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ABSTRACT

Understanding the morphology of an urban system is an important step toward unveiling the dynamical processes of its
growth and development. At the foundation of every urban system, transportation system is undeniably a crucial component
in powering the life of the entire urban system. In this work, we study the spatial pattern of 73 cities across the globe by
analysing the distribution of public transport points within the cities. The analysis reveals that different spatial distributions
of points could be classified into four groups with distinct features, indicating whether the points are clustered, dispersed or
regularly distributed. From visual inspection, we observe that the cities with regularly distributed patterns do not have apparent
centre in contrast to the other two types in which star-node structure, i.e. monocentric, can be clearly observed. Furthermore,
the results provide evidence for the existence of two different types of urban system: well-planned and organically grown.
We also study the spatial distribution of another important urban entity, the amenities, and find that it possesses universal
properties regardless of the city’s spatial pattern type. This result has one important implication that at small scale of locality,
the urban dynamics cannot be controlled even though the regulation can be done at large scale of the entire urban system.
The relation between the distribution of amenities within the city and its spatial pattern is also discussed.

Introduction how well the city is doing in terms of economy.

Study of urban systems—how they form and develop— In the recent years, with the availability of technologies
constitutes an important portion of human knowledge, no&nd new mapping techniques, various forms of data on urban
only because it is about our own physical space of daily lieystems have been collectédhese data sets have enabled
ing but also for understanding the underlying mechanisms ¢gsearchers to gain a deeper insight into the spatial stest
human settlement and civilisation on the Earth’s surfaee th €xisting in urban systems. One such data set is on the street
may be fundamentally similar to other forms of organisatiortnd road networks which form the backbone of any urban
like biological cells in our body or animal colonies. Urbansystem, and therefore, contain rich information about how
systems, or “cities” in modern terms, are typical example ofhe City is organised. A good amount of research have been
highly complex systends” in which overwhelmingly many Performed on understanding the pattern of streets in many
agents are interacting in non-trivial and non-linear masne different cities around the worf~'® However, there are
over a wide spectrum of spatial and temporal scales. The @ortcomings of studying urban morphology based on street
sults of such tangled interactions are the emergence of unéetwork when it has been noticed that the streets are not al-
pected global patterns that cannot be solely derived fram thvays well defined®!’ Public transport points, conversely,
local knowledge of individual agents. Among these compleRre well defined and can gauge the level of socio-technical
patterns are the spatial patterns delineated by the physicievelopmentin an urban system as they represent the degree
locations and shapes of urban entities like buildings, garkof mobility activities taking place within the urban system
lakes or infrastructuretc. ..., i.e. the urban morphology.A  Furthermore, public transport network is design to seree th
good understanding of the morphology of an urban systefi¢sidents of the city to perform activies on every aspect of
provides us with the comprehension of its current status dfaily life (going to school, commuting to work, shoppingzen
development or even the living condition of people inside itertainmmenttc...), and therefore, can be used as a good
For examp]e, the number of residential bu||d|ngs is a googroxy of the residential distribution within a City. At the-i
gauge of the population size and the population density me&rplay of these factors, spatial pattern of distributibtrans-
sures the crowdness that every resident has to experienced@rt points can provide us with rich insights into the morpho
his or her daily life, or the infrastructure is an indicatdr o 09y or, in some cases, even the morphogenesis of an urban

system.
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The analysis shall reveal that there exists a typical vafue dhe size of the largest clustémax(p) increases monoton-
distance among transport points within each city. Thischaically as p increases. Again, it is also a step function,
acteristic distance reflects the accessibility of eachspart  but we assume in this study that the profiggx(p) and
point and connectivity of them as an entire network, and\max(p) can be approximated by well behaved and smooth
hence, can be employed in measuring the physical area fainctions so that their derivatives exist at all points (see
the transport network’s coverage. Interestingly, thisadse “Characteristic distancesamong transport points’ and
shown to exhibit a scaling relation against the characterisSpatial patternsin urban systems’). In the regime of

tic distance with a non-trivial value of the scaling exponensmall buffer radiup, émax(p) slowly increases because the
Furthermore, the spatial distribution pattern of the tpams  clusters are still disjoint. Ap enters an intermediate regime,
points can be quantified and shown to belong to two maidmax(p) increases faster than it does in the snmallegime.
groups in which the points are either approximately equidig his is when the larger clusters merge together making the
tant or they are distributed apart with multiple length esal significant expansion in size of the largest cluster. @As
The first group contains cities that appear to be well-pldnneincreases further, there is no further significant change to
i.e. organised type, while the second consists of cities thdahe size of the largest cluster as it has encompassed most
tend to spread themselves over a large area and possess mbrthe points in the domains, leaving only minor portions
uniform spatial density of urban entities at different lémg surrounding. The intermediate regimemftherefore, could
scales,.e. organic type. In addition to public transport net-be seen as a region of “phase transition”, similar to that in
work, we also look at the distribution of amenities within physicst® particularly percolatiort®

