
Towards simulation and optimization of cache
placement on large virtual Content Distribution

Networks

Christos K. Filelis-Papadopoulosa,b,∗, Patricia Takako Endoc,d, Malika
Bendechachec, Sergej Svorobejc, Konstantinos M. Giannoutakisb, George A.

Gravvanisa, Dimitrios Tzovarasb, James Byrnec, Theo Lynnc

aDepartment of Electrical and Computer Engineering, Democritus University of Thrace,
Xanthi, Greece

bInformation Technologies Institute, Centre for Research and Technology Hellas,
Thessaloniki, Greece

cIrish Institute of Digital Business, Dublin City University, Glasnevin, Dublin 9, Ireland
dUniversidade de Pernambuco, Brazil.

Abstract

IP video traffic is forecast to be 82% of all IP traffic by 2022. Traditionally,

Content Distribution Networks (CDN) were used extensively to meet quality

of service levels for IP video services. To handle the dramatic growth in video

traffic, CDN operators are migrating their infrastructure to the cloud and fog

in order to leverage its greater availability and flexibility. For hyperscale de-

ployments, energy consumption, cache placement, and resource availability can

be analyzed using simulation in order to improve resource utilization and per-

formance. Recently, a discrete-time simulator for modelling hierarchical virtual

CDNs (vCDNs) was proposed with reduced memory requirements and increased

performance using multi-core systems to cater for the scale and complexity of

these networks. The first iteration of this discrete-time simulator featured a

number of limitations impacting accuracy and applicability: it supports only

∗Corresponding author
Email addresses: cpapad@ee.duth.gr,cfilpapadop@iti.gr (Christos K.

Filelis-Papadopoulos), patricia.endo@dcu.ie (Patricia Takako Endo),
malika.bendechache@dcu.ie (Malika Bendechache), sergej.svorobej@dcu.ie (Sergej
Svorobej), kgiannou@iti.gr (Konstantinos M. Giannoutakis), ggravvan@ee.duth.gr
(George A. Gravvanis), Dimitrios.Tzovaras@iti.gr (Dimitrios Tzovaras),
james.byrne@dcu.ie (James Byrne), theo.lynn@dcu.ie (Theo Lynn)

Preprint submitted to Journal of Computational Science May 22, 2020

tree-based topology structures, the results are computed per level, and requests

of the same content differ only in time duration. In this paper, we present an im-

proved simulation framework that (a) supports graph-based network topologies,

(b) requests have been reconstituted for differentiation of requirements, and (c)

statistics are now computed per site and network metrics per link, improving

granularity and parallel performance. Moreover, we also propose a two phase

optimization scheme that makes use of simulation outputs to guide the search

for optimal cache placements. In order to evaluate our proposal, we simulate a

vCDN network based on real traces obtained from the BT vCDN infrastructure,

and analyze performance and scalability aspects.

Keywords: vCDN, parallel simulation, cache placement, simulation-based

optimization

1. Introduction

Due to advances in wireless and mobile communications, global IP traffic

is increasing at unprecedented rates [1]. In 2016, this was predicted to grow

threefold by 2021 with the largest portion of this traffic in the form of IP video

and more specifically Video-On-Demand (VOD), Internet video, augmented and5

virtual reality (AR/VR) applications [1]. In order for CSPs to maintain compet-

itive quality of service (QoS) while simultaneously increasing utilization, content

distribution networks (CDNs) are used. CDNs distribute content to geographi-

cally distributed servers located closer to the users, acting as caches [2, 3]. These

caches enhance scalability, reduce latency and limit network congestion, espe-10

cially in applications such as VOD [4]. According to industry forecasts, CDNs

will carry 72% of all internet traffic by 2022 [1].

The increased heterogeneity of devices demanding high resolution video-

related content and services (including AR/VR), requires complex networking,

increased computing resources, and greater scalability [5]. In order to tackle15

these demands using legacy infrastructure, resource virtualization is used by

CSPs, including virtual CDNs (vCDNs) that leverage cloud computing to of-

2

fer flexible and reliable services to meet the increasing QoS expectations [6, 7].

Notwithstanding this, use cases, such as video delivery to large audiences, re-

quire careful capacity planning and resource management by CSPs to avoid the20

negative consequences of over- and under-provisioning.

To this end, an improved simulation framework (based on the Discrete Time

Simulation (DTS) framework) for virtual Content Distribution Networks pro-

posed in [8]) is presented. This improved framework is combined with a two-

phase optimization scheme for finding optimal cache placements. The frame-25

work is improved in order to handle more general vCDN architectures described

as graphs thereby resulting in more realistic simulations. An improved path

formation algorithm is also presented. Moreover, the resource requirements of

the requests are decoupled from the available resources on a virtual machine

(VM) for a prescribed content type thereby allowing for more general work-30

loads. A finer grained model (per site and per edge) was used for the outputs of

the simulation. The updated simulation framework was combined with a novel

two-phase cache placement (also called VM placement) optimization scheme

for improving functional and non-functional requirements. In the first phase

of the proposed approach a number of simulations are conducted with a ran-35

dom number of caches scattered randomly to the available sites. The results of

these simulations are weighted and combined with a score function. This score

function describes functional and non-functional requirements of the vCDN and

results in a ranking for each site. In the second phase, the ranking is utilized in

an iterative procedure to discover the optimal number of placements that can40

service a prescribed number of inputs. The proposed scheme was parallelized

for large scale hybrid distributed memory parallel systems using OpenMP and

MPI.

In order to demonstrate the applicability of our proposed simulation frame-

work, we simulate a real vCDN architecture using data provided by BT1, one45

of the worlds leading communications services companies. Using BT’s topol-

1https://www.bt.com/

3

ogy and data for the United Kingdom, we run several experiments in order to

assess the effectiveness, scalability and performance of the proposed simulation-

optimization technique in conjunction with the updated simulation framework.

In Section 2, the concept of a vCDN is introduced and illustrated through50

the BT vCDN. This is followed by a brief discussion of simulation-based opti-

mization. In Section 3, the DTS framework for simulating vCDNs is reviewed.

Limitations are discussed and proposed solutions for addressing these limita-

tions are presented. In Section 4, the proposed two-phase optimization scheme

is presented along with implementation details for large scale hybrid distributed55

memory systems. In Section 5, the performance and applicability of the updated

framework and two-step optimization process is evaluated through a series of

simulations at differing scales. Finally, concluding remarks are given and future

work is discussed in Section 6.

2. Background60

2.1. Virtual Content Delivery Networks

Due to the unprecedented growth in network traffic in terms of volume,

velocity, and variety, CSPs are facing challenges to provide competitive quality

of service (QoS) levels while achieving greater utilisation of their infrastructures.

To improve bandwidth usage, accessibility, and resource utilisation, CDNs are65

being widely used to distribute content, since they have several cache servers

geographically located close to the end users [2, 3].

Tier one network operators, such as BT, host hardware from a variety of dif-

ferent CDN operators. This hardware is deployed at strategic points throughout

BT’s network which may result in a range of potential problems. These include70

(a) organizing sufficient physical space (in exchange buildings, for instance) to

support all of the CDN operators; (b) energy to power and cool equipment;

and (c) discontinuities related to on-boarding and off-boarding CDN opera-

tors. Therefore, in order to make better usage of their legacy infrastructure,

reduce costs and increase service elasticity, network operators are using virtual-75

4

ization techniques to deploy and offer virtual CDN (vCDN) services. Through

virtualization, vCDNs [6, 7] can be dynamically adjusted to meet commercial

requirements and associated infrastructure demands.

