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Abstract

Many global optimization problems arising naturally in science and en-
gineering exhibit some form of intrinsic ill-posedness, such as multimodality
and insensitivity. Severe ill-posedness precludes the use of standard regu-
larization techniques and necessitates more specialized approaches, usually
comprised of two separate stages - global phase, that determines the prob-
lem’s modality and provides rough approximations of the solutions, and a
local phase, which refines these approximations.

In this work, we attempt to improve one of the most efficient currently
known approaches - Hierarchic Memetic Strategy (HMS) - by incorporating
the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) into
its local phase. CMA-ES is a stochastic optimization algorithm that in
some sense mimics the behavior of population-based evolutionary algorithms
without explicitly evolving the population. This way, it avoids, to an extent,
the associated cost of multiple evaluations of the objective function.

We compare the performance of the HMS on relatively simple multi-
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modal benchmark problems and on an engineering problem. To do so,
we consider two configurations: the CMA-ES and the standard SEA (Sim-
ple Evolutionary Algorithm). The results demonstrate that the HMS with
CMA-ES in the local phase requires less objective function evaluations to
provide the same accuracy, making this approach more efficient than the
standard SEA.

Keywords: inverse problems, multi-objective optimization methods,
memetic algorithms, ill-posed problems

1. Introduction

Many global optimization problems provided by environmental science,
geophysics, medical diagnosis, economy, and technology are not correctly
posed. For instance, the ambiguity appearing by lens design is described
in [1], while [2] mentions the ill-conditioning of the heat flux estimation in
irradiative dryer/furnace. Some examples of uncertain geophysical problems
are [3] (calibration of conceptual Rainfall-Runoff Models) and [4] (investi-
gation of oil and gas resources). The problems of cancer diagnosis (see, e.g.
[5]) as well as restoring the high-resolution image from the low-level Elec-
trical Impedance Tomography (EIT) images [6] might also be classified as
ill-posed.

Generally, the ill-posedness mentioned above is not caused by neglecting
the necessary mathematical preciseness but generally, by the insufficient
knowledge about the problem’s nature (e.g., lack of the total observability,
incomplete and inaccurate measurements, computational errors or even poor
formal model of the phenomenon under consideration only available).

Typical symptoms of such ill-conditioning are the objective multimodal-
ity or/and the regions of objective insensitivity, which might be called “low-
lands” in the optimization landscape (see [7] for details). The traditional
formulations and solving methods are difficult to apply for such problems.
In particular, strategies leading only to find the global, stable minimizer
and approximate it by a gradient based method starting from an arbitrary
admissible point, are unable to deliver satisfactory information of solutions
to such problems.

More reliable knowledge about the problem should contain the informa-
tion about all local minimizers and the objective behavior in some neigh-
borhood of each of them.

If the ill-conditioning of the problem is mild and has a form of small
perturbation (e.g., the problem is conditionally well-posed in the sense of
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Tikhonov [8]), then the solution can be obtained by applying a local convex
minimization method and some regularized objective supplement (see e.g.
[9]).

Unfortunately, global optimization problems with a multimodal and an
insensitive objective can rarely be solved by a single convex optimization
algorithm. Typical strategies are composed of two phases: the global phase
in which the objective modality is determined and the local phase, in which
the solution’s approximation is refined in the basin of attraction of each local
minimizer (see, e.g., [10, 11]).

The global phase can be performed by a stochastic search, sometimes of
a complex structure, involving post processing of the random sample with
an artificial intelligence method (see e.g. [12, 13]). It is also possible to
apply an evolutionary or memetic approach in the global phase (see [14],
[15]). The local phase is traditionally performed by gradient-based methods
(see, e.g., [16]), if the total strategy leads to find only one minimizer in each
distinguished basin of attraction.

