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a  b  s  t  r  a  c  t

In  this  paper  we  study  the  generalization  capabilities  of  fully-connected  neural  networks  trained  in the
context  of time  series  forecasting.  Time  series  do not  satisfy  the  typical  assumption  in statistical  learning
theory  of the  data  being  i.i.d.  samples  from  some  data-generating  distribution.  We  use  the  input and
weight  Hessians,  that  is the  smoothness  of  the learned  function  with respect  to  the  input  and  the  width
of  the  minimum  in weight  space,  to quantify  a network’s  ability  to  generalize  to  unseen  data.  While  such
eywords:
eural networks
eep learning
eneralization

generalization  metrics  have  been  studied  extensively  in  the  i.i.d. setting  of  for example  image  recognition,
here  we  empirically  validate  their  use in  the  task  of  time  series  forecasting.  Furthermore  we discuss  how
one  can  control  the  generalization  capability  of  the network  by means  of the  training  process  using  the
learning  rate,  batch  size  and  the  number  of  training  iterations  as  controls.  Using  these  hyperparameters
one  can  efficiently  control  the  complexity  of the  output  function  without  imposing  explicit  constraints.
ime series

orecasting

. Introduction

Forecasting time series is an exceptionally difficult task due to
he risk of overfitting on the dataset, in particular in the case of
verparametrized networks [36,37]. In other words, when using
he past to predict the future one has to be certain to have suc-
eeded in extracting a signal from the past that will propagate to
he future, and not simply fitted a complex function on the past.
eural networks, while being powerful function approximators

hat are relatively easy to optimize, can lead to poor extrapola-
ion in time series forecasting due to the latter. Due to their ability
o approximate almost any function it is of the essence to ensure
hat the network is learning the signal of interest instead of the
oise. Understanding the structure of neural networks and the
bility of a trained network to perform well on unseen data is
herefore of utmost importance, and the main objective of this
aper.

The loss surface of a neural network, defined as a function of
he loss over the weights, is typically highly non-convex and can,
or a deep network, depend on a large number of parameters (the
eights). Even for a simple network, the number of local minima
nd saddle points in the loss surface may  grow exponentially in
he number of parameters. The general shape of this loss function,
nd also the differences in the loss functions of small and large
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neural networks, is an active topic of research [9,21]. In terms of
theory, a recent line of work has related the neural network loss
surface to Gaussian random fields [9,3,7,11]. Alternatively, random
matrix theory has been used to obtain insight into the loss surface
[27]. In more empirical lines of work, the authors of [21] found that
adding more layers to a network gives rise to a more non-convex
loss surface, so that adding more layers can complicate the training
of the neural network by causing the optimisation methods to get
stuck in sub-optimal critical points.

The above work gives insight into the structure of the loss sur-
face on the training dataset. For noisy time series, a trained network
is able to generalize well, that is perform well on unseen data, when
it is not overfitting on noise in the training dataset. However, as is
mentioned by the authors of [36], if the network is big enough (i.e.
overparametrized) it can even fit a random noise dataset almost
perfectly, but it will most certainly have bad performance out of
sample. Understanding the structure of the minima so that a net-
work will perform well on unseen data can give insight into setting
up the training methods, for example to avoid convergence on
noise.

There are different ways of measuring the learning capability of
a neural network (see [5] for an overview). One is the output sen-
sitivity, or the first derivatives, i.e. the Jacobian, of the error with
respect to the input (see [25]) or the weights. The other measure is
the statistical sensitivity which evaluates the output range varia-

tion of a node when its inputs or weights are perturbed. As is shown
in [5], this is equivalent to considering second derivatives, the Hes-
sian, of the loss function with respect to the input or weight values.
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he statistical sensitivity with respect to the weights gives a mea-
ure for the smoothness of the error surface, with a small value of
he statistical sensitivity implying a small output variation when
eights are perturbed. The sensitivity with respect to the inputs
easures the input noise immunity. Using the statistical sensitiv-

ty as a measure for generalization is intuitive in the sense that we
re interested in the robustness of the network when the input is
erturbed. It has also been proposed that the Hessian with respect
o the weights can be used as a measure for generalization. These
at minima in the weight space correspond to simpler functions

earned [16] or can be related to the Bayesian evidence [32].
Regularisation in the network can help to obtain a learned func-

ion with lower complexity such that a better generalization may
e obtained. Typical explicit regularisation methods, such as L1 or
2 regularisation or multiplicative noise injection (such as dropout
34]), contribute to the generalizability of the trained function by
estricting the function complexity in some way. For the regulari-
ation method to work well, we need to understand how to make a
rade-off between the complexity of the function and its ability to fit
he data. This trade-off is known as the information bottleneck [35],
nd we study this in the coming sections to understand the effects
f the trade-off on the learned function. Alternatively to explicit
egularization, the noise in a stochastic gradient descent method
SGD) can act as an implicit regularizer. The gradient is computed
ver batches and, as opposed to computing the full gradient, SGD
hus introduces non-isotropic noise into the optimisation scheme.
t can be shown that this drives the parameters away from sharp

inima towards the broader ones. In particular, the noise variance
s proportional to the learning rate over the batch size, so that a
arge learning rate and small batch size result in a higher noise
omponent. This has been shown in previous work, e.g. [32,8] and
ill be a focus of this work as well.

The novelty of our contribution consists in a thorough analysis of
hat generalizability means for time series forecasting with fully-

onnected neural networks. In particular, time series do not satisfy
he typical assumption in statistical learning theory of i.i.d. data.
urthermore, while generalizibility for image datasets has been
tudied extensively, the problem is much more complex for time
eries: the dataset is typically much smaller, the signal-to-noise
atio might be low, the distribution can be non-stationary and there
s little intuitive indication of what the underlying pattern in the
ata must be. Due to the non-i.i.d. nature the pattern might also
hange through time. Understanding what it means for a neural
etwork to have good generalizibility, i.e. learning a consistently
resent pattern instead of overfitting on noise or on a changing pat-
ern, and how this can be achieved through the learning algorithms
ill be the main task of this paper.

We assume that the reader is familiar with the general neu-
al network concepts such as optimisation methods like stochastic
radient descent and its parameters and the neural network archi-
ectures. For a general introduction to this we refer to [6]. The
est of this paper is structured as follows: in Section 2 the loss
urface structure is studied in a simplified setting; in Section 3
he input and weight Hessians are introduced as generalization

etrics and the relation between the two is described; in Section
 it is discussed how to make the trade-off between complexity
nd data fit and how one can influence complexity during the
raining of the network; finally Section 5 presents the numerical
esults.

. Loss surface structure
In this section we give some background about neural networks
nd the properties of their loss surfaces and the implications of this
tructure for generalization capabilities.
l of Computational Science 36 (2019) 101020

2.1. Loss surface as a Gaussian random field

The loss surface of a neural network is defined as the loss func-
tion over the high-dimensional weight space. This loss surface can
be related to a Gaussian process on a high-dimensional space [11,9].
With this insight, one is able to obtain theoretical results on the
structure of the loss surface. We shortly repeat this derivation and
discuss its implications. Let the inputs to the neural network be
given by x ∈ R

n0 . Let W (l) ∈ R
nl×nl−1 be the weight matrix in layer

l with element w(l)
i,j

connecting neuron i in layer l and j in layer
l − 1. Define w as the vectorized total weights in the network, so
that w ∈ R

d with d = n0n1 + n1n2 + · · · + nL−1nL, with d thus being the
dimension of the weight space. In the rest of this paper the dimen-
sion R

d refers to column vectors. The first layer output, for l = 1, is
given by

a(1) = f (z(1)) = f
(

W (1)x
)

,

where f(·) is the non-linear activation function, a(1) ∈ R
n1 is the

activation of the first layer and z(1) ∈ R
n1 is the pre-activation out-

put. Each subsequent layer l = 2, . . .,  L outputs,

a(l) = f (z(l)) = f
(

W (l)a(l−1)
)

.

