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Abstract
We present a preconditioner based on spectral projection that is combined with a deflated
Krylov subspace method for solving ill conditioned linear systems of equations. Our results
show that the proposed algorithm requires many fewer iterations to achieve the convergence
criterion for solving an ill conditioned problem than a Krylov subspace solver. In our numerical
experiments, the solution obtained by the proposed algorithm is more accurate in terms of the
norm of the distance to the exact solution of the linear system of equations.
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1 Introduction

Both the robustness and efficiency of iterative methods are affected by the condition number
of the associated linear system of equations. When a linear system has a large condition
number (usually due to eigenvalues that are close to the origin of the spectrum domain) iterative
methods tend to take many iterations before a given convergence criterion is satisfied. Iterative
methods may fail to converge within a reasonable elapsed time or even fail to converge if the
condition number is too large. Unstable linear systems (i.e., systems with large condition
numbers) are called ill conditioned. For an ill conditioned linear system, slight changes in
the coefficient matrix or the right hand side cause large changes in the solution. Roundoff
errors in the computer arithmetic can cause instability when attempts are made to solve an ill
conditioned system either by direct or iterative methods on a computer.

It is widely recognized that linear systems resulting from discretizing ill posed integral
equations of the first kind are highly ill conditioned. This is due to the eigenvalues for the first
kind integral equations with continuous or weakly singular kernels have an accumulation point
at zero. Integral equations of the first kind are frequently seen in statistics, such as unbiased
estimation, estimating a prior distribution on a parameter given the marginal distribution of
the data and the likelihood, and similar tests for normal theory problems. They also arise from
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indirect measurements and nondestructive testing in inverse problems. Other ill conditioned
linear systems can be seen in training of neural networks, seismic analysis, Cauchy problem for
parabolic equations, and multiphase flow of chemicals. For pertinent references of ill conditioned
linear systems, see [18, 24].

Solving ill conditioned linear algebra problems has been a long standing bottleneck for
advancing the use of iterative methods. The convergence of iterative methods for ill conditioned
problems can be improved by using preconditioning. Development of preconditioning techniques
is therefore a very active research area.

A preconditioning strategy that deflates a few isolated external eigenvalues was first in-
troduced by Nicolaides [30] and investigated by others (e.g., [28, 40, 43, 21]). The deflation
strategy is an action that removes the influence of a subspace of the eigenspace on the iterative
process. A common way to deflate an eigenspace is to construct a proper projector P as a
preconditioner and solve

PAx = Pb, P,A ∈ CN×N . (1)

The deflation projector P , which is orthogonal to the matrix A and the vector b against some
subspace, is defined by

P = I −AZ(ZHAZ)−1ZH , Z ∈ CN×m, (2)

where Z is a matrix of deflation subspace, i.e., the space to be projected out of the residual and
I is the identity matrix of appropriate size [34, 21]. We assume that (1) m� N and (2) Z has
rank m.

A deflated N×N system (1) has an eigensystem different from that of Ax = b. Suppose that
A is diagonalizable. Set Z = [v1, · · · , vm] whose columns are the eigenvectors of A associated
with the eigenvalues λ1, · · · , λm. Then the spectrum

σ(PA) = σ(A) \ {λ1, · · · , λm}.

The eigenvectors are not easily available, which motivates us to develop an efficient and robust
algorithm for finding an approximate deflation subspace that does not use the exact eigenvectors
to construct the deflation projector P .

Suppose that we want to deflate a set of eigenvalues of A enclosed in a circle Γ that is
centered at the origin with the radius r. Without loss of generality, let this set of eigenvalues
be {λ1, · · · , λk}. Let the subspace spanned by the corresponding eigenvectors of {λ1, · · · , λk}
be Zk = Span{v1, · · · , vk}. Then the deflation subspace matrix Z in (2) obtained by randomly
selecting m vectors from Zk can be written as a contour integral [35]

Z =
1

2π
√
−1

∮
Γ

(zI −A)−1Y dz, (3)

where Y is a random matrix of size N×m. If the above contour integral is approximated by a
Gaussian quadrature, we have

Z ≈
q∑
i=1

ωi(ziI −A)−1Y, (4)

where ωi are the weights, zi are the Gaussian points, and q is the number of Gaussian points
on Γ for the quadrature.

It is worth noting that (4) requires the solution of shifted linear systems (ziI − A)X = Y ,
i = 1, · · · , q. Each of the q problems can be solved in parallel without communication before
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completion. In addition, each of the q problems can be solved using a parallel solver. Thus,
using (4) can lead to the efficient use of many processors, not just q or 1.

Using (4) for the deflation projector P in (2), the preconditioned linear system (1) is no
longer severely ill conditioned. We remark that the construction of a deflation subspace matrix
Z through (4) is motivated by the works in [37, 38, 32, 41].

The outline of the paper is as follows. In §2, we introduce some theoretical backgrounds on
the deflated Krylov subspace method (and specifically to GMRES [36]) and on the deflation
subspace matrix Z in (3). In §3, we incorporate the Z computed by (4) into a deflated Krylov
subspace method to solve a linear system. In §3, we present numerical experiments. In §4, we
briefly introduce state of art parallel multigrid methods that will be applied to the computation
of Z in future. In §5, we offer conclusions.