In this paper, we use the Hierarchic Memetic Strategy (HMS), which is
a concurrent multi-phase global optimizer [17]. This is a complex strategy
aimed at solving ill-posed inverse problems formulated as multi-modal global
optimization tasks with expensive objective function evaluations. The goal
of HMS is to provide possibly all solutions with satisfactory accuracy and
in a reasonable time. The strategy was already tested on several real-world
engineering inverse problems and proved its superiority over commonly-used
global optimizers like the Simple Evolutionary Algorithm (SEA) and the
multi-start method, cf. [18, 4, 17].

Roughly, HMS consists of running in parallel the tree of demes searching
with growing accuracy and locality when passing from the root to leaves.
The information about the promising search regions propagates down the
tree to introduce new child-demes in the best positions found to date. The
root and upper demes are responsible for the global phase, while the leaves
are involved in the local HMS phase. It is possible to execute both phases
concurrently.

While we have applied the Evolutionary Algorithm (EA) with a nor-
mal and α-stable mutations [19] in the global HMS phase, we have already
checked the following algorithms in the local phase of HMS:

• EA and steepest descent methods based on the accurate and approxi-
mated objective gradient (see e.g. [4]),

• the steepest descent methods associated with the local Tikhonov reg-
ularization [20],
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• EA equipped with the multi-winner selection [21] and the local objec-
tive approximation [22], if the insensitivity regions have to be deter-
mined.

In this paper, we concentrate on improving the local phase of the hi-
erarchical memetic search by introducing a Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES) as the search engine in the leaves, simi-
larly as in [14]. With this strategy, we aim to:

• Increase the efficiency with respect to the EA strategy by reducing the
total number of the most expensive fitness calls in the leaves.

• Reduce the number of parameters for tuning (since CMA-ES includes
a self-tuning mechanism.

• Obtain additional information about the local fitness behavior drawn
from the parameters (e.g., the mean and the correlation matrix) of the
CMA-ES sampling measure, especially in the case, when the basins of
attraction of local minimizers significantly vary in shape and size.

The structure of the paper is as follows. Section 2.1 shortly describes
the HMS strategy. In Section 2.3 we show how to apply CMA-ES as a deme
evolutionary engine in HMS. Section 3 shows the results of the evaluation
of HMS-CMA-ES composition on multi-modal benchmark functions and on
an engineering problem. We provide a comparison of the new strategy with
both the single-population CMA-ES and the HMS with SEA as the deme
evolutionary engine. We finish the paper with some conclusions.

2. Solving strategy

2.1. Hierarchic Memetic Strategy

In this section, we describe the algorithmic framework of our global
search strategy. In particular, we focus on multi-population evolutionary
algorithms.

The HMS is a mixture of a multi-deme evolutionary algorithm and some
deterministic techniques, such as gradient-based optimization methods. The
HMS algorithm is employed for the accuracy boosting, dynamic accuracy
adjustment for the computation time reduction, sample clustering, and ad-
ditional evolutionary components. Additionally, it is equipped with a multi-
winner selection operator for the objective plateau discovery, cf. [17, 21, 22].
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Figure 1: HMS deme structure

In this paper, we focus on the evolutionary core of HMS that was its straight-
forward predecessor and has been developed under its own name, i.e., Hier-
archic Genetic Strategy (HGS), cf. [23, 24, 18, 4].

As a multi-population evolutionary strategy, the HMS makes use of
a particular data structure that provides an organization among the sub-
populations (demes). It is a tree with a fixed maximal height and variable
internal node degree (see Figure 1). The tree has the parent-child seman-
tics. An outline of the whole strategy is presented in Algorithms 1 and 2.