The final layer output is then given by,

ŷ(x, w) = qf (W (L)f (W (L−1). . .f  (W (1)x))). . .), (1)

with q a scaling factor. Assume the data is given as a set of inputs
x and outputs y generated from some data-generating distribution
D. Typical loss functions are the mean absolute error,

L(x, w, y) = E(x,y)∼D[|ŷ(x, w)  − y|], (2)

or the mean squared error,

L(x, w, y) = E(x,y)∼D[(ŷ(x, w) − y)2].

where the expected values are taken over the data generating dis-
tribution.

We define a critical point w∗ and its index  ̨ as follows,

Definition 1 (A critical point and its index).  A critical point w∗ of
some differentiable function g : R

d → R  is point w∗ ∈ R
d where

all partial derivatives of the function g are zero. In this work, we
also refer to a critical point in a more loose definition as the point
to which the optimization algorithm for the neural network has
converged. For a function of d variables, the number of negative
eigenvalues of the Hessian matrix Hw , the matrix of second-order
derivatives of the loss function with respect to the parameters
(defined more explicitly in (3)), at a critical point w∗ is called the
index  ̨ of the critical point.

Following the derivation in [9], let the non-linear activation
function be the rectified linear unit defined as f(x) = max(x, 0) and
replace the activation function in (1) by the term Ai,j ∈ {0, 1}, which
denotes whether a path (i, j), where j labels any of the P paths from
the input i to the output, is active or not. We  obtain,

ŷ(x, w) = q

n0∑
i=1

P∑
j=1

xiAi,j

L∏
k=1

w(k)
i,j

.

Here xi refers to the ith element of the input vector x and

P := n1n2 . . . nL is the number of paths from a given network input
to its output.

We  now make the first key assumption that each path is equally
likely to be active. The probability of a path being active follows a
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ernoulli distribution with probability �, independent of the input.
aking the expected value over the activation we obtain,

A[ŷ(x, w)] = q

n0∑
i=1

xi�

P∑
j=1

L∏
k=1

w(k)
i,j

,

ith i the summation over the inputs and P = n1, . . .,  nL represent-
ng the summation over the further possible paths in the network.

e remark that this expression is similar to a deep linear model
ultiplied by the factor �.
The second key assumption in this section is to let the input

lements be sampled independently as xi∼N(0,  �2
I ) (and let �2

I = 1
or simplicity). Due to the summation being over independent stan-
ard Gaussian random variables, ŷ is equal to a Gaussian process on
he weight space. Letting the loss function be given by the absolute
oss as in (2) in which the expected value can be taken over the
ctivations,

(x, w, y) = EA

[
|ŷ(x, w) − y|

]
,

ue to the xi being sampled from a N(0,  1) distribution, this loss
unction follows a Gaussian process distribution. For a particular
alue of q it is equal to the well-studied Hamiltonian of spin-glass
ystems [3] and previous work on Gaussian random fields can be
pplied [7,14] to gain insight into the structure of the critical points.

.2. Structure of the critical points

In this section we briefly summarize the results on the loss sur-
ace structure of Gaussian random fields in high dimensions. The
orks of [7] and [14] show that for Gaussian random fields on
igh-dimensional spaces the critical points of the surface possess a
articular structure. In [7] the authors show, by means of a gener-
lized Kac–Rice formula, a linear dependence between the index of

 critical point and its loss value (the error E). A similar result can
e obtained for neural networks as is done in [3,9]. Let � be the
umber of different weights in the network, which is assumed to
e the Lth root of the total number of paths from input to output in
he network,

:= L
√

n0P.

nder the assumptions made in Section 2.1, the loss surface of a
eural network on a high-dimensional parameter space, in other
ords for deep and wide networks or as � increases, has the fol-

owing properties,

. let E0 < Em1 < Em2 < · · ·;  there exists a layered structure of crit-
ical points: critical values in a band (E0, Em1 ) above the global
minimum E0 are more likely to be local minima, the band
(Em1 , Em2 ) consists of local minima and saddle points of index 1,
the band (Em2 , Em3 ) consists of local minima and saddle points
of index 1 and 2, and so on;

. local minima dominate over saddle points in a band of values
close to the global minimum;

. high-index critical points lie at high loss levels; in other words,
a high value of  ̨ corresponds to a high loss level E.

o conclude, by making several assumptions on the activation func-
ion and the distribution of the inputs, it is possible to relate the
eural network loss function to a particular kind of Gaussian ran-
om field, as commonly encountered in spin-glass systems. By an
pplication of the Kac–Rice theorem, one is able to obtain a relation-

hip between the index of a critical point of this Gaussian random
eld and its value. It can be shown that high-index saddle points

ie at high loss levels, while local minima are close to the global
inimum.
l of Computational Science 36 (2019) 101020 3

2.3. Loss and the entropy

As was  shown in the previous section, under certain – albeit
restrictive – assumptions on the deep neural network, the loss sur-
face is given by a Gaussian random field on a high-dimensional
space; this space represents the weight space and its dimension is
given by the number of weights in the network as determined via
the number of nodes per layer and the number of layers used. Gaus-
sian random fields on high-dimensional spaces posess a particular
structure of the locations of the critical points in the asymptotic
setting. Similarly, there exists a result on the entropy of these crit-
ical points. We  recall here a result on the width of the minima, as
stated in [4]. To measure the width of a minimum w∗, consider the
entropy which is defined as,

S(w∗) = − log det(Hw(L(x, w∗, y)),

with Hw being the Hessian matrix. A larger entropy means larger
basin volume, or a wider minimum. We then state the following
Theorem on the width of the minima, as is given and proved in [4].

Theorem 2 (Expected entropy [4]). Let E be some loss level. The
expected entropy of the Hessian of the loss function that takes value
�E asymptotically, has the following expected entropy

E [S(w∗)|�E] �  −(� − 1) log(�) + � − 1
2

log
(

�

2(� − 1)L(L − 1)

)

− � − 1
�

∫ √
2

−
√

2

log |�
√

�

� − 1
E
�

− t|
√

2 − t2dt,

where L is the number of layers and � is the probability of the Bernoulli
distributed weights being one.

The above theorem gives a relation between the number of lay-
ers in the network, the loss level at a particular point in the weight
space and the width at that point in the weight space. In particular,
the lower the train loss the lower the entropy and thus the sharper
the minima. In other words, wider minima lie at higher loss val-
ues in the loss surface. This seems intuitive: in order to obtain a
low train loss, one has to fit a more complex function which passes
through all the observations. A good fit to the training data is how-
ever not sufficient to obtain good out of sample performance; we
will discuss the concept of generalization in the next section.

2.4. Generalization

Since the data generating distribution D  is typically unknown, in
extrapolation problems one assumes to have access to samples (xi,
yi) drawn (i.i.d.) from this distribution. One assumes yi = g(xi) + �i,
for some unknown function g(·); so that the yi are noisy observa-
tions of the true function of interest. In our setting we are interested
in time series forecasting, i.e. we have xi = (yi−n, . . .,  yi−1) where i is
the time index, so that n historical points of y are used to predict its
future, in this setting one-day-ahead, value. This can be extended to
x containing the historical observations of multiple time series used
to forecast y. Note that here the i.i.d. assumption is violated since
the observations should clearly be dependent. Nevertheless, using
these datapoints as input a neural network can be used to extract
a meaningful repeating pattern from the dataset. Note that the yis,
and thus the xis, are noisy observations. We  define the sample loss
function as the loss function on that dataset, i.e. for the squared loss
we obtain,
L̂(x, w, y) = 1
N

N∑
i=1

(
ŷ(xi, w) − yi

)2
,
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here (xi, yi) for i = 1, . . .,  N is the train dataset and ŷ(xi, w) the
eural network output.