each city to investigate the relation between these twostype In percolation, every point is assigned a variable called th
of urban entity. We first find that the distance between amerpercolating probability that controls the ability of onéesio

ties to their nearest transport points within a city folleawo- connect to another in the domain. The higher the percolating
bust exponential distribution across all the cities comsd, probability is, the easier the site is connected to othard, a
regardless of the city’s type being organised or organib-Suvice versa. The percolating probability is then viewed as a
sequently, we observe a clear quantifiable relation betweeamntrol parameter in the system. The transition occurs when
this amenity-transport point distance and the densityaofdr the control parameter is adjusted to a critical value (date

port points; and the type of the city can also be seen in thigritical point) at which the system transits from one state (

relation. phase) to another with distinct properties, namely the non-
percolating and percolating phases respectively at low and
Results high percolating probabilities. The behaviours of the eyst

) o _ approaching the critical point can then be used to classéy t

Using a method of cluster analysis inspired by perc°|at'0§tystemj.e. identifying its universality clas®
18 - i . L , o

theory;® we are able to characterise the spatial pattern of Applying this idea to our system of transport points within
_pubhc transport points in u_rb_an systems. The spatial spatt a city, the buffer radiup could be viewed as the control pa-
is characterised by quantifying the size and area of a domismeter. For small values @, the system is irsegregate
nant cluster of transport points as functions of a distar@ee pphase, while it is inaggregate phase for large values .
rameter. This distance parameter (also the buffer ragius) The transition from one phase to the other takes place in the
represents the extent of vicinity around every transpantpo intermediate regime gb. The manner in which the profiles
in the system, hence, the point's connectivity. Larger &aluof the largest system sizimx(0) and aredmx(p) transit

of p means the neighbourhood of a point is extended, angrough this region can characterise how the transportgoin
therefore, can encompass more points within it. A pair ofye distributed within a city.

points are said to belong to the same cluster if and only if
the Euclidean distance between them is less than or equal@haracteristic distances among transport points
p. The size of a cluster is defined as the number of points iMhe intermediate regime gi can be identified and charac-
the cluster while its area the union of area of circles of uni- . . . I dé max
form radiusp centred at the points in the cluster. A dominantlens{ad by analysing the first derivatiffs, (o) = %
cluster is the cluster with either largest s&gx(p) or largest  of the cluster size. This quantity, which is interpretedrees t
areaAmax(p). The clusters in the two occasions are not necesate of cluster size growth per unit of buffer radius, proghic
sarily the same one. For simplicity of all discussions belowa peak every time a jump occurs in the cluster iz&(p),
unless stated explicitly, descriptions for cluster sfzalso i.e. when the cluster merges with others and grows. Every
hold for cluster are@. peak in&/..(p), therefore, signifies the existence of one or
When p is small, the number of clusteng(p) is large a few clusters of points located at a farther distance beyond
because most of the points are not connected and th#yose inthe currentlargest cluster thatis being tracec ks
form their own clusters. A increasesy)(p) decreases sult, this would provide us with the information on the lemgt
monotonically because of merger of small clusters. Irscales of distribution of points within the set. It can bellgas
fact, it is a step function because the pairwise distanceseen that if there are many peaks, the points are distrifiuted
between points are discrete in value. On the other handusters that are apart with different distances; whe feaex-
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istence of few peaks implies a uniform distribution of psint Spatial patterns in urban systems
that are (approximately) equidistant from one another.idn eThe characteristic distances introduced above tell us evher
ther case, it is without doubt that there exists a charastieri about the transitions of cluster size and area take place but
distance in the spatial distribution of points. This chégac they do not tell us how the size and area of the cluster tran-
istic distance should tell us the length scale above whieh thsit from small to large value,e. how the cluster grows. This,
points are (largely) connected and below which they are disowever, can be easily characterised by further exploitiag
connected. analysis of peaks i§«(p) (@ndA;«(p)). Itis a matter of
Since all peaks in the derivatii . (p) contribute to the fact that if the cluster grows rapidly through the transitio

growth of the clusteénax(p), @ measure of the characteristicthere are very few peaks Efax(p), all of which are sharp
distancep; must take into account the effects of all of themand localised. On the other hand, the peaks are scattered ove
However, a high peak indicates a more significant increase fWide range op should the cluster gradually grow. The stan-
cluster size (a major merger) than that indicated by a lowefard deviation of the Iocatiop;i of the peaks, or the spread
one. Hence, the average of all valuespét at which a peak of trangition O¢ for cluster size, is a g_ood_ measure of such

