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ABSTRACT

Understanding the morphology of an urban system is an important step toward unveiling the dynamical processes of its
growth and development. At the foundation of every urban system, transportation system is undeniably a crucial component
in powering the life of the entire urban system. In this work, we study the spatial pattern of 73 cities across the globe by
analysing the distribution of public transport points within the cities. The analysis reveals that different spatial distributions
of points could be classified into four groups with distinct features, indicating whether the points are clustered, dispersed or
regularly distributed. From visual inspection, we observe that the cities with regularly distributed patterns do not have apparent
centre in contrast to the other two types in which star-node structure, i.e. monocentric, can be clearly observed. Furthermore,
the results provide evidence for the existence of two different types of urban system: well-planned and organically grown.
We also study the spatial distribution of another important urban entity, the amenities, and find that it possesses universal
properties regardless of the city’s spatial pattern type. This result has one important implication that at small scale of locality,
the urban dynamics cannot be controlled even though the regulation can be done at large scale of the entire urban system.
The relation between the distribution of amenities within the city and its spatial pattern is also discussed.

Introduction

Study of urban systems—how they form and develop—
constitutes an important portion of human knowledge, not
only because it is about our own physical space of daily liv-
ing but also for understanding the underlying mechanisms of
human settlement and civilisation on the Earth’s surface that
may be fundamentally similar to other forms of organisation
like biological cells in our body or animal colonies. Urban
systems, or “cities” in modern terms, are typical example of
highly complex systems1–7 in which overwhelmingly many
agents are interacting in non-trivial and non-linear manners
over a wide spectrum of spatial and temporal scales. The re-
sults of such tangled interactions are the emergence of unex-
pected global patterns that cannot be solely derived from the
local knowledge of individual agents. Among these complex
patterns are the spatial patterns delineated by the physical
locations and shapes of urban entities like buildings, parks,
lakes or infrastructureetc. . . , i.e. the urban morphology.8 A
good understanding of the morphology of an urban system
provides us with the comprehension of its current status of
development or even the living condition of people inside it.
For example, the number of residential buildings is a good
gauge of the population size and the population density mea-
sures the crowdness that every resident has to experience in
his or her daily life, or the infrastructure is an indicator of
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‡http://www.erikalegara.net/
§http://www.chrismonterola.net/
¶http://www3.ntu.edu.sg/home/lockyue/

how well the city is doing in terms of economy.

In the recent years, with the availability of technologies
and new mapping techniques, various forms of data on urban
systems have been collected.9 These data sets have enabled
researchers to gain a deeper insight into the spatial structures
existing in urban systems. One such data set is on the street
and road networks which form the backbone of any urban
system, and therefore, contain rich information about how
the city is organised. A good amount of research have been
performed on understanding the pattern of streets in many
different cities around the world.10–16 However, there are
shortcomings of studying urban morphology based on street
network when it has been noticed that the streets are not al-
ways well defined.16,17 Public transport points, conversely,
are well defined and can gauge the level of socio-technical
development in an urban system as they represent the degree
of mobility activities taking place within the urban system.
Furthermore, public transport network is design to serve the
residents of the city to perform activies on every aspect of
daily life (going to school, commuting to work, shopping, en-
tertainmmentetc. . . ), and therefore, can be used as a good
proxy of the residential distribution within a city. At the in-
terplay of these factors, spatial pattern of distribution of trans-
port points can provide us with rich insights into the morphol-
ogy or, in some cases, even the morphogenesis of an urban
system.

In this study, we will explore the spatial patterns encom-
passed in urban systems by analysing the pattern of spatial
distribution of transport points (bus stops) in their public
transport network of 73 cities around the world (see “Data”).

http://arxiv.org/abs/1604.07119v1


The analysis shall reveal that there exists a typical value of
distance among transport points within each city. This char-
acteristic distance reflects the accessibility of each transport
point and connectivity of them as an entire network, and
hence, can be employed in measuring the physical area of
the transport network’s coverage. Interestingly, this area is
shown to exhibit a scaling relation against the characteris-
tic distance with a non-trivial value of the scaling exponent.
Furthermore, the spatial distribution pattern of the transport
points can be quantified and shown to belong to two main
groups in which the points are either approximately equidis-
tant or they are distributed apart with multiple length scales.
The first group contains cities that appear to be well-planned,
i.e. organised type, while the second consists of cities that
tend to spread themselves over a large area and possess non-
uniform spatial density of urban entities at different length
scales,i.e. organic type. In addition to public transport net-
work, we also look at the distribution of amenities within
each city to investigate the relation between these two types
of urban entity. We first find that the distance between ameni-
ties to their nearest transport points within a city followsa ro-
bust exponential distribution across all the cities considered,
regardless of the city’s type being organised or organic. Sub-
sequently, we observe a clear quantifiable relation between
this amenity-transport point distance and the density of trans-
port points; and the type of the city can also be seen in this
relation.