Herbaut et al. [9] suggest three main drivers of vCDN adoption: (a) footprint

extension in low density areas where permanent peering may not be economi-80

cally sustainable; (b) quality improvement for niche markets e.g. high-quality

content delivery with small delays; and (c) providing a dynamic and temporarily

increase in bandwidth in a given geographical area (bandwidth bursting). For

these reasons, a network operator hosts a vCDN service and thereby replaces

multiple customized physical caches with a standard server running multiple85

virtual applications per CDN operator.

In vCDNs, the main virtual application is the cache server. Physical

servers of the network operator can host one or more virtual cache servers,

from different CDN operators. Each virtual cache server is deployed in the form

of a VM or a container.90

Optimisation of a vCDN system is a two-stage process. First, the network

operator needs to decide where to deploy the physical infrastructure. Second,

the CDN operator needs to decide where to install virtual machines or containers

that will host the cache server. In this paper, our focus is on cache server

placement.95

2.1.1. An vCDN hosting example: BT

BT’s main activities are the provision of fixed-line services, broadband, mo-

bile and TV products and services, as well as networked IT services. As a service

application provider, BT needs to ensure the appropriate QoS for their virtual

network functionalities is met.100

Currently, 50% of broadband traffic on BTs network originates from a con-

tent cache operated by the biggest CDN operators [10]. Today, BT hosts selected

CDN Operators’ customised cache hardware in two to six nodes in the UK to

reduce the amount and cost of Internet peering traffic. If the caches were in-

stalled in BTs edge nodes (also known as Tier 1 MSANs (Multi-Service Access105

5

Nodes)), then the cost of delivering content would be reduced by approximately

75% and BT would reduce its network load significantly. However, the CDN

Operators (such as Google, Akamai, Limelight, and BBC) are unlikely to want

to install their hardware in up to 1,000 locations across the UK for commercially

sensitive reasons [10].110

Under a vCDN proposition, BT installs the compute infrastructure at its

edge nodes and offers a CDN as a Service (CDNaaS). The CDN operators install

and manage their own software on the BT CDNaaS, thus maintaining their

unique selling points and ownership of their customer base. This is a potential

winwin scenario as the network and CDN operators reduce operating costs and115

consumers get better service.

In this work, we propose a simulation-based optimization solution to es-

timate optimal cache server placements in a large-scale vCDN infrastructure,

using the BT network as our use case.

2.2. Simulation-optimization approach120

Traditionally, simulation and optimization techniques have been considered

separately, but according to [11], “tremendous leaps in computational power

promoted the appearance of methods that combined both”. Commonly, simu-

lation models are used to understand the system performance under different

circumstances and factors, but in some cases system designers or owners, such125

as network operators, want to explore the impact of different design changes on

the overall performance. In this case, the main goal is to perform optimization

using simulation models [12].

Simulation-based solutions may rely on a wide set of inputs to feed models

and then an optimization approach can be used to optimize this set of inputs130

(controllable parameter settings). Thus, the simulation and its model detail-

ing, and from the optimization and its ability to find good (or even optimal)

solutions, is exploited simultaneously.

Figueira and Almada-Lobo [11] classify the hybrid simulation-optimization

approaches in four dimensions: (i) simulation purpose, (ii) hierarchical struc-135

6

ture, (iii) search method, and (iv) search scheme. The simulation purpose and

hierarchical structure are related to the integration between simulation and op-

timization approaches; while search method and search scheme are related to

the search algorithm design. In this paper, we use simulation-optimization as an

iterative procedure that uses simulation to evaluate vCDN placement solutions140

and hence guides the search, validating its decisions.

2.3. Related work

Optimization of cache placement has been extensively studied in the litera-

ture, and different approaches have been adopted to formulate cache allocation

problems.145

For instance, Integer Linear Programming (ILP) has been a popular model-

ing technique for VM allocation problems [13, 14, 15]. Bari et al. [13] used ILP

to formulate VNF orchestration problem (VNF-OP) as an optimization problem

which consists in minimizing the cost (deployment cost, energy cost, and cost

of forwarding traffic), penalties for Service Level Objective (SLO) violations,150

and resource fragmentation. However, experimental results from [14] showed

that using ILP to find an optimal configuration can result in a very long exe-

cution time even for a small number of network functions. The authors thus

studied approximations by finding the best fit solution according to a Genetic

Algorithm (GA) model of the problem. In particular, they proposed a Genetic155

Programming-based approach to solve the VM allocation and network manage-

ment problem by exploring a fixed number of generations. Although their GA

may not provide the optimal solution, it can compute configurations orders of

magnitude faster than ILP.

The problem of dynamic VM placement was also addressed by the authors in160

[16, 17] to cope with workloads that change their resource requirements. Based

on this work, Yala et al. [18] also adopted GA to address the distribution of the

necessary virtual computing resources to a number of virtual service components

and the appropriate placement of the latter in the operators NFVI. Here, they

captured the conflicting objectives of service availability and deployment cost165

7

by proposing a multi-objective optimization formulation for the problem of joint

compute resource allocation and VM placement.

Ibn-Khedher et al. [19] proposed two optimization algorithms for both the

placement and the migration problem of vCDNs. The major objective from both

algorithms is to minimize the total cost of content migration while minimizing170

the additional costs needed for caching, streaming, and replication number.

The first optimization (i.e. OPAC : Optimal Placement Algorithm for virtual

CDN) [20] formulates an exact algorithm based on a mathematical model for

deciding the optimal location to migrate a vCDN or to instantiate (place) a

new vCDN on demand to satisfy users quality requirements. Further, to cope175

with the scalability problem of exact algorithms, the authors adapted a heuristic

algorithm (i.e. HPAC : Heuristic Placement Algorithm for virtual CDN) to deal

with large scale networks.

The approaches discussed above, optimization and simulation are discrete.

In the first instance optimization techniques are used to improve resource place-180

ment. Then, simulation is used to evaluate the performance of the proposed op-

timization approach. In contrast, we propose a hybrid simulation-optimization

framework that integrates the optimization into the simulation process in order

to optimize vCDN placements in a distributed network. The proposed frame-

work is specifically developed to address the scale and complexity of large-scale185

vCDN deployments. This is accomplished in two ways. Firstly, OpenMP is used

to parallelize calculations using shared memory and multiprocessing program-

ming techniques. Secondly, the framework provides support for graph-based

network topologies which represent real system network inter-connectivity and

hence are more accurate in comparison to more simplistic network depictions.190

The integration of the simulation framework with two-phase optimization meth-

ods creates a novel approach that allows the evaluation of performance, and

energy and cost trade-offs during the system design period before full system

deployment. To the best of our knowledge, a hybrid simulation-optimization

approach has not been used in prior literature for resource placement.195

Table 1 summarizes and compares the extant approaches by execution type

8

(parallel or sequential), approach type (optimization only or hybrid simulation-

optimization), resource type, scalability, and speedup. This table also highlights

the strength of our approach compared to the prior approaches.