’ d€ max(P) scatterl_ng. quever, a low peak that_|s c_il_stant from a group
= “dp of localised high peaks should not significantly enlarge the

) ) i P:Pg,i _ spread. Therefore, the standard deviatiop;)if needs to be
of the peaks, is an appropriate measure of this charaaterist = i t X
weighted by the helgrﬁ,;,ax(pé‘i) of the peaksi.e.

occurs, weighted by the heigf}ilax(pg )

distanceij.e.
Ty of 2
L Yidhex(Pf)Rg Si Erex(P] ) (pgi - pg)
P S il s R @
i Smax pg,i Vi Er{nax(pg,i)
Similarly, we have for the cluster area Similarly, we have the spread of transition for cluster area
. YiMex(O)0R, (o —px)
o4 = '/—A"TA"_ (2) i Arex(Pa ) (PA,i - PA)
Zi Annx(pA,i) oA = , T . (4)
i Arrax(PA,i)

The_ ana}lyses of p_eaks n size profi rax_(p) and area The combination of these two spreads of transition enables
profile AL, (p) provide different perspectives on the spa- : ; N

L maxt . . - us to characterise the pattern of different types of spatiadt

tial distribution of points. The size quantifies the numbeEjistribution by interpreting different regions of tfey , )
of points with respect to the distance while the area furs y P 9 9 ez, On

ther takes into account the relative position of the pointd"fjlgr"’“”n (see Figl). There are four different types of dis-

The two are not redundant but rather, one is compleme?rlbuuon that can be identified using the spreads of transi-

i . . .tion in sizegg and areaoa. The first one is the region of
tary to the other. This comes to light in the next SeCtlonsmalla ~ Ga in which both&mme(p) and (p) exhibit a
“Spatial patternsin urban systems’ when the combination § ~ oA max{/0 Prex( 0

of the two allows us to classify distinct types of distritmurti sharp rise. The second one is the stripe of medium-to-large
of points 0z ~ 0p in which émax(p) and Amax(p) exhibit gradual in-
p_ ' hy thab* ando: giff ‘ h crease and almost every peakjp, (o) has a respective peak
Itis noteworthy thapy andp, are difierent from the aver- j, Alax(P). The third one is the region @f; > oa in which
age of pairwise distance among all points in the set becaugg, peaks irf/.(p) tend to spread over a wider rangegf
they encode the connectivity of the points in terms of spatigngn those im";ax (p). The last one is the region of < da

distribution. In othe.r words, the two charactgristi(_: distas in which the peaks i/, (p) tend to be more localised than
are measure of typical distance between points in the set jfose AL, (0)

the perspective of global connectivity of all poir_wts. In tom- In this analysis, for practical purpose, the regions arerdet
text of transport points, they translate to the distancet@®e ined by a 50-meter rule. According to that rutg,, oa <
to traverse to get from one point to another in order to explorg ) . <t e the smalo; ~ o region, |0y — GA" <50
the entire system. It then follows that a large value of Chafbg, 0a > 50) constitute the medium-to-large ~ o, region,

actgns'uc distance implies a sparsgly distributed seboftp 0¢ — 0a > 50 constitute thes; > 0 region andgg — o <
which could reflect a poorly covering network of transportgy - titute thes; < o region

This agrees with a low density of points per unit area (see

“Area of system of transport points’ for more details). For
the 73 cities considered in this stuqlg, is found to be in the
range 200- 1200m with most cities havingé* in the range
200—500m. The ranges are 2601700m and 306- 500m

for px.

Single-scale regular pattern
In the bottom left corner of théog, oa) plot lie the points
with gs,0a < 50. These points represent the profiles of

Emax(p) and Apax(p) with localised peaks in bot;..(p)
and A (p). This signifies a characteristic length scale at
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Figure 1. Interpretation of different patterns of spatial point disiitions given different values of the pdios, oa).

which most of the points are (approximately) equally spacethrgest cluster is of comparable size or area to severat othe
from each otherge.g. grid points. The boroughs of Bronx, clusters. The most important feature of this spatial patter
Brooklyn and Manhattan of New York city are typical exam4s that the jumps in the profile dfrax(p) correspond well
ples of such kind of distribution (see Fig(a)). The spatial to those inAmax(p), even though the locations of the jumps
pattern of the transport point in these cities appears \@gy r are spread apart. That leads to the (approximate) equdlity o
ular. In fact, inspecting their street patterns, one cailyeas the spread of transitions; and oa despite their not being
tell the pattern of parallel roads in one direction cuttingge small. A good example of this type of distribution is the city
in the other dividing the land into well organised polygonsof Epsom in Auckland, New Zealand (see F3gb)).