2 Methodology

We consider the solution of the linear system

Ax = b (5)

by a Krylov subspace method, where we assume that A ∈ CN×N is nonsingular and b ∈ CN .
Let an initial guess x0 ∈ CN be given and let r0 = b−Ax0 be its residual. A Krylov subspace
method recursively constructs an approximate solution, xj such that

xj ∈ x0 +Kj(A, r0) ≡ x0 + span{r0, Ar0, . . . , A
j−1r0},

where its residual rj = b − Axj satisfies some desired conditions. The convergence rate of a
Krylov subspace method depends on the eigenvalue distribution of the coefficient matrix A. A
variety of error bounds on rj exist in the literature. Let us take GMRES [36] as an example.

2.1 GMRES

The residual rj in the GMRES method is required to satisfy the condition

‖rj‖2 = min
ξ∈x0+Kj(A,r0)

‖b−Aξ‖2.

Thus, the approximate solution xj obtained at iteration j of GMRES is optimal in terms of the
residual norm. In the case where A is diagonalizable, an upper bound on ‖rj‖2 is provided by
the following result.

Theorem 1. ([34, Corollary 6.33]) Suppose that A can be decomposed as

A = V ΛV −1 (6)

with Λ being the diagonal matrix of eigenvalues. Let E(c, d, a) denote the ellipse in the complex
plane with center c, focal distance d, and semi-major axis a (see Fig. 1(a)). If all the eigenvalues
of A are located in E(c, d, a) that excludes the origin of the complex plane, then

‖rj‖2 ≤ κ2(V )
Cj(

a
d )

|Cj( cd )| ‖r0‖2, (7)

where κ2(V ) = ‖V ‖2‖V −1‖2 and Cj is the Chebyshev polynomial of degree j.
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Figure 1: (a) A schematic ellipse in the complex plane with center c, focal distance d, and
semi-major axis a.(b) Eigenvalue distribution of the test matrix bcsstm27.

An explicit expression of Cj(
a
d )/Cj(

c
d ) can be found on p. 207 of [34], and under some

additional assumptions on E(c, d, a) (say, the ellipse in Fig. 1(a)),

Cj(
a
d )

Cj(
c
d )
≈
(
a+
√
a2 − d2

c+
√
c2 − d2

)j
≡ δj . (8)

The upper bound in (7) therefore contains two factors: the condition number κ2(V ) of the
eigenvector matrix V and the scalar δ determined by the distribution of the eigenvalues of A.
If A is nearly normal and has a spectrum σ(A) which is clustered around 1, we would have
κ2(V ) ≈ 1 and δ < 1. In this case, ‖rj‖2 decays exponentially in a rate of power δj , resulting
in a fast convergence of GMRES. The error bound (7) hides the fact that the convergence rate
is better if the eigenvalues of A are clustered [42].

Since the ellipse E(c, d, a) in Theorem 1 must include all of the eigenvalues of A, the outlying
eigenvalues may keep the ellipse large, implying a large δ. To reduce δ, we therefore only remove
these outlying eigenvalues from σ(A). Any procedure of doing so is known as deflation. GMRES
in combination with deflation is called Deflated GMRES.

2.2 Deflated GMRES

Suppose x∗ is the exact solution of (5). Let a so-called deflation-subspace matrix Z =
[z1, . . . , zm] ∈ CN×m be given, whose columns are linearly independent. Define the two projec-
tors [8, 21, 43, 45]

P ≡ I −AZM−1ZH and P̃ ≡ I − ZM−1ZHA, (9)

where M = ZHAZ is assumed to be invertible. It is straightforward to verify that P 2 =
P, P̃ 2 = P̃ and PA = AP̃ .
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Using P̃ , we split x∗ into two parts:

x∗ = (I − P̃ )x∗ + P̃ x∗ ≡ x∗1 + x∗2.

For x∗1, we have

x∗1 = (I − P̃ )x∗ = ZM−1ZHAx∗ = ZM−1ZHb.

For x∗2, we obtain
x∗2 = A−1Pb,

since Ax∗2 = AP̃x∗ = PAx∗ = Pb. Now, if x# is a solution of the singular system

PAx = Pb, (10)

then

AP̃x# = Pb ⇔ P̃ x# = A−1Pb = x∗2.

Based on the above observation, a Deflated GMRES algorithm for the solution of (5) is given
in Algorithm 1.

1. Choose Z;
2. Compute x1 = ZM−1ZHb;
3. Solve PAx = Pb by GMRES to obtain a solution x#;

4. Compute x2 = P̃ x#;
5. Compute x = x1 + x2.

Algorithm 1: Deflated GMRES

We remark that the GMRES in Algorithm 1 can be replaced by any other linear solvers,
direct or iterative. We note that when A is symmetric, indefinite that we can use the MINRES
method [31] instead of GMRES and compute the same solution x using far less memory.