Generalization is the relationship between a trained networks’
erformance on train data versus its performance on test data. This

s a highly desirable property for neural networks, where ideally the
erformance on the train data should be similar to the performance
n similar but unseen test data. In general, the generalization error
f a neural network model ŷ(x, w) can be defined as the failure of
he hypothesis ŷ(x, w)  to explain the dataset sample. It is measured
y the discrepancy between the true error and the error on the
ample dataset,

(x, w,  y) − L̂(x, w, y).

n statistical learning theory a bound on this error is typically
ependent on the complexity of the hypothesis class where the
ypothesis ŷ(x, w)  is in, as well as on the number of samples in the
ataset. Obtaining bounds on this error is a topic of active research
ith recent advancements including [13,38] where the authors use

AC-Bayes theory. In the rest of the paper we will use the notation
(x, w,  y) to denote the empirical loss function as computed on the

ampled data.
Typically, a trained network is able to generalize well when it

s not overfitting on noise in the train dataset. Since neural net-
orks are known to be universal approximators and thus – when

he network is large enough – are able to approximate any function,
hen training one aims to extract a meaningful pattern in the data

nstead of learning a flexible function that is able to fit all training
oints. In particular in the setting of overparametrized networks it

s easy for the network to fit the training points, however being able
o avoid this overfitting is an essential task. A somewhat straight-
orward way to define the generalization capability is to study the
obustness of the network with respect to input perturbations. For
ome input perturbation � ∈ R

n0 , the change in the loss function
hould be small,

L(x + �, w, y) − L(x, w, y)| < ı.

hen the neural network is heavily overfitting on the noise, a small
hange in the input parameters might result in a large change in the
eural network output. In this setting the generalization is related
o a smoothness assumption on the function output. In the com-
ng sections our goal is to understand and be able to control the
eneralization of neural networks in the overparametrized, deep
eural networks for time series forecasting, a setting in which the
ignal in the series can be weak and we lack the availability of large
atasets. We  aim to define metrics that can be used to measure
hen a learning algorithm can be expected to perform well.

. Metrics for measuring the generalization

In this section we present metrics, the input and weight Hes-
ians, for measuring the generalization capabilities.

.1. The weight Hessian

The Hessian with respect to the weights will be used in order
o obtain insight on the noise robustness of the weights, giving a

etric for measuring the networks’ capability to generalize well to
nseen data.

.1.1. Definition

The Hessian Hw(L) ∈ R

d×d of the loss function with respect to
he weights has elements

w
ij = ∂wi

∂wj
L(x, w, y), (3)
l of Computational Science 36 (2019) 101020

which represents the rate of change of the derivative with respect
to wj in the direction of wi. The Hessian thus represents the cur-
vature of the loss surface of the neural network. The eigenvectors
and eigenvalues represent the direction and curvature in that direc-
tion, respectively. For the large neural networks typically used in
image processing, computing and storing the Hessian can be very
time-consuming. In the case of time series forecasting the networks
used will be smaller, but nevertheless the Hessian can contain thou-
sands of elements. In the rest of this paper we will sometimes drop
the dependence of the loss function on the input x in case we are
interested in the effects of the weights only.

The Hessian gives insight into the flatness of the minimum, and,
as we will show in Section 3.3, this can be related to input noise
resistance of the output function. In this sense the Hessian can
be related to the minimum description length, where a Hessian
with small eigenvalues corresponds to a simpler function being
learned. Alternatively, the Hessian is used in second-order opti-
mization methods where the step size in each direction is inversely
proportional to the curvature in that direction: in directions with
large curvature it takes small steps, while in directions with small
curvature it takes larger steps [23].

3.1.2. Learning rate, batch size and the Hessian
It has been mentioned in prior research [17,22,32,8] that a rela-

tionship exists between the test error and the learning rate and
batch size used in the SGD updating scheme. In this section we
obtain a similar conclusion through a slightly different derivation.
Let the gradient in a mini-batch S  be gS ∈ R

d and the full gra-
dient be g ∈ R

d, where d is the weight space dimension, defined
respectively as,

gS:= 1
M

∑
i ∈ S

∇wL(xi, w, y) =:
1
M

∑
i ∈ S

gi, g := E(x,y)∼D [∇wL(x, w,  y)

The weight update rule is given by,

wt+1 = wt − �gS,

where � is the learning rate. By the central limit theorem, if
(xi, yi)∼D  i.i.d. then,

(gS − g)∼N
(

0,
1
M

K
)

, K = E

[
(gi − g)T (gi − g)

]

≈ 1
N − 1

N∑
i=1

(gi − g)T (gi − g).

Note that the approximation of the noise by a Gaussian distribution
holds in the limit of the sample size tending to infinity and when
the gradients for the batches are not heavy-tailed. Although the
sample size is typically finite and the gradient distribution can be
heavy-tailed, the approximation is widely used.

The weight update rule can then be rewritten as,

wt+1 = wt − �g − �√
M

�, (4)

where �∼N(0,  K) with � ∈ R
d. If convergence has been reached,

|L(wt+1) − L(wt)| < ı. (5)

Note that for ease of notation we  have omitted the dependence of
the loss function on the input data (x, y). By a Taylor expansion
method for the loss function evaluated on the full training data we
have, ( )

L(wt+1) ≈ L(wt) − �g − �√

M
� ∇wL(w)

+ 1
2

(
�g − �√

M
�
)T

Hw(L(wt))
(

�g − �√
M

�
)

, (6)
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here ∇wL(w) ∈ R
d denotes the gradient of the total loss and

w(L(w)) ∈ R
d×d the Hessian of the total loss. Note that we thus

pproximate the loss surface by a quadratic function. Then, using
he convergence in (5) and the Taylor expansion for the loss func-
ion in (6), we  obtain,

w(L(wt)) ≈
ı  + 2∇wL(wt)

T
(

�g − �√
M

�
)

|�g − �√
M

�|2

=
ı + 2∇wL(wt)

T
(

g − 1√
M

�
)

�|g − 1√
M

�|2
.

rom this expression we see that the Hessian at convergence is
mall if a large learning rate or a small batch size has been used. Our
imple derivation shows that if convergence is obtained, the Hes-
ian in that point in weight space is smaller for larger learning rates
nd smaller batch sizes, i.e. the Hessian is inversely proportional to
he fraction �/

√
M. In case of using full batch gradient descent, thus

f � = 0, the relationship between convergence and the learning rate
emains the same: convergence achieved with a large learning rate
esults in a smaller Hessian which in turn corresponds to a wider
inimum.

.1.3. The weight Hessian and generalization
Generalization in our setting refers to a kind of robustness of the

rained network. More specifically, particular transformations of
he input do not decrease the accuracy of the classification/forecast
s computed on the train set. In other words, when a network has
een trained on a set of patterns, certain transformations of these
atterns should still be interpreted correctly. A higher robustness
o input noise, which can be measured by Jacobians/Hessians with
espect to input or weights, leads to better generalization, i.e. the
maller the Hessian the wider the minimum.

Consider the eigenspectrum of the Hessian, i.e. the set of eigen-
alues (	i), i = 1, . . .,  d, determined via,

wv = 	v,

here v is the eigenvector corresponding to the eigenvalue 	. If
he eigenvalues of Hw are positive (resp. negative) at some critical
oint w∗, that point is a local minimum (resp. maximum), and if
he critical point has both positive and negative eigenvalues it is
alled a saddle point (see also Definition 1 on the index of a critical
oint). The eigenvector corresponding to the largest eigenvalue of
w indicates the direction of greatest curvature of the loss func-

ion. The size of the positive eigenvalues is thus a measure for how
ell a minimum will generalize to unseen data. A large positive

igenvalue in the direction of the corresponding eigenvector thus
eans that a sharp increase in loss will occur in that direction in
eight space. If a minimum is wide, and thus has small eigenvalues

n many directions, the minimum is better resistant to noisy trans-
ormations of the weights, while a sharp minimum has a higher
ensitivity to the noise in the weights. A sharp minimum is thus said
o have overfitted on the noise in the training dataset, while a wider

inimum may  imply that a ‘simpler’ and more robust function has
een learned.

