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Summary

We develop a spatio-temporal model to forecast sensor output at five locations in North
East England. The signal is described using coupled dynamic linear models, with spatial ef-
fects specified by a Gaussian process. Data streams are analysed using a stochastic algorithm
which sequentially approximates the parameter posterior through a series of reweighting and
resampling steps. An iterated batch importance sampling scheme is used to circumvent particle
degeneracy through a resample-move step. The algorithm is modified to make it more efficient
and parallisable. The model is shown to give a good description of the underlying process and
provide reasonable forecast accuracy.

Keywords: Dynamic linear models (DLMs); sequential Monte Carlo (SMC); iterated batch im-
portance sampling (IBIS); parallel computing.

1 Introduction

Climate is one of the most important environmental factors which plays a critical role on the global
mission of urban sustainability. Consequently, it has attracted tremendous attention from academic
scientists and industrial experts in recent decades. In this paper we focus on understanding the
relationship between temperature and humidity, as these are two of the most important factors
in driving other climate processes. Our primary objective is the development of dynamic models
which can be used to understand the stochastic nature of temperature and humidity, as well as
quantify their spatial dependencies. Moreover, in order to facilitate accurate forecasts in real time,
we focus on developing algorithms which allow inferences to made sequentially.

The literature contains several temporal models for temperature at a single location. For exam-
ple, [1] proposed an autoregressive (AR) model with Fourier components to account for seasonality,
a polynomial deterministic trend and a generalised autoregressive conditional heteroscedasticity
(GARCH) error process. Further AR modelling approaches have been proposed by [2], [3] and [4],
with the latter adopting a continuous-time approach. Although generic approaches for spatial data
sets are widely available (see e.g. [5], [6], [7], [8], [9], [10] and [11]), relatively few papers have
addressed the joint modelling of temperature and humidity at multiple locations. [12, 13] use a
stochastic partial differential equation (SPDE) to model yearly temperature and humidity data at
120 locations and perform fully Bayesian inference via an integrated nested Laplace approximation
[14].

The modelling approach developed here is motivated by the fine scale temporal nature of the
available data. Dynamic linear models (DLMs) are widely used for system evolution learning and
short term forecasting due to their simple and practical structures; see, for example, [15] for an
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introduction. We exploit these properties here by specifying a marginal DLM for temperature and
a conditional DLM for humidity given temperature. We account for spatial dependence at nearby
locations by adding a spatial Gaussian process to the system equations, thereby smoothing spatial
deviations from the underlying temporal model. A similar approach was used by [16] for pollutant
data.

We perform fully Bayesian inference for the model parameters as each observation becomes
available. Since the posterior distribution is intractable, we use sequential Monte Carlo (SMC)
methods that approximate the posterior distribution at each time point through a set of weighted
samples; see [17] for a recent review of SMC methods. Although the posterior is intractable, the ob-
served data likelihood is available in closed form, allowing the implementation of the iterated batch
importance sampling (IBIS) scheme, first introduced by [18]; see also [19] for a related approach.
Essentially, parameter samples (known in this context as particles) are incrementally weighted by
the observed data likelihood contribution of the currently available observation. Particle degener-
acy is mitigated via a resample-move step [20] which ‘moves’ each parameter particle through a
Metropolis-Hastings kernel that leaves the target invariant. This step can be executed subject to
the fulfilment of some degeneracy criterion e.g. small effective sample size. However, the computa-
tional cost of the resample-move step increases as the algorithm includes more data, as it requires
calculation of the observed data likelihood of all available information. To obtain an online IBIS
algorithm, where the computational cost of assimilating a single observation is bounded, we modify
the resample-move step by basing the observed data likelihood on an observation window whose
length is a tuning parameter, chosen to balance accuracy and computational efficiency. We use a
simulation study to formulate practical advice on how to choose the size of this window.

