds that βq ≤ α1 and thus maxq βq ≤ α1.

The informal meaning of the above proposition is that the presented ap-
proach to decompose an SCA uncovers the deterministic rule that has the high-
est probability of being executed, and therefore is likely to have the highest
influence on the behavior of the system. The exact relations between the dy-
namical behavior of SCAs and the dynamical characteristics of the components
of stochastic mixtures are still under investigation.

The experiments in the following section underline that in some cases those
CAs that have the highest probability of application indeed greatly influence
the behavior of the SCA. Yet, in some cases, those with a very small probability
of application can also play an important role. Therefore, at this stage we do
not claim that the overall dynamics of the SCA is always determined by the
component of the mixture with the highest probability of application.

The decomposition of an SCA as a stochastic mixture might also find its
use in SCA-based modeling. Indeed, in some cases it might be easier to express
the model in terms of deterministic components having a meaning in the lan-
guage relevant to the modeling task. Due to the presented equivalence, we are
guaranteed that such a practice will not limit the modeling potential.

5. Experiments

5.1. Analysis of α–asynchronous ECAs
Through the following experiment, we will analyze the behavior of α-asyn-

chronous ECAs. For a given rule, the cell-wise distance between the space-
time diagram of the deterministic CA and the space–time diagram of a CCA
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representation of an α–ACA variant, for α ranging from 0 to 1, was measured.
More formally, if A is an ECA rule, and Aα is the CCA representation of the
α–asynchronous variant of A for α ∈ [0, 1], we measured the distance D(α)
between space-time diagrams. For a random initial condition I0 ∈ {0, 1}M ,
where M > 0 denotes the number of cells and T the number of time steps, the
distance D is defined as:

D(α) =
1

M T

T∑
t=1

‖At(I0)−Atα(I0)‖ , (31)

where At(I0) denotes the result of applying the global rule A t times to input I0.
In this experiment, we choose M = T = 69.

Unsurprisingly, it turned out that the most pronounced discrepancies be-
tween the parallel evolutions are observed when α approaches 1. For that rea-
son, we restrict the further discussion to α ∈ [0.9, 1]. We classified the ECAs
according to the behavior of the function D (the contents of the classes is shown
in Table 1):

• Class I: D(α) is almost 0, for all α ∈ [0.9, 1] (Figure 1a),

• Class II: D(α) smoothly decreases towards 0, as α increases (Figure 1b),

• Class IIIa: there is a very sudden drop of D(α) as α approaches 1 (Fig-
ure 1c),

• Class IIIb: there is a very sudden drop of D(α) as α approaches 1, and
the behavior is not monotonic (Figure 1d).

The interpretation of the classes is as follows. Rules belonging to Class I are
resistant to α–asynchronicity, which means that introducing the asynchronic-
ity aspect does not affect the behavior, or that its impact is negligible. Rules
belonging to Class II are affected by the asynchronicity, but the impact on the
final behavior is proportional to the synchrony rate α, i.e. the behavior steadily
approaches the deterministic case as α approaches one. Rules belonging to
Classes IIIa and IIIb are sensitive to α–asynchronicity, meaning that the behav-
ior of the system changes drastically as soon as α is smaller than 1. Class IIIb
can be distinguished from Class IIIa, by the noisy behavior of D(α) for α close
to one. The cause of the differences is not yet uncovered.

Classes IIIa and IIIb illustrate the case where the decomposition as a stochas-
tic mixture does not suffice to understand the dynamics of the SCA. Indeed,
for large α, the behavior of the SCA and that of the deterministic CA with the
highest probability of application is quite different.

5.2. Stochastic density classifiers

We consider the SCA defined by the local rule C3 introduced in [26, 27].
This rule is defined by the pLUT shown in Table 2. Note that this pLUT uses
the standard notation for its state set S = {0, 1}, and its entries constitute the
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Figure 1: Plots of D(α) for representatives of each of the classes defined in Table
1.

