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Abstract

Recurrent neural networks (RNNs) are types of artificial neural networks (ANNs) that are
well suited to forecasting and sequence classification. They have been applied extensively to
forecasting univariate financial time series, however their application to high frequency trading
has not been previously considered. This paper solves a sequence classification problem in
which a short sequence of observations of limit order book depths and market orders is used
to predict a next event price-flip. The capability to adjust quotes according to this prediction
reduces the likelihood of adverse price selection. Our results demonstrate the ability of the RNN
to capture the non-linear relationship between the near-term price-flips and a spatio-temporal
representation of the limit order book. The RNN compares favorably with other classifiers,
including a linear Kalman filter, using S&P500 E-mini futures level II data over the month of
August 2016. Further results assess the effect of retraining the RNN daily and the sensitivity
of the performance to trade latency.
Keywords: Recurrent Neural Networks, Limit Order Book, Futures Markets.

1 Introduction

Many of the challenges facing methods of financial econometrics include non-stationarity, non-
linearity or noisiness of the time series. The application of artificial neural networks (ANNs) to
uni-variate financial time series methods are well documented (Faraway and Chatfield, 1998; Refenes,
1994; Trippi and DeSieno, 1992; Kaastra and Boyd, 1995). Their proneness to over-fitting, conver-
gence problems, and difficulty of implementation raised concerns that hampered their early adoption
by finance industry practitioners in predicting low frequency volatility or price changes.

Modeling and analysis of time-varying signals is an important subfield of signal processing. One
of the most successful algorithms to arise for dynamic systems is the classical Kalman filter (KF).
KFs belong to a family of Bayes’ filters, which include particle filtering and Hidden Markov Models.
The basic approach performs minimum mean square error estimation of the hidden state of a time-
varying linear system. There is ample evidence to suggest that Kalman filters are well suited to
the prediction of low frequency univariate financial time series, i.e. recorded either daily (Gultekin
and Paisley, 2017) or even down to the resolution of a second. Micro-structural effects start to
dominate the signal at higher frequency, typically sub-millisecond level. Knowledge of the market
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micro-structure becomes fundamental for accurate prediction of price movements and the problem
of time series prediction does not fit squarely into the modeling of a time-varying signal.

Modern financial exchanges facilitate the electronic trading of instruments through an instanta-
neous double auction. At each point in time, the market demand and the supply can be represented
by an electronic limit order book, a cross section of orders to execute at various price levels away
from the market price. The market price is closely linked to its liquidity - that is the immediacy
in which the instrument can be converted into cash. The liquidity of markets are characterized by
their depth, the total quantity of quoted buy and sell orders about the market price. The liquidity
of the market evolves in response to trading activity (Bloomfield et al., 2005); At any point in time,
the amount of liquidity in the market can be characterized by the cross-section of book depths.

Liquid markets are attractive to market participants as they permit the near instantaneous
execution of large volume trades at the best available price, with marginal price impact. However,
sometimes a large market order, or a succession of smaller markets orders, will consume an entire
price level. This is why the market price fluctuates in liquid markets - an effect often referred to
by practitioners as a ’price-flip’. Price level consumption is followed by an initial widening of the
bid-ask spread which quickly reverts as market makers exploit it, leading to a new mid-price.

There appears to be no consensus, however, on the extent to which limit order books convey
predictive information. Early seminal papers studying equities, including Glosten (1994); Seppi
(1997), state that the limit orders beyond the insider market contain little information. In contrast,
several other studies state that such limit orders are informative(Parlour, 1998; Bloomfield et al.,
2005; Cao et al., 2009; Zheng et al., 2013; Kearns and Nevmyvaka, 2013; Cont et al., 2014; D. and
Pollak, 2014). In particular, Cao et al. (2009) study the information content of a limit-order book
from the Australian Stock Exchange. They found that the book’s contribution to price discovery
is approximately 22% while the remaining comes from the first level data and transaction prices.
They also demonstrate that order imbalances between the demand and supply exhibit a statistically
significantly relationship to short-term future returns. There is growing evidence that the study of
microstructure is critical to finding longer term relations and even cross-market effects (Dobrislav
and Schaumburg, 2016).

Many quantities, such as the probability of price movements given the state of the limit order,
are relevant for trading and intraday risk management. The complex relation between order book
dynamics and price movements has been the focus of econometric and stochastic modeling (see
Engle and Russell (1998); Cont et al. (2010, 2014); Cont and de Larrard (2013); Chavez-Casillas
and Figueroa-Lopez (2017) and references therein). For analytic tractability, these models assume
a data generation process and typically estimate quantities based on asymptotic limits of diffusion
processes.

In a Markovian setting, and under further modeling assumptions, such as the treatment of the
arrival rate of market orders as a poisson process, homogenous order sizes, and the assumption of
independence of cancellations and orders, a probability of an up-tick is derived. However, these
modeling assumptions made are likely too strong for describing micro-scale book dynamics (sub
1ms). At this scale, price is not Markovian, increments are neither independent nor stationary and
depend on the state of the order book. Attempts to relax the Markovian assumption, using for
example the ’heavy traffic’ approximation approach (Cont and de Larrard, 2010; Chavez-Casillas
and Figueroa-Lopez, 2017) are best suited for meso-scale analysis of the price movements, but not
micro-scale.