Assume that the nonsingular A ∈ CN×N has a decomposition (6) with V = [v1, . . . , vN ] and
Λ = diag{λ1, . . . , λN}. If we set Z = [v1, . . . , vm] in (9), then the spectrum σ(PA) contains all
the eigenvalues of A except λ1, . . . , λm, namely, σ(PA) = {0, · · · , 0, λm+1, · · · , λN}.

Perform a QR factorization on V as follows:

V = QR ≡ [Q1, Q2]

[
R11 R12

0 R22

]
,

where Q1 ∈ CN×m and R11 ∈ Cm×m. If we set Z = [v1, . . . , vm] and apply GMRES to solve
(10), an upper bound on ‖rj‖ is given by the following theorem [45].

Theorem 2. Suppose that A has a decomposition (6) and GMRES is used to solve (10) with
Z = [v1, . . . , vm]. If all the eigenvalues λm+1, . . . , λN of A are located in an ellipse E(c, d, a)
that excludes the origin of the complex plane, then

‖rj‖2 ≤ κ2(R22)
Cj(

a
d )

|Cj( cd )| ‖r0‖2. (11)

With (8), the upper bound (11) of the residual norm ‖rj‖2 of GMRES is determined by
the condition number of R22 (rather than V ) and the scalar δ which is determined by the
distribution of the undeflated eigenvalues λm+1, . . . , λN of A. The δ in Theorem 2 is generally
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less than the δ associated with Theorem 1. This partially explains why an eigenvalue-deflation
is likely to lead to a faster convergence of GMRES.

The proof of Theorem 2 is based on the observation that when GMRES solves a singular
linear system it is actually solving a nonsingular linear system of smaller size. Theorem 2 then
follows from the application of Theorem 1 to the nonsingular linear system. See [45] for the
details of the proof of Theorem 2.

2.3 Spectral Projector and Construction of Z

A spectral projector is described in detail in §3.1.3-§3.1.4 of [35]. Other references include
[6, 17, 27]. Let A = V JV −1 be the Jordan canonical decomposition of A, where

V = [v1, v2, . . . , vN ] and J = diag{JN1(λ1), JN2(λ2), . . . , JNd
(λd)}.

The diagonal block JNi
(λi) in J is an Ni × Ni Jordan block associated with the eigenvalue

λi. The eigenvalues λi are not necessarily distinct and can be repeated according to their
multiplicities.

Let Γ be a given positively oriented simple closed curve in the complex plane. Without
loss of generality, let the set of eigenvalues of A enclosed by Γ be {λ1, λ2, . . . , λk} so that the
eigenvalues λk+1, . . . , λd lie outside the region enclosed by Γ. Set s ≡ N1 +N2 + . . .+Nk, the
number of eigenvalues inside Γ with multiplicity taken into account. Then the residue

PΓ =
1

2π
√
−1

∮
Γ

(zI −A)−1dz

defines a projection operator onto the space
∑k
i=1 Null(A− λiI)li , where li is the index of λi,

namely,
Range(PΓ) = span{v1, v2, . . . , vs}.

In particular, if A has a diagonal decomposition (6), PΓ is a projector onto the sum
∑k
i=1 Eλi

of the λi-eigenspace Eλi
of A.

Pick a random matrix Y ∈ CN×m and set

Z = PΓY =
1

2π
√
−1

∮
Γ

(zI −A)−1Y dz (12)

in (9). In the case where m = s, we almost surely have σ(PA) = {0, · · · , 0, λk+1, · · · , λd}.
Therefore all the eigenvalues of A inside Γ are removed from the spectrum of PA.

3 Numerical Examples

In this section, we demonstrate the effect of the deflation-subspace matrix Z defined by (12)
and computed by the Legendre-Gauss quadrature on the solution of the linear system (5).

All the computations were done in Matlab Version 7.1 on a Windows 10 machine. Besides
GMRES, we also employ a modified BiCG (MBiCG) as the Krylov solver in Line 3 of Algo-
rithm 1 and for finding the solution of all of the linear systems in the computation of Z. The
MBiCG is the standard BiCG, but outputs the computed solution x that either satisfies relres
< tol or has the smallest relative residue among all the computed x from iteration 1 to iteration
maxit, where relres is the relative residue of x, tol is the user supplied input stopping tolerance,
and maxit is the maximum number of iterations.
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The numerical solution using a deflated, restarted GMRES of the linear systems obtained
from the discretization of the two dimensional steady-state convection-diffusion equation

−uxx − uyy −Re (p(x, y)ux − q(x, y)uy)] = f(x, y), (x, y) ∈ [0, 1]2 (13)

with Dirichlet boundary conditions was studied in depth in [8]. This steady-state version (13)
of the two-dimensional convection-diffusion equation is from [47].

In [8], two types of deflation-subspace matrices Z were used: eigenvectors obtained from the
Matlab function eig and algebraic subdomain vectors. The Z of algebraic subdomain vectors
works well for the fluid flow problem (13), but seems not for the other problem presented in
[8]. Accurately calculating eigenvalues of large matrices is very time consuming. Therefore
deflation with the Z of true eigenvectors is not practicable.

