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Abstract

Magnetotelluric (MT) problems often contain different subdomains where
the conductivity of the media depends upon one, two, or three spatial vari-
ables. Traditionally, when a MT problem incorporates a three-dimensional
(3D) subdomain, the numerical method employed for simulation and inver-
sion was 3D over then entire domain. In here, we propose to take advantage
of the possibly lower dimensionality of certain subdomains during the inver-
sion process. By doing so, we obtain significant computational savings (up
to 75% in some scenarios) and increased accuracy on the results. We numeri-
cally illustrate this method by employing two dimensional (2D) computations
based on a multi-goal oriented hp-adaptive Finite Element Method (FEM)
that exhibits superior convergence properties. Additionally, we provide a
formulation for implementing an efficient adjoint based method for the com-
putation of the derivatives of the impedance, and we show the importance
of the (a) proper selection of the inversion variable, and (b) the advantages
of using both the Transverse Electric (TE) and Transverse Magnetic (TM)
measurements for the proper inversion of MT data.
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1. Introduction

In the decade of the 50’s, Tikhonov [1] and Cagniard [2] established the
theoretical foundations of the magnetotelluric (MT) method, an Earth ex-
ploration technique based on electromagnetic (EM) measurements governed
by Maxwell’s equations, intended to provide an image of the Earth’s subsur-
face. In this method, several receivers are placed a few centimeters below
the Earth’s surface, and in contrast to other measurement acquisition sys-
tems such as control source EM or borehole logging instruments, it employs
a non-artificial (natural) source located at the ionosphere. The MT method
is a noninvasive technique with a negligible environmental impact that is ca-
pable of studying distances ranging from between tens of meters to hundreds
of kilometers. Due to this, the MT method has generated great interest over
the last years. It has been employed, inter alia, in CO5 geological storage [3],
crustal exploration [4], groundwater monitoring [5], and earthquake precursor
prediction research [6, 7].

The proper interpretation of MT measurements needs from accurate nu-
merical simulations. Among all possible methods suitable for simulating M'T
measurements, we focus on higher order methods, which are able to achieve a
remarkable level of accuracy. These methods have been extensively employed
in the last years in applied mathematics to solve a variety of engineering prob-
lems. For example, the isogeometric analysis (IGA) [8, 9] has recently exper-
imented a huge explosion and it has been widely applied to the engineering
industry, as well as the more recent Discontinuous Petrov-Galerkin (DPG)
method initially proposed by Demkowicz and Gopalakrishnan [10, 11], or the
self-adaptive hp-Finite Element Method (FEM) [12, 13] (where h stands for
the element size and p for the polynomial order of approximation associated
to each element). The latter one has been recently employed, for instance, to
model the bone conduction of sound in the human head [14], or to simulate
bend, step, and magic-T electromagnetic waveguide structures [15].

In this work, we develop an extension of the self-adaptive hp-FEM orig-
inally proposed by Demkowicz et al. [12, 13]. The hp-FEM allows for both
h and p local refinements across elements, which constitutes a notorious ad-
vantage, since the combination of both types of refinements enables to better
capture the presence of singularities, thereby providing low discretization
errors. It is thus a highly accurate method that provides exponential con-
vergence rates [16, 17] even when these singularities are present, a typical
situation that occurs in MT.



In the MT forward problem, accurate results are only necessary at the
receivers. Hence, the goal-oriented adaptivity (first proposed by Becker and
Rannacher in the mid 90’s [18]) becomes a natural choice to build the finite
element mesh. The objective of traditional goal-oriented strategies is to con-
struct an optimal grid in the sense that it minimizes the problem size needed
to achieve a preselected tolerance error in a given physical magnitude of en-
gineering interest (in our case, a component of the EM fields). Since in MT it
is necessary to obtain accurate results at multiple receiver positions, in here
we employ a multi-goal oriented self-adaptive algorithm originally proposed
by Pardo in [19]. One of the main advantages of this approach is that we are
able to measure the error in a geophysically meaningful norm.

Our initial study on the use of hp-FEM for MT was developed on the con-
ference paper [20], where we extended the multi-goal oriented adaptive hp-
FEM [12, 19] to the case of simulation of 2D MT problems. After that, in [21]
we designed an automatically adapted Perfectly Matched Layer (PML) [22,
23] suitable for scenarios where the material properties change abruptly, as
the case of air-ground interface in MT. In a subsequent conference paper [24],
we noticed that MT quantities of interest (Qol), namely impedances, exhibit
a superior convergence behavior than that offered by the EM fields them-
selves. In [23], we developed a secondary field formulation where the primary
field was given by an exact one dimensional (1D) solution [25] (rather than
the traditional solution over a homogeneous space) in order to reduce the
computational cost of solving a direct problem without reducing the accu-
racy.

