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Abstract

We present a simulation workflow for efficient investigations of the

interplay between 3D lithium-ion electrode microstructures and electro-

chemical performance, with emphasis on lithium plating. Our approach

addresses several challenges. First, the 3D microstructures of porous elec-

trodes are generated by a parametric stochastic model, in order to sig-

nificantly reduce the necessity of tomographic imaging. Secondly, we in-

tegrate a consistent microscopic, 3D spatially-resolved physical model for

the electrochemical behavior of the lithium-ion cells taking lithium plating

and stripping into account. This highly non-linear mathematical model

is solved numerically on the complex 3D microstructures to compute the

transient cell behavior. Due to the complexity of the model and the con-

siderable size of realistic microstructures even a single charging cycle of

the battery requires several hours computing time. This renders large

scale parameter studies extremely time consuming. Hence, we develop a

mathematical model order reduction scheme. We demonstrate how these

aspects are integrated into one unified workflow, which is a step towards

computer aided engineering for the development of more efficient lithium-

ion cells.
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1 Introduction

The ubiquity and importance of rechargeable lithium-ion batteries lead to the
increasing demand for physics-based simulation methods that are able to an-
alyze and predict battery behavior. These methods can not only contribute
in improving cell design and operation, but they can also greatly support bat-
tery research in its understanding of basic mechanisms, like lithium plating that
determine battery life and safety, which is yet not well understood.

The electrochemical simulation of lithium-ion cells goes back to the work of
Newman and his co-workers [9, 16, 43]. Their simulation methodology is based
on the porous electrode theory developed by Newman [45]. This model ap-
proach neglects the details of electrode microstructures and describes them as a
homogeneous medium where electrolyte and the solid material coexist at every
point. The most commonly used model of Newman only considers the through-
direction of the battery. It takes into account the diffusion of lithium ions into
the active material by assuming a spherical, microscopic particle of average size
in each discretization point in which a one-dimensional diffusion equation is
solved. Hence this model is sometimes called a pseudo-2d (P2D) model [55].
There exist many applications for Newman-type models like the study of cell
behavior as well as degradation [55, 3, 54, 61]. But the main drawback of these
models is that the complex electrode microstructures are only approximately
accounted for by a few aggregated parameters: the thickness of the electrode
L, the porosity ε, the mean particle radius r and the specific interface area
between electrolyte and active material a [9]. Furthermore, effective transport
parameters need to be determined to account for the influence of the microstruc-
ture on the average species transport. While these models are able to describe
the average battery behavior surprisingly well [61, 10, 12, 33], they cannot be
expected to capture local microscopic effects. In particular, many degradation
effects like, for instance, lithium plating depend on the local environment. Hence
homogenized models cannot fully capture the interplay between microstructure
and degradation phenomena with sufficient predictive power. Therefore, more
fundamental, spatially resolved models should be applied that are able to take
the electrode microstructure explicitly into account [30, 31]. Without simplifi-
cations like volume averaging for the P2D-models these allow the computation
of quantities on the scale of the electrode microstructure and are hence better
suited for plating predictions. To give an example, in [57] a microstructure-based
simulation study for a LCO-graphite battery was performed concentrating on
the discharge behavior for a 2D cut of one given realization of the electrodes.
Although the numerical solution of these micro-models is computationally much
more demanding they have been successfully applied to study cell performance
[36, 64, 25], coupling to thermal effects [33, 68, 60], and to account for phase-
separation dynamics within certain electrode materials [24]. A framework for
these spatially resolved simulations has been implemented in the software BEST
[15].

Lithium plating is one of the major degradation factors and security risks
in lithium-ion batteries. Lithium plating describes the deposition of metallic
lithium on the negative electrode [63]. This causes a loss of usable lithium (which
reduces the cell’s capacity) and might lead to the growth of lithium dendrites
which can eventually create a short-circuit between the electrodes which can
favor catastrophic thermal runaways. While model extensions to account for
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lithium plating are typically based on the porous electrode theory [61, 46, 2, 59,
35] only very little work has been published where lithium plating models take
the electrode microstructure into account [41, 1]. In a recent publication [22] a
micro-scale model has been developed that is able to take the inhomogeneous
electrode structure into account. The research presented in the current paper
is based on this degradation model.

Spatially resolved electrochemical simulations as described above allow in-
vestigations of electrochemical behavior for realistic 3D microstructures. Thus,
as input for these simulations, realistic 3D image data of battery electrodes
is needed, which is already available even in-operando [14]. However, tomo-
graphic measurements of battery electrodes in 3D involve high costs and efforts.
A methodology that has proven to be very promising in this context is stochastic
microstructure modeling. Based on (only one or a few) tomographic measure-
ments, a 3D parametric stochastic microstructure model can be constructed
and calibrated using tools from stochastic geometry [7]. The model has been
implemented in our software library GEOSTOCH [38]. It is able to describe
the complex geometric microstructure in a statistical sense with only a few pa-
rameters such that each realization of the model represents the morphological
characteristics of the tomographic image data (e.g., the distributions of particle
size and shape, pore size distribution, etc.). Once fitted to tomographic image
data, with hardly any effort an arbitrary number of realistic 3D microstructures
can be generated on the computer. Moreover, systematic variation of model
parameters allows the realization of virtual, but still realistic microstructures.
Such an approach has been considered, for example, in the context of organic
solar cells [58]. Using regression in the parameter space, microstructures that
represent various manufacturing conditions could be generated on the computer
and analyzed regarding their functionality. This results in an enormous reduc-
tion of complexity, as (most of) the structures do not have to be manufactured
in the laboratory, but only tomographic image data of a few ones is needed.
Similar examples of stochastic microstructure modeling can be found in litera-
ture [17, 67, 42]. In this work, a stochastic microstructure model for anodes in
lithium-ion batteries [13] is used.

While the aforementioned microscopic battery model can be solved by rel-
atively standard iterative numerical methods, the solution process is compu-
tationally very demanding. In order to get meaningful results a sufficiently
large electrode cutout needs to be resolved in the simulation. This results in
huge time-dependent discrete systems which require considerable computing re-
sources, already for single simulation runs. Computational studies to identify
critical parameters, to estimate the dependence of degradation on operating con-
ditions or to support optimal design and control of batteries, however, require
many forward simulation runs with varying material or state parameters and are
thus virtually impossible. Hence, model reduction approaches for the resulting
parameterized systems are indispensable for such simulation tasks. Concern-
ing model reduction for lithium-ion battery models, we refer to the pioneering
work [6] in the context of proper orthogonal decomposition (POD), and to the
more recent contributions [37, 27, 65, 29, 49, 48, 47] in the context of reduced
basis methods. In the work presented here, we rely on an implementation of
recent model reduction methods (such as the reduced basis method, POD, and
the empirical interpolation method) implemented in our model order reduction
library pyMOR [39, 52].
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The ability to efficiently and realistically predict the degradation behavior
(here: lithium plating) of lithium-ion batteries under arbitrary load conditions
relies on the following prerequisites:

1. A physics-based predictive microscopic battery model that includes the
plating mechanism.

2. A method to create a number of virtual, yet realistic microstructures as
basis to understand the correlation between structural properties and bat-
tery performance and degradation behavior.