Numerical experiments in [8] have shown that eigenvalues close to the origin hamper the
convergence of a Krylov subspace method. Hence, deflation of these eigenvalues is very bene-
ficial. Based on this observation, we chose in our experiments the integration path Γ in (12)
to be a circle D(c, r) with the center c near the origin. For the Y in (12), we picked a random
Y ∈ RN×m by the Matlab command Y = randn(N,m) with m not less than the exact number
s of eigenvalues inside Γ. We remark that an efficient stochastic estimation method of s has
been developed in [22].

We computed the integral in (12) by the Legendre-Gauss quadrature

Z =
r

2

∫ 1

−1

eπθi((c+ reπθi)I −A)−1Y dθ ≈ r

2

q∑
k=1

ωke
πθki((c+ reπθki)I −A)−1Y, (14)

where i =
√
−1, and ωk and θk are the Legendre-Gauss weights and nodes on the interval

[−1, 1] with truncation order q.
In (14), there are mq linear systems

((c+ reπθk
√
−1)I −A)x = yj , k = 1, . . . , q, j = 1, . . . ,m (15)

to solve. We solved all of them by GMRES or MBiCG with the stopping tolerance tol = 10−15

and the maximum number of iterations maxit = 500 or 1000.
Mathematically, the rank of Z defined by (12) is less than m when m > s. As a result, the

matrix M in (9) is singular. In practice, Z is approximated by (14) and the matrix M becomes
near-singular. In order to remedy this difficulty, one can use the singular value decomposition
(SVD) or the QR decomposition of Z to detect and remove its nearly dependent columns.
The SVD or QR decomposition involves a high communication cost and may not be favorable
for a parallel computation. In this paper, we suggest a column deflation mechanism based on
Gaussian elimination (GE) with complete pivoting [23] to remove the dependent columns in Z.

The rationale of the mechanism is as follows. Let Ẑ = ZHZ ∈ Cm×m. It can be seen that
rank(Z) = rank(Ẑ). We perform GE with complete pivoting on Ẑ to reduce Ẑ into an upper
triangular form. Accordingly, we interchange the corresponding columns in Z. If at some step
of j the lower right block Ẑ(j+1:m,j+1:m) = 0, then the rank of Ẑ is j and Z(:,1:j) consists of all

the linearly independent columns of Z. The purpose that we left-multiply Z by ZH to form Ẑ
is (i) to reduce the row size of Z from N to m, and (ii) to reduce data movements in the GE
process. See Algorithm 2 in §6 for implementation details.

In our experiments, we performed the following eight computations. Numerical results are
summarized in Tables 1-7.
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#1. Solve (5) by GMRES (or MBiCG) with the initial guess x = 0 with tol = 10−7 and
maxit = 103N . Compute the true relative errors relres2 = ‖b − Ax‖2/‖b‖2 and relerr
= ‖x − x∗‖2/‖x∗‖2, where x is the computed solution output by GMRES (or MBiCG)
and x∗ is the exact solution of (5).

#2. Compute by the Matlab function eig the eigenvectors v1, . . . , vs of A whose associated
eigenvalues lie inside Γ. Set Z = [v1, . . . , vs]. Perform Algorithm 1 with GMRES (or
MBiCG) as its linear solver (see Line 3 of Algorithm 1). Set the initial guess x = 0 with
tol = 10−7 and maxit = 10N for GMRES (or MBiCG). Compute the true relative errors
relres1 = ‖Pb−PAx#‖2/‖Pb‖2, relres2 = ‖b−Ax‖2/‖b‖2, and relerr = ‖x−x∗‖2/‖x∗‖2,
where x# and x are the computed solutions in Lines 3 and 5 of Algorithm 1, respectively.

#3. Solve all the linear systems in (15) by GMRES (or MBiCG) with the initial guess x = 0
with tol = 10−15 and maxit = 500. Compute Z using (14). Perform Algorithm 1 with the
initial guess x = 0 with tol = 10−7 and maxit = 10N for GMRES (or MBiCG). Compute
the true relative errors relres1, relres2, and relerr defined in item #2.

#4. Perform the same computations as described in item #3 with maxit = 1000 instead of
maxit = 500.

#5. Solve all the linear systems in (15) by GMRES (or MBiCG) with the initial guess x = 0
with tol = 10−15 and maxit = 500. Compute Z using (14). Setting α = 10−8 and
tol cge = 10−2, perform Algorithm 2 on the computed Z to remove its nearly dependent
columns. Using the Z output from Algorithm 2, perform Algorithm 1 with the initial
guess x = 0 with tol = 10−7 and maxit = 10N for GMRES (or MBiCG). Compute the
true relative errors relres1, relres2, and relerr defined in item #2.

#6. Perform the same computations as described in item #5 with maxit = 1000 instead of
maxit = 500.

#7. Solve all the linear systems in (15) by GMRES (or MBiCG) with the random initial guess
x = randn(N, 1) with tol = 10−15, and maxit = 500. Compute Z through (14). Perform
Algorithm 1 with the initial guess x = 0 with tol = 10−7, and maxit = 10N for GMRES
(or MBiCG). Compute the true relative errors relres1, relres2, and relerr defined in item
#2.