Table 1: State of the Art: Comparative Study

Paper Execution Type
Approach

Type (Goal)
Resource Type Scalability Speed Up

ILP approach [13], [14], [15] Sequential Optimization VM allocation No very slow

Meta-heuristic

Approach

[14], [16],

[17], [18], [19]
Sequential Optimization

VM placement and

network management

vCDN placement

vCDN migration

No

[19]: Yes
Faster than ILP

Exact

Approach
[20] Sequential Optimization

vCDN placement and

Migration
No Faster than ILP

Our Hybrid

Approach
Current paper Parallel Simulation-Optimization vCDN placement Yes Fast

3. An improved Discrete Time Simulation framework200

Recently, a novel simulation framework for vCDN based on a DTS approach

was introduced, [8]. This parallel framework was used to simulate tree-type

vCDNs, described by a Directed Acyclic Graph (DAG), where requests were

created at the bottom-most level and propagated upwards until a site with a

cache to service the request was discovered. An exemplar vCDN infrastructure205

topology is given in Fig. 1.

Each site is composed of physical host nodes able to accommodate VMs,

acting as caches, which serve a specific type of content with prescribed proba-

bility. Furthermore, path formation for each request is simplified (due to the tree

structure), selecting sites with respect to existence of a cache or the maximum210

available bandwidth. Each request is characterized only by its duration which

is computed using a uniform random number generator between prescribed lim-

its. The resource requirements of each request are derived as a fraction of the

available resources on a VM. Thus, requests of the same type have the same

resource requirements. The network bandwidth is considered per site and not215

per connection. The outputs of the simulation framework are collected in a

9

Figure 1: Illustrative vCDN infrastructure topology [8].

statistics engine [8] on a per level basis based on an interval. The framework is

parallelized using OpenMP for shared memory parallel systems.

Despite the performance and memory improvements provided by the vCDN

simulator proposed in [8], there are a number of limitations. Firstly, the archi-220

tecture of the vCDN and the connections between sites are stored in an upper

triangular sparse adjacency matrix, since connections at the same level are not

allowed. However, live vCDNs usually have connections between sites at the

same level as well as levels higher than the immediate upper one, especially in

cases of isolated sites. This affects the storage of the sites’ adjacency matrix.225

In the case of a tree-type vCDN with lexicographical enumeration of sites from

the topmost to the bottom-most level, the adjacency matrix is sparse upper

triangular with the diagonal elements indicating each site’s corresponding level.

By allowing intra-level connections, the resulting sparse adjacency matrix, G,

10

has the following block form:230

G =



G1,1 G1,2 G1,`

G2,1 G2,2 G2,3 . . .
...

... G2,3
. . .

. . .
...

...
...

. . . G`−1,`−1 G`−1,`

G`,1 G`,`−1 G`,`


, (1)

where ` ∈ N denotes the number of levels. The matrices Gi,i, 1 ≤ i ≤ ` retain

the connections of each site on level i to other sites at the same level with

diag(Gi,i) = i the level where each site belongs. The matrices Gi,j , 1 ≤ i < j ≤ `

retain connections of each site on level i to sites at the lower levels, while matrices

Gi,j , 1 ≤ j < i ≤ ` retain connections of each site on level i to sites at the upper235

levels. The off-diagonal elements gi,j of matrixG retain the bandwidth (in Gbps)

of each connection as opposed to the previous approach where bandwidth was

retained as a property of each site. The diagonal elements retain the level of

each site. The sparse matrix G describing the structure of the vCDN is generally

symmetric. The sparse matrix G is retained in Compressed Sparse Row storage240

format [21]. For each site i, the sets νi and µi:

νi = {j : gi,j 6= 0 ∩ j ∈ Gi,1:i, j 6= i} and µi = {j : gi,j 6= 0 ∩ j ∈ Gi,i:`, j 6= i},

(2)

where νi denotes the constituent sites at the upper level, including connections

to the same level and µi the connections to the lower level, including connections

to the same level. For each site, data transfer to higher levels is not considered,

since it does not substantially affect the vCDN. Thus, each site retains the245

available bandwidth to constituent sites at the same or higher levels.

The resource requirements of each request are not constant. Instead they

are computed based on limits with respect to content type. Each request is

described by duration (D), vCPU (P), memory (M), storage (S) and network

11

requirements (N). Thus, each request is described as:250

r = {D,P,M, S,N} (3)

with

r =



D = Dmin +
(
Dmax −Dmin

)
X1

P = Pmin +
(
Pmax − Pmin

)
X2

M = Mmin +
(
Mmax −Mmin

)
X2

S = Smin +
(
Smax − Smin

)
X2

N = Nmin +
(
Nmax −Nmin

)
X2

(4)

where X1 and X2 are real random numbers in [0, 1) following a uniform ran-

dom distribution. The requirements {P,M, S,N} are computed using the same

random number X2, since they are considered analogous, while duration is in-

dependent. Following this approach, available resources are affected differently255

by each request allowing for more general simulations, instead of the uniform

approach followed in [8]. The minimum and maximum values in (4) are defined

per content type as different types of content might have different profiles in

terms of resource requirements or duration. The duration of a request is mea-

sured in seconds, while memory and storage in GB and network in Gbps. The260

processing requirements are considered as a fraction of a vCPU i.e. if a VM

occupies 2 vCPUs then it can host up to 200 requests requiring 0.01 each. Each

vCPU corresponds to a CPU.

At each site a request is handled as: Cached, Not Cached, Forwarded or

Rejected [8]. The first two are valid only in the presence of a cache to the site.265

When a request is Cached it is serviced by the site, occupying P,M, S,N re-

sources, through a path of sites to the user. In case of a Not Cached response,

a request is forwarded to constituent sites occupying w1P,w2M,w3S,w4N re-

sources of the site. The variables wi ≥ 1, 1 ≤ i ≤ 4 denote weights and are

real numbers greater than 1. A request is forwarded, occupying w4N resources,270

when the site has no resources installed in the form of a VM or there are no

available resources, except network, in the hosted VMs. A request is Rejected

12

when there are no available resources. This approach to handling requests is

similar to [8].

In the approach given in [8], the path is formed by at most one site per275

level. Thus, the maximum number of sites to be traversed until a site hosting

a VM that can service a request is discovered is equal to the number of levels

`. Moreover, routing of requests could only be performed to the first site at the

immediate upper level retaining a VM with sufficient available bandwidth or

the site at the immediate upper level with the maximum available bandwidth.280

However, the inclusion of connections at the same level affects the path forma-

tion for servicing a request, since the maximum number of traversed sites is not

known a priori.

Another major issue is the formation of cycles during path formation. A

cycle can be formed when a path of connections exists and sites connect to285

themselves. In order to avoid formulation of such loops, a dense integer vector,

with size equal to the total number of sites, accompanied by an integer list

is used for path formation. The elements of the dense vector are zero except

those corresponding to the sites already included in the path. The list retains

the positions of the nonzero elements of the vector. The dense vector is used290

to resolve if a site has already been included in O(1) operations, while the list

retains the already visited sites. The items on the list are used to initialize the

vector efficiently, avoiding traversal of all elements.

The improved path formation is described algorithmically in Alg. 1. Varia-

tions of this algorithm can be used only where maximum bandwidth or maxi-295

mum bandwidth and cache existence are used for path formation.