Motivated by the aforementioned previous work, in this paper we further
exploit the idea of dimensional adaptivity based on lower dimensional pri-
mary fields. Given a forward simulation, it is often possible to decompose
the problem according to its dimensionality by considering different dimen-
sions for different regions. Thus, a good dimensionality analysis enables to
determine the zones of the domain that can be modeled with 1D or 2D dis-
cretizations. Based on this idea, we propose an inversion algorithm that
takes advantage of a domain decomposition driven by the dimensionality of
each subdomain. We first obtain a solution for the lowest dimensional in-
verse problem (IP). Then, we solve a higher dimensional IP by employing
the information of lower dimensional IPs. This idea relies upon the results
obtained in [26] and [27], where authors show that measurements often ex-

hibit a dimensionality signature that can be properly exploited when solving
IPs.



Other contributions of this work show: (a) convergence results on MT
problems illustrating the superior convergence properties of hp-FEM vs. h-
and p-FEM, as predicted by the theory [16, 17], (b) a sequence of optimal
hp-grids delivered by the hp-adaptive FEM, which in contrast to hAp-grids
obtained in [20] for the TE mode, exhibit heavy refinements in the proximity
of the PML, as physically expected, (c) the impact of the selected variable
for the inversion process, and (d) a joint interpretation of Transverse Electric
(TE) + Transverse Magnetic (TM) data, which provides complementary in-
formation that enables to recover a more accurate map of the Earth’s subsur-
face than with either TE or TM measurements alone, as shown, for instance,
n (28], Chapter 4. Additionally, we also provide an efficient and computa-
tionally inexpensive approach based on the adjoint problem to compute the
derivatives of the impedance (a nonlinear Qol) with respect to any variable
used for the inversion.

For solving the nonlinear optimization problem dictated by the IP, we em-
ploy the L-BFGS-U (Broyden-Fletcher-Goldfarb-Shanno) method [29]. The
computational domain of the forward problem is truncated with a Perfectly
Matched Layer [23], and we assume an underlying 1D resistivity distribution
of the subsurface where some 2D inhomogeneities are located. The applica-
tion of the Ap-FEM in MT is still on an early stage. Being the hp-FEM a
very accurate method, our main concern before applying it to more complex
MT scenarios is to study and guarantee its suitability for the simulation and
inversion of MT measurements. This also motivates the use of an underlying
1D layered media, because it allows us, for instance, to compare the numeri-
cal solutions with an exact one. Nevertheless, this simple scenario illustrates
the superior convergence properties of the hp-FEM and its suitability to solve
the IPs in MT.

This work summarizes part of the main results shown on the first au-
thor’s Ph.D. Dissertation [30]. Other than that, the work described in this
paper has not been published in any other form, and it constitutes a sig-
nificant advance with respect to previous publications. Specifically, (a) for
the inversion, we employ the impedance and we consider both TE and TM
modes, which were not considered on [20] and are essential for the proper
interpretation of MT measurements, (b) we show the faster convergence of
the hp-adaptivity in comparison with uniform A and p refinements for the
MT problem, (c) for both modes we obtain optimal grids (only TE mode was
considered in [23]), in a realistic scenario where we also include the air layer
(that was not considered in [20]), and (d) we propose and illustrate for the
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first time in MT, the benefits of including the dimension of the problem as a
variable in the inversion process.

The present work is organized as follows. In Section 2 we formulate the
direct and inverse problems and we provide the discretization methods to
solve them. In Section 3 we introduce the dimensionally adaptive method
for the inversion, and we show the numerical results in Section 4. Finally,
the conclusions are outlined in Section 5.

2. Formulation

2.1. Direct Problem

Assuming isotropic materials, Maxwell’s equations can be written in fre-
quency domain as:

{ VxE = —juuH — M"™  Faraday’s Law, O
1

VxH = (0+jwe)E+J"™ Ampere’s Law,

where j is the imaginary unit, w the angular frequency, u, and e stand for
the magnetic permeability and electrical permittivity, respectively, and o for
the conductivity (p = o' is the resistivity) of the media. E = (E,, E,, E.)
and H = (H,, H,, H,) are the electric and magnetic fields in the frequency
domain, driven by an impressed prescribed electric and magnetic density
current sources, defined by J"" = (0, J,,0) and M"™ = (0, M,,,0), respec-
tively.

Two independent and uncoupled formulations are naturally derived from
Maxwell’s equations when the materials and source depend only upon the
two spatial variables (x, z), the so called TE and TM modes. The first one
involves (E,, H,, H,) field components, while the latter one only considers
(Hy, B, E,).