#8. Perform the same computations as described in item #7 with maxit = 1000 instead of
maxit = 500.

3.1 Example 1

As in [8], consider the convection-diffusion equation (13) with Dirichlet boundary conditions.
The convection coefficients p(x, y), q(x, y), and the source term f(x, y) were chosen as

p(x, y) = − sinx cosπy
q(x, y) = cos(πx) sin y,
f(x, y) = 52 sin(4x+ 6y)− (4p(x, y)− 6q(x, y)) cos(4x+ 6y).

Equation (13) was discretized on the unit square [0, 1]2 using a 5-point central difference scheme
with a uniform mesh size of h = 1/100 with resulting linear systems (5) of size N = 992.

The Reynolds number Re controls the degree of the nonsymmetry in the coefficient matrix
A of (5). When Re = 0, A is symmetric. As Re increases the nonsymmetry in A also increases.
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In our experiments, we pick the coefficient matrix A, but set the right hand side b = A1,
where 1 = [1, 1, . . . , 1]T . We know a priori the exact solution of (5) and the relative error relerr
is computable. We choose Re = 8000. The integration path Γ is the circle whose center is the
origin and has radius 0.5. Figure 2 presents the eigenvalue distribution of A.
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Figure 2: (Example 1) (a) Eigenvalue distribution of the test matrix A. (b) Eight eigenvalues
of A lie inside Γ, the circle centered at the origin with radius 0.5. The eigenvalue with the
smallest distance to the origin is 4.3e−3.

Comparing the numerical results of Computations #1 and #2 in Table 1, we see that the
convergence of GMRES can be made much faster with an appropriate eigenvalue-deflation.
Specifically GMRES takes 3295 iterations to solve (5), but only 1815 iterations to solve (10).
This experiment supports the observation made in [8] that eigenvalues close to the origin hamper
the convergence of a Krylov subspace method. It also supports the theory presented in §2.2.

The behavior of a Krylov subspace method on the solution of (10) depends on (i) the quality
of the approximation of the computed Z to the exact eigenvectors, (ii) the column size m of Z,
(iii) the condition of M , and (iv) perhaps some other unknown factors.

Consider the computed Z’s in Tables 2 and 3. Comparing the corresponding relative residue
ranges in the second columns of the tables we see that the Z’s in Table 3 are closer to the exact
eigenvectors than the Z’s in Table 2 are since the range intervals in Table 3 are closer to the
origin 0. As a result, the GMRES and MBiCG results in Table 3 converge faster than those in
Table 2 when solving (10).

Consider Table 3. As m is increases from 10 to 50, the condition numbers Cd(M) of M
does not increase substantially. In this case, the number of iterations needed by GMRES and
MBiCG to converge decreases (see the 5th column of the table).

In Example 1, the exact number s of eigenvalues of A inside the circle Γ is 8. The rank of
Z in (12) is 8 mathematically and therefore the 2-norm condition number of Z is∞ in the case
when m > s. However, the condition numbers of the computed Z’s in Tables 2 and 3 are small
finite numbers. This implies that those computed Z’s are inaccurate. They only contain partial
information about the true eigenvectors. Impressively, the computed Z’s in Table 3 associated
with m = 50 perform even better than the true eigenvectors do (compare the 4th column in
Table 1 and the 5th column in Table 3).
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Computation #1 Computation #2

Solve (5) by GMRES Solve (10) by GMRES Algorithm 1
#iter relres2 relerr #iter relres1 relres2 relerr
3295 9.9e−8 3.3e−7 1815 9.9e−8 9.9e−8 3.4e−6

Solve (5) by MBiCG Solve (10) by MBiCG Algorithm 1
#iter relres2 relerr #iter relres1 relres2 relerr
10125 9.5e−8 2.7e−8 3951 9.9e−8 9.9e−8 2.2e−8

Table 1: (Example 1) Γ is the circle centered at the origin with radius 0.5. The number of
eigenvalues of A inside Γ is 8. #iter stands for the number of iterations needed to converge.

Computation #3

Solve (15) by GMRES Compute Z by (14) Solve (10) by GMRES Algorithm 1
m Rel. Res. Range Cd(Z) Cd(M) #iter relres1 relres2 relerr
10 [1.4e−3, 1.1e−1] 6.7 1.8e+1 2616 9.9e−8 1.0e−7 1.9e−6
50 [1.1e−3, 1.2e−1] 4.5e+1 3.0e+2 1321 9.9e−8 9.9e−8 9.2e−7

Solve (15) by MBiCG Compute Z by (14) Solve (10) by MBiCG Algorithm 1
m Rel. Res. Range Cd(Z) Cd(M) #iter relres1 relres2 relerr
10 [2.6e−2, 5.5e−1] 5.9e+2 1.8e+4 6875 6.8e−8 8.4e−8 6.2e−8
50 [2.3e−2, 5.2e−1] 3.0e+6 6.7e+10 6078 9.9e−8 1.4e−7 3.1e−7

Table 2: (Example 1) The integration path Γ is the same as in Table 1. The q in (14) was
set to be q = 24. After each of the linear systems in (15) was solved, the true relative residue

‖yj−((c+reπθk
√
−1)I−A)x‖2/‖yj‖2 of the approximate solution x was computed. The intervals

in the column titled “Rel. Res. Range” are the smallest intervals that contain these relative
residues. Cd(Z) and Cd(M) stand for the 2-norm condition numbers of Z and M respectively.