In the work of [16] the authors show that flat minima corre-
pond to a minimization of the expected description length of the
eural network function induced by the weights. The authors of

32] show a relationship between the Bayesian evidence and the
essian, showing that maximizing the evidence corresponds to a
inimization of the Hessian, by approximating the evidence with

 Taylor expansion of the cost function.
l of Computational Science 36 (2019) 101020 5

3.1.4. Downsides of the weight Hessian
A metric that is commonly used to measure the width of the

minimum is the trace. The trace of a squared matrix H of size d × d
is defined as,

Tr(H):=
d∑

i=1

hii =
d∑

i=1

	i,

where hii denotes the elements on the diagonal of the Hessian and
	i denotes the eigenvalues. While prior research has noted that
a lower Hessian (in terms of trace or some other norm) leads to
better generalization, there has also been contradicting evidence.
One critique on using the trace of the weight Hessian for measuring
generalization capabilities is that the Hessian can be scaled in such
a way  that the output function remains the same but the trace of
the Hessian can become large or small. This is the conclusion of the
work of [12]. Consider a neural network with two  layers, so that
the output is given by

ŷ(x, w)  = f (W (1)x)W (2).

Note that if f(·) is the rectified linear unit f(x) = max(x, 0), then we can
scale the weights by a constant  ̨ > 0 without changing the output
as follows,

ŷ(x, w)  = f (˛W (1)x)˛−1W (2). (7)

The gradient and Hessian of the loss L  with respect to the weights
w can be modified by ˛. We  have,

L(W (1), W (2)) = L(˛W (1), ˛−1W (2)).

Then

∇wL(˛W (1), ˛−1W (2)) = ∇wL(W (1), W (2))

[
˛−1 0

0 ˛

]
,

where the derivatives are taken with respect to ˛W(1) and ˛−1W(2).
Similarly,

Hw(L(˛W (1), ˛−1W (2))) =
[

˛−1 0

0 ˛

]
Hw(L(W (1), W (2)))

[
˛−1 0

0 ˛

For large weights, e.g. when  ̨ is large, the second derivative with
respect to these weights is smaller, however if the next-layer
weights are scaled by ˛−1 the output function has not changed.
Therefore, due to the many symmetries existing in a neural net-
work, there exist symmetries that will not modify the output
function and the generalization capabilities, but are able to scale the
Hessian with respect to particular weights to be larger or smaller.
Norms like the trace norm or the Frobenius norm are thus not
enough to determine the generalization capabilities if one com-
pares minima that are equivalent through these symmetries. This
analysis thus shows that for each individual minimum found, a
large trace of the Hessian is not informative. In [17] the authors
claim that while these sharp minima with a generalization similar
to a wide minima exist, SGD does not converge to these minima and
for the minima found by SGD the width correlates well with gener-
alization. We obtain a similar result in the numerical experiments
in Section 5. This can be explained by the fact that the Hessians’ sen-
sitivity to scaling becomes an issue for  ̨ 
 1 or  ̨ � 1, i.e. when the
scaled and unscaled minima are far away in weight space, because
then a minimum with a large Hessian norm can have similar gen-
eralization as a minimum with a small norm. We claim that for an

SGD algorithm started from random initializations, if these initial-
izations are relatively close in the weight space, the algorithm will
not converge to minima that are far away. In other words, in order
to compare the generalization capabilities of the minima found for
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 particular network initialized from a particular distribution such
hat the initializations are close, the Hessian should measure the
eneralization capability well enough. As an alternative metric to
tudy generalization we also propose the Hessian with respect to
he input as introduced in the next section. This metric does not
uffer from the scaling symmetries in the weight space of the deep
eural network. A way to keep the weight Hessian invariant against
hese kind of transformations is to consider the weight Hessian

ultiplied by the weight matrix; note that

[
˛(ŵ(1))

T
˛−1(ŵ(2))

T
]

Hw(L(˛W (1), ˛−1W (2)))

[
˛ŵ(1)

˛−1ŵ(2)

]

=
[

(ŵ(1))
T

(ŵ(2))
T
]

Hw(L(W (1), W (2)))

[
ŵ(1)

ŵ(2)

]
,

(8)

here ŵ(1), ŵ(2) denotes the vectorized forms of W(1), W(2), respec-
ively. The Hessian multiplied by the weight matrix should be
esistant against the scaling from (7) and result in a Hessian of
imilar size as the one of the original, unscaled weights. We  study
he this metric as a measure for generalization in the numerical
xperiments in Section 5.

.2. The input Hessian

Besides the weight Hessian, the input Hessian will also be used
s a metric for out-of-sample performance. In this section we dis-
uss the relationship between input noise resistance of the network
nd the input and weight Hessians.

.2.1. Definition
The curvature of the loss surface as a function of the weights is

iven by the Hessian with respect to the weights, as discussed pre-
iously. This measures the flatness of particular critical points, and
orrelates with generalization capabilities. Alternatively, as used
n, e.g. [25], the Jacobian with respect to the input can be used as

 measure for generalization. This measures the smoothness of the
utput function with respect to the input parameters. In [33] the
uthors also study this Jacobian as a measure for generalization and
ropose to explicitly penalize the Frobenius norm of the Jacobian
ith respect to the training data in the training objective to find
inima that generalize well. For this local sensitivity metric one

an define the Jacobian Jx(ŷ) with respect to the input x as a vector
ith elements

x
i = ∂xi

ŷ(x, w),

here the network is considered to have one output node; it is
rivial to extend the definition to multiple outputs. An input Jaco-
ian with small elements, would imply that the output function

s robust against small changes in the input data, meaning that a
etter generalization can be achieved.

Besides the Jacobian, the Hessian with respect to the input can
lso be used. This measures the curvature of the output function
r loss function with respect to a varying input. To be consistent
ith the weight Hessian, we compute the Hessian with respect

o the input of the loss function. This measures the curvature of
he loss function, and thus the output function, with respect to
he inputs, such that a Hessian with small eigenvalues means a
moother output function. Define the elements of the input Hessian
x(L) ∈ R

n0×n0 of an input x ∈ R
n0×n0 as,

x = ∂x ∂x L(x, w, y).
ij i j

he Jacobian and the Hessian are averaged over the data samples
i, i = 1, . . .,  N in the train dataset in order to obtain an average
ensitivity metric over the input space.
l of Computational Science 36 (2019) 101020

3.2.2. The learning rate, batch size and input Hessian
In Section 3.1.2 we  showed the effects of the learning rate and

batch size on the weight Hessian. Here we show that SGD and its
hyperparameters also put restrictions on the input Jacobian and
Hessian. Consider SGD where the weight update rule is given by
(4). By a first-order Taylor expansion in x for some noise �̃ it holds,

∇wL
(

x + 1√
M

�̃, w, y
)

≈ ∇wL (x, w, y) + 1√
M

∇w�̃T∇xL (x, w,  y)

=: ∇wL (x, w, y) + 1√
M

�.

In other words, (4) can be rewritten as,

wt+1 ≈ wt − �g̃, g̃:=E(x,y)∼D
[
∇wL

(
x + 1√

M
�̃, w,  y

)]
.