In lines 2−3, initialization of the the set p of the path of sites and the dense

vector required to mark visited sites is performed. The algorithm continues by

entering the loop to traverse the graph of connections. In line 5 the availability

of the current site in terms of resources is checked and in line 6 the site is inserted300

to path p and marked in v as visited. In case of unavailability the algorithm

terminates (lines 7 − 9). The connected sites of the current site are traversed

and checked based on bandwidth and presence of a cache (lines 12− 19). When

13

Algorithm 1 Improved Path Formation

1: Let us consider a request r = {D,P,M, S,N} entering the system at site s

and Ns the number of sites

2: p← ∅

3: vi ← 0, 1 ≤ i ≤ Ns
4: while True do

5: t← checkAvailability(s, P,M, S,N)

6: p← p ∪ s, vs = 1

7: if t =(Rejection) then

8: Return ∅

9: end if

10: if νs 6= ∅ then

11: B ← 0, s′ ← ∅

12: for j ∈ νs with vj = 0 and s′ = ∅ do

13: if (r is cached in site j) and (availableBandwidth(j) ≥ N) then

14: s′ ← j

15: end if

16: if B < availableBandwidth(j) then

17: B ← availableBandwidth(j),s← j

18: end if

19: end for

20: if s′ 6= ∅ then

21: s← s′

22: end if

23: else

24: Return p

25: end if

26: end while

a site is determined it is set as current site and the procedure repeats until the

the maximum level is reached (line 10) or a rejection occurs.305

14

The output is stored per site and per connection (edge) for the network

as opposed to the aggregated per level approach followed in [8]. Thus, at a

prescribed interval, two new files are created corresponding to the state of the

sites and the network. This approach enables easier post-processing due to the

the multitude of smaller files instead of a very large data output file. Processing310

a small file, to output data per update interval, can be performed faster than

processing one large file leading to improved performance.

In this work, we use this improved vCDN simulation framework as a com-

ponent for optimizing vCDN cache placements based on simulation outputs.

4. Optimization approaches and strategies via simulation315

The improved simulation framework described above has the ability to man-

age large scale scenarios, as well provide detailed simulation results useful in

supporting critical management and operational decisions. In this section, we

present our two-phase optimization scheme that makes use of simulation outputs

to guide the search for an optimal placement.320

4.1. A novel two-phase large scale optimization scheme

Let us consider a vCDN composed of Ns sites arranged in graph with N `
s

number of sites per level, with ` denoting the number of levels. The total number

of placements for Ns sites is 2Ns ≈ 10Ns/3.322. This number is very large, since

in practice a large vCDN is composed of thousands of sites. In order to avoid325

exhaustive search in the space of possible placements, a two-phase procedure is

proposed: (a) to rank the importance of each site, (b) to select the minimum

number of placements that satisfies functional and non-functional requirements.

The simulation can be described as a process:

F (X)→ Y, with X ∈ Vn and Y ∈Wm, (5)

where X is the n inputs and Y the m outputs of the simulation process F . The330

output vector Y retains metrics extracted from the simulation process. These

15

metrics can be arbitrary in number and represent the quantities that will be

used to evaluate the results of the simulation with respect to chosen inputs.

The V and W are the sets where inputs belong i.e. real numbers. Without loss

of generality, let us consider that we want to optimize the system modelled by335

the process F , for n inputs X ∈ {0, 1}n and m outputs Y ∈ [0, 1]m ⊂ Rm. The

outputs, obtained with respect to inputs, are assessed by a score function η:

η(Y) : Wn → [0, 1] ⊂ R, (6)

or in the discussed case:

η(Y) =

m∑
i=1

wiYi =< w, Y >∈ [0, 1] ⊂ R (7)

where w, with
∑m
i=1 wi = 1, is a vector of weights denoting the importance of

each input. In practice η can be any linear or non-linear score function. The340

score function should be higher (closer to 1) for preferable choices of inputs and

lower (closer to 0) in the opposite case.

Let inputs X denote a set of placements of VMs. A value of 1 in a component

of X denotes presence of a VM while a value of 0 denotes the absence. Let us

consider a number of different placements of Np formed by a random process345

with a predefined number of VMs per placement N j
VM , j ∈ [1, Np]:

Xj ∈ {0, 1}n, j ∈ [1, Np] ⊂ N with
∑
i

Xj
i > 0 and Xj 6= Xk, j, k ∈ [1, Np],

(8)

and corresponding outputs and scores:

Y j = F (Xj) ∈ Rm+ and η(Y j) = ηj , j ∈ [1, Np] ⊂ N. (9)

By combining the outputs weighted by the score we have:

Xo =
1

Np

Np∑
j=1

η(Y j)
Xj

‖Xj‖∞
=

1

Np

Np∑
j=1

1

‖Xj‖∞
ηjX

j ∈ [0, 1]n ⊂ Rn. (10)

16

where ‖x‖∞ = max
i
|xi| denotes the infinity (or maximum) norm of a vector x.

The outputs that yield improved results will influence the output more, due350

to the score function. Moreover, VMs participating in more than one random

placements, with improved results, will have a greater value in the vector Xo.

In the limit case, when NVM = 0 the vector Xo = ~0.

The vector Xo expresses the importance of each placement of a VM to a

site, with respect to the number of inputs. The components i ∈ {Xo
i ≥ α :355

1 ≤ i ≤ Ns, α ∈ [0, 1] ⊂ R} denote the |i| the most important placements. This

can be interpreted also as the probability of a placement being important, with

values close to 1 denoting most probable placement with probability equal to

Xo
i , 1 ≤ i ≤ Ns. The components of the vector associated with placements on

the topmost level are explicitly set to 1, since sites in this level always retain a360

VM (cache).

This approach can be used for online assessment of placements, since a

change in the distribution of input requests to sites will affect the effective-

ness of placements, designating new ones as improved. The new placements

might designate different sites as more appropriate, weighting the remaining365

sites with a reduced score and due to continuous division reducing their signif-

icance within a few timesteps. The update formula for vector Xo with a new

placement XNp+1, with Y Np+1 = F (XNp+1) and N
Np+1
VM number of VMs, is the

following:

(Xo)
Np+1

=
Np (Xo)

Np + 1
‖XNp+1‖∞

η
(
Y Np+1

)
XNp+1

Np + 1

=
Np (Xo)

Np + 1
‖XNp+1‖∞

ηNp+1X
Np+1

Np + 1

(11)

where (Xo)
Np denotes the vector Xo after Np possible placements.370

In order to compute the minimum number of placements required to effi-

ciently service a prescribed workload the distribution of importance of place-

ments given by the vectorXo can be used. Let us consider a procedure Σ(Xo, I) :

(Rn,Nn) → (Rn,Nn), which sorts the components of a vector in descending

17

order and returns the indices of the sorted elements with respect to initial or-375

dering. The vector I = [1 2 . . . Ns] retains the initial ordering. The vectors(
X̂o,Ξ

)
= Σ(Xo, I) retain possible placements in order of importance and the

corresponding set of indices Ξ. The set Ξ is used to form a new set of placements

Vj , 1 ≤ j ≤ N∗p ≤ |Ξ| such that:

Vj(ξ) = 1, ξ = Ξ1:j , 1 ≤ j ≤ N∗p , (12)

where N∗p is the maximum allowed number of VMs (caches) that can be de-380

ployed. The simulations are performed in sequence with the new placements

Vj , Zj = F (Vj) until a minimum number of placements is found that satisfies

prescribed functional and nonfunctional requirements i.e. no rejections of re-

quests and minimum energy consumption. The placement that satisfies these

requirements is considered as the output of this two-phase optimization scheme.385

Where a minimum number of placements is computed, the remaining simula-

tions are not executed. Moreover, where sites always retain VMs, such as those

on the topmost levels, the corresponding sites are placed first with Xo
i = X̂o

i = 1

and Ii = Ξi with 1 ≤ i ≤ κ, where κ denotes the first sites always retaining a

VM.390

The proposed two-phase optimization procedure can be used for any other

simulation framework F , since it does not depend on parameters related to the

DTS approach.