While the y component of the electric and magnetic fields satisfy scalar
equations, the remaining field components satisfy coupled vectorial equations
(see [30]). The scalar equations are often much easier to solve numerically.
Moreover, once they are computed, the rest of the fields can be easily obtained
via postprocessing. We focus and solve then these scalar equations, which
are given by:

—V - (W 'VE,)) — hrp(0)E, = —jwJ)™, (2)



and
—V - (hrp(0)VHy) + jwpH, = —M;mp, (3)
1
o+ jwe
The impedance and the apparent resistivity, two employed quantities in
MTs, are defined as:

where hrg(0) = w?e — jwo and hyy (o) =

E, 1 1
Zp=— and pi? = —— = —|Z;|% 4
lk H, Ik O_lkpp w,ul lk| ()

where [ and k can be either x or y.

The MT method is typically employed in regions with some prior geolog-
ical knowledge of the media. This enables in practice to align the coordinate
system with the medium strike direction. Thus, since the electric and mag-
netic fields are related only through their orthogonal fields (the diagonal
components are zero because they are related to the parallel electric and
magnetic fields), only Z,, = Zrg and Z,, = Z7) are different from zero.

Variational Formulations. We derive suitable variational formulations for the
2D MT forward problems for the two modes. To do so, we pre-multiply
equations (2) and (3) by the complex conjugate of any scalar function that
belongs to V' (€2), we integrate by parts, and we incorporate the homogeneous
Dirichlet boundary conditions imposed in this work in the outer-part of the
PML. We have that:

(VF, 1 '"VE) 200y — (F, hrp(0)Ey) 12 = —jw(F, J;mp>L2(m, (5)

bTE(F,E,) GTE(F)

and

(VE hra(0)VHy)20) + jw(F, pHy) 120) = —(F, M]™) 12) . (6)

b (F,H,) GTM(F)

For the secondary field formulation, we denote the conductivity of the refer-

ence model (a 1D layered media in our case) as . Let Qg € Q be the domain

where the 2D inhomogeneities are located. Hence, defining 0¥ = o — o,

0% is zero outside 2g. We now split the EM fields into their primary and

secondary contributions, £ = E¥ + E°, H = H” + HS, and we define
har(0) = hra(0) = hiy (o).



Then, the sesquilinear forms for the secondary field formulation are identi-
cal, only changing the total fields expression by the secondary fields, while the
right hand sides for the TE and TM modes are now given by —jw(F, 0" EF) 2o
and —(VF, hf,,(0)VH) 20, respectively.

These above expressions are well defined for E,, El', ES, H,, H] | H}, and
FinV(Q) =Hp () ={FeL*Q): Flr, =0,VF € L*(Q)}. From here,
we define the problem to be solved with the following abstract variational
formulation for the direct problem (D) and its associated adjoint problem

(A) as:

D: Find 4 € V(Q), such that b(v,4)= G(v), Yo e V(Q), (7)
A: Find 0 € V(Q), such that b(0,u)= P(u), VueV(Q), (8)

where the hat denotes the solution to the problem. Thus, 4 can be either
E, for the TE mode, or H, for the TM mode, G(-) and P(u) are antilinear
forms (GT¥(-) stands for the TE mode, while GT™(-) for the TM mode), and
b(-,-) is a sesquilinear form (bTZ(-,-) for the TE mode and b7 (.,.) for the
TM mode) that we rewrite for convenience as:

b(,-) = ba ) + a5 (o)) (9)

Here, h is a function that depends on the considered mode, being h = hrg
for the TE mode and h = hpy; for the TM mode. Thus, b; is independent
from h, while by is not.

We define now the following linear Quantity of Interest (Qol) associated

to the i-th receiver: 1

= u df). 10
ol b (10

Here, L'(u) is a linear and continuous functional [31, 32] in u, which is asso-
ciated with an scalar component of the EM fields solution at the i-th receiver
(occupying a domain Qgi).

In the particular case in which P(u) = L'(u), then there is one adjoint
problem for each of the N,.. receivers. Since we use an LU factorization im-
plemented by solver (“MUItifrontal Massively Parallel Solver”) [33], the linear
system of equations is factorized only once and the extra cost for solving each
adjoint problem reduces only to backward and forward substitutions.

L (u)

Discretization. We use the multi-goal oriented hp-FEM [19], an extension of
the work of Demkowicz et al. [12, 13] to solve equations (7) and (8) accurately
at all receivers simultaneously.



To truncate the computational domain, we employ a PML, which main-
tains unchanged the continuous solution inside the region of interest. Gomez-
Revuelto et al. [34] shows the suitability of using a PML in the context of
hp-adaptive FEM, specially because it enables to match the high-accuracy
level delivered by the hp-adaptive FEM. In particular, we use a PML [21]
suitable for problems that involve high contrast properties between neighbor-
ing materials, which typically appear in MT problems on, for example, the
air-ground interface. For additional details on the application of this PML
to the MT problem, see [30].