Therefore, the noise from the stochastic gradient descent can be
related to noise in the input and SGD can be interpreted to minimize
a jittered cost function. In turn, by a derivation similar to [28], taking
the loss function to be the MSE, one can find,

L
(

x + 1√
M

�̃, w, y
)

≈ L (x, w, y)

+ ||K ||22
M

||∇xỹ(w, x)||2 + ||K ||42
2M

||Hx(ỹ(w, x))||22, (9)

where Hx(ỹ(w, x)) is the Hessian with respect to the input x of the
neural network output ỹ(w, x) and the output function in the loss
term on the r.h.s. is given by ỹ(x, w) = ŷ(x, w)  + ||K ||

2M Tr(Hx(ŷ(x, w))).
In other words, a relation exists between training with SGD and the
minimization of the loss function regularized with the first- and
second-order derivatives of the output with respect to the input.
Therefore, SGD imposes smoothness assumptions on the output
function with respect to the input.

3.3. Relation between the input and weight Hessian

Neural networks are considered to be robust if they are resistant
to noise in the input. As mentioned in Section 3.1.4, flat minima in
weight space are linked to good generalization; furthermore this
flatness can be controlled through the learning rate. In this sec-
tion we  study the relation between flatness and the input noise
robustness. Previous work [29] has also studied this relation, and
the authors proposed an optimal learning rate to obtain good gen-
eralization. Consider the output of a one-layer neural network,

ŷ(x, w) = W (2)f
(

W (1)x
)

where W (2) ∈ R
1×n1 (assuming the output ŷ(x, w) ∈ R) and W (1) ∈

R
n0×n1 . Denote by ŵ1 ∈ R

n0n1 , ŵ2 ∈ R
n1 the vectorized forms of

W(1), W(2). We have,

ŷ(x + �, w)  = W (2)f (W (1)(x + �)) = W (2)f ((W (1) + �̃)x),

only if �̃ = W (1)�xT

||x||22
, (10)

where � ∈ R
n0 and �̃ ∈ R

n0×n1 . Let �̂ ∈ R
n0n1 be the vectorized

form of �̃. Then,

L(x + �, w, y) = L(x, w + [�̂, 0In1 ]T
, y),

so that if the output is resistant to additive noise �̂ in the first
weight matrix W(1) then the output is resistant to additive noise

� in the input. Note that additive noise resistance is just one partic-
ular type of input transformation one might be interested in; other
types could be, e.g. resistance to multiplicative input noise, or more
complex transformations of the input space such as translations.
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Consider now the Taylor expansion around the weights,

(x + �, w, y) = L(x, w + [�̂, 0In1 ], y) = L(x, w, y) + �̂T∇ŵ1L(x, w, y

+ 1
2

�̂T
Hŵ1

(L(x, w, y))�̂.

n order to have a minimum such that L(x + �, w, y) ≈ L(x, w, y),
.e. the output function should be resistant to additive noise in the
nput, the elements of the gradient and Hessian of the first-layer

eights need to be small. The smoothness of the output function
ith respect to the input can be controlled during training in several
ays. As we showed in Section 3.1.2, the flatness in weight space

an be controlled through the learning rate or batch size in the SGD
pdates. Biasing the optimization algorithm into wider minima in
eight space results in smoother functions with lower information

omplexity in the input space. The width is measured by the weight
essian, so a lower weight Hessian should give better resistance to
dditive input noise.

In the above derivation we thus showed that the stability of the
utput function with respect to input noise is equivalent to noise
esistance in the first layer weights. In order to see the effect of
he stability requirement on further layer weights note that the
xpression in (10) can be written as,

ˆ(x + �, w) = W (2)f ((W (1) + �̃)x) = (W (2) + �̃2)f ((W (1) + �̃1)x),

or some �̃2 ∈ R
1×n1 and such that �̃1 < �̃. Let again �̂1, �̂2 be the

ectorized forms of �̃1, �̃2. Then,

(x + �, w,  y) = L(x, w, y) + [(�̂1)
T
, (�̂2)

T
]∇wL(x, w, y)

+ 1
2

[(�̂1)
T
, (�̂2)

T
]Hw(L(x, w, y))[(�̂1)

T
, (�̂2)

T
]
T

.

rom this expression we see that if the Hessian with respect to
(1) is not sufficiently small, for a deeper network the remaining

oise can be damped by W(2) if the loss function is sufficiently flat
n weight space in the directions of the second-layer weights. This

ay  explain why deep networks can be more robust: the noise
hat is not fully dampened by sufficient flatness in the first-layer
eight directions due to the eigenvectors in directions tangent to

he first-layer weights having large eigenvalues (i.e. sharp increases
f the loss function in those directions), can still be dampened in the
urther layers if the eigenvalues corresponding to the eigenvectors
n the directions of the further weights are sufficiently small. On
he other hand, adding nodes per layer does not aid in dampening
he noise; on the contrary the more nodes per layer the smaller
he eigenvalues of the Hessian in all the directions of these layer
eights should be.

. How low can we go?

As mentioned before, at least theoretically under particular
ssumptions, the entropy of a minimum decreases with the loss
alue. In other words, the lower the loss at a minimum, the larger
he trace of the weight Hessian. A similar property can be said to
old for the input Hessian, with functions overfitting on the noise
aving lower train loss but a higher trace of the input Hessian. The
rade-off between optimally representing the data and the smooth-
ess of the function, i.e. the capability to compress the function

y dismissing irrelevant input data, is known as the information
ottleneck. In the optimal case, a neural network should learn to
xtract the most informative patterns, with the most compact func-
ion possible.
l of Computational Science 36 (2019) 101020 7

4.1. The information bottleneck

In the work of, e.g. [35,1,30] the information bottleneck is
studied for neural networks. The information bottleneck is used
to extract the most relevant information that the input variable
contains about the output variable. Let I(x ; y) denote the mutual
information where x and y are as usual random variables sampled
from some data-generating distribution D,

I(x; y) =
∫

x

∫
y

p(x, y) log
(

p(x, y)
p(x)p(y)

)
dxdy,

where p(x, y) is the joint probability density of x and y and p(x) and
p(y) are the marginals of x and y respectively. The mutual informa-
tion measures the information that x and y share; i.e. it quantifies
the amount of information obtained about one of the random vari-
ables by observing the other. Let ŷ be a representation of x, such that
the distribution of ŷ is fully described by the conditional p(ŷ|x). This
representation ŷ is sufficient for y if I(ŷ; y) = I(x; y), in other words
if ŷ contains all the relevant information x had about y. It is min-
imal if I(x; ŷ) is smallest among the sufficient representations, in
other words if the complexity of the representation is the lowest.
The trade-off between the sufficiency and optimality is formulated
as the minimization of the information bottleneck Lagrangian,

L(p(ŷ|x)) = I(ŷ; x) − ˇI(ŷ; y),

where  ̌ operates as the trade-off parameter between the com-
plexity (first term) and the sufficiency (second term). For an
overparametrized network to fit a complex dataset (e.g. memorize
random noise [36]) it has to pay a price in terms of the information
complexity. Bounding the information complexity can thus prevent
the overfitting, but the trade-off between the two  may  depend on
the particular dataset used. In the case of neural networks, the rep-
resentation ŷ is governed by the learned weights w,  which can be
viewed as a random variable depending on the data and the opti-
mization. The mutual information of the weights and the data can
be denoted by I(w; (x, y)). The flat minima, i.e. the ones with small
eigenvalues of the weight Hessian, can be interpreted as having low
information. In other words, since the minimum is flat, the weights
can be stored at lower precision, requiring fewer bits and having
a lower information value. This result is derived more precisely in
Proposition 4.3 of [1]; here we  state their main result. Let w∗ denote
a local minimum of the cross-entropy loss and Hw is the Hessian at
that point. For the optimal choice of the posterior p(w|x, y) = � · w∗,
the following bound can be obtained,

I(w; (x, y)) ≤ 1
2

d

[
log ||w∗||22 + log ||Hw||∗ − d log

(
d2ˇ

2

)]
,

where d = dim(w) and || · ||* denotes the nuclear norm. The nuclear
norm is given by ||A||∗ = Tr(