Results
Using a method of cluster analysis inspired by percolation
theory,18 we are able to characterise the spatial pattern of
public transport points in urban systems. The spatial spattern
is characterised by quantifying the size and area of a domi-
nant cluster of transport points as functions of a distance pa-
rameter. This distance parameter (also the buffer radius)ρ
represents the extent of vicinity around every transport point
in the system, hence, the point’s connectivity. Larger value
of ρ means the neighbourhood of a point is extended, and
therefore, can encompass more points within it. A pair of
points are said to belong to the same cluster if and only if
the Euclidean distance between them is less than or equal to
ρ . The size of a cluster is defined as the number of points in
the cluster while its area the union of area of circles of uni-
form radiusρ centred at the points in the cluster. A dominant
cluster is the cluster with either largest sizeξmax(ρ) or largest
areaAmax(ρ). The clusters in the two occasions are not neces-
sarily the same one. For simplicity of all discussions below,
unless stated explicitly, descriptions for cluster sizeξ also
hold for cluster areaA.

When ρ is small, the number of clustersη(ρ) is large
because most of the points are not connected and they
form their own clusters. Asρ increases,η(ρ) decreases
monotonically because of merger of small clusters. In
fact, it is a step function because the pairwise distances
between points are discrete in value. On the other hand,

the size of the largest clusterξmax(ρ) increases monoton-
ically as ρ increases. Again, it is also a step function,
but we assume in this study that the profilesξmax(ρ) and
Amax(ρ) can be approximated by well behaved and smooth
functions so that their derivatives exist at all points (see
“Characteristic distances among transport points” and
“Spatial patterns in urban systems”). In the regime of
small buffer radiusρ , ξmax(ρ) slowly increases because the
clusters are still disjoint. Asρ enters an intermediate regime,
ξmax(ρ) increases faster than it does in the small-ρ regime.
This is when the larger clusters merge together making the
significant expansion in size of the largest cluster. Asρ
increases further, there is no further significant change to
the size of the largest cluster as it has encompassed most
of the points in the domains, leaving only minor portions
surrounding. The intermediate regime ofρ , therefore, could
be seen as a region of “phase transition”, similar to that in
physics,19 particularly percolation.18

In percolation, every point is assigned a variable called the
percolating probability that controls the ability of one site to
connect to another in the domain. The higher the percolating
probability is, the easier the site is connected to others, and
vice versa. The percolating probability is then viewed as a
control parameter in the system. The transition occurs when
the control parameter is adjusted to a critical value (called the
critical point) at which the system transits from one state (or
phase) to another with distinct properties, namely the non-
percolating and percolating phases respectively at low and
high percolating probabilities. The behaviours of the system
approaching the critical point can then be used to classify the
system,i.e. identifying its universality class.20

Applying this idea to our system of transport points within
a city, the buffer radiusρ could be viewed as the control pa-
rameter. For small values ofρ , the system is insegregate
phase, while it is inaggregate phase for large values ofρ .
The transition from one phase to the other takes place in the
intermediate regime ofρ . The manner in which the profiles
of the largest system sizeξmax(ρ) and areaAmax(ρ) transit
through this region can characterise how the transport points
are distributed within a city.

Characteristic distances among transport points
The intermediate regime ofρ can be identified and charac-

terised by analysing the first derivativeξ ′
max(ρ) =

dξ max(ρ)
dρ

of the cluster size. This quantity, which is interpreted as the
rate of cluster size growth per unit of buffer radius, produces
a peak every time a jump occurs in the cluster sizeξmax(ρ),
i.e. when the cluster merges with others and grows. Every
peak inξ ′

max(ρ), therefore, signifies the existence of one or
a few clusters of points located at a farther distance beyond
those in the current largest cluster that is being traced. Asa re-
sult, this would provide us with the information on the length
scales of distribution of points within the set. It can be easily
seen that if there are many peaks, the points are distributedin
clusters that are apart with different distances; whereas the ex-
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istence of few peaks implies a uniform distribution of points
that are (approximately) equidistant from one another. In ei-
ther case, it is without doubt that there exists a characteristic
distance in the spatial distribution of points. This character-
istic distance should tell us the length scale above which the
points are (largely) connected and below which they are dis-
connected.

Since all peaks in the derivativeξ ′
max(ρ) contribute to the

growth of the clusterξmax(ρ), a measure of the characteristic
distanceρ⋆

ξ must take into account the effects of all of them.
However, a high peak indicates a more significant increase in
cluster size (a major merger) than that indicated by a lower
one. Hence, the average of all values ofρ†

ξ ,i at which a peaki

occurs, weighted by the heightξ ′
max(ρ

†
ξ ,i) =

dξ max(ρ)
dρ

∣

∣

∣

∣

ρ=ρ†
ξ ,i

of the peaks, is an appropriate measure of this characteristic
distance,i.e.

ρ⋆

ξ =
∑i ξ ′

max(ρ
†
ξ ,i)ρ

†
ξ ,i

∑i ξ ′
max(ρ

†
ξ ,i)

. (1)

Similarly, we have for the cluster area

ρ⋆
A =

∑i A′
max(ρ

†
A,i)ρ

†
A,i

∑i A′
max(ρ

†
A,i)

. (2)

The analyses of peaks in size profileξ ′
max(ρ) and area

profile A′
max(ρ) provide different perspectives on the spa-

tial distribution of points. The size quantifies the number
of points with respect to the distance while the area fur-
ther takes into account the relative position of the points.
The two are not redundant but rather, one is complemen-
tary to the other. This comes to light in the next section
“Spatial patterns in urban systems” when the combination
of the two allows us to classify distinct types of distribution
of points.