Algorithm 1 The evolutionary core of HMS

Require: Maximal height of the tree M > 0
1: root← CreateDeme(0, ∅)
2: ActiveDemes← {root}
3: repeat
4: for all d ∈ ActiveDemes do
5: Run metaepoch in d
6: if d satisfies local stopping condition then
7: ActiveDemes← ActiveDemes \ {d}
8: else if level(d) < M and d satisfies sprout condition then
9: cb← currentBest(d)

10: child← CreateDeme(level(d) + 1, {cb})
11: d.children← d.children ∪ {child}
12: ActiveDemes← ActiveDemes ∪ {child}
13: end if
14: end for
15: until global stopping condition is satisfied

Each sub-population evolves according to a single-population evolutionary
algorithm like the SEA. We use the same evolutionary engine for all demes
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Algorithm 2 Function CreateDeme

1: function CreateDeme(level, initialPoints)
2: pop← ∅
3: if initialPoints = ∅ then
4: Sample pop uniformly over the search domain
5: else if initialPoints = {b} then
6: Sample pop with distribution N (b, σ(level))
7: end if
8: d← new
9: d.population← pop

10: d.level← level
11: d.searchAccuracy ← accuracy(level)
12: return d
13: end function

on a particular level of the tree. In a typical setup, the HMS begins with
a single parentless deme, i.e., the root. A single HMS global step (called
a metaepoch) consists in executing a prescribed number of genetic epochs
of each active deme. During a metaepoch, the tree structure remains un-
changed. However, after that, each active deme located at a non-maximal
tree level tries to create a new (next-level) deme by sampling some points
around its current best individual. This operation is called sprouting and it
can change the tree structure by adding new child nodes. Nevertheless, it is
conditional: a node cannot sprout a new child if its current best is too close
to other demes located at the target tree level. A node is active as long as
its local stopping condition is not satisfied. The whole tree evolves until a
global stopping condition starts to hold. The range and accuracy of the per-
formed evolutionary search are different among the HMS demes. The search
is more chaotic and inaccurate in the root population, and it becomes more
and more focused and accurate while going towards the leaves. The rea-
son is because the task of higher-level populations is to discover promising
search areas that are subsequently explored more thoroughly by lower-level
populations. The final solutions to the whole strategy are then discovered
by the leaf demes. For the full description of the HGS and the HMS we refer
the reader to papers [23, 24, 17, 21, 25, 22].

2.2. Covariance Matrix Adaptation Evolutionary Strategy

CMA-ES is a stochastic, population-based method of optimization, well
suited to the semi-local search in continuous domains D ⊂ Rn, n ≥ 1. The
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strategy was introduced and initially tested in [26].
The main idea of CMA-ES is to represent the sampling measure as a

multivariate normal distribution N (mk, σ
2
k Ck) appearing in each iteration

k. It is parametrized by a tuple (mk, σk, Ck); where mk is the mean, σk
the standard deviation scaling factor (step size), and Ck the normalized
covariance matrix.

CMA-ES starts its operation by creating an initial population P0 by λ-
times sampling with return using some initial parameters: the step size σ0, a
distribution’s covariance matrix C0 of ones at the diagonal and zeros outside,
and the mean m0 chosen in the admissible domain. At each iteration, the
tuple of parameters is modified based on the current evaluated population
Pk to better fit the central part of the basin of attraction of the nearest
minimizer (see (1)).

(k, (mk, σk, Ck))

↓
λ− times sampling with return

according to the distribution
N (mk, σ

2
k Ck)

Pk

↓ deterministic adaptation step

(k + 1, (mk+1, σk+1, Ck+1))

(1)

We employ two stopping criteria: the algorithm stops when (a) the parame-
ters (mk+1, σk+1, Ck+1) do not differ significantly from (mk, σk, Ck), or when
(b) the fitness of at least one individual is below the satisfactory level.

The high efficiency of CMA-ES in the local search in irregular land-
scapes in comparison with the conventional EA comes mainly from the more
synthetic and concise representation of the knowledge about the problem
gathered during all iterations (contained in the parameters (mk, σk, Ck)).
Moreover, its consecutive improvements need less objective evaluations.

The extraordinary capabilities shown by CMA-ES in the local gradient-
free search are the result of an economical and flexible representation of a
sampling measure density and the deterministic character of the adaptation
technique used throughout the strategy. The topic is broadly covered in the
literature, in particular in [26, 27, 28, 14].