3. A numerical method that is able to efficiently perform a considerable num-
ber of three-dimensional, microstructure-resolving simulations for a vari-
ety of operating conditions.

4. A software interface that is able to integrate these aspects into a common
workflow.

Within the project MULTIBAT [26] the authors developed and technically
implemented a workflow that covers all the aforementioned aspects, namely
stochastic geometry generation, model extension to account for plating, nu-
merical implementation and development of model order reduction techniques.
There are numerous papers in the literature (including several ones written
by the authors of the present paper) on different components of the presented
workflow. However, we are not aware of any publication on an algorithm inte-
grating all these components into one single, holistic workflow, which enables
comprehensive solutions of really complex problems related to Li-ion batteries.
Thus, development, implementation, and testing of a holistic algorithm / work-
flow which integrates all components of the above-mentioned chain is one of the
main contributions of the present paper. A feasibility study for a really complex
problem, such as plating, is presented in order to illustrate the capabilities of the
workflow that has been developed. The investigation of the interplay between
3D microstructure and electrochemical processes during the plating processes,
which up to our knowledge has not been done so far in the literature, is another
main contribution of the present paper.

The authors’ developments on the individual components of the workflow
have been reported earlier, details can be found in the references listed in the
present paper, hence, these components are presented here relatively shortly.
The emphasis in the present paper is given to the developed interfaces, to the
integration of all the components into one single workflow, to the peculiarities
related to the selected feasibility study, and to the parametric study of the
plating process in stochastic geometry generation. Special attention is paid to
computational efficiency, adapting the model reduction approach to the heavily
nonlinear system of partial differential equations. The presented study reveals,
that the complex information produced by the interplay between microstruc-
ture, lithium-ion transport and intercalation kinetics is hidden in a vastly re-
duced subspace of the full 3D information contained in the time-dependent
scalar fields for lithium-ion concentration and electrochemical potential. The
essential dynamics leading to plating in a complex microstructure can be repre-
sented by a sophisticated reduced model without losing spatial precision. The
advantage of the model presented in this paper is the ability to perform fully 3D
microstructure-resolved simulations of plating with nearly the same numerical
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Figure 1: Schematic overview of the MULTIBAT workflow.

efficiency as simulation with a P2D model i.e. a 1D volume averaged battery
model, in which all structural details are lost. We report on the MULTIBAT
workflow and briefly describe the details of all the individual aspects in Sec-
tion 2. In Section 3 we demonstrate the application of the developed methods
by showing and discussing results of a simulation study and conclude with a
summary in Section 4.

2 The MULTIBAT workflow

In this section we discuss the individual components of the MULTIBAT work-
flow (see Fig. 1) and their realization in more detail. Based on experimental
data, random electrode geometries with the same or modified structural char-
acteristics are generated (Sec. 2.1), and a mathematical model of the relevant
electrochemical effects is formulated (Sec. 2.2 and 2.3). The resulting continuum
model is then discretized (Sec. 2.4) and reduced (Sec. 2.5), leading to a quickly
computable microscale model of the cell dynamics on realistic electrode geome-
tries. The software implementation and integration into a unified modeling and
simulation workflow is discussed in Sec. 2.6.

It should be noted that, while we present a specific realization of the MULTI-
BAT workflow targeted at lithium plating, the same workflow can be applied
to other questions in electrochemistry and similar problem domains. Each in-
dividual component can be further developed and optimized for other specific
applications, independently of the other workflow components.

2.1 Generation of random structures

The study of local effects in the complex microstructures of battery anodes
by spatially resolved models is computationally very expensive, particularly re-
garding random access memory. Therefore, only quite small sample sizes can
be considered. As we are interested in local phenomena, there is a need for
high-resolution of the images, which on the other hand means that the images
typically only represent small cutouts of the material. This is why, in order to
get reliable results, the computer experiments have to be carried out repeatedly
using different samples. Furthermore, the imaging techniques are complex in
preparation and involve long imaging times as well as high costs. This is why a
suitable approach is to use randomly generated images of microstructures using
parametric stochastic 3D models. This approach has already been used success-
fully in related applications for energy materials in fuel cells [18] and solar cells
[58]. A parametric stochastic model which describes the spatial structure is de-
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veloped for the material and its parameters are fitted to image data. Using the
calibrated model, an arbitrary number of structures that are similar to the im-
age data in a statistical sense can be generated with hardly any effort. ‘Similar
in a statistical sense’ means that the realizations of the model do not resemble
the image data exactly, but with respect to aggregated quantities and spatial
properties. For example, simple characteristics like volume fraction and specific
surface area can be matched, but also more complex spatial characteristics like
the distribution of pore sizes or local tortuosity. Thus, realizations of a para-
metric stochastic microstructure model are an ideal input for spatially resolved
electrochemical simulations. A further advantage is that their parameters can
be changed to create virtual structures that have not been produced in the lab-
oratory yet, and the electrochemical performance of those virtual structures can
be analyzed on the computer, a procedure called virtual materials testing.

Here, we make use of a parametric stochastic 3D microstructure model for
anode structures from lithium-ion battery cells [13]. Besides the validation based
on structural characteristics [13] a validation using spatially resolved electro-
chemical simulations has been performed [21]. The variability of the modeling
approach used here is demonstrated since the same model with some adaptions
can be used to generate microstructures for energy cells [13] and power cells
[66].

We now briefly recall some details of the stochastic 3D model that is used to
generate the virtual anode microstructures used in the MULTIBAT workflow.
As mentioned above the model has already been published [13] and all param-
eters as well as further details can be found there. Generally, the construction
of the model consists of four steps that are also depicted in Fig. 2.

(a) (b) (c)

(d) (e)

Figure 2: Schematic depiction of the stochastic model. (a) A random tessellation
is produced, which roughly determines the particle shapes, sizes and locations.
(b) A random graph describes how the particles are connected to each other.
(c) The connected particles are generated using random fields on the sphere.
(d) and (e) The connected particles are retained and morphological smoothing
is carried out. Reprinted from [13] with permission from Elsevier.
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First, the locations, sizes and shapes of the particles are determined. Tech-
nically speaking, a Laguerre tessellation is generated (see Fig. 2(a)) based on a
random sequential adsorption process. This tessellation decomposes the region
of interest into convex polytopes. Later on, a particle is placed inside each of
these polytopes. Thus, the Laguerre tessellation roughly indicates the spatial
arrangement of particles. For details regarding tessellations, a broad spectrum
of literature is available [7, 34, 40, 62].

In the next step, a connectivity graph is generated that describes which
particles are supposed to be connected, i.e., for each polytope P , we determine
a set of neighboring polytopes {Pi, i = 1, ..., N}, N ∈ N. The particles that are
placed inside {Pi, i = 1, ..., N} have to touch the particle in P . Full connectivity
of all particles is ensured by the usage of a minimum spanning tree [51]. Further
connections are added to the minimum spanning tree depending on the size
of the facet between two polytopes, as the probability of two particles being
connected is larger for larger facet areas. Such a graph is depicted in Fig. 2(b).