Further computational savings can be made by employing a high performance computing sys-
tem. Whilst the weighting and move steps can be performed independently for each particle, a
basic implementation of the resampling step requires collective operations, such as adding up the
particle weights. Our approach is to use a simple strategy which performs the resampling step in-
dependently for batches of parameter samples, thus allowing a fully parallel (per parameter batch)
implementation of the algorithm to be performed. We quantify the effect of the approximation
induced by this approach using synthetic data. Finally, we apply the online IBIS scheme (with
parallel implementation) to the observed dataset and examine the model reliability and forecast
accuracy through comparison of observed measurements with their posterior predictive distribution.

The remainder of the paper is organised as follows. A brief description of the data is given
in Section 1.1. The structures of the spatial DLMs for temperature and humidity are discussed
in Section 2. In Section 3, we introduce the IBIS scheme and develop a faster online version and
then compare the performance of both schemes in Section 4 via a simulation study. In Section 5,
we report the full analysis on our North East dataset on temperature and humidity and draw
conclusions in Section 6.

1.1 Data collection

Recent advances in sensor technology and data management mean that it is now possible to reliably
and affordably collect data on many aspects of city life. The temperature and relative humidity data
analysed in this paper were collected from the Urban Observatory [21], a big data hub providing
smart-city data via a grid of sensors in North East England. The data are received in real time, and
this requires efficient network transmission and data storage solutions. Temperature is measured in
degree Celsius, and relative humidity is measured as the ratio of the amount of water vapour held in
the air against the the maximum amount of water vapour the air can hold at a specific temperature.
The data are captured and processed through a microprocessor inside a sensor and transmitted via
a high speed network to the database [22]. We consider data streams at five locations: Newcastle
upon Tyne, Seaham, Peterlee, Whitley Bay and Consett. The observation period is from 8th July
2017 to 31st December 2017. Due to the different recording frequencies of some of the sensors, we
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Variable Location Missing Prop. Mean Min. 25% Median 75% Max.

Temperature Newcastle 392 9.25% 10.62 -9.10 6.70 11.70 14.88 27.53

(°C) Seaham 54 1.27% 11.48 -2.17 8.12 12.30 15.07 25.90

Peterlee 46 1.09% 10.49 -2.24 7.37 11.52 13.95 22.68

Whitley Bay 6 0.14% 11.07 -4.62 7.72 12.10 14.73 24.73

Consett 306 7.22% 10.40 -3.37 6.90 11.20 14.24 24.38

Humidity Newcastle 392 9.25% 83.33 42.50 78.33 85.50 90.67 99.00

(%) Seaham 54 1.27% 73.62 34.23 67.08 74.50 81.67 97.42

Peterlee 46 1.09% 84.86 44.83 80.22 86.83 91.67 99.00

Whitley Bay 6 0.14% 86.25 50.00 82.25 88.25 93.00 98.25

Consett 306 7.22% 83.59 46.40 79.33 86.00 90.50 97.00

Table 1: A summary of hourly average temperature and humidity data over the period 8th July
2017 to 31st December 2017 at five locations in North East England.

take the average values of temperature and relative humidity over every consecutive hour, giving
a total of 4239 time points at which at least one location has a measurement. Figure 1 shows the
multiple data streams over time at different locations. Both temperature and relative humidity
exhibit a clear sinusoidal pattern over each 24 hour period. Scatter plots of humidity against
temperature for each location are shown in Figure 2 and reveal a strong negative linear correlation.
Unfortunately, missing data are inevitable due to network disconnection or sensor failure. Table 1.1
and Figure 1 summarise and display the proportion of missing data at each location during the
observation period.

2 Spatial dynamic linear model (DLM)

We develop a joint model for hourly average temperature and humidity, recorded at each of  L
locations. The model is specified through a marginal model for temperature and a conditional model
for humidity given temperature. Let Xti = (X1

ti , . . . , X
 L
ti )T denote hourly average temperature

taken over intervals (ti, ti+1], with ti in hours (i = 1, . . . , n) and Yti = (Y 1
ti , . . . , Y

 L
ti )T denote the

corresponding humidity values. In what follows we scale time so that t1 = 0.