Guided by the reduced order book models of Cont and de Larrard (2013), our approach selects
similar exogenous variables. In particular, we treat queue sizes at each price level as the independent
variables. We additionally include properties of market orders, albeit in a form which we have
observed to be most relevant to prediction the direction of price movements. In sharp contrast to
stochastic modeling, we do not impose conditional distributional assumptions on the independent
variables (a.k.a. features) nor assume that price movements are Markovian.

Most of the aforementioned predictive modeling studies rely on regression for explanatory power
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of liquidity on the continuous volume weighted average price (VWAP), a.k.a. ’smart price’. The
utility of the smart price is limited for high frequency trading. So called ’market makers’ quote limit
orders on both sides of the market in attempt to capture the spread. Their inability to pre-empt a
price flip, by adjusting their quotes, typically results in adverse price selection and a loss of profit.
A change in the smart price does not imply a price-flip. For example, a change in the volume of
the best bid quantity will result in a change in the smart price, but not necessarily a change in the
mid-price, the latter effect is attributed to price level consumption from incoming market orders.
The successful prediction of a price flip, and not the change in smart price, can therefore be directly
used to avoid adverse price selection. Sudden price flips in the the tick data are hard to capture
with traditional modeling techniques which rely on instantaneous inside market liquidity imbalance
alone.

Breiman (Breiman, 2001) describes the two cultures of statistical modeling when deriving conclu-
sions from data. One assumes a data generating process, the latter uses algorithmic models, treating
the data mechanism as unknown. Machine learning falls into the algorithmic class of reduced model
estimation procedures. It is designed to provide predictors in complex settings where relations be-
tween input and output variables are nonlinear and input space is often high dimensional. A number
of researchers have applied machine learning methods to the study of limit order book dynamics
(Kearns and Nevmyvaka, 2013; Kercheval and Zhang, 2015; Sirignano, 2016; Dixon et al., 2017).

This paper takes an algorithmic approach to predicting the next event price-flip from a short
sequence of observations of limit order book depths and market orders. We choose a spatio-temporal
representation (Sirignano, 2016; Dixon et al., 2017) of the limit order book combined with history of
the market orders as the predictors. Our approach solves a sequence classification problem in which
a short sequence of observations of book depths and market orders can be classified into directional
mid-price movement. A sequence classifier offers potential significant benefit to market participants.
For example, a market maker can use the classifier to continuously adjust the quotes, potentially
reducing the likelihood of adverse price selection. Sequence classification has been considered else-
where in the literature for lower frequency price movement prediction from historical prices (Leung
et al., 2000; Dixon et al., 2016). The novelty of our approach therefore arises from the application
of a recurrent neural network classifier to a spatio-temporal representation of the limit order book
combined with market order history in order to predict price-flips.

The main contribution of this paper is to describe and demonstrate the potential of recurrent neu-
ral networks for classifying short-term price movements from limit order books of financial futures.
Training a recurrent neural network architecture can be performed with stochastic gradient descent
(SGD) which learns the weights and offsets in an architecture between the layers. Drop-out (DO)
performs variable selection (Srivastava et al., 2014). RNNs rely on a moderate amount of training
time series data together with a flexible architecture to ’match’ in and out of sample performance as
measured by mean error, area under the curve (AUC) or the F1 score, which is the harmonic mean
of precision and recall. Our performance results demonstrate the ability of the RNN to capture the
non-linear relationship between the near-term price-flips and a spatio-temporal representation of the
limit order book.

The remainder of the paper is outlined as follows. Section 2 provides an introduction to sequence
learning and RNN architectures. Section 2.3 describes the training, validating and testing process
required to construct a RNN. Section 3 describes the high frequency classification problem and
presents a spatio-temporal formulation of the limit order book variables extracted from a market
data feed. Section 4 describes the implementation and quantifies the empirical gains using a RNN
to capture discontinuities in the mid-price, versus a Kalman Filter method adapted for classification
and a logistic regression using S&P500 E-mini futures level II data. The RNN is shown to compare
favorably with other classifiers on a spatio-temporal feature set. We further assess the robustness
and stability of the RNN over a entire calendar month, where on any given day, the RNN may make
millions of predictions. In particular, we characterize the effect of daily retraining the RNN and it’s
sensitivity to latency between the trade platform and the exchange. Section 5 concludes.
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2 Machine Learning

Machine learning addresses a fundamental prediction problem: Construct a nonlinear predictor,
Ŷ (X), of an output, Y , given a high dimensional input matrix X = (X(1), . . . , X(P )) of P variables.
Machine learning can be simply viewed as the study and construction of an input-output map of
the form

Y = F (X) where X = (X(1), . . . , X(P )).

The output variable, Y , can be continuous, discrete or mixed. For example, in a classification
problem, F : X → Y where Y ∈ {1, . . . ,K} and K is the number of categories. When Y is a
continuous vector and f is a semi-affine function, then we recover the linear model

Y = AX + b.