Now, a particle can be realized in each polytope, fulfilling the boundary
conditions, i.e., touching the particles indicated by the connectivity graph. In
more detail, the particles are modeled using Gaussian random fields on the
sphere. Thus, the shape of the particles can be characterized by a mean radius
µ and the angular power spectrum A : [0, ∞) → [0, ∞), see [28]. The angular
power spectrum is approximated by the function A(l) = al+b

l2+cl+d with coefficients
a = 0.4241, b = 0.356, c = −3.858 and d = 3.903. In more detail, we do not
use the mean radius µ directly but we generate the particles in a way that
their volume is proportional to the volume of corresponding Laguerre cells. The
particles are sampled with the boundary conditions indicated by the connectivity
graph using a special sampling algorithm that creates only realizations of the
given Gaussian random field that fulfill those conditions.

The schematic depiction in Fig. 2(c) shows the particles with the tessellation
and the connectivity graph. One can clearly see that the particles touch each
other where indicated by the graph and on the other hand also fill their re-
spective Laguerre polytopes. Fig. 2(d) shows the system of connected particles
without the tessellation and the connectivity graph as these are auxiliary tools
that are no longer needed after the creation of particles.

Finally, a morphological smoothing [8] is performed on the system of con-
nected particles to mimic the effect of binder. In the given sample the volume
fraction of the binder as well as the contrast in the tomographic images were
too low to identify and model the binder as separate phase. From the known
production process (slurry coating) we assume that this approach produces a
similar effect as depicted in Fig. 2(e).

In Fig. 3(a) and 3(b), a cutout from the tomographic image data can be
compared to a simulated anode structure. A very good visual accordance can
be observed.

The model described so far is an excellent tool to generate virtual anode mi-
crostructures of energy cells, which are characterized by a high volume fraction
of the solid phase. However, note that it can not directly be used to model the
morphology of anodes in power cells, because due to the lower volume fraction of
the solid phase, the boundary conditions for particles cannot be fulfilled reason-
ably. Therefore, an extension of the model has been proposed [66]. To account
for the lower volume fraction, a Laguerre tessellation with marked polytopes is
used. The polytopes are marked either as ‘filled’, i.e., a particle is placed in the
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(a) (b)

(c)

Figure 3: (a) 3D rendering of a cutout of a tomographic image of the energy
cell anode. (b) 3D rendering of a simulated energy cell anode structure. (c)
Realizations of the power cell model with various morphological properties; cen-
ter: realization of the calibrated power cell model; top left: virtual structure
with higher volume fraction of the particle phase; top right: virtual structure
with more pronounced anisotropy effects; bottom left: virtual structure with
no anisotropy effects; bottom right: virtual structure with decreasing volume
fraction of the particle phase from bottom to top. Reprinted from [13](a+b)
and [66](c) with permission from Elsevier.

polytope, or as ‘empty’, which means that no particle is placed here. Thereby,
a reasonable allocation of the different polytopes as well as full connectivity of
the resulting structure is ensured. Furthermore, the model is able to include
anisotropy effects of the solid phase, i.e., particles can be elongated in horizontal
direction rather than in vertical direction. This results in a remarkable flexi-
bility such that the model can be used to create a broad spectrum of virtual
anode microstructures with a variety of morphological properties, see Fig. 3(c)
for some examples.

In this study, we focus on electrochemical simulations of anode microstruc-
tures in energy cells. Thus, all microstructures which are discussed in the present
paper, are created using the energy cell model [13]. Electrochemical simulations
on virtual structures generated by the power cell model are subject of further
research.
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2.2 Microscopic cell modeling

In this section we recollect the equations that describe the transport of lithium
ions in a three-dimensional microstructure generated by the method as described
in the previous section. The physical model has been derived based on species,
charge and energy conservation to yield a set of equations that describe the
spatial and temporal distribution of lithium ions, electrical potentials and tem-
perature [31, 32]. However, in order to fit to the isothermal plating model we
neglect the effects of heat production here and consider an isothermal system
where temperature enters as a constant model parameter.

For the purpose of this study we restrict ourselves to half-cell simulations,
i.e. we consider a porous graphite electrode modeled by the discussed stochastic
method against a lithium foil as counter-electrode. The simulation domains are
connected with the external operation conditions through dedicated current
collector phases on each electrode. The remaining space of the computational
domain is filled with ion conductive electrolyte.

Within the graphite particles we have the following equations for lithium
concentration cGr and electrical potential ΦGr

∂tcGr = −∇ · NGr = −∇ · [−DGr∇cGr] , (2.1)

0 = −∇ · jGr = −∇ · [−σGr∇ΦGr] , (2.2)

where DGr is the lithium diffusion coefficient and σGr is the electrical conduc-
tivity of the material. The ion flux and electric current density are denoted by
NGr and jGr, respectively. Also in the domains of the lithium foil and the cur-
rent collectors electronic conduction is considered and hence (2.2) is also solved
in these domains (with the respective conductivities of course). Since there is
no intercalation and diffusion of ions neither in the lithium counter-electrode
nor in the current collectors, (2.1) is only relevant for the graphite domain.

Within the electrolyte domain, lithium concentration cEl and electrochemical
potential ϕEl are coupled through

∂tcEl = −∇ · NEl = −∇ ·
[

−DEl∇cEl +
t+

F
jEl

]

, (2.3)

0 = −∇ · jEl = −∇ ·
[

−κEl∇ϕEl − κEl
t+ − 1

F

∂µ

∂cEl
∇cEl

]

, (2.4)

where t+ is the transference number of lithium in the electrolyte, κEl is the ionic
conductivity of lithium inside the electrolyte and F is the Faraday constant. The
derivative of the electrolyte chemical potential is given as

∂µ

∂cEl
=

R · T

cEl
·
(

1 +
∂ log f+

∂ log cEl

)

, (2.5)

with T denoting the temperature, R the gas constant and f+ the activity coef-
ficient.

On the interfaces between the electrodes and electrolyte two types of reac-
tions need to be considered: That is an intercalation reaction on the graphite
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side and a lithium deposition reaction on the counter-electrode side. The differ-
ent phases (graphite, electrolyte and counter-electrode) are coupled via interface
conditions

jEl · nSo−El = iinterface ,

jSo · nSo−El = iinterface ,

NEl · nSo−El =
iinterface

F
,

NSo · nSo−El =
iinterface

F
,

(2.6)

with “So” (solid) being either graphite or metallic lithium. By convention the
interface normal nSo−El points from solid into the electrolyte. These conditions
express the continuity of the current and mass fluxes between the phases. The
current flow through these interfaces depends on the corresponding reactions.
The intercalation reaction is described by a Butler-Volmer-like expression [32]

iinterface = iGr−El

= 2 · i00
Gr−El · √

cGr · cEl · sinh

(

F

2 · R · T
· ηGr−El

)

, (2.7)

where the overpotential is given by ηGr−El = Φgr − UGr
0 − ϕEl. The electrode’s

open-circuit potential UGr
0 is a concentration dependent material property. The

rate constant i00
Gr−El depends on the lithium salt and the electrolyte composi-

tion. The transfer coefficients αc + αa = 1 of the intercalation reaction were
assumed to be symmetrical (αa,c = 0.5). The form of (2.7) differs from the usual
Butler-Volmer expression by omitting the common (cmax

Gr − cGr)
α
a term, since a

rigorous thermodynamically consistent derivation does not in general yield this
prefactor [32]. The Butler-Volmer model and the used exchange current include
a relation between the potentials and the current flux. The exponential shape
of the exchange current introduces highly pronounced non-linearities into the
numerical system. The reaction at the counter-electrode is described by a sim-
ple exchange current, which minimizes the effect of the counter-electrode on the
simulation results

iinterface = iCE−El = 2 · i00
CE−El · sinh

(

F

2 · R · T
· ηCE−El

)

, (2.8)

where the rate constant is given by i00
CE−El. On the lithium electrode the over-

potential is simply given by ηCE−El = ΦCE − ϕEl. The remaining interface
conditions are shown in Tab. 1.