2.2. Inverse Problem

o Given a discretization of the function that defines the model parameters

= ;mi(:c), (11)

where m; = m;(x) = m'y;(x), with m = {m!,m? ..., mM} being the
M degrees of freedom used to discretize the conductivity (or resistivity)
distribution of the Earth’s subsurface, and y;(«) being defined as:

1 if IL’EQZ‘,
Xi(w)‘{o TR (12)

where (2; stands for a particular i-th rectangular block of the domain.

o The data d = {d*,d?,...,d"} are N impedance measurements acquired
at different surface locations and frequencies. Measurements have as-
sociated weights 0 = {6,602, ...,60N} to ponder its importance. Since
we employ the impedance at several frequencies w;, we divide the com-
puted impedance by ,/w; to normalize their values.

We define the impedance-based cost functional (misfit data) as

Ninod Nw Nrec 2

=YX |

(sz (m) — di) (13)

where N,,,q corresponds to 1 if one single mode is employed for inversion
(solving numerically equation (2) for the TE mode and equation (3) for the
TM mode), or 2 if a joint inversion is performed, and therefore the two
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equations are solved. N, is the number of frequencies and N,.. the number
of receivers. In our numerical experiments, we consider no regularization
term in order to compare exactly the same cost functional.

We deal then with a simple bounded nonlinear constrained optimization
problem, where the objective is to seek argument /m that minimizes cost
functional C'(m) constrained to some simple (constant) bounds on m that
are imposed in order to avoid unphysical values of the variable (for example,
to prevent negative values of conductivity).

To minimize C'(m), we employ a gradient based method based on a trun-
cated Taylor’s series expansion. Since the quality of such approximation
depends upon the variable with respect to which we perform such expansion,
the selection of the model parameters (inversion parameters) becomes cru-
cial. Tt might be of interest then to perform the inversion with respect to a
variable other than the conductivity. To do so, we study the convenience of
considering the cost functional as a function of different model parameters,
such as m = o, m = p, or m = log(p).

L-BFGS-U Method. We employ the L-BFGS-U method to solve the inverse
problems. This gradient based method is suitable for simple bounded prob-
lems. Tt is implemented in FORTRAN [35], and it has been already employed
in MT by Avdeev and Avdeeva [36]. Being a quasi-Newton method, in this
particular case, the Hessian is replaced by a symmetric and positive definite

matrix that is updated at every iteration according to the limited-memory
BFGS formula [37, 38].

Computation of the Jacobian. The traditional theory of goal-oriented adap-
tivity employs a linear and continuous functional as Qol (see equation (10)).
In the case of geophysical resistivity applications as MT, the appearance
of nonlinear Qol as the impedance Z is common. Therefore, it is neces-
sary to compute the derivatives of this nonlinear Qol with respect to the
model parameters. Thus, in contrast to our previous work where only E,
was considered as linear Qol [20], we now employ the impedance, a suitable
nonlinear Qol. We define it in terms of the linear functionals obtained with
the hp-FEM, and it is given at the i-th receiver by:

i Li(El)
lk Ll(Hk)’

(14)

where [ and k£ can be either z or y in 2D Cartesian coordinates.



We express now the analytical derivative of the impedance in terms of
the derivatives of the linear functionals, which are computed numerically.

OL(Ey) . OL'(Hk) 4
o (i)

To estimate the entries of the first derivative of L?(u) with respect to each
of the inversion variables m;, we employ the chain rule:

i OL"u)  OL'(u) Oo,
{ij]j_ 8m]‘ N Gaj 8mj’ <16>
————

]

where J1, and Jr, are arrays of N,.. vectors (one for each component of
L?) of dimension equal to the number of model parameters M. Notice that
do;/0m; is computed analytically, while J7,, numerically. A single numerical
computation of the latter is then sufficient to obtain the derivative with
respect to the selection of m;.