2.1 Sequence Learning

If the input-output pairs D = {Xt, Yt}Nt=1 are auto-correlated observations of X and Y at times
t = 1, . . . , N , then the fundamental prediction problem can be expressed as a sequence predic-
tion problem: construct a nonlinear times series predictor, Ŷ (X ), of an output, Y , using a high
dimensional input matrix of T length sub-sequences X :

y = F (X ) where Xt = seqT (Xt) = (Xt−T+1, . . . , Xt)

where Xt−j is a jth lagged observation of Xt, Xt−j = Lj [Xj ], for j = 0, . . . , T − 1. Sequence
learning, then, is just a composition of a non-linear map and a vectorization of the lagged input
variables. If the data is i.i.d., then no sequence is needed (i.e. T = 1), and we recover the standard
prediction problem.

2.2 Recurrent Neural Networks (RNNs)

RNNs are sequence learners which have achieved much success in applications such as natural lan-
guage understanding, language generation, video processing, and many other tasks Graves (2013).
We will concentrate on simple RNN models for brevity of notation.

A simple RNN is formed by a repeated application of a function Fh to the input sequence
Xt = (X1, . . . , XT ). For each time step t = 1, . . . , T , the function generates a hidden state ht from
the current input Xt and the previous output ht−1:

ht = Fh(Xt, ht1) = σ(WhXt + Uhht1 + bh), (1)

for some non-linear activation function σ(x). As illustrated in Figure 1, this simple RNN is an
unfolding of a single hidden layer neural network (a.k.a. Elman network (Elman, 1991)) over all
time steps.
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Figure 1: An illustrative example of a recurrent neural network with one hidden layer, unfolded over
a sequence of six time steps. Each input Xt is in the sequence Xt. The hidden layer contains H
units and the jth output at time step t is denoted by hjt . The connections between the hidden units
are recurrent and are weighted by the matrix Wh. At the last time step t, the hidden units connect
to a K unit output layer with a 1-of-K output vector Yt.

When the output is continuous, the model output from the final hidden state, Y = Fy(hT ), is
given by the semi-affine function:

Y = Fy(hT ) = WyhT + by, (2)

and when the output is categorical, the output is given by

Y = Fy(hT ) = softmax(Fy(hT )), (3)

where Y has a ’one-hot’ encoding - a K-vector of zeros with 1 at a single position. Here W =
(Wh, Uh,Wy) and b = (bh, by) are weight matrices and offsets respectively. Wh ∈ RH×P denotes the
weights of non-recurrent connections between the input Xt and the H hidden units. The weights
of the recurrence connections between the hidden units is denoted by the recurrent weight matrix
Uh ∈ RH×H . Without such a matrix, the architecture is simply an unfolded single layer feed-forward
network without memory and each observation Xt is treated as an independent observation.

Wy denotes the weights tied to the output of the hidden units at the last time step, ht, and
the output layer. If the output variable is a continuous vector, Y ∈ RM then Wy ∈ RM×H . If the
output is categorical, with K states, then Wy ∈ RK×H .

There are a number of issues in the RNN design. How many times should the network being
unfolded? How many hidden neurons H in each hidden layer? How to perform ’variable selection’?
Many of these problems can be solved by a stochastic search technique, called dropout (Srivastava
et al., 2014), which we discuss in Section 2.4.
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2.3 Training, Validation and Testing

To construct and evaluate a learning machine, we start by controlled splitting of the data into train-
ing, validation and test sets. The training data consists of input-output pairs D = {Yt, Xt}Nt=1−(T−1).

We then sequence the data to give Dseq = {Yt,Xt}Nt=1.
The goal is to find the machine sequence learner Y = F (X ), where we have a loss function

L(Y, Ŷ ) for a predictor, Ŷ , of the output signal, Y . In many cases, there’s an underlying probability
model, p(Y | Ŷ ), then the loss function is the negative log probability L(Y, Ŷ ) = − log p(Y | Ŷ ).
For example, under a Gaussian model L(Y, Ŷ ) = ||Y − Ŷ ||2 is a L2 norm, for binary classification,
L(Y, Ŷ ) = −Y log Ŷ is the negative cross-entropy.

In its simplest form, we then solve an optimization problem

minimize
W,b

f(W, b) + λφ(W, b)

f(W, b) =
1

N

N∑

t=1

L(Yt, Ŷ (Xt))

with a regularization penalty, φ(W, b).
Here λ is a global regularization parameter which we tune using the out-of-sample predictive

mean-squared error (MSE) of the model on the verification data. The regularization penalty, φ(W, b),
introduces a bias-variance tradeoff. ∇L is given in closed form by a chain rule and, through back-
propagation on the unfolded network, the weight matrices Ŵ are fitted with stochastic gradient
descent. See Rojas (1996); Graves (2013) for a further description of stochastic gradient descent as
it pertains to recurrent neural networks.