These equations describe an ideal battery, i.e. no degradation processes are
considered. This extension is outlined in the next section.

2.3 Electrochemical degradation modeling

The focus in this work is the degradation process lithium plating, where the
lithium ions form an unwanted metallic phase on the surface of the intercala-
tion material of the negative electrode. The electrochemical modeling of this
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Table 1: Overview of interface conditions between the different material domains
for the ion fluxes N and current densities j. “cont.” mathematically means no
interface but a continuous flux according to the transport equation. Between
the graphite electrode and the lithium foil as counter electrode there is obviously
no interface.

graphite electrolyte lithium foil current collector plated lithium
graphite cont. (2.6),(2.7) no interface N = 0, j = cont. N = 0, j = cont.

electrolyte (2.6),(2.7) cont. (2.6),(2.8) N = −1, j = 0 (2.6),(2.14)
lithium foil no interface (2.6),(2.8) cont. N = 0, j = cont. no interface
current col. N = 0, j = cont. N = 0, j = 0 N = 0, j = cont. cont. N = 0, j = cont.

plated lithium N = 0, j = cont. (2.6),(2.14) no interface N = 0, j = cont. cont.

process is briefly described in the following section, details can be found in the
corresponding publication [22]. Two states of the lithium ions are of relevance:
the lithium ions dissolved in the electrolyte Li+El and the metallic/plated lithium
phases Li0Pl. The transition between these two is expressed by the reaction

Li+Electrolyte + e−

Electrode ⇋ Li0Plated . (2.9)

The overpotential of the plating and stripping reaction is defined by the differ-
ence between the electrochemical potential µ̃ of the two lithium phases involved[44]

F · ηPl/St = µ̃Pl
Li+ − µ̃El

Li+ . (2.10)

With the definition of the reference state µPl
Li0 = µPl

Li+ + µPl
e−

and the electro-
chemical potentials of lithium ions inside the electrolyte and a solid phase (see
[22]), the overpotential (2.10) can be rewritten to

ηPl/St = ΦPl − ϕEl
Li+ , (2.11)

where ϕp
i denotes the electrochemical potential of species i in phase p with

respect to the reference state µPl
Li0 . Plating of lithium is occurring if the overpo-

tential reaches negative values (ηPl/St < 0). The metallic lithium phase on the
surface of the anode is not in a stable configuration, even if no external current
is applied to the system. As soon as lithium is plated on the surface of the
active material, the lithium metal can react with its surroundings in different
ways. The reaction between the plated lithium and the electrolyte results in the
growth of a solid-electrolyte interphase (SEI), which leads to an irreversible loss
of lithium [63]. Apart from phenomenological models no theory exists which
combines lithium intercalation, lithium plating and SEI growth. Hence, this
irreversible pathway is not included in the present paper. The plated lithium
can also intercalate charge-neutrally into the supporting graphite. This reaction
represents a reversible lithium stripping pathway. We are not aware of any lit-
erature regarding the identification and parameterization of the charge-neutral
reintercalation. Hence the direct reintercalation from the plated lithium into
graphite was neglected in this work.

The stripping and plating reaction of the lithium is described by a Butler-
Volmer-like equation

11



iPl−El =i00
Pl−El · √

cEl

·
(

fpre (nLi) · exp

(

FηPl−El

2 · R · T

)

− exp

(

−FηPl−El

2 · R · T

))

. (2.12)

The Bulter-Volmer-like expression is derived for non-vanishing phases. But,
the plated lithium phase can completely desolve during stripping. Hence, the
vanishing of the plated lithium phase is considered in the exchange current by
the numerical regularization function fpre (nLi), which depends on the amount
of plated lithium nLi

fpre (nLi) =
(nLi)

4

(nconst
Li )

4
+ (nLi)

4
. (2.13)

Based on numerical considerations [22], we set the constant nconst
Li to a value

corresponding to a thickness of plated lithium of 0.48 nm. For partially covered
surfaces more detailed models are necessary to capture the stripping of par-
tially covered surfaces including the surface-driven dissolution of small lithium
droplets.

At the interface between the plated lithium and the electrolyte the current
through the interface is equal to the stripping current

iinterface = iPl−El . (2.14)

All the interface conditions which are relevant for electrochemical simulations
in this paper are listed in Tab. 1.

In this paper the stripping process of plated lithium is simulated by including
the plated lithium into the 3D microstructure as an additional volume phase. In
Fig. 4(a) an example of a 3D microstructure with plated lithium is shown. The
porous electrode (red/right) is generated by the stochastic generation algorithm
as described in Sec. 2.1. Additionally, regions with plated lithium are positioned
randomly at the separator-electrode interface. The microstructure shown in Fig.
4(a) is used for the model order reduction experiment described in Sec. 3.2.

One important deviation from the microstructure model [13, 66] was to in-
troduce a third phase in the anode structure, plated lithium. We use a fairly
simple model to create a slightly plated structure as initial condition. These
initial conditions are, like the microstructure model, simulated stochastically.
This means that for every run the microstructure model extended by the plated
lithium phase generates a new structure but with similar statistical properties.

The method used to create the plated lithium phase is a germ-grain model.
This means that in a first step germs are simulated and in the second step
grains are placed around the germs [7]. The parameters of this model are the
intensity λ of the Poisson process that is used to generate the germs and the
grain radius rs. Due to the lack of experimental data the values where chosen
to λ = 0.01/µm2 and rs = 2.2 µm. The general idea of the model is to place
plating germs randomly on the surface of the particles in the electrode and then
initialize plating around the germs on all the points on the structure’s surface
within the radius given by rs. In more detail the following is done, see Fig.
4(b):
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(a) (b)

Figure 4: (a) Example of a 3D microstructure generated based on the stochastic
simulation algorithm as described in Sec. 2.1. The plated lithium is shown as
green spots on the separator-graphite interface. (b) Schematic depiction of
the simulated initial lithium plating in 2D. The blue dots indicate the starting
positions of the grains. The red lines indicate the simulated lithium plating.

• Select points {pi, i ∈ N} at the separator-anode interface via a Poisson
point process with intensity λ.

• For each point pi, i ∈ N do the following:

– Find the first point p∗

i where the straight line from pi towards the
anode current collector interface meets the anode structure. Let Θ
be the particle on the boundary of which p∗

i is placed.