with almost perfect square and rectangular shapes. Appar-t is also interesting to note that within a city itself, diff
ently, this feature must be a result of well-designed and tognt parts can possess distinct spatial patterns of thepwans
down planning before actually building the infrastructime points. For example, even though New York city is known

the city13 to be a well-planned city with grid-like street patternst alb
of its five boroughs share that nice feature. Only Manhattan,
Multiple-scale regular pattern Bronx and Brooklyn have smatt; andoa while the spreads

The transport points in a city can also be distributed in a regre larger for the other two boroughs, Queens and Staten Is-
ular manner but at different length scales. For example, thand. This factindeed complements the result reporteceearl
entire set of points can be divided into several subsets andat Queens exhibits a distinct spatial pattern differeminf
within each subset, the points are (quasi-)equally distant  the other borough¥ St Louis in Missouri, USA, is another
each others. At larger length scales. p increases further, interesting example. Two halves of the city on the two banks
these subsets of points are again (quasi-)equally digtamt f of Mississippi river appear to have different spatial paise
each otherj.e. hierarchical structure. The buffer radips when they possess different values of the jggiandoa.

can thus be thought to play the rdle of a zooming parameter.

In this multi-scale regular pattern, the profile of the latge Clustered pattern

cluster sizeémax(p) and areaAmax(p) experience a signifi- There are cases in which the jumps in the profile of largest
cant jump every timgp changes its zooming level. At the cluster sizeémax(p) don't correspond to those in the area
lowest level are individual transport point. Whpnzooms — Apax(p) andvice versa. In such cases, the spatial distribu-
out to the second level, the points that are closest to eation of the transport points deviates from regular pattevids
other start to form their respective clusters. Moving to thdirst consider the scenarios in whicl > ga. For such dis-
next level, the nearby clusters start joining to form laigjas-  tributions, the points are clustered and tend to minimise th
ter but there will be many of these “larger clusterisg, the  coverage area. Wheog > 0a, there are jumps in the size
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Figure 2. Types of spatial distribution of transport points in citesoss the globe. The three reference lineszre: oy,
Op = Og + 50 andop = Oz — 50.

of the largest cluster size that do not give rise to a jumpsin itlargest cluster. If the acquired cluster are not compacits
area. This happens when the points of an acquired cluster greints span a larger area, there might be significant inereas
compact, contributing very little increase in the area @& thin the area of the largest cluster and, hence, a peak would be
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(a) Brooklyn, New York, USA. The spreads of transition foe tizeo; and areasa are both small. This is an example of single-scale reguldigiributed
pattern,i.e. grid.
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(b) Epsom, Auckland, New Zealand. The spreads of transitiothe sizegs and areau are not small but stay comparable to one another. This is@mgie
of multi-scale regularly distributed pattern.

Figure 3. Typical cities of single and multiple-scale regular sggigtterns. In each subfigure, the left panel shows the
location of transport points within the city, the upper tiglanel the profile of largest cluster siggx(p) together with its
first derivativeé/ . (p) and the lower right panel the profile of largest cluster #ga(p) together with its first derivative

Arax(P)

reflected by its contribution tas. However, the size mea- This happens when the points of an acquired cluster are dis-
sure is not affected as it only tells the number of points thgbersed (but still within the buffer radius so that they beglon
are included in the cluster but not their relative locatiagthw to the same cluster). This way, the increase in the area of the
respect to each other. largest cluster is more significant than that in its sizeyltes
The distribution of transport points in the city of Turin in iNg 0z < 0a. A good example of this type is the distribution
Piedmont, Italy (see Figk(a)), is a good example of this type. of transport points in Manchester in Greater Manchesteg; En
The points appear clustered and compactly distributeddtut nland (see Fig4(b)). The points appear in dispersed pattern

regular or grid-like. of long roads around the city.
If the feature of single-scale regular spatial pattern (whe
Dispersed pattern both gz and o are small) is a result of well-designed and

On the other side, we have the scenariosopf< gp, in top-down planning in an urban system, the other spatial pat-
which the points are dispersed and tend to maximise the cderns (eithergs or oa is not small) can be intepreted as a

erage area. Whea; < dp, there are jumps in the area of consequence of developing an urban system under local con-
the largest cluster that do not give rise to a jump in its sizetraints. In the former case, the urban system appears to be
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(@) Turin, Piedmont, Italy. The spread of transition in peéd the size is more than that for the area of the largesterlus; > oa. This is an example of

clustered pattern.