It is noteworthy thatρ⋆

ξ andρ⋆
A are different from the aver-

age of pairwise distance among all points in the set because
they encode the connectivity of the points in terms of spatial
distribution. In other words, the two characteristic distances
are measure of typical distance between points in the set in
the perspective of global connectivity of all points. In thecon-
text of transport points, they translate to the distance onehas
to traverse to get from one point to another in order to explore
the entire system. It then follows that a large value of char-
acteristic distance implies a sparsely distributed set of points
which could reflect a poorly covering network of transport.
This agrees with a low density of points per unit area (see
“Area of system of transport points” for more details). For
the 73 cities considered in this study,ρ⋆

ξ is found to be in the
range 200−1200m with most cities havingρ⋆

ξ in the range
200−500m. The ranges are 200−1700m and 300−500m
for ρ⋆

A.

Spatial patterns in urban systems
The characteristic distances introduced above tell us where-
about the transitions of cluster size and area take place but
they do not tell us how the size and area of the cluster tran-
sit from small to large value,i.e. how the cluster grows. This,
however, can be easily characterised by further exploitingthe
analysis of peaks inξ ′

max(ρ) (andA′
max(ρ)). It is a matter of

fact that if the cluster grows rapidly through the transition,
there are very few peaks inξ ′

max(ρ), all of which are sharp
and localised. On the other hand, the peaks are scattered over
a wide range ofρ should the cluster gradually grow. The stan-
dard deviation of the locationρ†

ξ ,i of the peaks, or the spread
of transitionσξ for cluster size, is a good measure of such
scattering. However, a low peak that is distant from a group
of localised high peaks should not significantly enlarge the
spread. Therefore, the standard deviation ofρ†

ξ ,i needs to be

weighted by the heightξ ′
max(ρ

†
ξ ,i) of the peaks,i.e.

σξ =

√

√

√

√

√

∑i ξ ′
max(ρ

†
ξ ,i)

(

ρ†
ξ ,i −ρ⋆

ξ

)2

∑i ξ ′
max(ρ

†
ξ ,i)

. (3)

Similarly, we have the spread of transition for cluster area

σA =

√

√

√

√

√

∑i A′
max(ρ

†
A,i)

(

ρ†
A,i −ρ⋆

A

)2

∑i A′
max(ρ

†
A,i)

. (4)

The combination of these two spreads of transition enables
us to characterise the pattern of different types of spatialpoint
distribution by interpreting different regions of the(σξ ,σA)
diagram (see Fig.1). There are four different types of dis-
tribution that can be identified using the spreads of transi-
tion in sizeσξ and areaσA. The first one is the region of
smallσξ ≈ σA in which bothξmax(ρ) andAmax(ρ) exhibit a
sharp rise. The second one is the stripe of medium-to-large
σξ ≈ σA in which ξmax(ρ) andAmax(ρ) exhibit gradual in-
crease and almost every peak inξ ′

max(ρ) has a respective peak
in A′

max(ρ). The third one is the region ofσξ ≫ σA in which
the peaks inξ ′

max(ρ) tend to spread over a wider range ofρ
than those inA′

max(ρ). The last one is the region ofσξ ≪ σA

in which the peaks inξ ′
max(ρ) tend to be more localised than

those inA′
max(ρ).

In this analysis, for practical purpose, the regions are deter-
mined by a 50-meter rule. According to that rule,σξ ,σA <

50 constitute the smallσξ ≈ σA region,
∣

∣σξ −σA
∣

∣ < 50
(σξ ,σA > 50) constitute the medium-to-largeσξ ≈σA region,
σξ −σA > 50 constitute theσξ ≫ σA region andσξ −σA <

50 constitute theσξ ≪ σA region.

Single-scale regular pattern
In the bottom left corner of the(σξ ,σA) plot lie the points
with σξ ,σA < 50. These points represent the profiles of
ξmax(ρ) and Amax(ρ) with localised peaks in bothξ ′

max(ρ)
andA′

max(ρ). This signifies a characteristic length scale at
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σξ

σ A

regularly distributed
at single length scale

smallσξ ≈ σA

regularly distributed
at multiple length scales

medium-to-largeσξ ≈ σA

clustered
pattern

σξ ≫ σA

more clustered

dispersed
pattern

σξ ≪ σA

more dispersed

σξ = σA

Figure 1. Interpretation of different patterns of spatial point distributions given different values of the pair(σξ ,σA).

which most of the points are (approximately) equally spaced
from each other,e.g. grid points. The boroughs of Bronx,
Brooklyn and Manhattan of New York city are typical exam-
ples of such kind of distribution (see Fig.3(a)). The spatial
pattern of the transport point in these cities appears very reg-
ular. In fact, inspecting their street patterns, one can easily
tell the pattern of parallel roads in one direction cutting those
in the other dividing the land into well organised polygons
with almost perfect square and rectangular shapes. Appar-
ently, this feature must be a result of well-designed and top-
down planning before actually building the infrastructurein
the city.13