– Consider a sphere B(p∗

i , rs) around p∗

i with radius rs. Let Li = {x ∈
R

3 : x ∈ B(p∗

i , rs) and x ∈ ∂Θ}, where ∂Θ is the boundary of Θ.

• Let L =
⋃

i∈N

Li be the plated lithium phase.

The plated lithium phase L is then discretized as a one voxel thick phase on the
surface of the particles. The material parameters and reaction constants of the
ion transport and plating model are adapted from a previous publication [22].

2.4 Discretization and high-dimensional simulation

For the spatial discretization of the presented plating model, a cell-centered
finite volume scheme on a uniform voxel grid is considered. Hence the dis-
cretization is naturally conservative. Furthermore, with the simple grid struc-
ture meshing of the complex microstructure is straight-forward. The Butler-
Volmer interface conditions (2.6) are prescribed as the numerical flux across the
respective domain interfaces, leading to a global space differential operator on
the entire computational domain. Choosing implicit Euler time stepping for
time discretization, we obtain a series of discrete nonlinear equation systems of
the form
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[

1
∆t(n+1) (c

(n+1)
µ − c

(n)
µ )

0

]

+ Aµ

([

c
(n+1)
µ

ϕ
(n+1)
µ

])

= 0,

(c(n+1)
µ , ϕ(n+1)

µ ) ∈ Vh ⊕ Vh. (2.15)

Here, Vh denotes the discrete finite volume space of locally constant grid func-

tions, c
(n)
µ , ϕ

(n)
µ ∈ Vh denote the concentration and potential fields at time step

n for some p-tuple of model parameters µ contained in a parameter domain
of interest P ⊂ R

p, and Aµ : Vh ⊕ Vh → Vh ⊕ Vh is the finite volume space

differential operator. The system is closed by c
(0)
µ = c0 for some fixed initial

lithium distribution c0 ∈ Vh. The time step size ∆t(n) is chosen adaptively for
each time step to accommodate the different time scales during and after the
stripping of the plated lithium. The nonlinear equation systems are solved in
BEST using Newton’s method and an algebraic multigrid solver for the solution
of the linear correction equations. Details on the discretization are provided in
a previous publication [50].

2.5 Model order reduction and reduced simulation

The computation of a single solution trajectory c
(n)
µ , ϕ

(n)
µ requires many hours,

even for relatively small geometries (cf. Sec. 3.2). In order to make parameter
studies computationally feasible, reduced basis model reduction techniques[53,
23, 19] are applied which have been implemented in our model order reduction
library pyMOR [39, 52]. This allows us to obtain a quickly solvable reduced
order model approximating the full order model (2.15).

To construct the reduced order model, solutions of (2.15) are computed for
few appropriately selected parameters µ1, . . . , µS . Various advanced algorithms
exist for the selection of these snapshot parameters, often based on a greedy
search procedure (cf. [53, 23, 19]). In our basic test case with a one-dimensional
parameter domain P (Sec. 3.2), a simple equidistant parameter sampling will
be sufficient, however.

From this data, reduced approximation spaces Ṽc, Ṽϕ for the concentration
and potential fields are constructed via proper orthogonal decomposition (POD,

principal component analysis) [56] of the snapshot data sets Sc = {c
(n)
µs , c

(n,i)
µs },

Sϕ = {ϕ
(n)
µs , ϕ

(n,ik)
µs }. Here, c

(n,i)
µs , ϕ

(n,i)
µs denote the intermediate Newton stages

during the solution of (2.16), which are included for improved numerical sta-
bility. By construction, we in particular have Ṽc ⊆ span Sc and Ṽϕ ⊆ span Sϕ.
While dim Vh is in the order of 106, we typically have dim Ṽc, dim Ṽϕ < 100,
which makes significant computational speedups possible.

After the reduced approximation space Ṽ = Ṽc ⊕ Ṽϕ has been computed, the
reduced order model is obtained via Galerkin projection of (2.15) onto Ṽ . I.e.,
we solve

PṼ

{

[

1
∆t(n+1) (c̃

(n+1)
µ − c̃

(n)
µ )

0

]

+ Aµ

([

c̃
(n+1)
µ

ϕ̃
(n+1)
µ

])}

= 0,

(c̃(n+1)
µ , ϕ̃(n+1)

µ ) ∈ Ṽ , (2.16)

14



c̃
(0)
µ = PṼc

(c0), where PṼ / PṼc
denotes the L2-orthogonal projection onto Ṽ /

Ṽc.
However, even though (2.16) contains only dim Ṽ degrees of freedom, its

solution requires the evaluation of the high-dimensional system operator Aµ.
This strongly limits the achievable speedup in computation time when solving
(2.16) instead of (2.15).

To overcome this issue, Aµ is replaced by a quickly evaluable low-order ap-
proximation using the empirical interpolation technique [5, 11]: for an arbitrary
(nonlinear) operator O : X → Y , the EI-Greedy algorithm is used to compute
a low-order interpolation space Ỹ ⊆ Y from evaluations of T on given solution
trajectories, after which the interpolated operator IM [O] is determined by re-
quiring it to agree with O at appropriate M = dim Ỹ interpolation degrees of
freedom π1, . . . , πM : Y → R. I.e., for all x ∈ X we have

IM [O](x) ∈ Ỹ and πm(IM [O](x)) = πm(O(x)), 1 ≤ m ≤ M. (2.17)

Due to the locality of finite volume operators, the point evaluations πm(O(x))
can be computed quickly and independently from the dimension of Vh.

Since the potential part of Aµ vanishes identically for solutions of (2.15),
a direct application of empirical interpolation to O = Aµ results in an unus-
able approximation, however. Instead, we further decompose Aµ and only use
empirical interpolation for appropriate sub-operators.

In the following, we are interested in the behavior of the model in dependence
on the applied current density. In this case, with µ being the applied current
density, Aµ decomposes as

Aµ = A(aff)
µ + A(bv) + A(1/c), (2.18)

where A(bv), A(1/c) are the parameter-independent nonlinear parts of Aµ corre-
sponding to the Butler-Volmer interface terms and the summand in (2.4) con-

taining ∂µ/∂cEl. Assuming constant t+, the remainder A
(aff)
µ is affine linear

and decomposes as

A(aff)
µ = A(const) + µ · A(bnd) + A(lin), (2.19)

where A(const) is constant and A(bdn), A(lin) are linear, non-parametric opera-
tors.

Now we apply the EI-Greedy algorithm on the training datasets S∗ =

{A(∗)(c
(n)
µs , ϕ

(n)
µs ), A(∗)(c

(n,i)
µs , ϕ

(n,i)
µs )}, ∗ ∈ {bv, 1/c}, to obtain empirically inter-

polated operators IM(∗) [A(∗)] ≈ A(∗), which give us the approximation

Aµ ≈ Ãµ = A(aff)
µ + IM(bv) [A(bv)] + IM(1/c) [A(1/c)]. (2.20)

Substituting (2.20) into (2.16) we arrive at the fully reduced model

PṼ

{

[

1
∆t(n+1) (c̃

(n+1)
µ − c̃

(n)
µ )

0

]

+ Ãµ

([

c̃
(n+1)
µ

ϕ̃
(n+1)
µ

])}

= 0,

(c̃(n+1)
µ , ϕ̃(n+1)

µ ) ∈ Ṽ , (2.21)

15



with c̃
(0)
µ = PṼc

. After pre-computation of the matrix representations of the

linear (constant) operators PṼ ◦ A(const), PṼ ◦ A(bnd), PṼ ◦ A(lin) : Ṽ → Ṽ , as
well as the projections from the interpolation spaces for A(bv), A(1/c) onto Ṽ ,
the solution of (2.21) can be obtained quickly for arbitrary new parameters µ
with an effort that only depends on dim Ṽ , M (bv) and M (1/c).