X :I_O4 Manchester, Greater Manchester, Englar 1 normalised size
T T T T T T T T T
= 001 =
¥ Z051 1 5
o " 0.005+,5
0 A Al LN | | \H\J‘L | 0
0 800 1000 1200 1400 1600 1800 2000
p (m)
1 normalised area
T T T T
— 0.01 —~
= =
50.5F 5
n < I 0.005+ =
% /‘Mr‘ ‘ ) I )
» VA L i o il I
L L . L 0 } MAA LN g na L Lol JIVENAY 1 onn UL ndnll 0
-2 -1 0 1 2 0 200 400 600 800 1000 1200 1400 1600 1800 2000
x (m) x1C p (m)

(b) Manchester, Greater Manchester, England. The spremdrsition in the peaks for the size is less than that for tha af the largest clustegy < oa.
This is an example of dispersed pattern.

Figure 4. Typical cities of clustered and dispersed spatial pattdmeach subfigure, the left panel shows the location of
transport points within the city, the upper right panel thefite of largest cluster siz&max(0) together with its first derivative
&l x(p) and the lower right panel the profile of largest cluster @ga(p) together with its first derivativey.(p)

of organised type while in the latter, it can be said to be ofrom which the roads diverge radially to the outer part of the
organic type when its spatial features develop in an adhatty. This observation could by explained by the growth pro-
manner as the city grows. The revelation of spatial patternsess of different types of urban system. When a city grows
in urban systems from the analysis in this work could implyorganically, it starts from a central business district gratl-

two different types of process that the cities undergo thhou ually expands to encompass the nearby area to accommodate
their course of development. more people wanting to participate the business activéites

Visually inspecting the spatial distribution of transportthe centre. On the other hand, when a city is planned b_efore,
points within the cities, it appears that cities with reglyla the planners seem not to (_:oncentrate the !nfra_structumn o]
distributed pattern, either single- or multiple-scale, re confined area but stretch it across the entire city.
have an apparent centre. That means there is no spatial pref-
erence in the distribution of the poinise. no part is special Universal features in urban systems
than the others. This is in contrast to the other two types dfrea of system of transport points
cities in which star-node structure can be clearly observeBespite the difference in the spatial pattern of the diatrib
The node represents the centre of the city at which there f®n of transport points, all the cities considered in thigly
higher density of transport points than the other areas, arapbpear to possess a common relation between the density of
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points and the characteristic distance of gogaTo explore 1 = —1.29 is not a relation that can be achieved with any

this, we first define the characteristic area of a set of pointgalue ofp. The relation can only hold at some value of the

which is the union area of circles of radipg centred at all  buffer radius likgoz, given the structure in the distribution of

points in the set=(pz). The characteristic distance of areaN points. Because of this feature, we considgthe charac-

px represents the typical value pfat which the area of the teristic distance of a set of spatially distributed points.

entire system experiences the transition. Further inergas

p after that does not contribute to as much increase in thiemenity distribution

area of the largest cluster and the cluster, thus, wouldlent&Beside transport system, which is represented by a network

unnecessary area. The valuextp,) is therefore expected of transport points, the morphology of an urban system can

to be a good proxy to the essential area covered by the setg@lbo be understood from another angle by examing the dis-

points given their spatial distribution. In the case of §port  tribution of amenities within it. It turns out that despitesp

system, we call this area the serving area of all the transpaessing different types of distribution of transport psirihe

points. cities appear to share a common universal distribution of
Having defined the area, it is easy to calculate the densitymenities. The analysis of locations of amenities in all the

of points per unit area, which is simply the ratio between theities reveals that the (Euclidean) distafeof an amenityk

number of points and the area they cove N From em- toits nearest transport point follows a robust exponedtzi

tribution. That means the probability of finding an amenity
pirical analysis, we find the data fit very We” to the relationyith distanceQ to its nearest transport point decays exponen-
N tially with Q, i.e. its probability density function is given by

sz\) O (pa)~ ()

with T &~ 1.29. Figure5 shows the empirical relation between
the two quantities. The relation in Ecp)(is well obeyed by \yhich renders its mean and standard deviatian yariance)
all 73 cities. It is a remarkable relation given the scatteregqual
relation betweem, andN or =(p;). For reference, the arti-
ficial generated data, including both random and regular pat
terns (see Discussion” for details) are also included in the
plot but not in the fitting itself. As can be observed, those
points generally stay below the points for the 73 cities. In Fig. 6, the mean(Q) and standard deviatioo(Q) of

It should be further noted that the relation in E§) 6r  shortest amenity-transport point distance for differati¢s
Fig. 5 is not a trivial one. To see this, we consider the twoare shown to stay close to the diagonal lio&Q) = (Q).
scenarios op in extreme limits,0 > 1 andp < 1, and its  The exponential distribution of the distar@ds strongly sup-
ported by further veriyfing that higher moments of the distri
butionP(Q) fit well to