√
A∗A) = Tr(A) for square, real matri-

ces. The trace norm of the Hessian is equivalent to the L1-norm of
the vector of eigenvalues of the Hessian; therefore minimizing the
nuclear norm is the same as reducing the rank of the original matrix
(fewer non-zero eigenvalues). This thus states that flat minima have
low information. The authors in [1] furthermore derive that when
decreasing the information in the weights (by some form of reg-
ularization), one automatically improves the minimality and thus

the invariance of the function. The converse, i.e. low information
implies flatness, does not need to hold; in other words, as men-
tioned in Section 3.1.4, there exist minima with good generalization
that are not flat.
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.2. Dependence on noise

Consider a time series yi, i = 0, . . .,  N with a signal to noise ratio of
1 − ˛) : ˛. Suppose the neural network output should be resistant
o noise in the signal.

emark 3 (Robustness in non-i.i.d. setting). We  remark here that in
he non-i.i.d. setting, the network can overfit to not just the noise,
ut also to certain patterns present in one part of the series but not

n another. In this paper we mostly focus on robustness to noise,
nd assume that the non-i.i.d. property comes from the time depen-
ence and the noise which we assume can change in distribution
etween the train and the test set. Generalization then refers to
nding a pattern which is present over time, and the ability to
eneralize across different noise distributions. A similar setting has
een considered for image recognition problems in, e.g. [15].

In this case the loss function should satisfy the following objec-
ive,

L(x + ˛�, w, y) − L(x, w, y)| < ı.

elating this to the train and test set, we assume that x + ˛� is the
est data with a noise component different from that in the train
ata x. In this setting, a small ı corresponds to a small difference
etween the error on the train data and the error on the test data, or,

n other words, a small generalization error. By a Taylor expansion
n the input one obtains,

(x + ˛�, w,  y) − L(x, w, y) ≈ ˛�T∇xL(x, w, y)

+ 1
2

˛2�T Hx(L(x, w, y))�.

hen, taking expected values we have,

[L(x + ˛�, w, y) − L(x, w, y)] ≈ 1
2

˛2Tr
(

Hx(L(x, w, y))
)

,

here we have used the fact that �i∼N(0,  1) i.i.d.. From this it
ollows that,

r
(

Hx(L(x, w, y))
)

= 2
ı

˛2
.

n other words, the amount of noise in the input the neural net-
ork has to be resistant to is inversely proportional to the input

and thus weight) Hessian. This is intuitive in classification prob-
ems. Consider an image or a time series one would like to classify.
f the output function has to be resistant to ˛� noise, i.e. the clas-
ification output is invariant to ˛� noise in the input, we  require
he Hessian to be small, so that the shifted input still results in the
ame output. The higher the noise resistance should be, the smaller
he Hessian. The downside is that the requirement for the learned
unction to possess more resistance against noise can also decrease
he performance of the classifier.

.3. Obtaining better generalizable minima

In this section we summarize which hyperparameters can be
sed to control the trade-off between generalization and complex-

ty (typically the train data fit). These hyperparameters are similar
o what is used in an i.i.d. setting, however using the derivations
n the previous sections and as we will show in the numerical sec-
ion in 5 these hyperparameters can also control the output in the
on-i.i.d. setting.

Learning rate. In Section 3.1.2 the relationship between the
eight Hessian and the learning rate was discussed. It was shown
hat using a higher learning rate can result in wider minima if con-
ergence is obtained. In Section 3.2.2 the same kind of relationship
s derived between the learning rate and the input Hessian. In [29]
he authors also make a link between a high learning rate and a
l of Computational Science 36 (2019) 101020

wide minimum. In particular, they claim that using a high learning
rate allows the training algorithm to escape from sharp minima in
the weight space so that the optimization algorithm converges to
smoother and wider minima that are able to generalize better to
unseen data. By starting with a small learning rate the weights do
not diverge in the beginning when the gradients tend to be large,
but due to the increase in learning rate the weights do not converge
to a sharp local minimum either. A similar learning rate schedule
was proposed in [31], where the authors used a cyclic learning rate
with one cycle and a large maximum learning rate. Our derivations
in the previous sections thus give a theoretical explanation as to
why the learning rate can be used as a control parameter for gener-
alization. In Section 5 we study this numerically. In order to avoid
the size of the gradient influencing the minima to which the opti-
mization converges (as does happen in the previous works of [29]),
we propose to normalize the gradient by its L2 norm.

Batch size. The batch size used, similar to the learning rate,
determines the size of the noise of the SGD, as discussed in Sections
3.1.2 and 3.2.2. A smaller batch size results in a larger variance of
the noise, which in turn, according to (9) results in the smoothing
terms, i.e. the input Jacobian and Hessian, having a larger weight in
the optimization objective. This makes the trade-off between data
fit and function complexity more biased towards obtaining a low
function complexity. The batch size can thus determine the amount
of smoothness required in the output function learned by the neural
network.

Number of iterations.  A small learning rate results in smaller
steps taken in the network. In other words, for the same number of
training iterations a smaller learning rate may  give rise to a min-
imum with a higher loss value. By a similar argument, a smaller
number of training iterations gives rise to a minimum with higher
loss. By Theorem 2, at least in theory, the higher-loss minima should
also have a higher entropy and thus a better generalization. There-
fore, early stopping, or equivalently training with fewer iterations,
terminates the algorithm at a point in the loss surface with higher
entropy. Training the network for fewer iterations should avoid
overfitting on the noise, and by controlling the train error and the
Hessian one can stop training when the sufficient trade-off between
fit and smoothness has been obtained. In this way, the number of
training iterations can be used to control the smoothness of the
obtained solution, i.e. the trade-off in terms of data fit and the
information complexity of the learned solution.

5. Numerical results

The neural network we consider, contains Ndepth hidden lay-
ers with Nwidth nodes per layer. The weights are initialized as

N
(

0, 1
Nwidth

)
and trained with SGD. The learning rate is set to 
,

with mini-batches of size Nb, and Nit iterations are used to minimize
the mean squared error (MSE). The network is trained to predict the
value at time t + 1 given the time series at times t − n, t − n + 1, . . .,
t, i.e. n historical datapoints. We  use the hyperbolic tangent as the
activation function. The results are presented for 20 trained net-
works starting from different initializations. The typical measures
of generalization based on the input and weight Hessians are par-
ticular norms of the matrices. The trace of the weight Hessian will
be used, i.e.
i=1

Similarly, the trace of the input Hessian averaged over the data
samples will be used as a metric for generalization,
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ig. 1. The initial fit (L) and the output function (on the train data) learned (R) by a
verparametrized network trained with SGD can fit to random noise. This effect is u

x

[
Tr(Hx)

]
≈ 1

N

N∑
i=1

Tr
(

Hxi
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.

hile in case of the Hessians we work with the trace of the matri-
es as a measure of generalization, for the input Jacobian we  use
he Frobenius norm and use as a metric of generalization the sen-
itivity of the output with respect to the input averaged over the
ata samples,

x

[
||Jx||F

]
≈ 1

N

N∑
i=1

||Jxi ||F .

.1. Artificial data

In this section we use artificial datasets to gain understand-
ng of the neural network and its generalization capabilities. We
how that as expected from the theory, a linear relation exists
etween the trace of the input and weight Hessians (i.e. the function
omplexity) and the generalization error. In our results, a higher
unction complexity means that the network is learning a function
hich is overfitting on the noise. This is clearly undesirable and

esults in a worse test set performance. The main task of this section
s to show how to recognize when the network starts overfitting,
nd how to avoid this using the optimization hyperparameters as
escribed in Section 4.3.