In the following experiments (see Sec. 3.2) we are interested in the cell po-
tential as well as the average lithium concentration in the electrode as functions
of time and the applied delithiation current density µ. These quantities are
linear functionals scp, sac : Vh ⊕ Vh → R, assigning to a state of the cell the
respective quantity of interest. Due to their linearity, the vector representation
for the evaluation of scp, sac on Ṽ can again be pre-computed, such that for

any given solution of (2.21), scp(c̃
(n)
µ , ϕ̃

(n)
µ ), sac(c̃

(n)
µ , ϕ̃

(n)
µ ) are quickly obtained

with an effort only depending on dim Ṽ .
The model order reduction introduces an additional approximation error

between full order and reduced order model that needs to be accounted for in the
simulation workflow. As we are not aware of any rigorous error estimates which
would provide sufficiently tight error bounds for the model under consideration,
we here consider the following heuristic a posteriori error estimator [20]: In
addition to Ṽ we construct a second, larger validation space V̂ = V̂c ⊕ V̂ϕ ⊃
Ṽc ⊕ Ṽϕ = Ṽ and extended interpolation bases of dimensions M̂ (bv) > M (bv) and

M̂ (1/c) > M (1/c), yielding a larger reduced model with solutions (ĉ
(n)
µ , ϕ̂

(n)
µ ) ∈ V̂ .

Under the heuristical assumption that

‖ĉ(n)
µ − c(n)

µ ‖ ≤ Θ · ‖c̃(n)
µ − c(n)

µ ‖, ‖ϕ̂(n)
µ − ϕ(n)

µ ‖ ≤ Θ · ‖ϕ̃(n)
µ − ϕ(n)

µ ‖ (2.22)

for all timesteps n, µ ∈ P with a fixed Θ ∈ [0, 1), from the triangle inequality
we immediately obtain the error estimates

‖c̃(n)
µ − c(n)

µ ‖ ≤ 1

1 − Θ
· ‖c̃(n)

µ − ĉ(n)
µ ‖, ‖ϕ̃(n)

µ − ϕ(n)
µ ‖ ≤ 1

1 − Θ
· ‖ϕ̃(n)

µ − ϕ̂(n)
µ ‖.

(2.23)
The right-hand sides of (2.23) can be quickly computed at the expense of an
additional solution of a second (slightly larger) reduced order model. Note that
(2.22) is precisely the saturation assumption in the context of hierarchical a
posteriori estimates for finite element schemes (see e.g. [4]).

2.6 Algorithmical integration and software interfaces

MULTIBAT aims to allow computationally fast studies of local effects in the
complex microstructure of battery anodes within one software workflow. This is
achieved by breaking the multi-disciplinary goal into task units and interfacing
these units with BEST to varying degrees of depth.

The presented workflow resulting from these interfaces is schematically de-
picted in Fig. 5. It allows speeding up the numerical solution of the microscopic
cell degradation modeling from Sec. 2.2 and 2.3 with discretization from Sec. 2.4
by BEST, using the randomly generated structures from Sec. 2.1 through the
POD/EI based model order reduction approach from Sec. 2.5. The workflow
has been used to create the results and speedups depicted in Sec. 3.
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Figure 5: Implementation of the MULTIBAT workflow.

We introduce three distinct interfaces. The first is file-based and allows usage
of randomly generated structures of Sec. 2.1 in BEST through a conversion tool.
The conversion tool provides standard BEST geometry input which is matched
with physical modeling input parameters and numerical solution parameters
suitable for the models of Sec. 2.2 with the extensions from Sec. 2.3.

The second interface allows to extend the BEST numerical solution code
to advanced interface flux modeling between the plated anode-lithium and the
electrolyte from Sec. 2.3. The model extensions are compiled into the BEST
library.

The third and most extensive interface is library-based and gives pyMOR
runtime access to the solution process, vectors, discretization matrices, Jaco-
bians, linear algebra solver and parameters of BEST through the BEST library
to carry out POD/EI based MOR. The separation is strict: All MOR-related
operations and the Newton methods are carried out in pyMOR and all evalua-
tions of nonlinear operators and Jacobians are carried out by the BEST library
ordered by pyMOR.

3 Workflow demonstration on lithium stripping

case study

3.1 Microstructure generation and electrochemical verifi-

cation

The stochastic microstructure model used in this work was parameterized on
real tomographic image data [13]. As mentioned in Sec. 2.1, the validity of the
structural parameterization was investigated through spatially resolved electro-
chemical simulations [21]. The validated stochastic microstructure model is
used in this work. In the following a short summary of the electrochemical

17



validation is given. 20 simulated realizations of the stochastic microstructure
model and 20 microstructure cutouts from the tomographic image data are
used as electrode structure samples for electrochemical simulations. These mi-
crostructures are delithiated with a constant current. The simulation results
were compared using various electrochemical quantities, such as local current
density and lithium concentration. A very good agreement between the real and
virtual microstructures was found, see Fig. 6(a). The advantage of spatially re-
solved electrochemical simulations is the access to localized inhomogeneities.
The spatial distribution of the electrolyte concentration for two cutouts of real
and virtual microstructures is shown as an example in Fig. 6(a).
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Figure 6: (a) Spatial distribution of electrolyte concentration of a real (left) and
virtual (right) microstructure. The same color scale is used (shown below the
cutouts). Both structures exhibit larger particles visible as void spaces. Also
both cutouts show electrolyte pores, which are less connected to the main pore
space: (virtual) Orange part close to the blue and (real) dark red at the upper
corner. (b) Mean lithium concentration in the electrolyte as a function of the
distance to the separator averaged over the different microstructures. The color
shaded areas indicate the 5% and 95%-quantiles. A good accordance can be
observed. Reprinted from [21] with permission from Elsevier.

Both cutouts exhibit similar features: less-than-average connected pores and
large particles. Apart from the visual similarity between the real and virtual
cutouts, averaged quantities were used for a more quantitative comparison. The
average lithium concentration in the electrolyte in through direction (from one
current collector towards the other) is shown in Fig. 6(b).