P(Q)=Ae "2, (10)

(@) = 0(@) = /12 — (@)= 1. a1

. .. N
relation with ——. For the small extreme valup,< 1, all

clusters include only a single point, and there are, heNce,
clusters. We, therefore, have

n
_ ) Q" =5 (12)
=(p) =Nmp (6)
. . . up to fourth ordem = 4.
which yields the relation

y It has to be emphasized that the distribution of distance
N 1 0p-2 ) from amenities to their nearest transport points followsxn

Z(p) mp? p ponential rather than a Poissonian one. That means the mean

of such distance is (approximately) equal to its standavé de
ation rather than variance which holds for a Poisson distrib
tion. The robust distribution of amenities across all cifyes
has one important implication that the local growth process

At the other extreme valu@, > 1, there is only one single
cluster that encompasses all points concentrating at titeece
of the union area. We, therefore, have

=(p) ~ 02, (8) in urban systems appears to be ind.ependent of human inter-

vention and larger scale of the entire system. That means

which leads to planners can plan the large-scale growth process like-trans
N N portation but the small-scale growth process like locai-bus

% ~ 702’ (9)  ness siill takes place on its own. But it remains a significant
- question why the distribution is exponential, not any other
which in turn displays scaling behaviour like in E) (fand  form. In fact, exponential decay in spatial urban patteias h
only if the number of point®l scales withp. been long reported in literatufé.Using this feature as a fact,

The whole argument about the extreme valuep @ to  a model has been constructed to successfully capture the mor
illustrate that the scaling relation in Ecp)(with exponent phology of urban systentg.
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Figure 5. Empirical relation between density of point per unit ared tre characteristic distangg in log-log scale. The
fitting line has slope-1.29 and was obtained with linear regression coefficie®?of 0.8. The artificial generated data,
both random and regular, were not included in the fitting.

Relation between transport point and amenity dis- large or smal{Q). A large value of(Q) (and hence, large
tributions standard deviatioor(Q), too) implies a city with sparse dis-

There appears to be a relation between the density of trafdoution of a_melr_lll(tles WITen they are dlsta_nt from the naares
port points within a city and the distribution of its ameegi tansport point like Dallas or San Antonio in Texas, USA.

Figure7 depicts this relation by plotting the average distanc®" the other hand, a small value () suggests that the
amenities are built close to public transport points impdyi

(Q) agaisnt the density——. It could be observed that the existence of sub-centres or several small towns oiatistr

—\FA . . .. .
only the lower-left triangle of the plot is occupied, leayin Within the city, such as Turin in Piedmont, Italy.
no points in the upper-right corner of the plot. That means )
there are no cities with high density of transport points,andiScussion

at the_s_ame t:jmﬁ’ having large (averag_e) d'Stir_lce bet&n&aen-ﬁhe present work analyses the features of the spatial -distri
amenities and the nearest transport points. This can blg easy o patterns of important entities in an urban system, th
understood .by the fact that in cme§ with high density of thepublic transport points and the amenities. The former ones
”a.”Sp‘;]” points, the rpﬁd netv;:ork:jsl very denfse, t?]e t[:lhsp are part of the backbone of any urban system, the street net-
pomtsl a\r/]e to Sta}’ _W't in a short |st§}n%e % (_alac ot g' ARork which plays essential rdle in enabling flow or exchange
a;}resutt),l_t e amenities must necessari yh € r:“ t Ver_ng S€ of various processes in the city. The advantage of knowledge
the public transport points. It turns out that those CIti#W ¢ \hese transport points is that they can be well defined and
very high density of transport points are those with singlés iy collected and at the same time provide other informa-
scale regular patter of distributione. the points are regu- i, jie the residential distribution within the city. Thetter

larly distributed at (approximately) equal distances fieah ones, on the other hands, can gauge the size of population

other like grld_pomts, such as San Francisco or the boroug@% well as the level of activities in the city. The resultseihv
of New York city. different types of city with distinct spatial patterns. Tdiges

At the other end, the cities with low density of public trans-are shown to be either of organised type, in which the estitie
port points can exhibit a wide spectrum of average amenitgre well spaced as if they are built top-down, or of organic
transport point distancé&Q). These cities can either have type, in which the entities are spaced with multiple length
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Figure 6. Standard deviatioo (Q) vs. mean(Q) of distance from amenities to nearest transport pointsiméhch city.
The reference line is (Q) = (Q).