2.1 Spatial temperature DLM

In Section 1.1 we noted that the data show clear seasonality in both temperature and humidity
measurements. This suggests that marginally each variable should be modelled by a sinusoidal
form with a 24 hour period. For simplicity, consider first a single location j. We propose a DLM
for temperature with observation equation

Xj
ti

= F x,j
ti
θx,jti

+ vx,ji , vx,ji

indep∼ N(0, V x,j), (1)

where the observation matrix F x,j
ti

= (cos(πti/12), sin(πti/12), 1) and θx,jti
= (θx,jti,1

, θx,jti,2
, θx,jti,3

)T .
Note that, after dropping the superscripts for simplicity, the observation equation can be written
as

Xti = θ̃ti,2 cos

(
πti
12
− θ̃ti,1

)
+ θti,3 + vi (2)
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Figure 1: Temperature and relative humidity data streams over time at each location. Periods of
missingness are indicated just above the x-axis.

where the parameters in (1) and (2) are related using

θ̃ti,1 =
√
θ2ti,1 + θ2ti,2, θ̃ti,2 = tan−1

(
θti,2
θti,1

)
. (3)

We allow amplitude, phase shift and basal temperature to be time-varying, and take a system
equation of the form

θx,jti
= Gx,j

ti
θx,jti−1

+ kiw
x,j
i + px,ji , wx,j

i

indep∼ N
{
0,diag(W x,j)

}
(4)

where the system matrix Gx,j
ti

= I3, the 3 × 3 identity matrix, and W x,j = (W x,j
1 ,W x,j

2 ,W x,j
3 )T .

Note that including ki, where k2i = ti− ti−1, allows for measurements to be on an irregularly spaced

temporal grid. Further the terms px,ji = (px,ji,1 , p
x,j
i,2 , p

x,j
i,3 )T allow for spatial variability between

amplitude, phase shift and basal temperature values at nearby locations. We model the components
of the spatially smooth error process px,ji using independent zero mean Gaussian process (GP) priors
with covariance functions fxm(·),m = 1, 2, 3, that is,

px,ji,m ∼ GP{0, f
x
m(·)}, m = 1, 2, 3.

We take these covariance functions to have a simple exponential form

fxm(djj′) = Cov(θx,jti,m
, θx,j

′

ti,m
) = σ2x,m exp(−ψx,mdjj′), m = 1, 2, 3

and depend on parameters σx = (σx,1, σx,2, σx,3) and ψx = (ψx,1, ψx,2, ψx,3), with the latter de-
termining the decay ratio of the correlation as the distance between two locations djj′ increases
[11].
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Figure 2: Scatter plots of temperature against relative humidity at each location.

The full spatial DLM model (over all locations) can be written as

Xti = F x
tiθ

x
ti + vxi , vxi

indep∼ N{0,diag(V x,1, . . . , V x, L)},

θxti = θxti−1
+ kiw

x
i + pxi , wx

i
indep∼ N{0,diag(W x,1, . . . ,W x, L)},

(5)

where F x
ti = diag(F x,1

ti
, . . . ,F x, L

ti
), θxti = ((θx,1ti

)T , . . . , (θx, Lti
)T )T and the 3 L-vector of spatial effects

pxi = ((px,1i )T , . . . , (px, Li )T )T is normally distributed with zero mean and covariance matrix

Kx =


fx(d11)I3 . . . fx(d1 L)I3

...
. . .

...

fx(d L1)I3 . . . fx(d L L)I3

 .

2.1.1 Additional harmonics

Additional harmonics can be incorporated by using a Fourier form structure [see e.g. 15, 23]. For
ease of exposition, we assume regularly spaced data at times ti = i−1, i = 1, . . . , n. The observation
matrix in (1) is defined to be the 1× (2q + 1) matrix partitioned as F x,j

ti
= (1, 0|1, 0| . . . |1) so that
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the state vector θx,jti
is of length 2q+ 1 and satisfies a system equation of the form (4) with system

matrix Gx,j
ti

= diag(H1, . . . ,Hq, 1), where the Hr are harmonic matrices

Hr =

(
cos (πr/12) sin (πr/12)

− sin (πr/12) cos (πr/12)

)
, r = 1, . . . , q.