The general shapes of the concentration functions are nearly identical. The
superposition of transport within the electrolyte and deintercalation of lithium
from the solid phase results in a nonlinear gradient. Without any sources of
lithium a linear concentration gradient forms in the separator. More details
regarding the electrochemical validation can be found in the corresponding pub-
lication [21].
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3.2 Model order reduction

As a first numerical test for the entire developed modeling and simulation work-
flow (see Sec. 2), we simulated the full model (including plated lithium) on a
randomly generated half-cell geometry of size 44µm × 44µm × 65.6µm, which is
meshed with a grid of 100×100×149 voxels (see Fig. 4(a)). This size is required
to cover a representative volume containing several particles in each direction,
and, at the same time, to achieve a sufficient resolution to resolve a relevant part
of the electrode’s morphology. Starting with plated lithium and a high lithium
concentration in the electrode we performed a delithiation simulation and hence
expect to see lithium stripping. We simulated 60 seconds with constant current
densities in the interval P = [2.5, 250]A/m2, which corresponds to currents from
4.84 nA to 484 nA or to C-rates from C/10 to 10C.

A single simulation of the full order model (2.15) requires around 16 hours
(cf. Tab. 2). To generate the snapshot data for the computation of the reduced
order model (2.21), the full order model (2.15) was solved for the three delithia-
tion current densities min P , max P and (min P+max P)/2. The reduced spaces
Ṽc, Ṽϕ, V̂c, V̂ϕ, as well as the interpolation spaces for IM(bv) [A(bv)], IM(1/c) [A(1/c)]
were computed using the POD and EI-Greedy algorithms. To ensure that a
numerically stable reduced order model is obtained, a small relative error toler-
ance of 10−7 was chosen, using in each case 97% of the resulting basis vectors for
the construction of the reduced order model and all basis vectors for construction
of the validation model used for the error estimator (2.23). The resulting spaces
are of the following dimensions: dim Ṽc = 178, dim V̂c = 183, dim Ṽϕ = 67,

dim V̂ϕ = 69, M (bv) = 924, M̂ (bv) = 952, M (1/c) = 997 and M̂ (1/c) = 1027.
To validate the resulting reduced order model (2.21), we compared the so-

lutions of (2.21) to the full order model (2.15) for 10 random parameter values
µi ∈ P , i = 1, . . . , 10 in addition to the three snapshot parameters used for train-
ing. While achieving a relative model reduction error of at most 4.81·10−4 resp.
4.50 · 10−3 for the concentration and potential variables (Fig. 7), the reduced
order model can be simulated in less than 8 minutes, yielding a speedup factor
of 120. Since the generation of the reduced model from the high-dimensional
snapshot data is faster than a single solution of the full order model, an overall
saving of computation time is already achieved for one additional model sim-
ulation (Tab. 2). For Θ = 0 the error estimator (2.23) overestimates the real
model reduction error in these 13 parameters by a factor of at most 1.08 (3.46)
for the concentration (potential) and underestimates the error by a factor of
at most 2.89 (1.45). The estimator was evaluated for 100 additional current
densities in P , yielding a maximum estimated relative error of 3.61 · 10−4 resp.
5.55 · 10−3 for concentration and potential.

In Fig. 8(a) and 8(b), the cell potential and average lithium concentration in
the electrode have been plotted over the transferred charge for the 10 random
test parameters. A short interpretation of these results is given in the subse-
quent section. Overall, no visual distinction between the data generated by the
reduced and full order models can be made.

3.3 The lithium stripping process

In Fig. 8(a) the cell voltage is shown for 10 of the applied currents. The cell
voltages for all applied currents exhibit a similar shape. A voltage plateau
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Table 2: Extrapolated timings for the model reduction experiment. Time for
single full model simulation: 15h 38m 35s (median), time for single reduced sim-
ulation: 7m 48s (median), time for generation of reduced model from snapshot
data: 13h 43m 12s. ‘without MOR’ is the required time if all simulations are
performed with the full order model (2.15), ‘with MOR’ is the required time
if the reduced order model (2.21) is used for all simulations after the first 3
snapshot computations (including reduced order model construction). All com-
putations have been performed on a single core of an Intel Xeon E5-2698 v3
CPU.

simulations without MOR with MOR speedup

1 15h 38m – –
2 1d 7h 17m – –
3 1d 22h 55m – –
4 2d 14h 34m 2d 12h 46m 1.0
5 3d 6h 12m 2d 12h 54m 1.3
10 6d 12h 25m 2d 13h 33m 2.5
50 32d 14h 9m 2d 18h 45m 11.7
100 65d 4h 18m 3d 1h 15m 21.4

limit (= full model vs. reduced order model) 120.3
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Figure 7: State space model reduction errors (markers) and estimated model
reduction errors (solid lines) for different applied discharge current densities for
the model reduction experiment. Plotted is the relative L∞-in-time L2-in-space
error in the concentration (c) and potential (ϕ) variables over a test set of 10
randomly chosen current densities µi ∈ P = [2.5, 250] A/m2 , i = 1, . . . , 10 in ad-
dition to the three current densities used for training of the reduced model. The
model reduction error was estimated for additional 100 equidistantly sampled
current densities in P , Θ = 0.
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Figure 8: (a) Cell voltage over transferred charge for the model reduction ex-
periment for 10 randomly selected current densities µi (cf. Fig. 7). Solid lines:
full model simulation, markers: reduced model simulation (every fifth time step
marked). (b) Mean lithium concentration inside the solid phase plotted over
transferred charge for the model reduction experiment for 10 randomly selected
currents densities µi (cf. Fig. 7). Solid lines: full model simulation, markers:
reduced model simulation (every fifth time step marked).
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at the start of delithiation is followed by a rise, which is in turn succeeded
by a region following the shape of the open-circuit potential UGraphite

0 . The
initial voltage plateau results from the stripping reaction (see Eq. (2.9)). The
increase in cell voltage begins as soon as the majority of the plated lithium is
consumed. The apparent plateau afterwards is the cell voltage of the supporting
graphite at about 75% state of charge. This equilibrium potential is shifted
with an overpotential, which depends on the applied current. A transferred
charge of 2 nA h corresponds to a variation in the state of charge of 4% since
the used microstructure has a maximum capacity of 49 nAh. Large applied
stripping currents lead to a fast decrease of lithium concentration at the surface
of graphite. The solid diffusion can not equilibrate the lithium concentration in
the electrode in the same rate for large currents as for small currents. Therefore,
the state of charge at the surface will vary more than the overall change in
state of charge. The open-circuit potential will then increase faster for larger
currents. Thus resulting in a more sloped cell voltage for the larger currents.
The length of the stripping plateau in the cell voltage depends on the applied
current. For smaller currents, the change from constant potential to graphite
dominated region is at lower transferred charge. The intercalation of lithium
during the stripping of the plated lithium leads to an increase of the lithium
concentration in the solid phase, as can be seen in Fig. 8(b). For low applied
currents a net intercalation during the lithium stripping is visible. As soon as
the majority of the plated lithium is dissolved a net delithiation exists. More
information about the distribution of the delithiation current on the stripping
and intercalation reaction are provided in a recent publication [22].

The cell voltages and average lithium concentrations obtained from the
model reduction experiments are identical to the ones obtained from the full
order model. This indicates that the reduced model sufficiently represents the
electrochemical relevant regions in the simulation domain.

4 Conclusion & outlook

We conclude that it is absolutely possible to do a lot of in-depth research on
lithium-ion cells virtually. In this work we have shown one approach to solve
many of the existing problems using simulation techniques for the investigation
in lithium-ion battery cells.