scales as if they grow spontaneously. In either cases, fhe tyar grid of points in a square lattice, the points are rangoml|
ical distance among the transport points can be described Hisplaced by a small amount not more than a quarter of the
a characteristic distance. Despite the different typedef t lattice spacing. It turns out that both the randomly and regu
cities’ spatial patterns, the density of the transport fsoéx- larly generated data produce simple behaviours through our
hibits universal scaling behaviour with this charactéridis- analysis. In particular, the peaks in size and area gegerall
tance. On the other hand, the distance from amenities to th&ioincide with each other and stay localised (the random sets
nearest transport points also follows a robust exponettisal tend to produce more peaks while the regular ones have only
tribution for all cities studied. Furthermore, there is @par- one peak as expected), and hence, lgtland ga are small
ent relation between the distributions of transport poamd  indicating regular pattern of distribution. At this pointe
amenities within the cities. These facts signify some univewould like to link the analysis with the idea of measure of
sal mechanisms underlying the growth and development thabmplexity of a symbolic sequené&?® The idea states that
all cities have to undergo. both regular and random (in the sense of a random number
In an attempt to understand the processes that generagenerator) sequences possess very low measure of complex-
the spatial distribution patterns of the transport poimie, ity as their structures or patterns are simple and easy to be
artificially generate some distributions of points on a twopresented in terms of the so-callegnachine?® Along that
dimensional surface. In the first distribution, the points a line, it could be argued that the patterns observed in the dis
generated at random locations within a domain with uniforntributions of transport points from the real data of 73 sitie
probability. In the second distribution, starting from gue around the world are more complex then those in the artifi-
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Figure 7. Relation between density of transport pm% and average amenity-transport point distaf@e Refer to
=Pa

Fig. 2 for codename of the cities.

cially generated data. The generated data, which is measj(p) by the union of are&(p) of circles of radiusp centred at all points
to be either regular or completely random possess, only sirf-the domain. , o
ple structure as we have argued above with small spreads The identification of the clusters can be done by using a sitplristic

. B . cluster finding algorithm that starts with a random pointthimset and grad-
andoa. The real world data might well contain m|Xture_S be-ally identifies the other points of in the same cluster. diively, one can
tween regular and random patterns that could result in botimploy the method of DBSCARE setting the noise parameter to be zero.
the clustered and dispersed patterns that we have reparted ' two methods are identical and yield the same results.

“Spatial patternsin urban systems”.

Analysis

For any cluster-related quantity, we attach the subsériptassociate it with
Method cluster size whileA for cluster area. For simplicity of all discussions, unless

stated explicitly, descriptions for cluster sigealso hold for cluster areA.
General ideas To quantify the spatial pattern of the set of points, we vagyhuffer ra-

For the analysis, we propose a procedure to characterispdtial pattern of  dius parametep. As p increases, the farther points can belong to the same
a set of points. The procedure involves identifying clustrpoints, whose  cluster. As a result, the clusters can merge to increase staei. Tracing
pairwise distance does not exceed the value of a parametequentifying  the behaviour of the largest clusax(0) can provide us with the way the
the grow:jh of tze clustershashthe pgrar::eterhvalge increases. ) points are distributed within the set. For example, the fraff the first
Consider a domai® which can be thought of as a city or a town. In this o d dA o
domain, there arhl pointsi distributed, eacrglJ of which rep);esents atransportder'vat'veéélax(p) = W (@ndAm(p) = F(TXT(M) can indicate at
point located at coordinatesq,yi). We introduce a parameter called the which distancep, the points are (largely) connected in a single cluster. Be-
buffer radiusp to construct the clusters. Any poifptwhose distance causeémax(p) increases monotonically with, we introduce the so-called
characteristic distance p; at whichémax(p) exhibits the most significant in-
dhi = /(6 =x)%+ (v —j)? 13  ¢rease. In some casei the i
. , profilgx(p) shows a sharp narrow increase
from pointi is less than or equal o, belongs to the same clusteriadie ~ around a valu@. While in other cases, several small increases are observed
denoten (p) as the number of clusters given the buffer radiusFor each ~ SPreading a wide range @f. To account for that, it is also meaningful to
clustera, we define the cluster sizg (p) and the cluster areiy (p). The  introduce a quantityy, calledspread of transition, to measure the overall
cluster size is defined as the number of points in the clustéttize cluster ~ Width of the increases in the profile &fax.
area the union of area of circles of uniform radjusentred at the points in ~ Torecap; is the value op above which there is a significant transition
the cluster. To make different domains comparable, we nisenthe cluster  in the largest cluster siz&mx(p) (see peak analysis irPtak analysis’);
size&q (p) by the number of pointdl in the domain, while the cluster area g measures the width of the transition. The respective gissifor cluster
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area argpy andoa. We then use the union area with this buffer ragigsof
all points in the system as the effective ai@jy) of the point set.