Since the computed Z’s in Example 1 perform so well, there is no reason to apply Algorithm 2
to improve their conditions.

3.2 Example 2

The following two test data sets are part of The University of Florida Sparse Matrix Collection
[7]. These data sets have been used in [9] for the numerical experiments.

(a) bcsstm27 is from a mass matrix buckling problem. It is a 1224× 1224 real symmetric and
indefinite matrix A with 56126 nonzero entries. Per the right hand side in (5), we set
b = A1, where 1 is the vector of all ones. A spectral plot for bcsstm27 is presented in
Figure 1(b).

Computation #4

Solve (15) by GMRES Compute Z by (14) Solve (10) by GMRES Algorithm 1
m Rel. Res. Range Cd(Z) Cd(M) #iter relres1 relres2 relerr
10 [4.1e−6, 6.0e−2] 1.1e+1 8.0e+1 2420 9.9e−8 9.9e−8 2.4e−6
50 [3.0e−6, 8.5e−2] 1.3e+2 1.9e+3 1340 9.9e−8 9.9e−8 1.8e−6

Solve (15) by MBiCG Compute Z by (14) Solve (10) by MBiCG Algorithm 1
m Rel. Res. Range Cd(Z) Cd(M) #iter relres1 relres2 relerr
10 [9.9e−4, 5.8e−1] 9.6 3.3e+1 6081 9.3e−8 1.1e−7 5.8e−8
50 [1.1e−3, 5.2e−1] 8.7e+1 9.5e+2 2621 9.8e−8 1.1e−7 1.5e−7

Table 3: (Example 1) The integration path Γ is the same as in Table 1, and q = 24 in (14). For
the meanings of the columns, refer to Tables 1 and 2.
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(b) mahindas is from an economics problem. It is a 1258× 1258 real unsymmetric matrix A
with 7682 nonzero entries. Again, we set b = A1 as the right hand side in (5). A spectral
plot for mahindas is in Figure 3(a).

An ILU preconditioner generated by the Matlab function [L,U, Pr] = luinc(A,′ 0′) was used
for mahindas, namely, instead of solving (5), we solved

The Matlab function [L,U, Pr] = luinc(A,′ 0′) is used to create an ILU preconditioner for
mahindas. Instead of solving (5), we solved

Ãx = b̃ (16)

by Algorithm 1, where Ã = L−1PrAU−1 and b̃ = L−1Prb. The A and b in (10) are replaced
with Ã and b̃, respectively. Once a solution x to (16) is obtained, we compute a solution to
the original system (5) by U−1x. Since the U factor obtained from luinc has some zeros along
its main diagonal, we replace those zeros by 1 so that U is invertible. A spectral plot for Ã is
given in Figure 3(b).

However, we do not apply any preconditioner to bcsstm27.
In Example 2, we only use MBiCG as the linear solver. Numerical results are summarized

in Tables 4-7.
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Figure 3: (a) Eigenvalue distribution of the test matrix mahindas. (b) Eigenvalue distribution
of the ILU(0)-preconditioned mahindas.

Without deflation MBiCG performs very poorly for both bcsstm27 and the ILU(0)-
preconditioned mahindas. Specifically, MBiCG does not converge within maxit = 103N it-
erations in terms of the relative residues relres2. Further, the computed solutions by MBiCG
are far from the corresponding exact solutions x∗ = 1 according to the relative errors relerr.
With an appropriate eigenvalue-deflation, however, the situation is improved (see the numerical
results in Tables 5-7).

The computed matrices Z in Computations #3 and #4 in Table 5 worked well for bcsstm27,
but not for the ILU(0)-preconditioned mahindas. The computed Z’s for mahindas contain some
nearly dependent columns that lead to large condition numbers Cd(M) of M . The situation is
significantly improved after the nearly dependent columns in Z are removed using Algorithm
2. As a result, MBiCG converged when it solved (10) (see Table 6).
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Computation #1 Computation #2
Circle Γ Solve (5) Solve (10) Algorithm 1

Matrix (c, r) #eig Γ #iter relres2 relerr #iter relres1 relres2 relerr

bcsstm27 (0, 5) 363 1224000 2.0e−6 5.7e−1 227 9.5e−8 9.5e−8 2.4e−7
mahindas (−1, 1) 31 1258000 3.5e−7 1.8 1841 5.6e−8 5.6e−8 4.4e−3

Table 4: (Example 2) The linear systems (5) and (10) were solved by MBiCG. Γ is a circle with
center c and radius r. #eig Γ stands for the number of eigenvalues of A inside Γ, and #iter the
number of iterations by MBiCG. For mahindas, an ILU(0) preconditioner was applied.