A significant factor raising the appeal of recurrent neural networks to practitioners is TensorFlow
Abadi et al. (2016), an interface for easily expressing machine learning, and in particular deep
learning, algorithms and mapping compute intensive operations onto a wide variety of different
hardware platforms and in particular GPU cards. Recently, TensorFlow has been augmented by
Edward Tran et al. (2017) to combine concepts in Bayesian statistics and probabilistic programming
with deep learning.

2.4 Predictor Selection and Dropout

Dropout is a model or variable selection technique. The input space X , needs dimension reduction
techniques which are designed to avoid over-fitting in the training process. Dropout works by
removing input variables in Xt randomly with a given probability θ. The probability, θ, can be
viewed as a further hyper-parameter (like λ) which can be tuned via cross-validation. Heuristically,
if there are P = 100 variables in Xt, then a choice of θ = 0.1 will result in a search for models with
10 variables. The dropout architecture with stochastic search for the predictors can be used

Di ∼ Ber(θ),

X̃t = D ?Xt, t = 1, . . . , T,

ht = Fh

(
WhX̃t + Uhht−1 + bh

)
.

Effectively, this replaces the input Xt by D?Xt, where ? denotes the element-wise product and D is
a ’drop-out operator’ - a vector of independent Bernoulli, Ber(θ), distributed random variables. The
overall objective function is closely related to ridge regression with a g-prior (Heaton et al., 2017).
Note that drop-out is not applied to the recurrent connections, only the non-recurrent connections.
Graves (2013) provides evidence of the success in RNNs by applying drop-out only to the non-
recurrent connections in a LSTM.
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3 High Frequency Trading

To further motivate why classification is useful for high frequency trading, we shall consider the
following instructive scenario. A market maker offers to sell at price xt + s/2 and buy at price
xt − s/2 in an attempt to capture the spread s, where xt is the mid-price at time t. The market
maker runs the risk of an adverse mid-price movement between the fill of the sell order and the
buy order. For example, a buy market order matching with the entire resting ask quantity, at price
xt + s/2, effectively results in an up-tick of the mid-price, xt+1 = xt + s. The market maker has sold
at xt + s/2 but can very likely not buy back at xt− s/2 as the bid is no longer at the inside market.
Instead the market marker may systematically be forced to cancel the bid and buy back at a price
higher than xt − s/2, taking a loss.

Figure 2 (left) illustrates a typical mechanism resulting in an adverse price movement. A snapshot
of the limit order book at time t, before the arrival of a market order, and after at time t + 1 are
shown in the left and right panels respectively. The resting orders placed by the market marker are
denoted with the ’+’ symbol- red denotes a buy limit order and blue denotes a sell limit order. A
buy market order subsequently arrives and matches the entire resting quantity of best ask quotes.
Then at event time t + 1 the limit order book is updated - the market maker’s sell limit order has
been filled (blue minus symbol) and the buy order now rests away from the inside market. The
mechanism is analogous for a down-tick of the book.

In the above illustrated example, the market maker is assumed to have no knowledge of the
future and therefore does not pre-empt the price movement by adjusting their quotes accordingly.
But suppose now that the market maker reasonably suspects an up-tick and has the capacity to
avoid a loss resulting from the adverse price movement.

Figure 2 (right) illustrates the result of a market maker acting to prevent losing the spread -the
sell limit order is adjusted to a higher ask price. In this illustration, the buy limit order is not
replaced and the market maker may capture a tick more than the spread. However, it’s unlikely
that the buy limit order will be filled and hence may also need to be adjusted up to the inside
market, albeit with loss of queue position. Such trade-offs are the focus of execution optimization
and, although important, are not considered further here.

Adverse price selection Avoiding adverse price selection.

Figure 2: (left) Illustration of a typical mechanism resulting in adverse price selection. A snapshot
of the limit order book is taken at time t. Limit orders placed by the market marker are denoted
with the ’+’ symbol- red denotes a buy limit order and blue denotes a sell limit order. A buy market
order subsequently arrives and matches the entire resting quantity of best ask quotes. Then at event
time t+ 1 the limit order book is updated. The market maker’s sell limit order has been filled (blue
minus symbol) and the buy order now rests away from the inside market. (Right) A pre-emptive
strategy for avoiding adverse price selection is illustrated. The sell limit order is requoted at a higher
ask price. In this case, the buy limit order is not replaced and the market maker may capture a tick
more than the spread if both orders are filled.

3.1 High Frequency Data

Our dataset is an archived Chicago Mercantile Exchange (CME) FIX format message feed captured
from August 1, 2016 to August 31, 2016. This message feed records all transactions in the front
month E-mini S&P 500 (ESU6) between the times of 12:00pm and 22:00 UTC. We extract details
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of each limit order book update, including the nano-second resolution time-stamp, the quoted price
and depth for each limit order book level.