Multiple-scale regular pattern
The transport points in a city can also be distributed in a reg-
ular manner but at different length scales. For example, the
entire set of points can be divided into several subsets and
within each subset, the points are (quasi-)equally distantfrom
each others. At larger length scale,i.e. ρ increases further,
these subsets of points are again (quasi-)equally distant from
each other,i.e. hierarchical structure. The buffer radiusρ
can thus be thought to play the rôle of a zooming parameter.
In this multi-scale regular pattern, the profile of the largest
cluster sizeξmax(ρ) and areaAmax(ρ) experience a signifi-
cant jump every timeρ changes its zooming level. At the
lowest level are individual transport point. Whenρ zooms
out to the second level, the points that are closest to each
other start to form their respective clusters. Moving to the
next level, the nearby clusters start joining to form largerclus-
ter but there will be many of these “larger clusters”,i.e. the

largest cluster is of comparable size or area to several other
clusters. The most important feature of this spatial pattern
is that the jumps in the profile ofξmax(ρ) correspond well
to those inAmax(ρ), even though the locations of the jumps
are spread apart. That leads to the (approximate) equality of
the spread of transitionsσξ andσA despite their not being
small. A good example of this type of distribution is the city
of Epsom in Auckland, New Zealand (see Fig.3(b)).

It is also interesting to note that within a city itself, differ-
ent parts can possess distinct spatial patterns of the transport
points. For example, even though New York city is known
to be a well-planned city with grid-like street patterns, not all
of its five boroughs share that nice feature. Only Manhattan,
Bronx and Brooklyn have smallσξ andσA while the spreads
are larger for the other two boroughs, Queens and Staten Is-
land. This fact indeed complements the result reported earlier
that Queens exhibits a distinct spatial pattern different from
the other boroughs.16 St Louis in Missouri, USA, is another
interesting example. Two halves of the city on the two banks
of Mississippi river appear to have different spatial patterns
when they possess different values of the pairσξ andσA.

Clustered pattern
There are cases in which the jumps in the profile of largest
cluster sizeξmax(ρ) don’t correspond to those in the area
Amax(ρ) andvice versa. In such cases, the spatial distribu-
tion of the transport points deviates from regular patterns. We
first consider the scenarios in whichσξ ≫ σA. For such dis-
tributions, the points are clustered and tend to minimise the
coverage area. Whenσξ ≫ σA, there are jumps in the size
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ABQ: Albuquerque (US) CAL: Calgary (CA) FWA: Fort Wayne (US) MDS: Madison (US) RCT: Rochester (US) SMT: Sacramento (US)
ALB: Albany (US) CLB: Columbus (US) FWO: Fort Worth (US) MHT: Manhattan (US) RKV: Rockville (US) SNG: Singapore (SG)
ALT: Atlanta (US) CLL: Cleveland (US) HMT: Hamilton (CA) MIA: Miami (US) RLE: Raleigh (US) STT: Stockton (US)
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BNX: Bronx (US) DV2: Denver 2 (US) LWD: Lakewood (US) PRS: Paris (FR) SL1: St Louis 1 (US)
BRL: Brooklyn (US) DV3: Denver 3 (US) MCT: Manchester (UK) PTB: Pittsburg (US) SL2: St Louis 2 (US)

Figure 2. Types of spatial distribution of transport points in citiesacross the globe. The three reference lines areσA = σξ ,
σA = σξ +50 andσA = σξ −50.

of the largest cluster size that do not give rise to a jump in its
area. This happens when the points of an acquired cluster are
compact, contributing very little increase in the area of the

largest cluster. If the acquired cluster are not compact,i.e. its
points span a larger area, there might be significant increase
in the area of the largest cluster and, hence, a peak would be
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(a) Brooklyn, New York, USA. The spreads of transition for the sizeσξ and areaσA are both small. This is an example of single-scale regularlydistributed
pattern,i.e. grid.
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(b) Epsom, Auckland, New Zealand. The spreads of transitionfor the sizeσξ and areaσA are not small but stay comparable to one another. This is an example
of multi-scale regularly distributed pattern.

Figure 3. Typical cities of single and multiple-scale regular spatial patterns. In each subfigure, the left panel shows the
location of transport points within the city, the upper right panel the profile of largest cluster sizeξmax(ρ) together with its
first derivativeξ ′

max(ρ) and the lower right panel the profile of largest cluster areaAmax(ρ) together with its first derivative
A′

max(ρ)

reflected by its contribution toσA. However, the size mea-
sure is not affected as it only tells the number of points that
are included in the cluster but not their relative location with
respect to each other.

The distribution of transport points in the city of Turin in
Piedmont, Italy (see Fig.4(a)), is a good example of this type.
The points appear clustered and compactly distributed but not
regular or grid-like.

Dispersed pattern
On the other side, we have the scenarios ofσξ ≪ σA, in
which the points are dispersed and tend to maximise the cov-
erage area. Whenσξ ≪ σA, there are jumps in the area of
the largest cluster that do not give rise to a jump in its size.