Computation #3
Solve (15) Compute Z by (14) Solve (10) Algorithm 1

Matrix m Rel. Res. Range Cd(Z) Cd(M) #iter relres1 relres2 relerr
bcsstm27 400 [4.1e−10, 6.1e−2] 1.5e+3 1.0e+6 843 6.3e−8 6.2e−8 5.0e−6
mahindas 50 [1.2e−10, 1.0] 1.3e+2 1.7e+6 12580 6.4e−2 2.2e−1 2.5e+4

Computation #4
bcsstm27 400 [3.2e−14, 8.0e−4] 2.5e+3 4.5e+6 563 9.2e−8 9.2e−8 3.4e−2
mahindas 50 [1.5e−10, 1.0] 2.5e+2 2.2e+6 12580 3.1e−2 3.6e−2 1.3e+4

Table 5: (Example 2) The integration paths Γ are shown in Table 4, and q = 24 in (14). The
linear systems (15) and (10) were solved by MBiCG. For the meanings of the columns, refer to
Tables 1 and 2.

Now compare Computations #4 and #6 for bcsstm27 in Tables 5 and 6, respectively. The
two condition numbers Cd(M) of M do not differ much in magnitude, but the m (= 400)
in Computation #4 is larger than the m (= 371) in Computation #6. As a result, MBiCG
converged faster in Computation #4 than it did in Computation #6 when solving (10).

In Computations #7 and #8, we randomly picked an initial guess for the solution of each
linear system in (15) and then computed Z by (14). The resulting Z has a better performance
than the Z obtained with a zero initial guess as in Computations #3–#6. We first compare
Computation #8 and Computation #4 for mahindas in Tables 7 and 5. Both condition numbers
Cd(M) of M are about the same in magnitude, but MBiCG and Algorithm 1 in Computation
#8 performs much better than in Computation #4.

We compare Computations #8 and #6 for mahindas in Tables 7 and 6. The column size m of
Z in Computation #8 (m = 50) is much larger than the m in Computation #6 (m = 10). This
explains the faster convergence of MBiCG in Computation #8 on the solution of (10) despite
the fact that the M in Computation #8 is ill conditioned relative to the M in Computation
#6.

Finally, we remark that we have chosen m ≥ s in the experiments presented above. When
m < s, Algorithm 1 plus (14) still works well, but not as impressively as in the case when
m ≥ s. For an estimate of s, the stochastic method in [22] should be useful. See [46] for a
concise description of this method. Moreover, the method in [29] is also recommended.

The most expensive part in the proposed method of Algorithm 1 plus (14) is clearly the
computation of Z in (14). In §4, we describe state of the art parallel multigrid methods that
can be applied to the computation of Z.

4 Future Work

We can formulate either geometric multigrid [1, 2, 5, 11, 19, 20, 26, 44] or algebraic multigrid
[39] using the same notation level to level using the abstract multigrid approach developed in
[10, 13, 15, 3, 12, 13, 15].
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Computation #5
Solve (15) Algorithm 2 Solve (10) Algorithm 1

Matrix m Rel. Res. Range rk of Z Cd(Z) Cd(M) #iter relres1 relres2 relerr
bcsstm27 400 [4.1e−10, 6.1e−2] 370 9.3e+1 1.2e+5 2824 8.8e−8 8.8e−8 6.2e−2
mahindas 50 [1.2e−10, 1.0] 12 2.7e+1 8.9e+2 9318 8.6e−8 8.6e−8 6.0e−3

Computation #6
bcsstm27 400 [3.2e−14, 8.0e−4] 371 9.4e+1 1.9e+5 2224 5.8e−8 5.8e−8 6.3e−2
mahindas 50 [1.5e−10, 1.0] 10 1.9e+1 4.4e+2 4688 6.8e−8 6.8e−8 3.5e−3

Table 6: (Example 2) The integration paths Γ are shown in Table 4, and q = 24 in (14). The
linear systems (15) and (10) were solved by MBiCG. The numbers in the column titled “rk of
Z” are the numerical ranks rk of Z output by Algorithm 2. For the meanings of other columns,
refer to Tables 1 and 2.

Computation #7
Solve (15) Compute Z by (14) Solve (10) Algorithm 1

Matrix m Rel. Res. Range Cd(Z) Cd(M) #iter relres1 relres2 relerr
bcsstm27 400 [3.9e−9, 2.2e−1] 5.8e+2 5.4e+5 1114 8.2e−8 8.4e−8 1.9e−6
mahindas 50 [2.8e−10, 2.0e+ 1] 8.5e+1 1.2e+5 12580 5.6e−5 5.7e−5 4.8

Computation #8
bcsstm27 400 [2.7e−13, 3.1e−3] 2.3e+3 4.3e+6 686 9.1e−8 9.1e−8 3.2e−6
mahindas 50 [9.8e−11, 1.3e+1] 6.7e+2 9.7e+6 2286 8.4e−8 8.5e−8 1.8e−2

Table 7: (Example 2) The integration paths Γ are shown in Table 4, and q = 24 in (14). The
linear systems (15) and (10) were solved by MBiCG. For the meanings of the columns, refer to
Tables 1 and 2.