2.3. Improving HMS by the CMA-ES component

We use CMA-ES only in leaves of the HMS hierarchy. The higher levels
of the computation tree perform a more global search for which the sampling
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distribution adaptation offered by SEA is better suited and can be controlled
by the mutation and crossover parameters. We argue that CMA-ES with
its local-like capabilities is going to be more effective than ordinary SEA
at converging to local and global minimizers if the starting population is
located in their basins of attraction.

3. Testing new component

The benchmarks shown here are meant to test the CMA-ES algorithm
coupled with HMS applied to solve multimodal problems.

Benchmark functions. In tests 1-4 we use two benchmark functions defined
on 2- and 4-dimensional domains. Both are composed of inverted Gaussian
functions. The function is defined as:

grx0(x) = 1− exp
(
−(x− x0)TS(x− x0)

)
, (2)

where x0 ∈ D is a point in the domain, r ∈ R+ is a constant, and S is
a diagonal matrix of size n with diagonal elements equal to r−1 and zeros
outside, and n is the number of dimensions of the domain D. The function
grx0 has a minimum of 0 at point x0 and raises to 1 exponentially away from
x0. Function grx0 can be multiplied by another function of the same type to
obtain multimodal expressions.

For example, the two-dimensional benchmark used in Tests 1-3 is defined
as follows:

f1(x) = g1(1,1)(x) · g0.2(6,1)(x) · g0.2(7,8)(x) x ∈ [0, 10]2 , (3)

and is presented on Figure 2. It has minima in (1, 1), (6, 1) and (7, 8).
The four-dimension benchmark used in Test 4 is defined by:

f2(x) = g2(2,2,2,2)(x) · g0.4(6,1,2,3)(x) · g0.4(7,8,2,3)(x) x ∈ [0, 10]4 . (4)

It has minima in (2, 2, 2, 2), (6, 1, 2, 3) and (7, 8, 2, 3). The radii were scaled
up by 2 compared to f1, in order to maintain a similar susceptible region.

We describe the engineering problem that we employ in Test 6 in Sec-
tion 3.6.
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Figure 2: The multimodal 2D benchmark function.

Metrics. We assess the algorithms with the following four metrics: cov-
ered minima count (CMC), M covered minima evaluations (M -CME), mean
minimum distance (MMD) and mean minimum distance fitness (MMDF).

The number of minima covered (CMC) is calculated by taking all the
points generated by the demes (referenced from now on as deme points) and
finding the closest one for each minimum. If the point is within a prescribed
distance around the minimum, then we consider the minimum covered.

The M -CME metric provides the number of evaluations that an algo-
rithm needs to cover M minima (in our case between one and three) using
the idea of the first hitting time.

M -CME is equal to (M − 1)-CME plus the number of evaluations re-
quired to cover an additional minimum. The value of M -CME is undefined
for a particular run of an algorithm. Besides, it is only included in the
statistics when the run is unable to cover all M minima. Nevertheless, the
statistics can be evaluated if needed.

MMD is computed as follows for each benchmark run:

MMD =
1

3

3∑
i=1

inf
x∈Pleaf

‖x−mi‖ , (5)

where Pleaf is an aggregated set of points from the leaf-demes, mi is the
center of the ith minimum and by ‖ · ‖ we mean Euclidean norm. Unlike the
CMC, MMD is parameterless.

MMDF is computed similarly to MMD:

MMDF =
1

3

3∑
i=1

f

(
arg min
x∈Pleaf

‖x−mi‖
)
− f(mi) . (6)
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In this case, we also consider the points from the leaves that are closest to
the minima, and we average their fitness.

Configurations. Table Table 1 includes the parameters used for each of the
tests. We select these values based on previous works solving similar prob-
lems (see, e.g., [17]).

3.1. Test 1 — comparison of HMS-SEA, CMA-ES and HMS-CMA-ES

Here we test the performance of the CMA-ES, the HMS-CMA-ES and
the HMS-SEA using the CMC metric and the total number of evaluations.
We check the performance of the CMA-ES and we compare it to HMS
versions in terms of the number of evaluations. It is the only test which
takes the single-deme CMA-ES into account.