The E-mini S&P 500 (ES) tick size is a quarter of a point, or 12.50 per contract. Figure 3
illustrates the intuition behind a typical mechanism resulting in mid-price movement. We restrict
consideration to the top five levels of the ES futures limit order book, even though there are updates
provided for ten levels. The chart on the left represents the state of the limit order book prior to
the arrival of a sell market order (a.k.a. ’aggressor’). The x-axis represents the price levels and the
y-axis represents the depth of book at each price level. Red denotes bid orders and blue denotes ask
orders. The highest bid price (’best bid’) is quoted at $2175.75 with a depth of 103 contracts. The
second highest bid is quoted at $2175.5 with a depth of 177 contracts. The lowest ask (’best ask’ or
’best offer’) is quoted at $2176 with 82 contracts and the second lowest ask is quoted at $2176.25
with 162 contracts.

The chart on the right shows the book update after a market order to sell 103 contracts at
$2175.75. The aggressor is sufficiently large to match all of the best bids. Once matched, the limit
order is updated with a lower best bid of $2175.5. The gap between the best ask and best bid would
widen if it weren’t for the arrival of 23 new contracts offered at a lower ask price of $2175.75. The
net effect is a full down-tick of the mid-price.

2174.75 2175 2175.25 2175.5 2175.75 2176 2176.25 2176.5 2176.75 2177

price

de
pt
h

−1
50

−1
00

−5
0

0
50

10
0

15
0

120
124

132

177

103

−82

−162

−173

−164

−146

2174.5 2174.75 2175 2175.25 2175.5 2175.75 2176 2176.25 2176.5 2176.75

price

de
pt
h

−1
50

−1
00

−5
0

0
50

10
0

15
0

78

120
124

132

177

−23

−82

−162

−173

−164

Timestamp:	
  06:00:00.015	
   Timestamp:	
  06:00:00.036	
  

Trade	
  103	
  @	
  
2175.75	
  (Sell)	
  

Figure 3: This figure illustrates a typical mechanism resulting in mid-price movement. The charts
on the left and right respectively show the limit order book before and after the arrival of a large sell
aggressor. The aggressor is sufficiently large to match all of the best bids. Once matched, the limit
order is updated with a lower best bid of $2175.5. The gap between the best ask and best bid would
widen if it weren’t for the arrival of 23 new contracts offered at a lower ask price of $2175.75. The
net effect is a full down-tick of the mid-price.

Table 1 shows the limit order book before and after the arrival of the sell aggressor. The response
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is mid-price movement, in units of ticks, over the subsequent interval. pbi,t and dbi,t denote the level i
quoted bid price and depth of the limit order book at time t. pai,t and dai,t denote the corresponding
level i quoted ask price and depth. Level i = 1 corresponds to the best ask and bid prices. The
mid-price at time t is denoted by

pt =
pa1,t + pb1,t

2
. (4)

This mid-price can evolve in minimum increments of half a tick but almost always is observed to
move at increments of a tick over time intervals of a milli-second or less.

Timestamp pb1,t pb2,t . . . db1,t db2,t . . . pa1,t pa2,t . . . da1,t da2,t . . . Response

06:00:00.015 2175.75 2175.5 . . . 103 177 . . . 2176 2176.25 . . . 82 162 . . . -1
06:00:00.036 2175.5 2175.25 . . . 177 132 . . . 2175.75 2176 . . . 23 82 . . . 0

Table 1: This table shows the limit order book of ESU6 before and after the arrival of the sell
aggressor listed in Figure 3. The response is the mid-price movement over the subsequent interval,
in units of ticks. pbi,t and dbi,t denote the level i quoted bid price and depth of the limit order book at
time t. pai,t and dai,t denote the corresponding level i quoted ask price and depth.

Using a model to predict the next mid-price movement is well suited to futures markets which
often experience a consistent surge of activity at particular times when participants enter into and
close out their futures’ positions. The importance of predicting in event time can be observed from
the hourly limit order book rates shown in Figure 4. In particular, a surge of quote adjustment and
trading activity is consistently observed between the hours of 7-8am CST and 3-4pm CST. At these
times, book updates may occur as often as every micro-second, where as at other times of the day,
the book updates may occur every tenth of a milli-second. Put differently, the 1ms ahead prediction
of the mid-price may be relevant for avoiding adverse selection at off-peak periods of the day, and
less relevant at peak periods.

Each limit order book update is recorded as an observation. The result of categorizing (a.k.a.
labeling) each observation leads to a class imbalance problem, as approximately 99.9% of the ob-
servations have a zero response. To construct a ’balanced’ training set, observations (sequences of
input variables) labeled by the minority class are oversampled with replacement and the majority
class observations are undersampled without replacement.
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Figure 4: The hourly limit order book rates of ESU6 are shown by time of day. A surge of quote
adjustment and trading activity is consistently observed between the hours of 7-8am CST and 3-4pm
CST.

Partially following Kercheval and Zhang (2015), we compose our feature set of five levels of prices,
volumes and number of limit orders on both the ask and bid side of the book. We additionally, and
somewhat heuristically via a process of ’feature engineering’, characterize order flow by the ratio
of the number of market buy orders arriving in the prior 50 observations to the resting number
of ask limit orders at the top of book. We construct the analogous ratio for the sell by orders.
This rationale for this ratio is motivated by our observation that an increase in this ratio will more
likely deplete the best ask level and the mid-price will up-tick, and vice-versa for a down-tick. The
combination of this spatial representation of the limit order book and the order flow gives a total of
P = 32 features.