This happens when the points of an acquired cluster are dis-
persed (but still within the buffer radius so that they belong
to the same cluster). This way, the increase in the area of the
largest cluster is more significant than that in its size, result-
ing σξ ≪ σA. A good example of this type is the distribution
of transport points in Manchester in Greater Manchester, Eng-
land (see Fig.4(b)). The points appear in dispersed pattern
of long roads around the city.

If the feature of single-scale regular spatial pattern (when
both σξ andσA are small) is a result of well-designed and
top-down planning in an urban system, the other spatial pat-
terns (eitherσξ or σA is not small) can be intepreted as a
consequence of developing an urban system under local con-
straints. In the former case, the urban system appears to be
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(a) Turin, Piedmont, Italy. The spread of transition in peaks for the size is more than that for the area of the largest cluster, σξ > σA. This is an example of
clustered pattern.

x (m) ×104
-2 -1 0 1 2

y
(m

)

×104

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Manchester, Greater Manchester, England

ρ (m)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

ξ m
a
x
(ρ
)

0

0.5

1
normalised size

ξ
′ m
a
x
(ρ
)

0

0.005

0.01

ρ (m)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
m
a
x
(ρ
)

0

0.5

1
normalised area

A
′ m
a
x
(ρ
)

0

0.005

0.01

(b) Manchester, Greater Manchester, England. The spread oftransition in the peaks for the size is less than that for the area of the largest cluster,σξ < σA.
This is an example of dispersed pattern.

Figure 4. Typical cities of clustered and dispersed spatial patterns. In each subfigure, the left panel shows the location of
transport points within the city, the upper right panel the profile of largest cluster sizeξmax(ρ) together with its first derivative
ξ ′

max(ρ) and the lower right panel the profile of largest cluster areaAmax(ρ) together with its first derivativeA′
max(ρ)

of organised type while in the latter, it can be said to be of
organic type when its spatial features develop in an adhoc
manner as the city grows. The revelation of spatial patterns
in urban systems from the analysis in this work could imply
two different types of process that the cities undergo through
their course of development.

Visually inspecting the spatial distribution of transport
points within the cities, it appears that cities with regularly
distributed pattern, either single- or multiple-scale, donot
have an apparent centre. That means there is no spatial pref-
erence in the distribution of the points,i.e. no part is special
than the others. This is in contrast to the other two types of
cities in which star-node structure can be clearly observed.
The node represents the centre of the city at which there is
higher density of transport points than the other areas, and

from which the roads diverge radially to the outer part of the
city. This observation could by explained by the growth pro-
cess of different types of urban system. When a city grows
organically, it starts from a central business district andgrad-
ually expands to encompass the nearby area to accommodate
more people wanting to participate the business activitiesat
the centre. On the other hand, when a city is planned before,
the planners seem not to concentrate the infrastructure in one
confined area but stretch it across the entire city.

Universal features in urban systems
Area of system of transport points
Despite the difference in the spatial pattern of the distribu-
tion of transport points, all the cities considered in this study
appear to possess a common relation between the density of
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points and the characteristic distance of areaρ⋆
A. To explore

this, we first define the characteristic area of a set of points
which is the union area of circles of radiusρ⋆

A centred at all
points in the set,Ξ(ρ⋆

A). The characteristic distance of area
ρ⋆

A represents the typical value ofρ at which the area of the
entire system experiences the transition. Further increase in
ρ after that does not contribute to as much increase in the
area of the largest cluster and the cluster, thus, would entail
unnecessary area. The value ofΞ(ρ⋆

A) is therefore expected
to be a good proxy to the essential area covered by the set of
points given their spatial distribution. In the case of transport
system, we call this area the serving area of all the transport
points.

Having defined the area, it is easy to calculate the density
of points per unit area, which is simply the ratio between the

number of points and the area they cover,
N

Ξ(ρ⋆
A)

. From em-

pirical analysis, we find the data fit very well to the relation

N
Ξ(ρ⋆

A)
∝ (ρ⋆

A)
−τ (5)

with τ ≈ 1.29. Figure5 shows the empirical relation between
the two quantities. The relation in Eq. (5) is well obeyed by
all 73 cities. It is a remarkable relation given the scattered
relation betweenρ⋆

A andN or Ξ(ρ⋆
A). For reference, the arti-

ficial generated data, including both random and regular pat-
terns (see “Discussion” for details) are also included in the
plot but not in the fitting itself. As can be observed, those
points generally stay below the points for the 73 cities.

It should be further noted that the relation in Eq. (5) or
Fig. 5 is not a trivial one. To see this, we consider the two
scenarios ofρ in extreme limits,ρ ≫ 1 andρ ≪ 1, and its

relation with
N

Ξ(ρ)
. For the small extreme value,ρ ≪ 1, all

clusters include only a single point, and there are, hence,N
clusters. We, therefore, have

Ξ(ρ) = Nπρ2 (6)

which yields the relation

N
Ξ(ρ)

=
1

πρ2 ∝ ρ−2. (7)

At the other extreme value,ρ ≫ 1, there is only one single
cluster that encompasses all points concentrating at the centre
of the union area. We, therefore, have

Ξ(ρ)≈ πρ2, (8)

which leads to

N
Ξ(ρ)

≈
N

πρ2 , (9)

which in turn displays scaling behaviour like in Eq. (5) if and
only if the number of pointsN scales withρ .