First, the limitation of 1D or pseudo 2D models which consider only aver-
aged structural quantities and thus neglect all local effects can be overcome by
switching to spatially resolved 3D models. Hence we presented a physics-based
model that describes the cell’s behavior on a microscopic scale and includes
effects of lithium plating and stripping. Based on the software tool BEST the
mathematical model was implemented and solved in a three-dimensional geom-
etry.

Another current limitation is that the acquisition of tomographic 3D im-
ages as basis for simulations is costly and restricts the ability to simulate new
structures that have not been produced experimentally. This limitation is over-
come by the usage of a 3D stochastic microstructure model which has been
implemented in the software library GEOSTOCH. Once the model is fitted to
a material by the usage of tomographic 3D images it is possible to generate
arbitrary many virtual cutouts with arbitrary sizes. By reasonable changes on
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the model parameters it is even possible to generate structures that have not
been processed experimentally in order to investigate their properties and to
test their performance.

Finally, a great problem of simulation-based parameter studies in particular
including the plating/stripping behavior is the extensive simulation runtime.
This problem is solved using model order reduction methods implemented in
the software library pyMOR, which speed up the simulation of similar cycles
significantly. Tab. 2 shows a speedup of factor 120 for the simulation of the
reduced model in comparison to a full order model simulation.

Overall we have shown that the combinations of all the methods described
above work well in a demo scenario and can improve the accuracy of the geom-
etry models, increase the computational speed considerably, and extended the
predictive power of the electrochemical battery models.

Acknowledgement

This work was partially funded by BMBF under grant numbers 05M13VUA,
05M13PMA, 05M13AMF and 05M13CLA in the programme “Mathematik für
Innovationen in Industrie und Dienstleistungen”.

References

[1] Rohan Akolkar. Mathematical model of the dendritic growth during lithium
electrodeposition. Journal of Power Sources, 232:23–28, 2013.

[2] P. Arora, M. Doyle, and R. E. White. Mathematical modeling of the lithium
deposition overcharge reaction in lithium-ion batteries using carbon-based
negative electrodes. Journal of The Electrochemical Society, 146(10):3543–
3553, 1999.

[3] P. Arora, R. E. White, and M. Doyle. Capacity fade mechanisms and side
reactions in lithium-ion batteries. Journal of The Electrochemical Society,
145(10):3647–3667, 1998.

[4] Randolph E. Bank and R. Kent Smith. A posteriori error estimates based
on hierarchical bases. SIAM Journal on Numerical Analysis, 30(4):921–935,
1993.

[5] Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T. Pa-
tera. An ‘empirical interpolation’ method: application to efficient reduced-
basis discretization of partial differential equations. Comptes Rendus Math-

ematique, 339(9):667–672, 2004.

[6] L. Cai and R.E. White. Reduction of model order based on proper orthog-
onal decomposition for lithium-ion battery simulations. Journal of The

Electrochemical Society, 156(3):154–161, 2009.

[7] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic Geometry

and its Applications. J. Wiley & Sons, 3rd edition edition, 2013.

23



[8] E. Dougherty, editor. Mathematical Morphology in Image Processing. Op-
tical Science and Engineering. Taylor & Francis, 1992.

[9] Marc Doyle, Thomas F Fuller, and John Newman. Modeling of galvanos-
tatic charge and discharge of the lithium/polymer/insertion cell. Journal

of The Electrochemical Society, 140(6):1526–1533, 1993.

[10] Marc Doyle, John Newman, Antoni S. Gozdz, Caroline N. Schmutz, and
Jean-Marie Tarascon. Comparison of modeling predictions with experi-
mental data from plastic lithium ion cells. Journal of The Electrochemical

Society, 143(6):1890–1903, 1996.

[11] M. Drohmann, B. Haasdonk, and M. Ohlberger. Reduced basis approxi-
mation for nonlinear parametrized evolution equations based on empirical
operator interpolation. SIAM Journal on Scientific Computing, 34(2):937–
969, 2012.

[12] M. Ecker, S. Kabitz, I. Laresgoiti, and D. U. Sauer. Parameterization of
a physico-chemical model of a lithium-ion battery: II. model validation.
Journal of The Electrochemical Society, 162(9):A1849–A1857, 2015.

[13] Julian Feinauer, Tim Brereton, Aaron Spettl, Matthias Weber, Ingo
Manke, and Volker Schmidt. Stochastic 3D modeling of the microstructure
of lithium-ion battery anodes via Gaussian random fields on the sphere.
Computational Material Science, 109:137–146, 2015.

[14] Donal P. Finegan, Mario Scheel, James B. Robinson, Bernhard Tjaden,
Marco Di Michiel, Gareth Hinds, Dan J. L. Brett, and Paul R. Shear-
ing. Investigating lithium-ion battery materials during overcharge-induced
thermal runaway: an operando and multi-scale X-ray CT study. Physical

Chemistry Chemical Physics, 18:30912–30919, 2016.

[15] Fraunhofer ITWM. BEST – Battery and Electrochemistry Simulation Tool,
2014.

[16] Thomas F Fuller, Marc Doyle, and John Newman. Simulation and opti-
mization of the dual lithium ion insertion cell. Journal of The Electrochem-

ical Society, 141(1):1–10, 1994.

[17] G. Gaiselmann, M. Neumann, L. Holzer, T. Hocker, M. R. Prestat, and
V. Schmidt. Stochastic 3D modeling of LSC cathodes based on struc-
tural segmentation of FIB-SEM images. Computational Materials Science,
67:48–62, 2013.

[18] G. Gaiselmann, R. Thiedmann, I. Manke, W. Lehnert, and V. Schmidt.
Stochastic 3D modeling of fiber-based materials. Computational Materials

Science, 59:75–86, 2012.

[19] Bernard Haasdonk. Reduced basis methods for parametrized pdes—a tuto-
rial introduction for stationary and instationary problems. In Peter Benner,
Mario Ohlberger, Albert Cohen, and Karen Willcox, editors, Model Reduc-

tion and Approximation, chapter 2, pages 65–136. Society for Industrial
and Applied Mathematics, 2017.

24



[20] Stefan Hain, Mario Ohlberger, Mladjan Radic, and Karsten Urban. A hier-
archical a-posteriori error estimator for the reduced basis method. Working
paper (under preparation), 2017+.

[21] Simon Hein, Julian Feinauer, Daniel Westhoff, Ingo Manke, Volker
Schmidt, and Arnulf Latz. Stochastic microstructure modeling and elec-
trochemical simulation of lithium-ion cell anodes in 3D. Journal of Power

Sources, 336:161–171, dec 2016.

[22] Simon Hein and Arnulf Latz. Influence of local lithium metal deposition in
3D microstructures on local and global behavior of Lithium-ion batteries.
Electrochimica Acta, 201:354–365, 2016.

[23] Jan S Hesthaven, Gianluigi Rozza, and Benjamin Stamm. Certified Reduced

Basis Methods for Parametrized Partial Differential Equations. Springer-
Briefs in Mathematics. Springer International Publishing, 2016.

[24] Tobias Hofmann, Ralf Müller, Heiko Andrä, and Jochen Zausch. Numerical
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