4.2. Implementation details

The proposed two-phase optimization scheme requires an increased number395

of simulations to be performed. In order to accelerate ranking the placements

and finding the most appropriate one, the scheme is parallelized for distributed

memory systems with multicore nodes to exploit the parallelism of the simula-

tion framework. Initially, the random placements are created at each distributed

node. Each node forms Np random placement vectors with respect to a maxi-400

mum number of VMs NVM . Where the maximum number of VMs is not pre-

scribed, it is set equal to the number of available sites Ns. The number of VMs

18

per placement is N j
VM , 1 ≤ j ≤ Np. The number of VMs per placement and

the corresponding positions are computed randomly using a non-deterministic

random number generator based on stochastic processes [22]. This type of ran-405

dom generator is chosen to avoid the creation of the same placement in different

nodes leading to biased results. Multiple instances of the same placement will

influence the final ranking vector towards this placement, especially if this place-

ment has a high score, since the final ranking vector is computed by averaging

local score vectors. The use of a non-deterministic random generator limits this410

phenomenon since random numbers are computed based on an entropy pool

collecting environmental noise from device drivers and other sources [22]. The

formed VM placements are saved to files stored in the shared storage. Each

node performs all simulations and stores results in the shared storage:

Y j(r) = F
(
Xj

(r)

)
, 1 ≤ j ≤ Np, 1 ≤ r ≤ Nn, (13)

where r is the rank of each distributed node and Nn denotes the number of415

nodes. The total number of simulations is equal to Np Nn. The simulations are

performed on the multicore nodes in parallel using OpenMP, since the framework

is designed to be parallel. For sufficiently large numbers of simulations per node

Np the workload is expected to be balanced since the distribution of random

numbers is selected to be uniform. Each node computes the score based on the420

outputs of each simulation. The score function is as follows:

η (Y) =

3∑
i=1

βifi, (14)

where fi are functions describing several performance metrics and βi are the

weights with
∑3
i=1 βi = 1. For the j-th simulation, we have:

• f1(u) = 1

Nj
V M

∑Nj
V M

i=1 ui: The average vCPU utilization of the VMs of the

j-th placement. This function is used to assess the over-provisioning of a425

placement.

• f2(N j
VM) = 1

1+e−5+10N
j
V M

/Ns
: The number of VMs of the j-th placement.

19

This function is used to penalize placements with very large number of

VMs. The function is based on the sigmoid function, penalizing more ag-

gressively placements that include VMs in more than 50% of the available430

sites.

• f3(Aj , Rj) = Rj

Aj+Rj : The number of accepted requests Aj and the number

of rejected requests Rj for the j-th placement. This function is used to

penalize the score in case of rejected requests. It also increases the value of

the score when placements with large number of VMs are required, acting435

as a counterbalance to function f2.

The weights are chosen to be ~β = [0.2 0.1 0.7]. The weights are chosen in

such an order to penalize the presence of rejected requests more thus favoring

placements that lead to less rejected requests more. The score for each place-

ment η
(
Xj

(r)

)
= η

(r)
j is computed and multiplied by the respective placement440

vector. The result for each node r is computed as follows:

Xo
(r) =

1

Np

Np∑
j=1

η
(
Xj

(r)

)
Xj

(r) =
1

Np

Np∑
j=1

η
(r)
j Xj

(r). (15)

Each node should communicate the result vector Xo
(r) to the head node,

where all Xo
(r) are accumulated and the result is averaged:

Xo =
1

Nn

Nn∑
r=1

Xo
(r). (16)

The vector Xo is sorted, resulting in the sorted ranking vector X̂o and the

sorted indices vector Ξ. The vector of indices is broadcast to all nodes. In the445

case of the topmost level, where the sites always retain a VM, the elements

corresponding to these sites are not considered during sorting, thus X̂o
i = Xo

i =

1 and Ξi = Ii with 1 ≤ i ≤ κ and κ denoting the number of sites at the top-most

level.

The second phase requires the execution of multiple simulations to determine450

the optimal number of placements to service the prescribed amount of requests.

20

Since, the performance of the simulation is affected by the number of placements

a different approach is used to ensure load balancing. Each node is assigned to

execute simulations with number of placements equal to multiples of the total

number of nodes starting from its rank. Thus, each node computes simulations455

with number of VMs equal to:

N j
VM = κ+ r + (j − 1)Nn, j ∈ N, 1 ≤ j ≤ 1 +

⌊
Ns − r − κ

Nn

⌋
, (17)

or in case of a prescribed maximum number of VMs:

N j
VM = κ+ r + (j − 1)Nn, j ∈ N, 1 ≤ j ≤ 1 +

⌊
NVM − r − κ

Nn

⌋
. (18)

The placements of the VMs are chosen from the rankings obtained during

the first phase. The iterative process may terminate earlier if a new placement

yields worse results than a previous simulation with respect to a score function.460

This score function is based only on the number of rejected tasks. Thus, the

new score function is θ(Y) = θ(A,R) = A
A+R , where A denotes the number of

accepted requests and R denotes the number of rejected requests. However, this

is a strict termination criterion, that may lead to premature termination of the

optimization process especially in cases where successive simulations yield al-465

most similar scores due to slight differences in the distribution of inputs. These

differences arise from the use of the non-deterministic uniform random generator

for constructing the sequence of input requests along with their requirements.

Thus, continuation of experiments is allowed when the produced score is greater

than δθ(Y). This is a more relaxed supplementary criterion. The value of the470

parameter δ ∈ [0, 1) ⊂ R, results in stricter criterion when closer to the unit and

a more relaxed one when closer to zero. However, relaxing the termination cri-

terion might result to stagnation of the iterative process leading to an increased

amount of iterations that do not improve the final placement. Thus an upper

bound Mδ ∈
[
1, 1 +

⌊
NV M−r−κ

Nn

⌋]
⊂ N on the allowed stagnation steps has to475

be enforced.

21

Each executed placement is written to a file on the shared storage. When

the execution of the simulations terminates, the score of the best placement

per node is sent to the head node. The head node selects the maximum score

and obtains the corresponding placement from the node that achieved it. This480

optimal placement is stored into a file on the shared storage. The proposed

two-phase optimization scheme is described in Alg. 2. In Alg. 2, parameter

κ denotes the number of sites that always retain a placement, Np the number

of placements per node, Nn the number of nodes, r the rank of a distributed

node, Ns the number of sites, NVM the maximum number of allowed placements485

and Mδ is the upper bound on the stagnation steps allowed. The vector Xopt

denotes the optimal placement with respect to the chosen score function.

In lines 1 of Alg. 2, the vector retaining the sum of scores and placements

Xo
r is initialized. In lines 2 − 4 all simulations are executed on all available

nodes after creating random input placements (line 3) and results of placements490

multiplied by scores are locally aggregated. Following (line 6), the aggregated

vector is normalized by the number of simulations Np and send to head node.

The head node receives all vectors and aggregates them (line 7). Then, the

aggregated vector Xo
1 is sorted to produce the ranking Ξ (lines 8 − 11) and is

broadcast back to the nodes (line 12) in order to start the second phase. The495

parameters corresponding to local optimal score (θr) based on rejected tasks,

local optimal number of placements πr and local stagnation step counter (cδ)

are initialized (line 13). The local nodes start to execute simulations based on

the given ranking (lines 15−16) with increasing number of placements, retaining

the maximum score attained and its corresponding number of placements (lines500

17− 18), until an optimal value has been discovered or stagnation has occurred

(lines 19 − 25). The number of placements is always greater or equal κ, since

the nodes at the topmost level are always first in ranking and are considered

to always retain a cache (line 14). The local optimal numbers are sent to the

head node where the global maximum score is computed and the corresponding505

number of placements is recovered (line 27). With this information the optimal

placement is formed by the head node (lines 28− 30).