Class I 0, 8, 12, 32, 40, 64, 68, 72, 76, 77, 93, 96, 128, 132,
136, 140, 160, 168, 192, 196, 200, 205–207, 220, 221,
224, 232, 233, 235–239, 249–255

Class II 1–5, 7, 10, 13, 15–17, 19, 21, 23, 24, 29, 31, 34, 36,
42, 44, 48, 50, 51, 55, 56, 63, 66, 69, 71, 79, 80, 85,
87, 92, 95, 100, 104, 108, 112, 119, 127, 130, 138,
141, 144, 152, 162, 164, 170–172, 174–176, 178, 179,
186–191, 194, 197, 201–203, 208, 216–219, 222, 223,
226, 228, 230, 231, 234, 240–248

Class IIIa 6, 9, 18, 20, 22, 25–28, 30, 33, 35, 37–39, 41, 45, 46,
49, 52–54, 57–62, 65, 67, 70, 73–75, 78, 82, 83, 86,
88–91, 94, 97–99, 101–103, 105–107, 109–111, 114–116,
118, 120–126, 129, 131, 133–135, 137, 139, 145–151,
153–159, 161, 163, 165–167, 169, 173, 177, 180–185,
193, 195, 198, 199,204, 209–211, 214, 215, 225, 227, 229

Class IIIb 11, 14, 43, 47, 81, 84, 113, 117, 142, 143, 212, 213

Table 1: Classes of α–Asynchronous ECAs.
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(a) Averaged (b) Sample #1 (c) Sample #2 (d) Failing sample

Figure 2: Space time diagrams of C3 with η = 0.1.

probabilities of reaching state 1. It was shown both analytically and experimen-
tally that this rule is a stochastic solution for the classical density classification
problem (DCP) [26] with arbitrary precision, i.e. by varying the parameter η,
we can achieve any probability p < 1 of successful classification. The DCP was
introduced in [28, 29].

(1, 1, 1) (1, 1, 0) (1, 0, 1) (1, 0, 0) (0, 1, 1) (0, 1, 0) (0, 0, 1) (0, 0, 0)
1 η 1 1− η 1 0 0 0

Table 2: pLUT of local rule C3 [26, 27].

Using the CCA representation, we can visualize the average behavior of C3.
In Figure 2, the first 80 rows of the averaged space-time diagram (time goes
from top to bottom) obtained using the CCA representation of C3 with η = 0.1
are shown, together with three typical space-time diagrams obtained by direct
evaluation of the SCA rule C3. All images were obtained using the same initial
condition involving 29 cells out of which 16 were black (state 1). As can be
inferred from Figure 2, two samples lead to behavior that is similar to the one
displayed by the average space-time diagram, while the one depicted in Figure 2d
behaves differently, and leads to a wrong classification. Since the probability of
obtaining a correct classification for the initial condition at stake was estimated
to be 90.1% on the basis of 10000 repetitions, the impact of the erroneous cases
on the averaged image is hardly visible.

One of the most interesting questions within the analysis of DCP solutions
relates to the expected time of convergence towards the outcome of the classifi-
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Figure 3: Expected convergence time of rule C3 for different values of η.

cation and how this relates to the number of cells. Figure 3 depicts the average
convergence time calculated over an ensemble of 5000 random initial conditions
for different numbers of cells and values of η, both for the CCA and the SCA
representation. The initial conditions were generated as follows. For every ini-
tial condition independently, a probability p was selected randomly, and then
the initial states were selected with p being the probability of selecting state 0
at each cell independently. Such a selection procedure assures that each of the
possible densities has the same probability in the ensemble of initial conditions,
and thus we can evaluate the classifier across a diverse set of densities.

In the case of the CCA representation, we cannot expect reaching a truly
homogeneous, global state. Therefore we evolved it until the maximum, absolute
difference between the states of any two cells was lower than 0.001. Then, we
verified whether the average of the states was closer to 1 or 0. In the case of the
SCA, for each of the 5000 initial conditions, 100 simulations were performed,
and the results were averaged.