We refrain from looking at the average value of distributaiithe cluster
size or area as these measures are vulnerable againstierdats,i.e. out-
liers. For example, when the buffer radipds sufficiently large that most
but a few of the points in the dataset belong to a single ldgiar(t”) cluster,
there are only two (or more) clusters and the average clssterwould be
half (or less) of what it is supposed to be.

Peak analysis

As the buffer radiugp increases, the size of the largest clusigi(p) also
increases. It can be easily observed that the profil&gf(p) exhibits an
either sharp or gradual increase. The former introduceagiesdominant

confined within areas on Earth’s surface spanning less thakn in both
dimensions, we find the approximation method below sufficierth errors
being less than.8%2°

We convert the spherical coordinategs = (¢i,6) to Cartesian coordi-
natesri = (x;,Y;) for every pointi in the dataset by first setting the origin of
the plot. The origirO is the centroid of all points

1 N
P =(@)= N i;‘piv (15)
for whichro = (0,0). The Cartesian coordiantes of a poins then deter-
mined based on its great-circle distance from the or@irin particular, the
x-coordinate of is its (signed) great-circle distance from the point tha ha

peaks in the profile o, (p) while the latter a set of peaks scattering over the same longitudg¢o asO and the same latitud@ asi itself. On the other
a wide range ofp. This scattering of peaks can be quantified using thehand, the/-coordinate of is its (signed) great-circle distance from the point

standard deviation of their locations, weighted by thengtle (height) of
the peaks. A small standard deviation implies a sharp iser@aémax(p),
andvice versa, a large standard deviation signifies a gradual increase.
In our analysis, we consider the profile&f,,(0) (andAr.(p)) at every
value of the buffer radiup ranging frompnin = p1 = 10M t0Prmax = Pm =

2000m in the step ddp = pi+1 — pi = 5m, Vi. Since the values of the buffer

radius are discrete, a poifi, &ax(0i)) is a peak if and only if

Emax(P1) > Emax(Pi-1)
Erax(01) > Erax(Pi+1)

This discrete nature also produces a lot of small noisy pdalaur analysis,
we filter these noisy peaks by offsetting the entire profilégf,(p) by a
sufficiently small amount and considering only the positemaining peaks.

The value ofpg will then be the mean gb of all peaks, weighted by the
peak heighi/..(p) (see Eq.8)). The spreads; is the standard deviation
of p of all peaks, again weighted by the peak hei§hi, (o) (see Eq.4)).

(14

Implementation

The cluster analysis is implemented in Python, usihgpel y library to
calculate the union area. We also IBSCAN library for DBSCAN analysis
to compare with our method.

Data

Data collection

The public transit-related data was collected by Baserghiiologies us-
ing different available API (application programming irieees) provided

by transit agencies. Collected data included (but not éichib) GPS (global
positional system) coordinates of bus stops, their charatts €.g. name),

route geometry, bus stop sequence on the routes. Addifitioamation was

also collected for future analysis (schedules, trips, i@ public transport
location updates). Majority of agencies provides infoiiorathrough GTFS

(general transit feed specification). Minority of citieg arsing their custom-
made APIs. Baseride converted all protocols into singléoam data repre-
sentation. Information about public transit network wasatonverted into
linked graph for convenient analysis using different mdthoThe data for

Singapore was obtained from Transit Link Pte EfdThe data set was also

augmented with data from OSM.
The amenity data for all cities was obtained from OSM throtigé

Mapzen projec?® An amenity is said not to belong the city if it is not

within 1,000m of any bus stop in that city.

The datasets contain information about location of the lbogssin the
form of latitude and longitude. The stops are grouped forshme city
or municipal organisation. In the present analysis, we aelgct 73 cities

with at least 1000 bus stops. Those include the cities in England, France,g

Germany, ltaly, Spain, Canada, United States, China, J&auth Korea,
Australia, New Zealand and Singapore. The full list of sit@n be found
in Fig. 2.

Data preprocessing

For each dataset, the spherical coordinates of each bumdatipude 6 and
longitude¢ are transformed to quasi-planar two-dimensional Careziar-
dinates. We could have done the transformation by emplayiedJniversal
Transverse Mercator (UTM) conformal projection, but sinfialatasets are

that has the same latitud) asO and the same longitudf asi itself. The
great-circle distance is calculated using the “haversfoghula and, hence,
the Cartesian coordinates of poirgre given by

cos6, sin 9 — %o
% = 2Rtan™! 2 ' , (16)
\/1700326. sir? o _2¢O
yi =R(6 - 60), (7
(18)

with R= 6,371000m being the Earth’s radius.
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