We run each configuration 50 times and we show the results in Table 2.
CMA-ES alone is unable to find more than one minimum, as expected —
it was included to compare the number of evaluations needed. HMS-SEA
is inefficient at covering more than one minimum and it uses 9 times larger
budget than HMS-CMA-ES. HMS-CMA-ES covers more minima than the
HMS-SEA, however, it still is not able to do it with great confidence — it
fails to localize any minima in some cases. The budget of HMS-CMA-ES is
larger than a single-deme CMA-ES, but the overhead is justified in better
performance as far as CMC metric goes.

3.2. Test 2 — M -CME comparison

We wanted to check how would using CMA-ES in the lowest level of
the HMS hierarchy modify the performance of such strategy. We aim at
studying the impact of using the CMA-ES strategy in the lowest level of the
HMS.

We run each variant 100 times to collect statistics of the 1-, 2- and 3-
CME metrics and the number of runs which succeeded in covering that many
minima.

The results are presented in Table 3. The performance of both variants is
comparable though. HMS-CMA-ES does better when min and max statistics
are taken into account, but the median in the 3-CME is larger than for HMS-
SEA variant.

3.3. Test 3 — MMD and MMDF in function of budget

To analyze the performance of the strategy depending on the budget,
we set up two benchmarks and we run them with different budgets. They
have global stopping conditions of their own, so they may actually have used
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ME Level 1 Level 2

Test 1 HMS-SEA 3 SEA/20/0.1/0.5/5 SEA/20/0.7/0.5/0.4
NS/5 SC/0.9/0.8 NC/10−3/5

CMA-ES 3 CMA-ES/10/1 —
HMS-CMA-ES 3 SEA/30/0.1/0.5/5 CMA-ES/10/1

NS/5 SC/0.9/2 NC/10−6/5

Test 2 HMS-SEA 3 SEA/20/0.1/0.5/5 SEA/10/0.7/0.5/0.4
NS/10 SC/0.9/2 NC/10−3/5

HMS-CMA-ES 3 SEA/20/0.1/0.5/5 CMA-ES/10/1
NS/10 SC/0.9/2 NC/10−6/5

Test 3 HMS-SEA 3 SEA/20/0.1/0.5/5 SEA/10/0.7/0.5/0.4
NS/10 SC/0.9/1 NC/10−3/5

HMS-CMA-ES 3 SEA/20/0.1/0.5/5 CMA-ES/10/1
NS/10 SC/0.9/1 NC/10−6/5

Test 4 HMS-SEA 3 SEA/100/0.1/0.5/5 SEA/10/0.7/0.5/0.4
NS/10 SC/0.9/1 NC/10−3/5

HMS-CMA-ES 3 SEA/100/0.1/0.5/5 CMA-ES/10/1
NS/10 SC/0.9/1 NC/10−6/5

Test 5 HMS-SEA 3 SEA/100/0.1/0.5/5 SEA/10/0.7/0.5/0.4
NS/10 SC/0.9/1 NC/10−3/5

HMS-CMA-ES 3 SEA/100/0.1/0.5/5 CMA-ES/10/1
NS/10 SC/0.9/1 NC/10−3/5

Test 6 HMS-SEA 1 SEA/10/0.1/0.5/1 SEA/8/0.2/0.4/0.05
SC/3.5/0.05 NC/0.1/3

HMS-CMA-ES 1 SEA/10/0.1/0.5/1 CMA-ES/8/0.1
SC/3.5/0.05 NC/0.1/3

Table 1: Configurations for algorithms used in the tests. ME stands for metaepoch length.
Each level is described with three components. First, algorithm type: SEA or CMA-ES.
SEA parameters are: population size, crossover probability, mutation probability, and
mutation standard deviation. CMA-ES parameters are: population size and initial step
size. Second, local stop condition: no sprout (NS) or no change (NC). NS parameter is the
number of metaepochs. NC parameters are: minimal change and the number of epochs.
Third, sprouter configuration (SC): fitness threshold and allowed distance to other demes
and sprouts.
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CMC Evaluations