The results for small grid sizes (smaller than 200) are similar for both repre-
sentations and agree with the findings presented in [26, 27]. Yet, the computing
time when using the CCA representation is significantly lower than in the case
of SCAs. This indicates that the CCA representation of SCAs proposed in this
paper might enable a substantial reduction of the required computing time.
Moreover, using the CCA representation, we are able to get more insight into
the behavior of the dynamical system by plotting the evolution of the density
over time. Figure 4 shows the results of such an experiment. For the sake of
clarity, these results are based on an ensemble of 400 initial conditions (69 cells)
out of which 200 had a density greater than 0.5 (green), while the other 200 had
a density smaller than 0.5 (red). The ensemble of initial configurations was the
same for all values of η. Note that the range of the horizontal axis differs across
plots. From Figure 4, we can infer that the time and quality of classification
increases with decreasing η. Due to the computational costs involved in evolv-
ing and averaging SCAs directly, drawing and analyzing such plots has become
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possible only due to the introduction of CCAs.

5.3. Totalistic SCAs

In this section, we analyze a specific class of totalistic SCAs. Although most
likely being of no practical use, it holds many similarities with more complex
CAs and SCAs that are often resorted to in modelling. Totalistic CAs are gen-
erally known for their ability to mimic real-world phenomena [15, 16, 30]. Given
their importance and straightforward formulation, we have chosen this class to
serve as an example for our analysis. The focus is on the illustration of the tools
introduced in this paper, rather than to unveil new properties of some complex
CA models.

We consider the class of 1D, binary SCAs with a unit neighborhood radius,
that satisfy the following conditions:

P
(
s(ci, t+ 1) = e2 | s(ci−1, ci, ci+1, t) = (e2, e1, e1)

)
=

P
(
s(ci, t+ 1) = e2 | s(ci−1, ci, ci+1, t) = (e1, e2, e1)

)
=

P
(
s(ci, t+ 1) = e2 | s(ci−1, ci, ci+1, t) = (e1, e1, e2)

)
= p1,

P
(
s(ci, t+ 1) = e2 | s(ci−1, ci, ci+1, t) = (e1, e2, e2)

)
=

P
(
s(ci, t+ 1) = e2 | s(ci−1, ci, ci+1, t) = (e2, e1, e2)

)
=

P
(
s(ci, t+ 1) = e2 | s(ci−1, ci, ci+1, t) = (e2, e2, e1)

)
= p2,

where e1 and e2 are the base vectors of the Euclidean space R2. Such SCAs
are commonly referred to as totalistic SCAs. We consider the subclass of such
SCAs satisfying:

P
(
s(ci, t+ 1) = e2 | s(ci−1, ci, ci+1, t) = (e2, e2, e2)

)
= 1,

P
(
s(ci, t+ 1) = e1 | s(ci−1, ci, ci+1, t) = (e1, e1, e1)

)
= 1.

In this paper, we will refer to this subclass as totalistic SCAs. By applying
the decomposition algorithm given by Proposition 4, we can prove the following
fact, revealing their structure.

Fact 2. Any totalistic SCA can be written as a stochastic mixture of the fol-
lowing ECAs: 128, 150, 232, 254, where up to three of those rules are applied
with non-zero probability.

We can determine the regions in the (p1, p2)–plane where a given determin-
istic CA has the highest probability of application, i.e. where it is dominant.
These regions are given by:

• ECA 128 is dominant, if p1 < 0.5 and p2 < 0.5,

• ECA 150 is dominant, if p1 < 0.5 and p2 > 0.5,

• ECA 232 is dominant, if p1 > 0.5 and p2 < 0.5,
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(a) η = 0.1 (b) η = 0.05

(c) η = 0.01 (d) η = 0.005

(e) η = 0.001

Figure 4: Density evolution over time for the CCA representation of SCA C3

for 200 initial conditions with density greater than 0.5 (green) and 200 other
initial conditions with density smaller than 0.5 (red) and different values η.