To compute the entries of [j La]z., we employ the solutions of the forward
J

direct and adjoint problems (equations (7) and (8), respectively) and we
evoke the Representation Theorem [39], which states that:

P(a) = G(8) = b(0,a). (17)

Following [30], we have that:

[72.] = OLT) _ <v i %(")) . (18)

y Uy
J 80']' 8crj

For the TE mode we define the following two linear operators associated
to each receiver:
1 ou

= — dS). 19
Jwp|Qgi| Jo,, 0z (19)

L'(u) = W/Qgi wdQ, and Lyg(u)

L% (u) is defined according to the equation for H, given by Maxwell’s equa-
tions. This EM field component is needed for computing the impedance.
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o If P(u) = L'(u):

D: b, a) =Gw), YvelV, (20)
A b(dly,u)=L'(u), YueV. (21)

From (20) we obtain the solution for £, = 4, and we compute the associ-

ated linear Qol as L‘(E,). By solving (21), we obtain the solution for .
Since (20) stands for all v, in particular, it is also valid for 9%. Then, using

equation (17), we have that:

OL'(E,) i »~ Ohrg(o) oA
ao—j vy _ —bQ(UEa Ey, gi) = <UE, Ey)LQ(Q) (22)
o If P(u) = Lipg(u):
D: bv,a) =G(v), VeV, (23)
A b0y, u)= Lyp(u), YueV. (24)

Since Ey is already computed, from Maxwell’s equations we have that
L'(H,) = Lyp(E,). (25)
Following the same argument, solving equation (24) we obtain the solution
for 9%;, and using the Representation Theorem stated above, we obtain that:
OLI(H,) _ 9Lyp(E)
Jdo j Jo j

. ahTE(O')

= —ba(t}y, By 22T = (o, Byiy (26)
J

A similar derivation for the TM mode can be found in the Appendix.

3. Dimensionally Adaptive Inversion

The dimensionality analysis of MT data is an ongoing and prevalent mat-
ter of study. Different works provide a criteria to discern when the MT data
corresponds to a 1D, 2D or 3D problem. We highlight the contributions of
Weaver et al. [40], who presented a dimensionality study based on the ro-
tational invariants of the MT tensor, and the more recent work of Marti et
al. [41], who based on these rotational invariants, implemented a software
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that provides a robust description of the dimensionality of the problem when
dealing with real measurements.

In some scenarios, the dimension of the formation is unclear. Moreover,
sometimes it is possible to interpret 3D MT data as 2D (see, for instance, [26]
and [27]). Traditional inversion techniques usually select one fixed dimension
(the full 2D (or 3D) problem) for both, the forward simulations and the
inversion.

A proper and previous analysis of the media may recognize zones with
different dimensionality signature. Therefore, it could be possible to identify
some areas where the problem has higher dimensionality (2D or 3D), while
others where a lower dimensionality (1D or 2D) may be sufficient. Based
on this idea, we propose a Dimensionally Adaptive Method (DAM) for the
inversion, in order to take advantage of this scenario.

Consistently, in this work we first solve a full 1D IP, with an already
known (and fast) forward analytical solution that is employed to obtain ex-
plicitly the solution for the EM fields (see, e.g., Chapter 2 of [25]), and hence,
the impedance. Once the 1D IP solution is obtained, we introduce it into
the formulation of the 2D IP. That is:

o In the first step, we solve the IP for a 1D background model consisting
of a layered media. From there, we obtain mip, the solution of the
1D IP. Notice that the corresponding forward solution is inexpensively
computed analytically.

o After that, we consider the 1D solution obtained in the previous step
as the initial point of the 2D IP. A complementary possibility is to
define a regularization parameter of the form R(m) = [m — Mmup|rr (o),
where p is usually 1 or 2. In our case, we do not use a regularization
parameter in order to fairly compare the computational performance
of the traditional vs. the DAM approach for the inversion.

o Finally, we solve the full 2D IP.

The main advantages of this approach are: (a) to be able to study sepa-
rately 1D and 2D effects in the IP, (b) the 1D IP has less unknowns and is
more stable, (¢) employing this information in the 2D problem, we increase
the robustness of the algorithm, (d) the total computational cost of perform-
ing the inversion is often lower. The extension of the DAM to 3D problems
is straightforward.
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4. Numerical Result

4.1. Model Problem

Figure 1 describes the selected model problem for the full and secondary
field formulations. The computational domain consists of air and a 1D lay-
ered media for modeling the subsurface formation with a 2D heterogeneity
embedded in one of the layers. The horizontal dimension corresponds to the
x spatial variable (with zero at the center), and the vertical to z (with zero
on the surface). The size of the source is (2500 x 5) km in the x and z, and
infinity in y. The forcing terms are J;mp = Mémp = 1 and the physical do-
main is truncated with a PML complemented with a Dirichlet homogeneous
BC imposed on its outer part.

2500km
Es—----

70km
KKK XX
2km P1
10km P2 P4
00
e Source X Receivers e Source X Receivers
(a) 2D full field formulation. (b) 2D secondary field formulation.

Figure 1: Model problems.