.1.1. Random noise
We simulate 100 datapoints from an N(0,  1) distribution. An

verparametrized neural network with the number of parameters
arger than the sample size will be able to perfectly fit this ran-
om noise, see Fig. 1. However, in order to obtain a low loss, the
etwork will have to significantly increase its function complexity,
s can be measured by the norms of the weight and input Jaco-
ians and Hessians. This is shown in Figs. 2 and 3 : the traces of the

nput and weight Hessians significantly increase to obtain a small
oss value. After some number of iterations, if the MSE  has con-
erged to some value, the Hessian remains approximately constant,
ith small fluctuations due to the stochasticity of the optimization

lgorithm. When the network starts to learn the high-frequency
omponents, here the noise, the norms of the input and weight
essians increase significantly. In order to thus avoid convergence
n noise one has to keep these norms small.
.1.2. Noisy sine function
Consider now the function yi = sin(0.1ti) + c�i, with ti ∈ {0, 1, . . .,

00} and �i∼N(0,  1). The network input consists of (yi−4, . . .,  yi)
nd is trained to forecast yi+1. Note that this time series is clearly
l network of size Ndepth = 1 and Nwidth = 500 with 
 = 0.05 on random noise data. An
ired and ideally, a network will not converge on noise.

not stationary, but contains seasonality which is a common feature
of time series such as weather measurements.

Generalization and the number of iterations.  Figs. 4 and 5
shows the trace norm of the input and weight Hessians plotted
against the train error and the generalization error, respectively.
There exists a linear relation between the trace of the input and
weight Hessians and the generalization error: a smaller trace norm
results in lower generalization error. This effect is slightly less
significant for the deeper network. Furthermore, training longer
results in a solution of higher complexity, which in this case is
undesired since a higher complexity means that the function is
overfitting on the noise. This is in accordance with the theoreti-
cal result on the entropy and the loss in Theorem 2, where it was
claimed that the lower the train loss, the sharper the minimum, or
the larger the output function complexity is. Training longer allows
to access lower points in the loss surface with a lower train error
as seen in Fig. 4. These lower points have a lower entropy, which
results in a higher generalization error as seen from Fig. 5.

Increasing the noise amplitude. Consider now the sine func-
tion with the noise coefficient given by c = 0.3. In Fig. 6 we  observe
that in order to obtain a generalization error in the high noise case
(c = 0.3) similar to that in the low noise case (c = 0.1, Fig. 5) the Hes-
sian should be much smaller. This corresponds with the theoretical
analysis in Section 4.2, where it was  observed that with more noise
in the signal one requires a lower Hessian in order to obtain a simi-
lar generalization error. Finding a low complexity solution on noisy
data can be difficult due to the possibility of overfitting, since no
explicit smoothness constraints are imposed. Deep networks are
even more prone to overfitting due to the higher number of param-
eters and the sharper gradient descent directions. Thus, in order to
obtain sufficiently smooth solutions for deep networks one needs
to adapt the training method or cost function accordingly. For the
training method, as seen in Fig. 6 taking fewer steps – or equiva-
lently (not shown in the plots but discussed in Section 4.3) using
smaller learning rates– results in smaller generalization error.

Generalization and the learning rate. Here we  study the effects
of the learning rate on generalization. Fig. 7 shows the test error
plotted against the input and weight Hessians obtained by train-
ing the neural network with different learning rates. Using a larger
learning rate results in wider minima while a smaller learning rate
tends to converge to sharper minima, however a significant amount
of outliers are found in both cases. We used batch gradient descent
and scaled the gradient by its L2 norm – i.e. the gradient in the
SGD updates is given by g/||g||2 – in order to avoid the gradient
size influencing the minima width. We remark that the relation
between a larger learning rate and wider minima seems to be more
clear in the deep neural network where the usage of the higher

learning rates results in more minima clustered at lower values
of the trace. While the Hessian is correlated with the test error,
i.e. a small test error means a smaller Hessian, the test set perfor-
mance is not significantly better using the higher learning rates.
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Fig. 2. The convergence of the network of size Ndepth = 1 (L) and Ndepth = 10 (R) and Nwidth = 500 with 
 = 0.05 for the input Hessian (T) and the input Jacobian (B) on random
noise  data; the loss decreases with iterations, but the input norms of the Jacobian and Hessian increase, as the output function increases in complexity. The input Jacobian
and  Hessian can give indication for when a network starts overfitting on the noise. This can then be avoided by making a trade-off between complexity and train error.
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ig. 3. The convergence of the network of size Ndepth = 1 (L) and Ndepth = 10 (R) and N
er  layer on random noise data; the loss decreases with iterations, but the weight H
ignificantly increase. The weight Hessian norm can be used in order to bound the f

ven though convergence has been obtained, the network weights
ave converged to a minimum that underfits the data and therefore
he output function can have a worse test set performance.

Generalization and the batch size. In Fig. 8 we  plot the gen-
ralization error and the traces of the input and weight Hessians
or different batch sizes. Using a smaller batch size causes the net-
ork to converge to minima with lower input and weight Hessians,
hich in turn correspond to minima with lower generalization

rror. As expected from the theory in Section 4.3 batch size has
 significant influence on the smoothness of the output function
ith respect to input and weights, and can be used as a control

or the trade-off between train and generalization error. Out of the
hree controls considered: number of iterations, learning rate and
atch size, the number of iterations and the batch size appear to be
he most effective ones for controlling the trade-off.

The scaled Hessian as a metric for generalization. Here we use
he Hessian multiplied by the weights as defined in (8) as a measure
or generalization. While good results were obtained with the orig-
nal weight Hessian, it is of interest to see if the amount of outliers

here minima with different Hessians but similar generalization
rrors) decreases when using the scaled weight Hessian. In Fig. 9 we
ee that similar to the unscaled weight Hessian a clear linear depen-
ence exists between the size of the Hessian and the generalization
 500 with 
 = 0.05 in terms of the loss function and the trace of the weight Hessians
s increase, showing that in order to obtain low loss the function complexity has to
n complexity in order to avoid convergence on noise.

error. This dependence does not seem to be more significant as
compared to the unscaled Hessian, showing that as expected from
Section 3.1.3, the scaling sensitivity of the weight Hessian is not a
significant problem for the minima found by SGD, and the weight
Hessian is a valid metric for measuring generalization capability,
despite its scaling sensitivity.

5.2. Real-world data

In this section we  study generalizability for several real-world
time series forecasting. We  show that the norm of the input and
weight Hessian is a good metric for measuring the capability of
a network to generalize, and that similar to the artificial dataset,
the hyperparameters defined in Section 4.3 are very effective for
controlling the trade-off between smoothness – as measured by
the Hessians – and data fit – as measured by the train loss.

Remark 4 (Network architecture). In the coming examples we  con-
sider a network architecture with Ndepth = 2 and Nwidth = 100. Similar

results, with regard to the effects of the controls and the ability of
the metrics to measure generalization, hold for other architectures
as long as the network is overparametrized. The hyperparameters
would have to be tuned accordingly to the network size. For exam-
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Fig. 4. The train error and trace norm of the input Hessian (T) and the weight Hessian (B) for the noisy sine with c = 0.1 for 20 trained networks. The neural network has 1 (L)
and  10 (R) layers with 500 nodes per layer and is trained for a different number of iterations (10,000 and 100,000). Training longer results in a solution of higher complexity
as  measured by the norms of the input and weight Hessians. This solution has a smaller train error but will likely result in worse generalization.
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ig. 5. The generalization error and trace norm of the input Hessian (T) and the wei
as  1 (L) and 10 (R) layers with 500 nodes per layer and is trained for a different nu
eneralization error, and training longer increases the complexity of the learned so

le, the more parameters a network has, the easier it is to overfit
o that even fewer iterations might be needed to avoid the overfit-
ing. Furthermore, as has been mentioned in, e.g. [26] the wider the
eural network, the more noise it can handle, which in turn results

n better generalization.