4 Results

The exact architecture and weight matrix sizes of our recurrent neural network are given by

output : Y k = softmax(F k
y (hT )) =

exp(F k
y (hT ))

∑K
j=1 exp(F j

y (hT ))
,

hidden states : ht = max (WhXt + Uhht−1 + bh, 0) , t = 1, . . . , T,
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Ŷ = −1 Ŷ = 0 Ŷ = 1
precision recall f1 precision recall f1 precision recall f1 size

mean 0.092 0.830 0.165 0.996 0.793 0.881 0.090 0.838 0.161 99504.720
std.dev 0.031 0.077 0.050 0.004 0.075 0.050 0.027 0.080 0.045 68034.218

Table 2: This table summarizes the performance of the RNN over a 20 trading day test period. The
RNN classifier is used to predict the categories: {Y = −1, Y = 0, Y = 1}. The mean and standard
deviation of the daily precision, recall and f1 scores of each model are shown together with the average
and standard deviation of the training set sizes.

where Wh ∈ R20×32, Uh ∈ R20×20 and Wy ∈ R3×20. We initialize the hidden states to zero. We use
the SGD method, implemented in Python’s TensorFlow Abadi et al. (2016) framework, to find the
optimal network weights, bias terms and regularization parameters. We employ an exponentially
decaying learning rate schedule with an initial value of 10−2. The optimal `2 regularization is found,
via a grid-search, to be λ2 = 0.01. The Glorot and Bengio method is used to initialize the weights
of the network Glorot and Bengio (2010).

Times series cross-validation is performed over 20 consecutive trading days. Training sets are
compiled from the previous 3 trading days and contain, on average, 5, 192, 822 observations. These
sets are balanced resulting in a reduced training set size of typically just less than 100, 000 observa-
tions. The validation and test sets are compiled for the next trading day following the 3 day training
period. These are unbalanced, with the verification set containing 2× 105 observations and the re-
maining test set, on average, containing approximately 1.5 × 106 observations. Each experiment is
run for 1000 epochs with a mini-batch size of 500 drawn from the training set of 32 input variables.
We follow the standard convention of choosing the number of epochs based on convergence of the
cross-entropy and the mini-batch size is chosen for computational performance. Each sequence is
chosen to be of length 10. The gridded search to find the optimal network architecture and regu-
larization parameters takes several hours on a modern graphics processing unit (GPU). The search
yields several candidate architectures and parameter values.

Table 2 summarizes the performance of the RNN over 20 trading days. To reliably measure
performance on the unbalanced test set, we compute the F1 score - the geometric mean of the
precision and recall:

F1 = 2
precision · recall

precision + recall
.

The F1 score is designed for binary classification problems. When the data has more than two
classes, the F1 score is provided for each class k by setting Y = k to the positive and all remain
classes to the negative label. The score is highest for the zero label corresponding to a prediction
of a stationary mid-price over the next interval. The F1 scores for a predicted up-tick F1(1) and
down-tick F1(−1) are also shown. We observe that the performance of the RNN when Y = −1 and
when Y = 1 are the positive labels is comparable. As expected, the RNN can predict these classes
with comparable recall but drastically less precision than for the Y = 0 positive label model. The
average and standard deviation of the size of balanced training sets are shown by the size column.

Table 3 studies the effect of the number of time steps in the RNN model by performing time
series cross-validation over the 20 training days. The performance is observed to increase as the
number of time steps is increased from 1 to 10. This provides evidence for the need for recurrence
in the neural network. While the difference between 10 and 20 steps is marginal, a sharp decline in
performance is observed at 50 and 100 time steps. This suggests that short-term memory is adequate
for sequence classification. Although not shown here, we also observe that the number of hidden
units should be between 10 and 20.

Figure 5 shows some of the predictor variables used for the model comparison in Table 4. The
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n steps Ŷ = −1 Ŷ = 0 Ŷ = 1
1 0.089 0.528 0.091
2 0.097 0.837 0.103
5 0.131 0.848 0.120
10 0.165 0.881 0.161
20 0.163 0.878 0.162
50 0.151 0.836 0.144
100 0.118 0.807 0.115

Table 3: This table shows the effect of the number of time steps in the RNN model on the average
F1 score, as measure by time series cross-validation over the 20 testing days.

black line represents the observed change in mid-price over a 34 milli-second period from 16:37:52.560
to 16:37:52.594 on August 4th, 2016. We observe that the mid-price typically moves in two suc-
cessive half-ticks. A price level is first consumed and, with some small delay, a new price level is
subsequently quoted. The liquidity imbalance (blue), scaled here to the [−1, 1] interval, although
useful in predicting the direction of the next occurring price change, is generally a poor choice for
predicting when the price change will occur. It is clear from the results in Table 4 and the visual-
ization here that it’s inadequate for next-event price prediction. This order flow approximation is
a better predictor of next-event price movement, although used alone is difficult to interpret when
either of the buy (red) and sell order flows (green) are small or comparable in size. Hence, in the
spatio-temporal feature set, we combine the order flow approximations with the liquidity imbalance,
mid-prices and depths at other price levels.
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Figure 5: This figure shows some of the predictor variables used for the model comparison in Table
4. The black line represents the observed change in mid-price over a 34 milli-second period from
16:37:52.560 to 16:37:52.594. The liquidity imbalance (blue), scaled here to the [−1, 1] interval,
although useful in predicting the direction of the next occurring price change, is generally a poor
choice for predicting when the price change will occur. This order flow is a better predictor of next-
event price movement, although is difficult to interpret when either of the buy (red) and sell order
flows (green) are small.