Algorithm mean min max mean min max

HMS-SEA 1.0± 0.7 0 2 9664± 1044 5015 10 202
CMA-ES 1.0 1 1 669± 45 591 781
HMS-CMA-ES 1.8± 0.8 1 3 1043± 384 580 2139

Table 2: Results of Test 1. Each row corresponds to the algorithm’s variant tested. The
mean CMC and the number of evaluations taken by each variant are presented, along with
the standard deviation of the mean, and minimal and maximal values attained.

1-CME 2-CME 3-CME

Algorithm count min/med/max count min/med/max count min/med/max

HMS-SEA 100 90/150/1350 81 100/540/1710 40 370/960/2640
HMS-CMA-ES 100 81/141/423 83 82/382/1053 42 253/1123/1683

Table 3: Results of Test 2. Each row corresponds to the algorithm’s variant tested. 1-
CME, 2-CME and 3-CME metrics are presented (minimum, median and maximum value).
Moreover, for each metric a number of runs which managed to cover that number of minima
(per 100) is shown.

smaller number of evaluations. We used CMC, MMD and MMDF metrics
to compare the variants.

We consider a range of budgets from 200 to 5000 and for each budget
we run 100 repetitions of each algorithm.

Figure 3 shows a significant improvement for budgets larger than 1000
evaluations when the MMD and MMDF metrics are employed. The number
of minima covered is slightly better for the CMA-ES.

The sub-optimal peak performance is not a problem with CMA-ES specif-
ically. While CMA-ES is expected to improve the efficiency on the leaf-level,
the global search capabilities of the strategy are mostly on the side of HMS.
Further configuration of HMS may allow for better CMC results, but it is
beyond the scope of this test.

The CMC metric for both variants is around 2.4. However, HMS-SEA
required 4× 103 evaluations to reach it while HMS-CMA-ES took only
1.5× 103 — over 2.5 times less.

3.4. Test 4 — MMD and MMDF in function of budget for 4D benchmark

To study the strategy on a more demanding problem, we run this test on
a 4D benchmark (for the function f2 defined in (4)). Most of the parameters
of the algorithms remain unaltered. Since the 4D domain is more difficult,
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Figure 3: Results of Test 3. All the values shown by points are medians of the results.
For the two last metrics, 5. and 95. percentiles are shown as lines as well.
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1-CME 2-CME 3-CME

Algorithm count min/med/max count min/med/max count min/med/max

HMS-SEA 100 430/6610/62240 54 3090/77915/306320 11 74010/168710/327650
HMS-CMA-ES 100 406/1092/2511 100 642/30038/144483 87 16008/71427/155035

Table 4: Results of Test 5. Each row corresponds to the algorithm’s variant tested. 1-
CME, 2-CME and 3-CME metrics are presented (minimum, median and maximum value).
Moreover, for each metric a number of runs which managed to cover that number of minima
(per 100) is shown.

we set the size of the population to 100 to enhance the exploration. The
budget ranges from 103 to 106 evaluations. We run 100 repetitions of each
algorithm variant per budget.

The results, which include the same metrics as in the previous test, are
shown in Figure 4. The first panel of this figure shows that HMS-CMA-
ES does better than its counterpart, confidently beginning to cover all the
minima around 105 evaluations. When the number of budgets is sufficiently
large (104 or more), the gains of HMS-CMA-ES increase.

The CMC metric value for HMS-SEA stabilizes around 1.8 and takes at
least 105 evaluations. HMS-CMA-ES achieved this accuracy in 104, which
is 6 times less than the SEA variant.