.2.1. Index data

Financial data is highly non-linear, non-stationary and has a

ery low signal-to-noise ratio [10]. Overfitting on the training data
nd not being able to generalize well to unseen data is therefore a
hallenge. We will use a network of size Ndepth = 2, Nwidth = 100. The
ssian (B) for the noisy sine with c = 0.1 for 20 trained networks. The neural network
of iterations (10,000 and 100,000). A smaller trace of the Hessian results in a lower
.

input data will consist of n = 5 historical daily absolute returns of
the S&P500 index, n = 5 historical daily absolute returns of the CBOE
10 year interest rate, and n = 5 historical daily absolute returns of
the volatility index (VIX), so that the total input into the neural net-
work will consist of 15 nodes. The train period consists of data from
2017-01-03 until 2018-02-02, and the test data from 2018-02-03
until 2018-08-13. Given the value of the time series St the returns

are computed as rt = St − St−1. The returns are then normalized using
the mean and variance. The network output will consist of the pre-
diction for the next day return rt+1 of the S&P500 index. In Table 1
we present the MSE  and hit rate (computed as the number of up or
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Fig. 6. The functions learned by the network on the sine data with c = 0.3 with 1000 (L) and 10,000 (R) iterations with a network of one layer (T) and 10 layers (B). With
more  noise the network is prone to overfitting, especially in the deep network. A smaller number of training iterations results in a lower Hessian which clearly results in a
smoother function with lower test error.
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ig. 7. The test error and the input (L) and weight (R) Hessians for the noisy sine f
ayers  with 100 nodes per layer. On average, training with a larger learning rate res
etween the minima found with different learning rates nevertheless exists.

own movements predicted correctly) for different hyperparame-
ers averaged over 20 sampled networks. A larger trace of the input
r weight Hessian appears to correspond to a worse performance;
imilarly, training longer results in overfitting. A smaller batch size

orresponds to a smaller weight Hessian in the final layer, but it
oes not seem to result in better performance due to, e.g. under-
tting the signal. Financial returns are highly noisy and non-linear
nd distinguishing the signal in the data from noise remains chal-
n with c = 0.3 for different learning rates. The neural network has 1 (T) and 10 (B)
 wider minima, i.e. smaller input and weight Hessians, however significant overlap

lenging. Nevertheless we  showed that the techniques presented in
the paper can be used to bias the algorithm into minima that have
more (additive) noise resistance.
5.2.2. Temperature
In this section we train a network for predicting the daily min-

imum temperature in Melbourne, Australia. The dataset contains
observations over the period of 1988-01-01 until 1990-12-31. We
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Fig. 8. The generalization error and the trace of the input (L) and weight (R) Hessians for the noisy sine function with c = 0.3 for different batch sizes. The neural network has
1  (T) and 10 (B) layers with 100 nodes per layer. Training with a smaller batch size results in a minimum with smaller values of its input and weight Hessian, which means a
smoother output function and a wider minimum in weight space. Smaller batch sizes thus result in functions which can generalize better.

Fig. 9. The generalization error with respect to the weight Hessian multiplied by the weight vector as defined in (8) for a network with 1 (L) and 10 (R) layers for the noisy
sine  function with c = 0.3. A linear trend is observed with a smaller Hessian giving a lower generalization error. The scaled Hessian as a measure for generalization seems to
be  as accurate as the unscaled Hessian, showing that the scaling sensitivity is not a significant problem for the minima found with SGD.
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ig. 10. The temperature forecast for a network trained for 5000 iterations (L) and 1
as  trained longer overfits on the noise in the observations and therefore generaliz

ill use a network of size Ndepth = 2, Nwidth = 100. The input data

ill consist of n = 20 historical daily observations of the tempera-

ure. The results for the MSE  for different training hyperparameters
re presented in Table 2 and Fig. 10. As expected, training with
ewer iterations and using smaller batch sizes results in a smoother
 iterations (R). There is a clear seasonality in the dataset, however the network that
rse.

output function with respect to the input and causes the train-

ing algorithm to converge to wider minima. The temperature data
has a clear seasonal pattern but the daily observations vary due to
noise; using smaller batch sizes or training shorter has a regular-
ising effect on the output function, so that the network does not
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Table  1
The MSE  and hit rate for different batch sizes and iteration numbers. A higher trace
of  the input or weight Hessian results in a lower hit rate and a higher MSE. Training
longer results in a higher error and using a smaller batch size results in a smaller
weight Hessian in the final layer, but does not seem to correspond to a better per-
formance due to, e.g. underfitting.

Nit Nb MSE  Hit rate Tr(Hx) Tr(HW (1) ) Tr(HW (3) )

10,000 100 2.80 0.49 0.73 5.60 45.16
5000 100 2.65 0.513 0.73 4.86 45.48
10,000 300 2.76 0.500 0.83 4.81 47.26
5000 300 2.71 0.505 0.74 4.50 46.60

Table 2
The MSE  for different batch sizes and iteration numbers. A higher trace of the input or
weight Hessian corresponds to a worse test set MSE  due to overfitting on the noise.
As  usual, training longer and using larger batch sizes results in more overfitting.

Nit Nb MSE  Tr(Hx) Tr(HW (1) ) Tr(HW (3) )

10,000 10 0.44 0.078 6.05 34.9
5000 10 0.36 0.023 5.85 27.5
10,000 100 0.49 0.11 36.7 40.2
5000 100 0.36 0.030 38.4 31.9
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10,000 200 0.50 0.10 42.6 40.9
5000 200 0.37 0.032 56.7 31.7

verfit on the noise in the data, but continues to follow the main
rend.

. Conclusion

In this work we studied generalization capabilities of neural
etworks trained for the purpose of time series forecasting. We
howed that there is a correspondence between good generaliza-
ion capability and small input and weight Hessians of the loss
unction at the minima found after training. A small input or weight
essian corresponds to the smoothness of the trained function, or,

n other words, the resistance of the output function to noise in the
nput or weights, respectively. The challenge lies in finding the opti-

al  tradeoff between fit of the data and smoothness of the learned
unction, so as to avoid overfitting on the noise and underfitting
n the signal of interest. We  showed how to use the learning rate,
he batch size and the number of iterations used in the training
lgorithm to bias the network into minima that possess a certain
tructure. Other aspects that may  influence generalization capabil-
ties are the kind of activation function used: while not reported

e noticed that the network is prone to overfitting when using the
iecewise linear ReLU compared to the hyperbolic tangent or the
igmoid function. Furthermore, the network size itself also matters:
eep networks, due to the larger amount of parameters, will more
asily overfit on the noise, obtaining a low training error but a bad
ut-of-sample performance.

While this work provided some insight into obtaining good
eneralization for time series forecasting, forecasting remains a
hallenging task due to the non-linear and non-stationary distri-
ution of the data. The typical assumption in statistical learning
heory of having i.i.d. samples from some data-generating distri-
ution does not hold in time series: there is a dependence between
he observations through time and the underlying distribution may
hange due to unobserved variables so that the train and test data
ight not be identically distributed. A relaxation that has become

tandard to deal with the independence assumption is to assume
hat the observations are drawn from a stationary mixing distribu-
ion (see, e.g. [2,24]). The authors of, e.g. [18–20] provide bounds

hat also hold for non-stationary time series. A related issue is that
f generalization in neural networks across different noise distribu-
ions. As has been mentioned in the work of [15], neural networks
ave trouble generalizing when the noise distribution in the data

[

l of Computational Science 36 (2019) 101020

they were trained on differs from the noise distribution in the test
dataset. Understanding and solving this issue will prove valuable
in time series forecasting, where the distribution of the noise in
the observations could change over time. Obtaining theoretical
results on, e.g. the link between the generalization error and the
Hessian, and understanding how to make machine learning algo-
rithms work in order to generalize in a non-i.i.d. setting is still a
relevant and active topic of research which we  aim to address in
future work.
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