The whole argument about the extreme values ofρ is to
illustrate that the scaling relation in Eq. (5) with exponent

τ = −1.29 is not a relation that can be achieved with any
value ofρ . The relation can only hold at some value of the
buffer radius likeρ⋆

A, given the structure in the distribution of
N points. Because of this feature, we considerρ⋆

A the charac-
teristic distance of a set of spatially distributed points.

Amenity distribution
Beside transport system, which is represented by a network
of transport points, the morphology of an urban system can
also be understood from another angle by examing the dis-
tribution of amenities within it. It turns out that despite pos-
sessing different types of distribution of transport points, the
cities appear to share a common universal distribution of
amenities. The analysis of locations of amenities in all the
cities reveals that the (Euclidean) distanceΩk of an amenityk
to its nearest transport point follows a robust exponentialdis-
tribution. That means the probability of finding an amenity
with distanceΩ to its nearest transport point decays exponen-
tially with Ω, i.e. its probability density function is given by

P(Ω) = λ e−λ Ω , (10)

which renders its mean and standard deviation (not variance)
equal

〈Ω〉= σ(Ω) =

√

〈Ω2〉− 〈Ω〉2 =
1
λ

. (11)

In Fig. 6, the mean〈Ω〉 and standard deviationσ(Ω) of
shortest amenity-transport point distance for different cities
are shown to stay close to the diagonal lineσ(Ω) = 〈Ω〉.
The exponential distribution of the distanceΩ is strongly sup-
ported by further veriyfing that higher moments of the distri-
butionP(Ω) fit well to

〈Ωn〉=
n!
λ n , (12)

up to fourth order,n = 4.
It has to be emphasized that the distribution of distance

from amenities to their nearest transport points follows anex-
ponential rather than a Poissonian one. That means the mean
of such distance is (approximately) equal to its standard devi-
ation rather than variance which holds for a Poisson distribu-
tion. The robust distribution of amenities across all city types
has one important implication that the local growth process
in urban systems appears to be independent of human inter-
vention and larger scale of the entire system. That means
planners can plan the large-scale growth process like trans-
portation but the small-scale growth process like local busi-
ness still takes place on its own. But it remains a significant
question why the distribution is exponential, not any other
form. In fact, exponential decay in spatial urban patterns has
been long reported in literature.21 Using this feature as a fact,
a model has been constructed to successfully capture the mor-
phology of urban systems.22
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Figure 5. Empirical relation between density of point per unit area and the characteristic distanceρ⋆
A in log-log scale. The

fitting line has slope−1.29 and was obtained with linear regression coefficient ofR2 ≈ 0.8. The artificial generated data,
both random and regular, were not included in the fitting.

Relation between transport point and amenity dis-
tributions

There appears to be a relation between the density of trans-
port points within a city and the distribution of its amenities.
Figure7 depicts this relation by plotting the average distance

〈Ω〉 agaisnt the density
N

Ξ(ρ⋆
A)

. It could be observed that

only the lower-left triangle of the plot is occupied, leaving
no points in the upper-right corner of the plot. That means
there are no cities with high density of transport points and,
at the same time, having large (average) distance between its
amenities and the nearest transport points. This can be easily
understood by the fact that in cities with high density of the
transport points, the road network is very dense, the transport
points have to stay within a short distance of each other. As
a result, the amenities must necessarily be built very closeto
the public transport points. It turns out that those cities with
very high density of transport points are those with single-
scale regular pattern of distribution,i.e. the points are regu-
larly distributed at (approximately) equal distances fromeach
other like grid points, such as San Francisco or the boroughs
of New York city.

At the other end, the cities with low density of public trans-
port points can exhibit a wide spectrum of average amenity-
transport point distance〈Ω〉. These cities can either have

large or small〈Ω〉. A large value of〈Ω〉 (and hence, large
standard deviationσ(Ω), too) implies a city with sparse dis-
tribution of amenities when they are distant from the nearest
transport point like Dallas or San Antonio in Texas, USA.
On the other hand, a small value of〈Ω〉 suggests that the
amenities are built close to public transport points implying
the existence of sub-centres or several small towns or districts
within the city, such as Turin in Piedmont, Italy.

Discussion
The present work analyses the features of the spatial distri-
bution patterns of important entities in an urban system, the
public transport points and the amenities. The former ones
are part of the backbone of any urban system, the street net-
work which plays essential rôle in enabling flow or exchange
of various processes in the city. The advantage of knowledge
of these transport points is that they can be well defined and
easily collected and at the same time provide other informa-
tion like the residential distribution within the city. Thelatter
ones, on the other hands, can gauge the size of population
as well as the level of activities in the city. The results unveil
different types of city with distinct spatial patterns. Thecities
are shown to be either of organised type, in which the entities
are well spaced as if they are built top-down, or of organic
type, in which the entities are spaced with multiple length
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Figure 6. Standard deviationσ(Ω) vs. mean〈Ω〉 of distance from amenities to nearest transport points within each city.
The reference line isσ(Ω) = 〈Ω〉.

scales as if they grow spontaneously. In either cases, the typ-
ical distance among the transport points can be described by
a characteristic distance. Despite the different types of the
cities’ spatial patterns, the density of the transport points ex-
hibits universal scaling behaviour with this characteristic dis-
tance. On the other hand, the distance from amenities to their
nearest transport points also follows a robust exponentialdis-
tribution for all cities studied. Furthermore, there is an appar-
ent relation between the distributions of transport pointsand
amenities within the cities. These facts signify some univer-
sal mechanisms underlying the growth and development that
all cities have to undergo.