We consider two different models for the resistivity distribution of the
Earth’s subsurface (a conductive and a resistive anomaly), described in Ta-
ble 1:

p1 P2 P3 P4
Model 1 80 100 120 10
Model 2 3 2 4 200

Table 1: Two different models for the subsurface described in Figure 1.
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4.2. hp-Adaptivity

We consider a source operating at 0.1 Hz and the resistivity distribution
of the Model 1 and Table 1. Figure 2 displays the convergence history in
terms of the y component of the EM fields measured at the center of the
domain, which is the region most influenced by the presence of the inho-
mogeneity in the considered model problem. In all cases, we observe the
superior performance of the multi-goal oriented hp-adaptive algorithm. The
initial slow convergence observed on the hp-adaptive algorithm for the TM
mode is attributed to some pre-asymptotic convergence problems within the
PML region. In fact, the convergence behavior is not necessarily monotone
because we are considering the error in a quantity of interest rather than in
a global norm.

10? 10%
X X N e
= = N\ —re
=10’ =0l TS
- (- .
S S 8
~ ~
=~ —~
o @ .
2107 T N1 S B
= - RRRLTTIN = Frree.,
= i = ST
~ p-ref ~ p-ref e
1 1
10 0 1 2 3 10 0 1 2 3 4
4 4
Number of degrees of freedom”* 10 Number of degrees of freedom”* 10

(a) TE mode.

(b) TM mode.

Figure 2: Relative error in E, (TE mode) and H, (TM mode) vs. the number of
degrees of freedom for three type of refinements: uniform h-refinements, uniform
p-refinements and multi-goal oriented self-adaptive hp-refinements.

Figure 3 describes different hp grids obtained after the adaptive process.
We consider two different adaptive methods: the single goal and multi-goal
oriented hp-adaptivity. For the former, the objective is to obtain accurate
results at one receiver placed at the center of the domain, while the main
goal for the latter is to procure accurate results at seven different receivers
placed from —20 to 20 km in the x-direction and along the Earth’s surface.

The multi-goal oriented algorithm produces additional refinements to-
wards the sides of the domain, that is, towards the receivers, whereas the
traditional goal-oriented algorithm focuses in the single receiver located at
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the center, as observed from Figure 3. This is specially notorious at the air-
ground interface. Additionally, we observe that while in the TE mode it is
also necessary to correctly refine in the air, for the TM mode the refinements

are concentrated in the subsurface, as expected by the physical nature of the
solution.

= R e

e o ol ol o Ul | |

(a) Multi-goal oriented for TE mode.  (b) Goal-oriented for TE mode.

= el S S e
- - =

1 T [
= R < >

o4 ke
T |

(¢) Multi-goal oriented for TM mode.  (d) Goal oriented for TM mode.

p = 1 2 3 4 ) 6 7 8

Figure 3: Different hp-grids after performing the adaptive algorithm for the TE
and TM formulations with a frequency equal to 0.1 Hz.

A sequence of hp-meshes are depicted in Figure 4. The final grid contains
9765 unknowns and it delivers a relative error in L(E,) below 1.17-1073 %.
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(a) Iteration 3. (b) Iteration 6. (c) Iteration 9.

el e ——ett> (P> el el

CL =

C= = =

Hp-<ap- > b
B

el 4> AP > AP ———etlll4 >4 HP (B

(j) Iteration 30. (k) Iteration 33. (1) Iteration 36.

Figure 4: Different hp-grids delivered by of the multi-goal oriented adaptive al-
gorithm for the TE mode when the secondary field formulation is employed at
0.1Hz.
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4.3. Full Field versus Secondary Field Formulation

We now solve a 2D subsurface formation for the full and secondary field
formulation problems. We consider an underlying 1D layered media for the
primary field, and the same multi-goal oriented Ap-FEM with a reduced
domain to solve secondary field variations [23], as described in Model 1 and
Table 1, operating at a frequency equal to 0.1 Hz.

To estimate the relative errors, we employ an overkill solution with a
sufficiently refined mesh that guarantees high accuracy. Figure 5 shows that
the secondary field formulation requires less unknowns than the full field
formulation in order to produce a comparable error level, as expected. Ad-
ditionally, p-uniform refinements provide faster convergence when compared
to h-uniform refinements. This difference between the performance of p-
refinements versus h-refinements is more notorious in the TE mode than in
the TM mode for the considered example.

10% 10°
X S
~— 1 % ~ 1
10 Y ] 10 ¢
5 L hfull 5
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(a) TE mode. (b) TM mode.

Figure 5: Relative error in terms of the apparent resistivity computed with the full
and secondary field formulations.