22

The communication required by the proposed scheme are limited to one

reduction operation, two broadcast operations, and a send-receive operation.

The reduction operation is performed after the end of the first phase in order to510

collect all local score vectors and form the global ranking vector. This operation

is followed by a broadcast operation to transfer the global score vector to all

compute nodes after sorting has been performed on the head node. Finally, after

the end of the second phase, the maximum scores are gathered from the compute

node and a flag is broadcast in order to inform the node retaining the maximum515

score to send the number of caches required for the optimal placement. This

number is used to derive the optimal placement from the ranking vector.

These operations do not affect substantially the performance of the proposed

scheme. All distributed computations are performed using the Message Passing

Interface (MPI). In Fig. 2 a schematic representation of the two-phase scheme520

is given.

5. Simulation results

5.1. Characteristics of the vCDN and parameters of the simulations

The vCDN topology provided by BT and used for assessing the proposed

simulation and optimization approach is composed of four levels (top-most to525

bottom-most): core sites (with two levels, inner-core and outer-core), metro

sites, and Multi-Service Access Nodes (MSAN) sites (composed of tiers 1, 2,

and 4), as shown in Figure 3.

The graph describing the network of sites has 3056 edges corresponding to

connections between the 1132 vertices of corresponding sites. The basic charac-530

teristics of the vCDN are given in Tab. 2. The total connections correspond to

connections of a site with sites at the same or the immediate lower level.

The number of connections per site increases closer to the top of the hier-

archy compared to lower levels in the hierarchy. Similarly, the bandwidth per

connection and per site increases higher in the hierarchy. This is expected since535

sites in higher levels service an increased number of requests forwarded from

23

Figure 2: High level schematic representation of the proposed two-phase optimization scheme.

sites at the immediate lower level. The topmost level has the most bandwidth

per connection as well as the most connections, since sites in this level retain

all content and can service any request that is forwarded. The number of con-

nections at level 4 corresponds to intra-level connections of sites. Level 3 has540

no intra-level connections, thus all its connections are to sites in the immediate

lower level (level 4). The number of connections of level 3 to level 4 is substan-

tially less compared to the number of sites at that level. Thus, a lot of sites in

24

Algorithm 2 Two-phase optimization scheme

1: Set Xo
r ← ~0

2: for j ∈ [1, Np] do

3: Form Xj

4: Compute Y j ← F (Xj), ηj ← η(Y j), Xo
r ← Xo

r + ηjX
j

5: end for

6: Compute Xo
r ← 1

Np
Xo
r

7: Reduce Xo
1 ←

∑Nn
r=1X

o
r to node 1

8: if r=1 then

9: Initialize I = [1, 2, · · · , Ns]

10: Compute Xo
1 ← 1

Nn
Xo

1 ,
(
X̂o,Ξ

)
= Σ (Xo

1 , I)

11: end if

12: Broadcast Ξ to all nodes

13: Set θr ← 0, πo ← −1, cδ ← 0

14: for j ∈
{
κ+ r+ (j− 1)Nn : j ∈ Z+, 1 ≤ j ≤ 1 +

⌊
NV M−r−κ

Nn

⌋}
and cδ < Mδ do

15: Set X ← ~0, ξ ← Ξ1:j , Xξ ← 1

16: Compute Y ← F (X)

17: if θr < θ(Y) then

18: Set θr ← θ(Y), πo ← j

19: else

20: if θr < δθ(Y) then

21: Compute cδ ← cδ + 1

22: else

23: Break

24: end if

25: end if

26: end for

27: Reduce θo ← max
r
θr to node 1 and receive corresponding πo

28: if r=1 then

29: Set Xopt ← ~0, ξ ← Ξ1:πo , Xopt
ξ ← 1

30: end if

25

Figure 3: BT network infrastructure composed of core sites, metro sites, and MSAN sites.

Table 2: Characteristics of the vCDN.

Level Sites

Average

Connections

per Site

Total

Connections

Average

Bandwidth

per Site

(Gbps)

Average

Bandwidth

per Connection

(Gbps)

1 8 26.6250 213 1922.5000 72.2066

2 12 14.5000 174 791.6667 54.5977

3 86 4.7558 409 228.6047 48.0685

4 1026 1.4815 1520 42.6355 28.7789

the last level forward requests to level 3 through constituent sites at the lowest

level. Another important observation is that only levels 1 and 4 have intra-level545

connections, with level 1 having all-to-all intra-level connections. This is per-

formed to enable forwarding to any site in order to minimize rejection of tasks

due to a lack of computational resources.

Each site of the vCDN hosts two nodes with 8 cores, 4 TB of RAM memory

and 10 TB of storage. The VMs, as well as the requests, were of a single550

content type. Each VM has 2 Cores, 16 GB of RAM and 500 GB of storage

and the chance of a cache hit was 60% [8]. The weights vector was chosen to be

~w = [3.0 1.0 2.0 2.0] for vCPU, Memory, Storage and Network requirements [8].

26

Table 3: Intervals for request requirements.

Requirements Intervals

D (seconds) [300, 1000]

C (vCPU) [0.01, 0.02]

M (GB) [0.04, 0.05]

S (GB) [0.8, 1.0]

N (Gbps) [0.005, 0.006]

The requirements of the requests were computed in the intervals given in Tab.

3. The requests were generated at the bottom-most level (level 4) following a555

uniform random distribution within prescribed minimum and maximum number

of requests. Furthermore, the vCDN was simulated for 3600 seconds with a time-

step of 1 second. The choice of parameters has been performed arbitrarily to

represent requests spanning between 300 to 1000 seconds and does not affect

applicability of the proposed scheme.560

The simulations were executed on the ARIS supercomputer (GRNET). Each

compute node consists of 2× Ivy Bridge - Intel Xeon E5-2680v2 (10 cores each)

and 64GB RAM. Two tasks were executed per node with 10 cores (threads) per

task.

5.2. Performance results565

In order to assess the performance of the proposed two-phase optimization

scheme, various scenarios were examined. Initially, the performance was as-

sessed by executing the proposed scheme for different amount of requests. The

values of the parameters related to stagnation of the second phase of the pro-

posed scheme were set to δ = 0.95 and Mδ = 10. Each node executes Np = 20570

simulations. The choice of these parameters has been performed after extensive

experimentation. The two-phase scheme was executed in 32 nodes. The maxi-

mum value for allowed VM placements was not set, thus it was considered equal

27

to the the number of sites NVM = Ns = 1132.

The performance and the number of VMs corresponding to the final place-575

ment for various numbers of approximate incoming requests is given in Fig. 4a

and Fig. 4b. The execution time of the proposed scheme increases analogously

to the number of input requests as can be observed by Fig. 4a. However, the

increase is not linear, since, beyond 176200 input requests, the vCDN starts to

reject incoming requests due to depletion of available resources (with respect to580

VM capacity). Thus, elapsed time increases at a slower pace.

Similarly, the number of VMs in the final placement, for each experiment,

also increases. The large increase is a consequence of the chosen relaxed termina-

tion criterion thus allowing a large number of steps before stagnation terminates

the iterative process. A more relaxed termination criteria may lead to an in-585

creased number of VMs by over-provisioning to avoid rejection of input requests.