The number of harmonics q must be specified by the practitioner. Note that for the full spatial
temperature DLM, specifying q harmonics will give 2 L(q + 1) + 6 static parameters to be inferred.
Consequently, Fourier models with q = 1 or 2 are typically used in practice [23]. For the q = 1
harmonic and the trivial case of W x,j = 0, the observation equation of the Fourier form DLM
coincides with that the sinusoidal form in (1) given by

Xj
ti

= θx,j0,1 cos (πti/12) + θx,j0,2 sin (πti/12) + θx,j0,3 + vx,ji .

However, when W x,j 6= 0, the error structures differ due to the use of the harmonic in the system
equation of the Fourier form DLM, and in the observation equation for the sinusoidal form DLM.
The task of choosing between competing models is considered in Appendix A.3.

2.2 Spatial humidity DLM

Due to the strong linear relationship between temperature and humidity, we specify a conditional
DLM for humidity by regressing on temperature in the observation equation. For a particular
location j, the DLM takes the form

Y j
ti

= F y,j
ti
θy,jti

+ vy,ji , vy,ji

indep∼ N
(
0, V y,j

)
θy,jti

= θy,jti−1
+ kiw

y,j
i + py,ji , wy,j

i

indep∼ N{0,diag(W y,j)}

where F y,j
ti

= (Xj
ti
, 1), θy,jti

= (θy,jti,1
, θy,jti,2

)T and W y,j = (W y,j
1 ,W y,j

2 )T . As in Section 2.1, we assign

the components of the spatial error process py,ji = (py,ji,1 , p
y,j
i,2 )T independent zero mean Gaussian

process priors with covariance functions

fym(djj′) = Cov(θy,jti,m
, θy,j

′

ti,m
) = σ2y,m exp(−ψy,mdjj′), m = 1, 2.

The spatial humidity DLM then takes the form

Yti = F y
ti
θyti + vyi , vyi

indep∼ N{0, diag(V y,1, . . . , V y, L)}

θyti = θyti−1
+ kiw

x
i + pyi , wy

i

indep∼ N{0,diag(W y,1, . . . ,W y, L)}
(6)

where F y
ti

= diag(F y,1
ti
, . . . ,F y, L

ti
), θyti = ((θy,1ti

)T , . . . , (θy, Lti
)T )T and the 2 L-vector of spatial effects

pyi is distributed analogously to pxi . Note that the joint model given by (5) and (6) induces a
marginal model for hourly average humidity with the sinusoidal pattern observed in the data.
After integrating out Xj

ti
in the observation equation for Y j

ti
, we obtain

Y j
ti

= F x,j
ti
θx,jti

θy,jti,1
+ θy,jti,2

+ vy,ji + θy,jti,1
vx,ji

which exhibits the same sinusoidal structure of (1), albeit with a different amplitude, phase and
basal level. It is clear that the joint model for (Xj

ti
, Y j

ti
)T is not a DLM, as the marginal humidity

model depends on θx,jti
and θy,jti

in a nonlinear way. Nevertheless, the factorisation of the joint
model as marginal and conditional DLMs can be exploited when performing inference for the
model parameters, and this is the subject of the next section.

6



3 Sequential Bayesian inference

3.1 Setup

Fitting the model for temperature and humidity described in Section 2 to data is complicated
by the fact that in practice, sensor data is sometimes missing at one or more locations. To deal
with this scenario, we let Xo

ti and Y o
ti denote the observed temperature and humidity processes at

time ti. We assume that if temperature is missing at location j at time ti, then so is humidity (and
vice-versa), as is the case for our application. The observation model can then be written as

Xo
ti = PtiXti , Y o

ti = PtiYti (7)

where the ni ×  L incidence matrix Pti determines which components are observed at time ti. For
example, if we have data streams from 5 different locations and data are missing at the second and
third location at time ti, then the incidence matrix is

Pti =

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

 .