4.4. Traditional Inverse Problem

We consider only synthetic problems. To simulate the measurements, we
use a highly refined mesh as follows: given a distribution of the subsurface
p = {pi}M, where p denotes the solution of the IP, we solve the forward direct
problems and we define d;¥ = Z*(p). We intentionally consider a different
solver to simulate the measurements, in our case, the one associated to the
secondary field formulation. To mimic realistic measurements, we add a 3%
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uncorrelated random Gaussian noise to the real and imaginary parts of the
simulated measurements. Except for the simulation of the synthetic mea-
surements, we employ the full field formulation to solve the forward problem
in the rest of the inversion results. To solve the IP, we employ the L-BFGS-U
method and we compute the derivatives of the impedance with respect the
materials with equation (15).

4.4.1. Selection of the Inversion Variables

In this subsection, we analyze how different unknowns in the MT IP affect
to the convergence of the optimization method. We consider three different
variables, namely m = o, its logarithm m = log(c), and m = p = 1/0, and
the cost functional given by equation (13), that is, without regularization
parameter. Then, given an arbitrary initial point p(®’ (described in Table 2),
we are interested in recovering the true one p.

p¥ | p
Model 1 (40, 40, 40, 40) | (80, 100, 120, 10)
Model 2 (25,25,25,25) | (3,2, 4,200)

Table 2: Initial point and solution for the considered IPs.

Seven receivers are located on the surface at different z-positions. They
record measurements at the following four different frequencies in Hz: 1y =
1073, vy = 1072, v3 = 107!, and v, = 1. Figures 6 displays the value of the
cost functional against the iteration number of the L-BFGS-U optimization
method, while Table 3 provides the solution to the IPs at the end of the
iterative processes.

From these results, we conclude:

o The selected inversion unknown strongly affects to the convergence
of the method. All inversion unknowns perform similarly for the TE
mode, while for the TM mode, we are unable to solve the IP when
employing the conductivity as the variable for the inversion. In Model
2, the conductivity is the worst unknown for the inversion.. Since each
iteration demands to solve N, forward direct problems and N, X N,..
forward adjoint problems, a good selection of the inversion variable
becomes important to reduce the computational cost of the inversion.
For the considered examples, m = log(c) seems the best option as an
unknown, while m = o, is always the worst (except in one case).
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Figure 6: Cost functional against the iteration number for Model 1 (above) and

Model 2 (below) described in Table 1.
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Model 1 H Solution ‘ Model 2 ‘ Solution
m=o TE | TM | - TE | TM -
P1 84.30 | 77.34 80 3.01 | 299 3
P2 87.76 | 112.09 100 2.02 | 2.08 2
P3 119.66 | 118.02 120 4.02 | 3.74 4
P4 9.93 0.69 10 1000 | 432.94 200
ey [ - - - T T
P1 84.72 | 81.48 80 3.02 | 299 3
P2 89.89 | 96.50 100 2.02 | 2.08 2
03 120.16 | 124.42 120 4.03 | 3.74 4
P4 9.94 9.68 10 1000 | 426.50 200
m=1loglo)| - | - | _ - -]
P1 83.73 | 81.25 80 3.02 | 299 3
P2 88.76 | 96.88 100 2.02 | 2.08 2
P3 119.81 | 124.17 120 4.02 | 3.74 4
P4 9.88 9.68 10 1000 | 426.07 200

Table 3: Values of the resistivities for the solution of the inversion problem.
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o There is not a significant difference between the performance of the TE
and TM modes.

o The most resistive layer of Model 2 is not accurately recovered, in part
due to the effect of noise. Additionally, we have numerically observed
that the value of the cost functional close to the solution does not
change significantly when the value of p, varies between 150 and 1000
Ohm-m. This suggest that the cost functional presents a valley, and
hence, it is barely sensitive to this parameter.

4.4.2. TE+TM Inversion

We now consider the joint TE4TM inversion. Again, we solve the IP
without regularization parameter in order to compare the results with the
single mode inversion of the previous section. We consider the following four
different frequencies in Hz: v; = 1072, 1, = 1072, v3 = 107!, and v, = 1. We
place seven receivers, on the surface at different x-positions.

Figure 7a shows a comparison between the TE inversion, TM inversion
and TE4+TM inversion for Model 1 when the unknown for the inversion cor-
responds to the logarithm of the conductivity. The convergence curve is
almost identical in the three cases, and the solution for the TE+TM inver-
sion is p = (79.63,97.21,122.49,10.01), which is significantly more accurate
than that obtained with any of the two single mode inversion. However,
as counterpart, the computational cost of performing one iteration for the
TE+TM inversion is doubled that corresponding to a single mode inversion.

Figure 7b compares the performance of the same three modes when the
resistivity is the unknown of the IP corresponding to the Model 2 and Table 2.
While we are unable to accurately solve the IP for the TE mode nor the
TM mode when considering them independently (see Table 3), the IP for
the joint TE+TM inversion converges to a more accurate solution than the
single modes solutions, namely, to p = (3.01,2.02,4.04, 133.33).