In an attempt to understand the processes that generate
the spatial distribution patterns of the transport points,we
artificially generate some distributions of points on a two-
dimensional surface. In the first distribution, the points are
generated at random locations within a domain with uniform
probability. In the second distribution, starting from a regu-

lar grid of points in a square lattice, the points are randomly
displaced by a small amount not more than a quarter of the
lattice spacing. It turns out that both the randomly and regu-
larly generated data produce simple behaviours through our
analysis. In particular, the peaks in size and area generally
coincide with each other and stay localised (the random sets
tend to produce more peaks while the regular ones have only
one peak as expected), and hence, bothσξ andσA are small
indicating regular pattern of distribution. At this point,we
would like to link the analysis with the idea of measure of
complexity of a symbolic sequence.23–25 The idea states that
both regular and random (in the sense of a random number
generator) sequences possess very low measure of complex-
ity as their structures or patterns are simple and easy to be
presented in terms of the so-calledε-machine.23 Along that
line, it could be argued that the patterns observed in the dis-
tributions of transport points from the real data of 73 cities
around the world are more complex then those in the artifi-
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Figure 7. Relation between density of transport points
N

Ξ(ρ⋆
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and average amenity-transport point distance〈Ω〉. Refer to

Fig. 2 for codename of the cities.

cially generated data. The generated data, which is meant
to be either regular or completely random possess, only sim-
ple structure as we have argued above with small spreadsσξ
andσA. The real world data might well contain mixtures be-
tween regular and random patterns that could result in both
the clustered and dispersed patterns that we have reported in
“Spatial patterns in urban systems”.

Method
General ideas
For the analysis, we propose a procedure to characterise thespatial pattern of
a set of points. The procedure involves identifying clusters of points, whose
pairwise distance does not exceed the value of a parameter, and quantifying
the growth of the clusters as the parameter value increases.

Consider a domainD which can be thought of as a city or a town. In this
domain, there areN pointsi distributed, each of which represents a transport
point located at coordinates(xi,yi). We introduce a parameter called the
buffer radiusρ to construct the clusters. Any pointj, whose distance

di j =
√

(xi − x j)2+(yi − y j)2 (13)

from point i is less than or equal toρ , belongs to the same cluster asi. We
denoteη(ρ) as the number of clusters given the buffer radiusρ . For each
clusterα , we define the cluster sizeξα (ρ) and the cluster areaAα(ρ). The
cluster size is defined as the number of points in the cluster and the cluster
area the union of area of circles of uniform radiusρ centred at the points in
the cluster. To make different domains comparable, we normalise the cluster
sizeξα (ρ) by the number of pointsN in the domain, while the cluster area

Aα(ρ) by the union of areaΞ(ρ) of circles of radiusρ centred at all points
in the domain.

The identification of the clusters can be done by using a simple heuristic
cluster finding algorithm that starts with a random points inthe set and grad-
ually identifies the other points of in the same cluster. Alternatively, one can
employ the method of DBSCAN,26 setting the noise parameter to be zero.
The two methods are identical and yield the same results.

Analysis
For any cluster-related quantity, we attach the subscriptξ to associate it with
cluster size whileA for cluster area. For simplicity of all discussions, unless
stated explicitly, descriptions for cluster sizeξ also hold for cluster areaA.

To quantify the spatial pattern of the set of points, we vary the buffer ra-
dius parameterρ . As ρ increases, the farther points can belong to the same
cluster. As a result, the clusters can merge to increase their size. Tracing
the behaviour of the largest clusterξmax(ρ) can provide us with the way the
points are distributed within the set. For example, the profile of the first

derivativeξ ′
max(ρ) =

dξ max(ρ)
dρ

(andA′
max(ρ) =

dA max(ρ)
dρ

) can indicate at

which distanceρ , the points are (largely) connected in a single cluster. Be-
causeξmax(ρ) increases monotonically withρ , we introduce the so-called
characteristic distance ρ⋆

ξ at whichξmax(ρ) exhibits the most significant in-

crease. In some cases, the profileξmax(ρ) shows a sharp narrow increase
around a valueρ . While in other cases, several small increases are observed,
spreading a wide range ofρ . To account for that, it is also meaningful to
introduce a quantityσξ , calledspread of transition, to measure the overall
width of the increases in the profile ofξmax.