Let φx denote the flattened vector of V x,1, . . . , V x, L, W x,1, . . . ,W x, L, σx and ψx. Define φy

similarly. Given observations xo
0:ti

and yo0:ti at times 0 = t1 < t2 < . . . < ti, our primarily goal is
sequential exploration of the marginal posterior density π(φx,φy|xo

0:ti
,yo0:ti). We assume that φx

and φy are independent a priori with prior density π(φx,φy) = π(φx)π(φy). Bayes’ theorem gives
the posterior density of interest as

π(φx,φy|xo
0:ti ,y

o
0:ti) ∝ π(φx)π(φy)π(xo

0:ti ,y
o
0:ti |φx,φy)

= π(φx)π(φy)π(xo
0:ti |φx)π(yo0:ti |x

o
0:tiφy)

∝ π(φx|xo
0:ti)π(φy|xo

0:ti ,y
o
0:ti) (8)

and so the parameter sets φx and φy are independent a posteriori. Moreover, we have that

π(φx|xo
0:ti) ∝ π(φx|xo

0:ti−1
)π(xo

ti |x
o
0:ti−1

,φx)

π(φy|xo
0:ti ,y

o
0:ti) ∝ π(φy|x0:ti−1 ,y

o
0:ti−1

)π(yoti |x0:ti ,y
o
0:ti−1

,φy)
(9)

where the observed data likelihood contributions π(xo
ti |x

o
0:ti−1

,φx) and π(yoti |x
o
0:ti
,yo0:ti−1

,φy) can
be calculated using a forward filter [15]. Details of this calculation can be found in Appendix A.1.

3.2 Iterated batch importance sampling

Although the parameter posterior is intractable, the form of (9) suggests a sequential importance
sampling scheme that repeatedly reweights a set of N parameter samples (known as ‘particles’ in
this context) by the observed data likelihood contributions. This approach is used in the iterated
batch importance sampling (IBIS) algorithm of [18], together with MCMC steps for rejuvenating
parameter samples in order to circumvent particle degeneracy. Given the factorisation of the
posterior in (8), in what follows we focus on recursive sampling from π(φx|xo

0:ti
) and note that the

steps for sampling from π(φy|xo
0:ti
,yo0:ti) are similar.

Suppose that a weighted sample {φ(k)
x , ω

(k)
ti
}Nk=1 from π(φx|xo

0:ti
) is available. The IBIS al-

gorithm involves two steps: an incremental weighting step and a rejuvenation (resample-move)
step. In the incremental weight step, the weight is updated for each particle through the observed

data likelihood contribution of the current observation, i.e. ω
(k)
ti
∝ ω

(k)
ti−1

π(xo
ti |x

o
0:ti−1

,φ
(k)
x ). Note

7



that the calculation of the observed data likelihood increment (as given by the forward filter in

Appendix A.1) requires the posterior summaries mti−1(φ
(k)
x ) = m

(k)
ti−1

and Cti−1(φ
(k)
x ) = C

(k)
ti−1

of
π(θxti |x

o
0:ti−1

,φx).
Simply updating the incremental weights over the time will lead to particle degeneracy. To

bypass this problem, the IBIS scheme uses a resample-move step [see e.g. 20] that firstly resam-
ples parameter particles (e.g. by drawing indices from a multinomial M(ω1:N ) distribution) and
then moves each parameter sample through a Metropolis-Hastings kernel which leaves the target
posterior invariant. The resample-move step is only used if some degeneracy criterion is fulfilled.
Typically, at each time ti, the effective sample size (ESS) is computed as

ESS = 1
/ N∑

k=1

(ω
(k)
ti

)2

and the resample-move step is triggered if ESS < δN for δ ∈ (0, 1) and a standard choice is δ = 0.5.
As the parameters must be strictly positive, we take a proposal density

q(φ∗
x|φx) = logN

{
φ∗
x; logφx, γV ar(logφx|xo

0:ti)
}

where logN(·;m,V ) denotes the density associated with the exponential of a N(m,V ) random
variable. We use the standard rule of thumb of [24] and [25] by taking the scaling parameter γ =
2.382/npar, where npar is the number of parameters. The full IBIS scheme is given by Algorithm 1.