4.5. Dimensionally Adaptive Inversion

We now compare the traditional approach (employed in the previous sub-
section) with the DAM approach. We consider the model problem depicted
in Figure 1. The employed four different frequencies in Hz are v; = 1073,
vy =1072 v3 =107, and vy = 1.

Lets denote by p% = (pgo),péo), pgo)) and p1p = (p1, P2, P3) to the initial

point and the solution of the 1D IP, respectively, and lets denote by pggid and
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Figure 7: Cost functional against the iteration number when different modes are
employed in the inversion.

p(g% y to the initial points for the 2D IP when the traditional and the DAM
approaches are employed, respectively. We consider two different scenarios to
compare the traditional and DAM approaches: the first one employs the TE
mode and the conductivity as inversion variable, while the second one uses
the joint TE+TM inversion and the resistivity as inversion variable. Table 4
summarizes the information of each of them.

0 A~ 0 0
ng P1D pgr()zd pSDlXM

sc. 1] (25,25,25) | (3.11, 3.03, 3.07) | (25,25,25,25) | (3.11, 3.03, 3.07, 25)
sc. 2| (25,25,25) | (3.06, 4.95, 4.92) | (25,25,25,25) | (3.06, 4.95, 4.92, 25)

Table 4: Information of the two scenarios considered to compare the traditional
and the DAM approaches for the inversion.

We show in Figure 8 that in addition to observe two orders of magnitude
difference on the value of C(m) at the beginning of the IP, thanks to the
inclusion of physical relevant information contained on the underlying 1D
problem, the algorithm employing the DAM approach converges significantly
faster. For this particular scenarios, it only requires approximately 25% of
the iterations, which implies significant computational savings.
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Figure 8: Cost functional against the iteration number for the traditional and DAM
IPs for Model 2 and Table 1.

5. Conclusions

We have introduced a multi-goal oriented hp-adaptive FEM formulation
for simulating and inverting M'T problems. In particular, we have illustrated
the fast convergence of the multi-goal oriented self-adaptive hp-FEM in terms
of the error vs. the problem size, as expected from the theory [16, 17], we
have shown a sequence of optimal hp-grids in the process of constructing
a final grid with the multi-goal oriented adaptive algorithm, and we have
highlighted that the secondary field formulation requires less unknowns than
the full field formulation in order to produce a comparable error level in
context of hp-FEM simulations.

The Dimensionality Adaptive Method (DAM) has shown its capability
to reduce the computational cost associated to the IP when prior knowledge
of the dimensionality is available. In our particular problem where a 1D
layered underlying media is considered, the inclusion of physical relevant
information related to the 1D IP solution into the 2D IP reduces the total
number of iterations by 75%. Notice that when employing a regularization
parameter, this approach is expected to be more robust.

Additionally, we have analyzed how the choice of the optimal inversion
variable should be problem dependent, and we have seen that the joint TE
+ TM inversion provides more accurate results for the IP than single modes
inversion. Finally, we have also provided a formulation for implementing an
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efficient adjoint based method for the computation of the derivatives of the
impedance (a nonlinear Qol) in terms of linear Qol.

Appendix A Jacobian for the TM Mode

To compute the entries of [J LUE for the TM mode, we define the following
linear operator:

1 ou

0+ joo) U] Jo, D2

Ly (u) = dQQ. (27)
Liy;(u) is defined according to the equation for E, given by Maxwell’s equa-
tions. This EM field component is needed for computing the impedance.

o If P(u) = L'(u):

D: bv,a) =Gv), Yvel, (28)

A b, u)= L'(u), Yu€eV. (29)
From (28), we obtain the solution for H, = @, and we compute the asso-
ciated linear QoI as Li(H,). By solving (29), we obtain the solution for
0%, Since (28) holds for all v, in particular it is also valid for 9%. Using
equation (17) we have that:

alja(;jz”) = —b2<@3{a ﬁy? W) = —( @%7 WVﬁy>L2(Q)' (30)
o If P(u) = Lby,(u):

D: b(v,a) =G), VeV, (31)

A b(dly,u)= Ly, (uw), YucV, (32)

Since ]:Iy is already computed, from Maxwell’s equations we have that
L (Ey) = Ly (Hy). (33)
Following the same argument, solving equation (32) we obtain the solution
for 9%, and using the Representation Theorem stated above, we obtain that:
Q

= — —by(0, H.
(9(73' (90']' Q(UE’ v 80']' 80']'

Rt

‘ 1 . 1 OH
= (Vi ————VH )2 — : / © dQ,
Vb G T jwey Y ) = o o, 0
(34)
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Notice that now L. M(ﬁy) depends on o and therefore we have to add a new
term that is zero for the domains where Qg N €, = (.
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