3.5. Test 5 — M -CME comparison for 4D benchmark

We run each variant 100 times to collect statistics of the 1-, 2- and 3-
CME metrics and the number of runs which succeeded in covering that many
minima. The setup comparison is the same as in Section 3.2.

We present the results in Table 4. In this case, HMS-CMA-ES variant
is able to identify the minima for a significantly smaller budget than HMS-
SEA.

3.6. Test 6 — Magnetotelluric (MT) oil exploration method

The MT method [29] is a geophysical prospecting method governed by
Maxwell’s equations and intended to determine the conductivity (or resis-
tivity) distribution of the Earth’s subsurface. This method employs natural
sources, while the receivers are placed at the surface of the Earth or the
seafloor. Being clean and inexpensive, it has been applied for different pur-
poses, such as the mapping of active faults [30], the study of volcanoes [31],
or the exploration of offshore hydrocarbons [32].

Figure 5 corresponds to the considered Earth formation: a layered model
with an embedded inhomogeneity. The computational domain then consists
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of this subsurface formation, the air, a natural source placed at the iono-
sphere, and the receivers located at the surface of the Earth. We truncate the
computational domain with the Perfectly Matched Layer (PML) described
in [33] and by setting Dirichlet homogeneous boundary conditions.

To solve the equations involved in this problem, in the present work we
employ an adaptive Finite Element Method described in [34].

A thorough introduction of the problem has been performed by Smo lka
et al. [17, Sec. 3]. The task is to identify the conductivity σ = {σi}i=1,...,4

of the regions presented in Figure 5. The domain of the problem D = [0, 6]4

is mapped to the actual conductivity by a function D 3 x = {xi}i=1,...,4 →
{10xi−1}i=1,...,4 = σ.

• Natural Source Receiver

3km

27km

∞

80km
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2500km
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σ4

Figure 5: The domain of MT problem

The fitness values are transformed by a function

R+ 3 y → log10(y/y0) ∈ R+ ∪ {0} , (7)

where y0 is the original fitness value returned by the MT solver at the point
(1, 2, 10, 3) in the conductivity space.

We compare HMS-SEA and HMS-CMA-ES algorithm variants. Their
performance is evaluated by measuring the best fitness that their leaf demes
are able to identify. We run them 10 times with a fixed budget of 1000
evaluations.

The results are presented in Figure 6. Using the same number of evalu-
ations, HMS-CMA-ES is able to approach the global optimum fitness value
closer.
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Figure 6: Results of Test 6. For each variant minimum, 1st quartile, median, 3rd quartile
and maximum are shown for the best fitness metric calculated from 10 runs.

4. Conclusions

The paper presents a global search strategy (HMS), proven to be efficient
when dealing with ill-posed inverse parametric problems, together with the
CMA-ES algorithm.

The HMS operates at several levels of search accuracy. It is known that
when the search in the leaves is efficient, the strategy can explore larger
regions of the domain (in the search for solutions) at the same computational
cost level. Therefore, the objective of this work is to improve the efficiency
of the optimization at the finest-search level, that is, in the leaves of the
HMS tree.

The HMS strategy (equipped with local gradient-based optimizers) was
already tested on real-world engineering problems, cf. [17], and was shown
capable of finding almost twice as many good-quality solutions than the
multi-start method. At the same time, it was better at avoiding poor-quality
solution basins of attraction. However, the SEA with the same budget was
unable to recover good-quality solutions.

This paper shows with different numerical examples that the perfor-
mance of the proposed strategy (the core of the HMS strategy with the
CMA-ES in the leaves) is better than when using the SEA in the leaves.
In particular, the search is more efficient, in some examples reducing the
number of evaluations required to achieve similar performance 9 times.

During its run, the proposed strategy acquires information about the
objective function, which is expressed in the CMA-ES sampling distribution.
Therefore, an additional benefit that we will explore in the future is to
use this information to analyze how the fitness function behaves around
its optima. This way, we will be able to determine regions of insensitivity
around the solutions of the inverse problem, obtaining, accordingly, more
information about the ill-posedness.
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