22



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

p 2

p1

'dat-plot' u 1:2:4

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) α150

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

p 2

p1

'dat-plot' u 1:2:5

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) α232

Figure 5: Dependence of the application probabilities: α150 of ECA 150 and
α232 of ECA 232 in the totalistic SCA, on the values of the parameters p1 and
p2.

• ECA 254 is dominant, if p1 > 0.5 and p2 > 0.5.

Note that if p1 = 0.5 or p2 = 0.5, there is no unique, dominant rule, therefore
we have omitted those cases in the description above.

Let α128, α150, α232, α254 denote the probabilities of applying ECAs 128,
150, 232, 254, respectively. Figure 5 depicts the dependence of α150 and α232

on p1 and p2. We have omitted the remaining two images for α128 and α254,
since they do not yield additional information.

The dynamical characteristics of the four ECAs that compose the totalistic
SCAs differ significantly. Rules 128 and 254 are simple – they belong to Class I
according to Wolfram’s classification [16], and their maximum Lyapunov expo-
nents (MLEs) [31] equals −∞, which means that any changes to their initial
configuration do not influence their long-term behavior. Rule 232 belongs to
complexity Class II, and its MLE is positive, but very close to zero. In contrast,
rule 150 is a Class III rule, and its MLE is the highest among all ECAs, which
highlights the fact that this rule is sensitive to the smallest perturbation of its
initial configuration. Since rules 150 and 232 are relatively more complex than
rules 128 and 254, we might expect a distinct behavior of the stochastic mixture
in regions where the former are dominant.

In order to verify this, we set up an experiment involving a random ini-
tial condition of M = 49 cells which was evolved 100 times for T = 49 time
steps. Such a procedure, for the same initial condition, was repeated for mul-
tiple different choices of (p1, p2) using a 101 × 101 regular grid, resulting in a
set of space-time diagrams. The set of such space-time diagrams is denoted
as I(p1, p2). Let ∆(p1, p2) = {dist(I, J) | I 6= J ; I, J ∈ I(p1, p2)} denote
the set of all pair-wise Hamming distances between space-time diagrams, and
∆T (p1, p2) = {dist(I[T ], J [T ]) | I 6= J ; I, J ∈ I(p1, p2)} denote the set of all
pair-wise Hamming distances between the final configurations in the space-time
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diagrams. The results for the minimum, mean and maximum of ∆(p1, p2) and
∆T (p1, p2) are shown in Figure 6.

As can be seen from the charts, the distance is especially high in those
regions where the application probability α150 is high, i.e. where p1 > 0.5 and
p2 < 0.5, and near the line p2 = −p1 in the quarter p1 < 0.5 and p2 > 0.5. The
first region is the one where ECA 150 is dominant, while ECA 232 is dominant
in the second one, but with ECA 150 having a substantially high application
probability as well. Although the Hamming distance is just a simple indication
of complexity, we already see a strong influence of the ECA 150 component.

The findings presented above suggest that analyzing the components of a
stochastic mixture decomposition of an SCA unveils information on the dy-
namics of the SCA. In contrast to the α-ACAs in Classes IIIa and IIIb (cf.
Table 1), here we encounter a class of SCA for which uncovering the compo-
nents of the stochastic mixture with relatively high probability of application
gives additional insight into the dynamical properties of the SCA.

6. Summary

In this paper, two basic, yet important properties of SCAs were discussed.
We have shown, both theoretically and practically, that SCAs can be effectively
analyzed in the context of deterministic CAs and CCAs. The stochastic mixture
representation of SCAs allows to understand the underlying dynamics, while
the CCA representation allows to quickly uncover the average behavior of the
system. Further research is undertaken to expand the application scope of the
presented methods.
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