To recap,ρ⋆

ξ is the value ofρ above which there is a significant transition

in the largest cluster sizeξmax(ρ) (see peak analysis in “Peak analysis”);
σξ measures the width of the transition. The respective quantities for cluster
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area areρ⋆
A andσA. We then use the union area with this buffer radiusρ⋆

A of
all points in the system as the effective areaΞ(ρ⋆

A) of the point set.
We refrain from looking at the average value of distributionof the cluster

size or area as these measures are vulnerable against errorsin data,i.e. out-
liers. For example, when the buffer radiusρ is sufficiently large that most
but a few of the points in the dataset belong to a single large (“giant”) cluster,
there are only two (or more) clusters and the average clustersize would be
half (or less) of what it is supposed to be.

Peak analysis
As the buffer radiusρ increases, the size of the largest clusterξmax(ρ) also
increases. It can be easily observed that the profile ofξmax(ρ) exhibits an
either sharp or gradual increase. The former introduces a single dominant
peaks in the profile ofξ ′

max(ρ) while the latter a set of peaks scattering over
a wide range ofρ . This scattering of peaks can be quantified using the
standard deviation of their locations, weighted by the strength (height) of
the peaks. A small standard deviation implies a sharp increase inξmax(ρ),
andvice versa, a large standard deviation signifies a gradual increase.

In our analysis, we consider the profile ofξ ′
max(ρ) (andA′

max(ρ)) at every
value of the buffer radiusρ ranging fromρmin = ρ1 = 10m toρmax = ρM =
2000m in the step ofδρ = ρi+1−ρi = 5m, ∀i. Since the values of the buffer
radius are discrete, a point(ρi,ξ ′

max(ρi)) is a peak if and only if
{

ξ ′
max(ρi)> ξ ′

max(ρi−1)

ξ ′
max(ρi)> ξ ′

max(ρi+1)
. (14)

This discrete nature also produces a lot of small noisy peaks. In our analysis,
we filter these noisy peaks by offsetting the entire profile ofξ ′

max(ρ) by a
sufficiently small amount and considering only the positiveremaining peaks.

The value ofρ⋆

ξ will then be the mean ofρ of all peaks, weighted by the

peak heightξ ′
max(ρ) (see Eq. (3)). The spreadσξ is the standard deviation

of ρ of all peaks, again weighted by the peak heightξ ′
max(ρ) (see Eq. (4)).

Implementation
The cluster analysis is implemented in Python, usingshapely library to
calculate the union area. We also useDBSCAN library for DBSCAN analysis
to compare with our method.

Data
Data collection
The public transit-related data was collected by Baseride Technologies us-
ing different available API (application programming interfaces) provided
by transit agencies. Collected data included (but not limited to) GPS (global
positional system) coordinates of bus stops, their characteristics (e.g. name),
route geometry, bus stop sequence on the routes. Additionalinformation was
also collected for future analysis (schedules, trips, realtime public transport
location updates). Majority of agencies provides information through GTFS
(general transit feed specification). Minority of cities are using their custom-
made APIs. Baseride converted all protocols into single uniform data repre-
sentation. Information about public transit network was also converted into
linked graph for convenient analysis using different methods. The data for
Singapore was obtained from Transit Link Pte Ltd.27 The data set was also
augmented with data from OSM.

The amenity data for all cities was obtained from OSM throughthe
Mapzen project.28 An amenity is said not to belong the city if it is not
within 1,000m of any bus stop in that city.

The datasets contain information about location of the bus stops in the
form of latitude and longitude. The stops are grouped for thesame city
or municipal organisation. In the present analysis, we onlyselect 73 cities
with at least 1,000 bus stops. Those include the cities in England, France,
Germany, Italy, Spain, Canada, United States, China, Japan, South Korea,
Australia, New Zealand and Singapore. The full list of cities can be found
in Fig. 2.

Data preprocessing
For each dataset, the spherical coordinates of each bus stopin latitudeθ and
longitudeϕ are transformed to quasi-planar two-dimensional Cartesian coor-
dinates. We could have done the transformation by employingthe Universal
Transverse Mercator (UTM) conformal projection, but sinceall datasets are

confined within areas on Earth’s surface spanning less than 100km in both
dimensions, we find the approximation method below sufficient, with errors
being less than 0.5%.29

We convert the spherical coordinatesφφφ i = (ϕi,θi) to Cartesian coordi-
natesrrri = (xi,yi) for every pointi in the dataset by first setting the origin of
the plot. The originO is the centroid of all points

φφφ O = 〈φφφ i〉=
1
N

N

∑
i=1

φφφ i, (15)

for which rrrO = (0,0). The Cartesian coordiantes of a pointi is then deter-
mined based on its great-circle distance from the originO. In particular, the
x-coordinate ofi is its (signed) great-circle distance from the point that has
the same longitudeϕO asO and the same latitudeθi asi itself. On the other
hand, they-coordinate ofi is its (signed) great-circle distance from the point
that has the same latitudeθO asO and the same longitudeϕi asi itself. The
great-circle distance is calculated using the “haversine”formula and, hence,
the Cartesian coordinates of pointi are given by

xi = 2R tan−1









cosθi sin
ϕi −ϕO

2
√

1−cos2 θi sin2 ϕi −ϕO

2









, (16)

yi = R(θi −θO), (17)

(18)

with R = 6,371,000m being the Earth’s radius.
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