However, this increased number of VMs leads to placements that favour service

delivery. The use of more complex θ(Y) score functions on the second phase

substantially affects the final placement. By fixing parameters on the proposed

scheme more deterministic results are expected.590

5.3. Scalability results

The scalability of the proposed scheme was assessed by examining its perfor-

mance and speedup for a range of computational nodes and available processing

cores while keeping the number of simulations constant. The number of input

requests was set to ≈ 3283000 requests. The performance and speedup of the595

proposed two-phase scheme are given in Fig. 5 and Fig. 6. The speedup of the

proposed scheme is close to the ideal (linear) for the available number of nodes

and processing cores with respect to a fixed number of simulations (equal to

1280), since the communication overhead is limited compared to the required

computations. The simulations are distributed equally to the available tasks600

and consequently to the nodes.

28

5.4. Effect of the path formation strategy

We also conducted a set of experiments to assess the effect of the path forma-

tion strategy in the placements. The first path formation strategy is described

in Alg. 1 and the second is based only on max available bandwidth (maxBW).605

In order to avoid interference in the results, the inputs described in Tab. 3 where

fixed to the average of the intervals. Moreover, the sequence of input requests

(≈ 36500) was fixed and distributed uniformly to the sites at the lowest level

(level 4). The experiments were executed in 32 nodes. Each node executed 2

tasks with 10 available cores per task. The number of simulations per task for610

the first phase was set to 20, as in previous experiments.

The histogram of scores η(Y) for the two path formation strategies is pre-

sented in Fig. 7. Moreover, the average score per level of the vCDN with

respect to the two path formation strategies is given in Tab. 4. In the two

histograms it is evident that apart from the sites at the top most level whose615

score was explicitly set to 1; the scores of the other sites were in the inter-

val [0.0727, 0.4717] for the path formation strategy described by Alg. 1 and in

the interval [0.0732, 0.4809] for the maxBW path formation strategy. For both

cases, the majority of sites has a score η(Y) in the interval [0.25, 0.30] with the

maxBW having more sites with scores above 0.25. This can be also seen from620

the average scores per level in Tab. 4. The increase in terms of average score

η(Y) is caused by the load balancing approach followed by the maxBW path

formation strategy, which guides tasks to sites with most available network re-

sources at a given moment. This approach guides more tasks to links with more

total bandwidth that are more likely to have increased utilization when hosting625

VMs. Furthermore, higher total bandwidth connections usually lead to sites

with more connections at their immediate upper level. In the case of Alg 1, a

maxBW approach is followed only if there is no VM with available resources,

otherwise the site with available resources receives the request. This may lead to

uneven load among constituent sites retaining VMs and thus an overall reduced630

score, since computation of the score is related to global metrics of the vCDN.

The maxBW approach is more effective for uniform workloads.

29

Table 4: Average score η(Y) per level of the vCDN.

Level avg(η(Y)) (Alg. 1) avg(η(Y)) (maxBW)

1 1.0000 1.0000

2 0.2835 0.2874

3 0.2727 0.2763

4 0.2787 0.2824

The two-phase optimization scheme for the two path formation strategies

leads to the same number of placements (840), with respect to score function

θ(Y). However, for the maxBW path formation strategy, near optimal place-635

ment is achieved earlier as can be seen from Fig. 8. The near optimal number

of placements with score (≥ 0.99) is achieved in the the case of Alg. 1, with

748 VM placements. While for the maxBW path formation strategy, the near

optimal number of placements is achieved with 728 VM placements. For both

path formation strategies convergence to the optimal value for the score func-640

tion θ(Y) is monotonic. It should be noted that for the experiment with Alg.

1 as path formation strategy, the performance was 97.2338 seconds, while the

performance of the maxBW path formation strategy was 98.2581 seconds. The

convergence behavior of the proposed two-phase scheme, with the maxBW path

formation strategy, is assessed using the norm ‖(Xo
1)k − (Xo

1)k−1‖2 where k− 1645

and k denote two consequent executions of the two-phase scheme with the later

executing twice the number of simulations with random placements on the first

phase. The first ranking k = 1 was computed with 40 executed simulations

with random placements during first phase, while the last ranking k = 8 was

computed with 5120 executed simulations with random placements during the650

first phase. The convergence behavior of the site ranking with respect to the

number of executed simulations during the first phase with maxBW path for-

mation strategy is given in Fig. 9. The case with k = 1 is not depicted in the

figure and is used to initiate the computation of the norm. From Fig. 9 it can

30

be seen that the number of simulations during first phase affects the ranking.655

However, progress towards convergence for computing a ranking is faster when

the total number of simulations is relatively small and gradually slows down

as the total number of simulations increases. Thus, a very large total number

of simulations with random placements during the first phase might be proven

ineffective in the case of very large number of simulations. On the other hand660

a very small number might lead to a placement that is very far from optimal.

The number of placements even in the case of the largest number of simulations

is 840.

A Monte Carlo approach can be used to derive an optimal placement. In this

approach each processing node executes several simulations with random place-665

ments retaining the one requiring less VMs while minimizing rejected requests.

The optimal placements are collected to the head node where the derived lo-

cal optimal placements are rerun to obtain the best one. For 32 nodes and

20 simulations per node with the same setup (640 + 32 total simulation) and

maxBW path formation strategy, the Monte Carlo approach lead to 859 place-670

ments requiring 50.656 seconds. For 40 simulations per node (1280 + 32 total

simulation) the optimal placement included 846 placements requiring 102.375

seconds. For 80 simulations per node (2560 + 32 total simulation) the optimal

placement included 841 placements requiring 208.012 seconds. Thus, in order

to obtain a similar result to the one computed with the proposed scheme more675

simulations are required, increasing computational work. Moreover, the opti-

mal placement with the Monte Carlo approach depends on the total number of

simulations executed, due to the random generation of the placements. A small

number may lead to increased number of placements, since the number of VMs

is chosen randomly. However, the Monte Carlo approach requires less overall680

communications.

31

6. Conclusion

In this paper, we presented an update and improvement to a previously pre-

sented DTS framework for vCDNs, which enables more general and accurate

parallel simulations to be carried out while retaining the performance advan-685

tages of the previous iteration. This framework was combined with a two-phase

optimization scheme for estimating optimal placements in vCDN networks. This

scheme enables the simulation-based optimization of large scale vCDN networks

with respect to functional and non-functional requirements described as mathe-

matical functions and included in a score function. Initially the ranking of sites690

is performed, followed by selection of the appropriate number of placements to

service a predefined distribution of requests. The proposed scheme was assessed

on a supercomputing environment, using a real world vCDN architecture data

obtained by BT, and was proven scalable up to a large number of requests and

simulations. The proposed two-phase scheme was used to analyze the effect695

of different path formation strategies for the optimal placement of caches in

order to assess the effect of different paths to final placement, where a maxi-

mum bandwidth approach led to faster convergence. Furthermore, the proposed

optimization scheme can be used in conjunction with other simulation frame-

works, for example based on Discrete Event Simulation, taking into account700

more phenomena in the micro level.

Future work includes the acceleration of the convergence to an optimal place-

ment as well as performance improvements related to the amount of simulations

required to produce site ranking.