Table 4 compares the performance of a various classifiers on the following feature sets: (i) instan-
taneous liquidity imbalance using the best bid to ask ratio; (ii) instantaneous order flow using the
liquidity imbalance, volume of buy or sell aggressors to resting quantity and mid-price; and (iii) the
spatio-temporal representation of the order book combined with the history of the aggressors. We
use uniform white noise as a control for the performance comparisons. First, the RNN is compared
with a logistic regression (LR) and a linear Kalman filter (KF) model designed for observations of Y
from the exponential family of distributions, for which the Bernoulli distribution is a member. We
emphasis that no history is incorporated in either model applied to the first two feature sets. As the
latter two models only support the modeling of Bernoulli random variables, we follow a standard
many-model representation of a multi-classifier, training 3 separate binary classifiers to represent a
3-state output. The probability threshold for predicting each positive state is set to 0.5.

The LR model is implemented in the glm R package and the KF model is implemented in the
KFAS R package (Helske, 2017). The KF model approximates the posterior density by simulating
1000 trials over a section of a single test set of size 108, 035 and is considerably more compute
and memory intensive to evaluate than the other classifiers. The recall and F1 scores of the KF
model applied to the liquidity imbalance predictor, and separately to the order flow predictors, are
all higher than the RNN and LR models, although some of the precisions are not. All methods
generally perform considerably better with order flow predictors than liquidity imbalance alone.

The spatio-temporal feature set contains 32 predictors, each lagged by up to ten times. To avoid
a multi-collinearity problem with including multiple lagged features in a LR model, we use the elastic
net method, implemented in the glmnet R package (Friedman et al., 2010; Simon et al., 2011). The
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KF model does not scale to this feature set. The RNN is compared with a two layer feed-forward
architecture with 200 hidden units in the first hidden layer and 100 hidden units in the second.
Feed-forward architectures are not designed explicitly for time series and so, as with the elastic net
method, we ensure consistency in comparison with the RNN by lagging each of the features up to
lag 9 resulting in 320 input variables. The choice of tuning parameters for the regularization and
learning rate can lead to large performance variations. The results reported here using an initial
learning rate of 0.01 and λ = 0.1, although several candidate values exist. In separate experiments,
not reported here, we observe that the performance of a deep feed-forward architecture can perform
as well as a RNN, however with so many more hidden units, the approach is more computationally
intensive and less robust to the choice of initial parameters.

Features Method
Ŷ = −1 Ŷ = 0 Ŷ = 1

precision recall f1 precision recall f1 precision recall f1

Liquidity Imbalance
Logistic 0.010 0.603 0.019 0.995 0.620 0.764 0.013 0.588 0.025

Kalman Filter 0.051 0.540 0.093 0.998 0.682 0.810 0.055 0.557 0.100
RNN 0.037 0.636 0.070 0.996 0.673 0.803 0.040 0.613 0.075

Order Flow
Logistic 0.042 0.711 0.079 0.991 0.590 0.740 0.047 0.688 0.088

Kalman Filter 0.068 0.594 0.122 0.996 0.615 0.751 0.071 0.661 0.128
RNN 0.064 0.739 0.118 0.995 0.701 0.823 0.066 0.728 0.121

Spatio-temporal
Elastic Net 0.063 0.754 0.116 0.986 0.483 0.649 0.058 0.815 0.108

RNN 0.084 0.788 0.153 0.999 0.729 0.843 0.075 0.818 0.137
FFWD NN 0.066 0.758 0.121 0.999 0.657 0.795 0.065 0.796 0.120
White Noise 0.004 0.333 0.007 0.993 0.333 0.499 0.003 0.333 0.007

Table 4: This table shows the performance results of various classifiers on the following feature sets:
(i) instantaneous liquidity imbalance using the best bid to ask ratio; (ii) instantaneous order flow
using the liquidity imbalance, volume of buy or sell aggressors to resting quantity and mid-price; and
(iii) the spatio-temporal representation of the order book combined with the history of the aggressors.
We use uniform white noise as a control for the performance comparisons. By setting the positive
to {Y = −1, Y = 0, Y = 1}, the precision, recall and f1 score are each recorded over a single test set
of size 108,035.