Assuming the cost of the smoother (or rougher) on each level is O(Nj), j = 1, · · · , k,
Algorithm MGC with p recursions to solve problems on level k − 1 has complexity

WMGC(Nk) =


O(Nk) 1 ≤ p ≤ σ
O(Nk logNk) p = σ

O(N log p
k ) p > σ.

Under the right circumstances, multigrid is of optimal order as a solver.
Consider the example (13) in §3. A simple geometric multigrid approximation to (13)

produces a very good solution in 4 V Cycles or 2 W cycles using the deflated GMRES as the
rougher. Each V or W Cycle is O(Nk). Hence, we have an optimal order solver for (13), which
would not be the case if we used BiCG or deflated GMRES on a single grid.

High performance computing versions of multigrid based on using hardware acceleration
with memory caches was extensively studied in the early 2000’s [16].

Parallelization of Algorithm MGC is straightforward [14].

• For geometric multigrid, on each level j, data is split using a domain decomposition
paradigm. Parallel smoothers (roughers) are used. The convergence rate degrades from
the standard serial theoretical rate, but not by a lot, and scaling is good given sufficient
data.

• For algebraic multigrid, the algorithms can be either straightforward (e.g., Ruge-Studen
[33] or Beck [4]) to quite complicated (e.g., AMGe [25]). Solutions have existed for a
number of years, so it is a matter of choosing an exisiting implementation. In some cases,
using a tool like METIS or ParMETIS is sufficient to create a domain decomposition-like
system based on graph connections in Aj , which reduces parallelization back to something
similar to the geometric case.
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In many cases, the complexity of this type of parallel multigrid for P processors becomes

WMGC,P (Nk) = WMGC(Nk) logP/P.

5 Conclusions

We incorporate the delation projector P in (9), with Z defined by and computed by (12) and
(14), respectively, into Krylov subspace methods to enhance the stability and accelerate the
convergence of the iterative methods for solving ill conditioned linear systems. Our experiments
suggest that Algorithm 1 plus (14) has the potential to solve ill conditioned problems much
faster and more accurately than standard Krylov subspace solvers. Moreover, to our best
knowledge, the constructions of most, if not all, deflation subspace matrices Z in the literature
are problem dependent. The method proposed here, however, is problem independent.

More experiments, especially on test data of large size (e.g., millions or more unknowns)
are needed to better understand the behavior of the proposed algorithm. Implementation of
robust and efficient parallel multigrid methods for solving (15) and the realization of a software
package for a wide variety of applications is currently under our investigation.

6 Appendix

The following Algorithm 2 employs the Gaussian elimination with complete pivoting (CGE) to
detect the rank rk and to select linearly independent columns of an input Z ∈ CN×m, where α
is a comparison parameter and tol cge is a stopping tolerance. The output Z of the algorithm
is a N -by-rk matrix consisting of the selected columns of the input Z.

Function [Z, rk] = cge(Z,α, tol cge)

1. Form Ẑ = ZHZ ∈ Cm×m; Set rk = m.
2. Determine (i0, j0) with 1 ≤ i0, j0 ≤ m so that

|Ẑi0j0 | = max{|Ẑij | : 1 ≤ i, j ≤ m}.
3. If |Ẑi0j0 | < α, then set rk = 0 and Z = [ ]; Stop.

4. Set α = |Ẑi0j0 |;
5. Ẑ(:,1) ↔ Ẑ(:,j0); Ẑ(1,:) ↔ Ẑ(i0,:). % move Ẑi0j0 to the (1, 1) position.
6. Z(:,1) ↔ Z(:,j0). % interchange the 1st and the j0th columns of Z.
7. For j = 1 : m− 1
8. For i = j + 1 : m

9. Ẑ(i,j:m) = Ẑ(i,j:m) − (Ẑij/Ẑjj)Ẑ(j,j:m). % perform elimination.
10. End
11. Determine (i0, j0) with j + 1 ≤ i0, j0 ≤ m so that

|Ẑi0j0 | = max{|Ẑpq| : j + 1 ≤ p, q ≤ m}.
12. If |Ẑi0j0 |/α < tol cge, set rk = j and Z = Z(:,1:rk); Stop.

13. Ẑ(:,j+1) ↔ Ẑ(:,j0); Ẑ(j+1,:) ↔ Ẑ(i0,:). % move Ẑi0j0 to the (j + 1, j + 1) position.
14. Z(:,j+1) ↔ Z(:,j0). % interchange column j0 and column j + 1 of Z.
15. End

Algorithm 2: Gaussian elimination with complete pivoting to detect the rank and to select
linearly independent columns of an input matrix Z.
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In Line 3 of Algorithm 2, we consider Ẑ = 0 when |Ẑi0j0 | is small compared to α, and hence

the rank rk of Z is zero. Similarly, in Line 12, if |Ẑi0j0 | is small compared to α, then we regard

Ẑ(j+1:m,j+1:m) as 0, and therefore rk = j.
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