Acknowledgements705

The authors acknowledge the Greek Research and Technology Network (GR-

NET) for the provision of the National HPC facility ARIS under project PR006053-

ScaleSciCompIII. This work is funded by the European Unions Horizon 2020 Re-

search and Innovation Programme through RECAP (https://recap-project.

eu/) under Grant Agreement Number 732667.710

32

https://recap-project.eu/
https://recap-project.eu/
https://recap-project.eu/

The authors acknowledge Peter J. Willis for the provision of BT data.

References

[1] Cisco, Cisco Visual Networking Index: Forecast and Methodol-

ogy, 2016-2021, URL https://www.cisco.com/c/en/us/solutions/

collateral/service-provider/visual-networking-index-vni/715

complete-white-paper-c11-481360.html, [Online; accessed 09-Aug-

2018], 2017.

[2] A. Vakali, G. Pallis, Content delivery networks: Status and trends, IEEE

Internet Computing 7 (6) (2003) 68–74.

[3] G. Pallis, A. Vakali, Insight and perspectives for content delivery networks,720

Communications of the ACM 49 (1) (2006) 101–106.

[4] A. Moreira, J. Moreira, D. Sadok, A. Callado, M. Rodrigues, M. Neves,

V. Souza, P. P. Karlsson, A case for virtualization of Content Delivery Net-

works, in: Proceedings of the 2011 Winter Simulation Conference (WSC),

ISSN 0891-7736, 3178–3189, doi:10.1109/WSC.2011.6148016, 2011.725

[5] T.-W. Um, H. Lee, W. Ryu, J. K. Choi, Dynamic Resource Allocation

and Scheduling for Cloud-Based Virtual Content Delivery Networks, ETRI

Journal 36 (2) (2014) 197–205.

[6] C.-F. Lin, M.-C. Leu, C.-W. Chang, S.-M. Yuan, The study and meth-

ods for cloud based CDN, in: Cyber-Enabled Distributed Computing and730

Knowledge Discovery (CyberC), 2011 International Conference on, IEEE,

469–475, 2011.

[7] M. Wang, P. P. Jayaraman, R. Ranjan, K. Mitra, M. Zhang, E. Li, S. Khan,

M. Pathan, D. Georgeakopoulos, An overview of cloud based content de-

livery networks: research dimensions and state-of-the-art, in: Transactions735

on Large-Scale Data-and Knowledge-Centered Systems XX, Springer, 131–

158, 2015.

33

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://dx.doi.org/10.1109/WSC.2011.6148016

[8] C. K. Filelis-Papadopoulos, K. M. Giannoutakis, G. A. Gravvanis, P. T.

Endo, D. Tzovaras, S. Svorobej, T. Lynn, Simulating large vCDN net-

works: A parallel approach, Simulation Modelling Practice and Theory 92740

(2019) 100 – 114, ISSN 1569-190X, doi:https://doi.org/10.1016/j.simpat.

2019.01.001, URL http://www.sciencedirect.com/science/article/

pii/S1569190X19300012.

[9] N. Herbaut, D. Negru, D. Dietrich, P. Papadimitriou, Dynamic deployment

and optimization of virtual content delivery networks, IEEE MultiMedia745

24 (3) (2017) 28–37.

[10] J. Domaschka, Deliverable 3.1. Initial Requirements, Tech.

Rep., RECAP Project, URL https://recap-project.eu/about/

public-deliverables/, 2017.

[11] G. Figueira, B. Almada-Lobo, Hybrid simulation–optimization methods:750

A taxonomy and discussion, Simulation Modelling Practice and Theory 46

(2014) 118–134.

[12] J. Xu, E. Huang, C.-H. Chen, L. H. Lee, Simulation optimization: A review

and exploration in the new era of cloud computing and big data, Asia-

Pacific Journal of Operational Research 32 (03) (2015) 1550019.755

[13] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, O. C. M. B. Duarte, Or-

chestrating virtualized network functions, IEEE Transactions on Network

and Service Management 13 (4) (2016) 725–739.

[14] W. Rankothge, F. Le, A. Russo, J. Lobo, Optimizing resource allocation

for virtualized network functions in a cloud center using genetic algorithms,760

IEEE Transactions on Network and Service Management 14 (2) (2017) 343–

356.

[15] T. Ecarot, D. Zeghlache, C. Brandily, Consumer-and-Provider-Oriented

Efficient IaaS Resource Allocation, in: Parallel and Distributed Processing

34

http://dx.doi.org/https://doi.org/10.1016/j.simpat.2019.01.001
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2019.01.001
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2019.01.001
http://www.sciencedirect.com/science/article/pii/S1569190X19300012
http://www.sciencedirect.com/science/article/pii/S1569190X19300012
http://www.sciencedirect.com/science/article/pii/S1569190X19300012
https://recap-project.eu/about/public-deliverables/
https://recap-project.eu/about/public-deliverables/
https://recap-project.eu/about/public-deliverables/

Symposium Workshops (IPDPSW), 2017 IEEE International, IEEE, 77–85,765

2017.

[16] J. Xu, J. Fortes, A multi-objective approach to virtual machine manage-

ment in datacenters, in: Proceedings of the 8th ACM international confer-

ence on Autonomic computing, ACM, 225–234, 2011.

[17] J. Xu, Autonomic application and resource management in virtualized dis-770

tributed computing systems, University of Florida, 2011.

[18] L. Yala, P. A. Frangoudis, G. Lucarelli, A. Ksentini, Cost and availabil-

ity aware resource allocation and virtual function placement for CDNaaS

provision, IEEE Transactions on Network and Service Management 15 (4)

(2018) 1334–1348.775

[19] H. Ibn-Khedher, M. Hadji, E. Abd-Elrahman, H. Afifi, A. E. Kamal, Scal-

able and cost efficient algorithms for virtual CDN migration, in: Local

Computer Networks (LCN), 2016 IEEE 41st Conference on, IEEE, 112–

120, 2016.

[20] H. Ibn-Khedher, E. Abd-Elrahman, A. E. Kamal, H. Afifi, OPAC: An780

optimal placement algorithm for virtual CDN, Computer Networks 120

(2017) 12–27.

[21] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Indus-

trial and Applied Mathematics, second edn., doi:10.1137/1.9780898718003,

2003.785

[22] ISO/IEC, ISO International Standard ISO/IEC 14882:2011(E) Program-

ming Language C++ .

35

http://dx.doi.org/10.1137/1.9780898718003

(a)

(b)

Figure 4: Performance (a) and number of VM placements (b) for various numbers of input

requests for the proposed two-phase optimization scheme.

36

Figure 5: Performance of the proposed two-phase optimization scheme for various numbers of

cores.

37

Figure 6: Speedup of the proposed two-phase optimization scheme for various numbers of

cores.

38

(a)

(b)

Figure 7: Histogram of number of placements with respect to score η(Y) for path formation

based on (a) Alg. 1 and (b) maxBW.

39

(a)

(b)

Figure 8: Score θ(Y) with respect to number of placements for path formation based on (a)

Alg. 1 and (b) maxBW.

40

Figure 9: Convergence behavior of the ranking of sites with respect to the number of executed

simulated during first phase with maxBW path formation strategy.

41

	Introduction
	Background
	Virtual Content Delivery Networks
	An vCDN hosting example: BT

	Simulation-optimization approach
	Related work

	An improved Discrete Time Simulation framework
	Optimization approaches and strategies via simulation
	A novel two-phase large scale optimization scheme
	Implementation details

	Simulation results
	Characteristics of the vCDN and parameters of the simulations
	Performance results
	Scalability results
	Effect of the path formation strategy

	Conclusion