Figure 6 compares the RNN and KF model estimated probabilities of a next event up-tick (red)
or down-tick (green) over a 34 milli-second period from 16:37:52.560 to 16:37:52.594 on August 4th,
2016. The top graph shows the estimated probabilities from a Kalman filter with just liquidity
imbalance as the predictor. The black line represents the observed change in mid-price. The middle
graph shows the estimated probabilities using a Kalman filter with the predictors: liquidity imbal-
ance, mid-price and ratio of market orders to resting quantity. The bottom graph shows a RNN
using the spatio-temporal order book representation and ratio of market orders to resting quantity.
We observe that the RNN often correctly predicts the up-tick movement but also falsely predicts
movements when the mid-price is neutral. These false positives (or negatives), when the observed
mid-price is stationarity, oftentimes result in unnecessary order cancellations and loss of queue po-
sition. While the false positive rates can be reduced by increasing the threshold probability for
detecting a price movement, this may result in increased adverse price selection - the false predic-
tion of a stationary mid-price when the observed mid-price flips. Thus either the probability or the
probability threshold should be used in a market marking strategy.
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Figure 6: (top) Estimated probabilities of next-event up-ticks (red) or down-ticks (green) of the
book using a Kalman filter with just liquidity imbalance as the predictor. The black line represents
the observed change in mid-price over a 34 milli-second period from 16:37:52.560 to 16:37:52.594.
(Middle) Estimated probabilities of next event up-ticks (red) or down-ticks (green) using a Kalman
filter with the predictors: liquidity imbalance, mid-price and ratio of market orders to resting quantity.
(Bottom) Estimated probabilities of next event up-ticks (red) or down-ticks (green) from a RNN using
the spatio-temporal order book representation and ratio of market orders to resting quantity.

Figure 7 shows the F1 scores of the RNN, measured on any hourly basis. We observe little
variation in the F1 scores for up-tick and down-tick predictions and hence no evidence of secular F1
score decay and hence the need to retrain the model intra-day. In fact when we observe the opposite
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from the F1 score for predicting no book movement- the F1 score is observed to gradually increase
over the course of the day.
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(a) F1 score of Ŷ = −1 (b) F1 score of Ŷ = 0 (b) F1 score of Ŷ = 1.

Figure 7: The intra-day F1 scores are shown for (left) downward, (middle) neutral, or (right) upward
next price movement prediction.

Figure 8 shows the importance of retraining the model on a daily basis. The F1 scores are
observed to exhibit a secular decay when the model is not re-trained on a daily basis but instead
trained only at the beginning of the month. While the evidence for secular decay is clear, it is
surprising to observe that a model trained at the beginning of the month can still be effective weeks
later. Typically econometrics models for non-stationary time series perform very poorly when not
frequently re-fitted to new data. This surprising model robustness, without re-training, suggests a
robust relationship between the liquidity imbalance and price movements.

Figure 9 compares the Receiver Operator Characteristic (ROC) curves of a binary RNN classifier
over varying prediction horizons. The plot is constructed by varying the probability threshold (a.k.a.
cut-points) for positive classification Y = 1 over the interval [0.5, 1) and estimating the true positive
and true negative rate of each model. The dashed line shows the performance of a white-noise
classifier. We observe that the performance of the RNN decays as we increase the prediction horizon
from the next book update event to 1s in the future. Latency between trading systems and the
exchange is dependent on several factors including the execution platform, the distance of the co-
located server to the exchange and even the amount of incoming traffic to the CME matching
engines. It is commonplace however for this latency to lie in the range of 100 micro-seconds to 1ms.
Our estimate, based on preliminary investigation, is that a c/c++ implementation of our RNN can
predict in around 100 micro-seconds on a modern CPU with compiler optimizations but without
low level programming techniques for code optimization.
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Figure 8: The F1 scores over the calendar month, with (red) and without (blue) daily retraining of
the RNN, are shown for (left) downward, (middle) neutral, or (right) upward next price movement
prediction.

Figure 9: The Receiver Operator Characteristic (ROC) curves of a binary RNN classifier over vary-
ing prediction horizons. In practice, the prediction horizon should be chosen to adequately account
for latency between the trade execution platform and the exchange.
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5 Conclusion

Recurrent neural networks (RNNs) are types of artificial neural networks (ANNs) that are well
suited to forecasting and sequence classification. This paper solves a sequence classification problem
in which a short sequence of observations of limit order book depths and market orders is used to
predict a next event price-flip. The capability to adjust quotes according to this prediction reduces
the likelihood of adverse price selection. Our results demonstrate the ability of the RNN to capture
the non-linear relationship between the near-term price-flips and a spatio-temporal representation
of the limit order book.

Our assessment, based on CME listed ESU6 level II data over the month of August 2016, is
that RNNs are well suited to expressing the non-linear relationship when the next event mid-price
movement and very recent history of the liquidity imbalance, order flow and other properties of
the limit order book. Since longer memory in our features appears negligible, we speculate that
there is little to no benefit in using a LSTM. In order for the RNN to be implemented for use in a
HFT market making strategy, we recommend pursing the following: (i) first design a market making
strategy that is profitable after accounting for additional latency resulting from the compute time
of the RNN prediction; (ii) assess the profit impact of false positives and false negatives during
backtesting; and (iii) commensurately extend the strategy to ’weight’ the model probabilities of a
book flip with loss of queue position resulting from a cancellation.
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