Finally, we note that it is straightforward to estimate the evidence

π(xo
0:tn) =

n∏
i=1

π(xo
ti |x

o
0:ti−1

)

using the output of the IBIS scheme, at virtually no additional computational cost. Each factor
Lti = π(xo

ti |x
o
0:ti−1

) in the product above is estimated by

Lt1 =
N∑
k=1

1

N
π(xo

0|φ(k)
x ), Lti =

N∑
k=1

ω
(k)
ti−1

π(xo
ti |x

o
0:ti−1

,φ(k)
x ), i = 2, . . . , n. (10)

3.3 Online IBIS

The main computational bottleneck of IBIS is the resample-move step. If this step is triggered
at time ti, then the observed data likelihood π(xo

0:ti
|φ∗

x) must be calculated for each proposed
particle φ∗

x. Consequently, the computational cost grows with ti, precluding the use of IBIS as an
online scheme. To bound the computational cost of assimilating a single observation, we modify
the resample-move step by basing the observed data likelihood on an observation window whose
time length is chosen to balance accuracy and computational efficiency.

We follow a similar approach introduced by [26] and define a sequence of windows with equal
widths, say T , over the observation period. First the observation period is divided into b windows
and denote by xo

tsi
the ith observation in window s ∈ {1, . . . , b}, for i = 1, . . . , ns. The observation

times satisfy tsi ∈ ((s − 1)T, sT ] when s = 1, . . . , b − 1 and tsi ∈ ((b − 1)T, tbnb
] when s = b. The

standard IBIS scheme is run over the first window. For windows s = 2, . . . , b, the resample-move
step targets

π̃(φx|xo
0:tsi

) ∝ π̃(φx|x0:(s−1)T )π(xo
ts1:t

s
i
|xo

0:(s−1)T ,φx) (11)

where

π̃(φx|x0:(s−1)T ) =
1

N

N∑
k=1

logN(φx; logφ(k)
x , h2s)

8



Algorithm 1 IBIS scheme

1. Initialisation. For k = 1, . . . , N sample φ
(k)
x ∼ π(·) and set ω̃

(k)
0 = π(xo

0|φ
(k)
x ) using iteration

i = 1 of the forward filter. Store m
(k)
t1

and C
(k)
t1

.

For i = 2, . . . , n:

2. Sequential importance sampling. For k = 1, . . . , N :

(a) Perform iteration i of the forward filter to obtain π(xo
ti |x

o
0:ti−1

,φ
(k)
x ), m

(k)
ti

and C
(k)
ti

.

Note the convention that π(xo
0|φ

(k)
x ) = π(xo

0|xo
0:t1

,φ
(k)
x ).

(b) Update and normalise the importance weights using

ω̃
(k)
ti

= ω̃
(k)
ti−1

π(xo
ti |x

o
0:ti−1

,φ(k)
x ), ω

(k)
ti

=
ω̃
(k)
ti∑N

j=1 ω̃
(j)
ti

(c) Update the observed data likelihood using

π(xo
0:ti |φ

(k)
x ) = π(xo

0:ti−1
|φ(k)

x )π(xo
ti |x

o
0:ti−1

,φ(k)
x ).

3. If ESS < δN resample and move as follows. For k = 1, . . . , N :

(a) Sample indices ak ∼ M
(
ω1:N

)
and set {φ(k)

x , ω̃
(k)
ti
} := {φ(ak)

x , 1}, π(xo
0:ti
|φ(k)

x ) :=

π(xo
0:ti
|φ(ak)

x ), m
(k)
ti

:= m
(ak)
ti

and C
(k)
ti

:= C
(ak)
ti

.

(b) Propose φ∗
x ∼ q(·|φ(k)

x ). Perform iterations 1, . . . , i of the forward filter to obtain
π(xo

0:ti
|φ∗

x). With probability

min

{
1,

π(φ∗
x)π(xo

0:ti
|φ∗

x)

π(φ
(k)
x )π(xo

0:ti
|φ(k)

x )
× q(φ

(k)
x |φ∗

x)

q(φ∗
x|φ

(k)
x )

}

put φ
(k)
x := φ∗

x, π(xo
0:ti
|φ(k)

x ) := π(xo
0:ti
|φ∗

x), m
(k)
ti

:= m∗
ti and C

(k)
ti

:= C∗
ti .

is a kernel density estimate (KDE) of π(φx|x0:(s−1)T ) and the bandwidth h2s can be calculated
using, for example, Silverman’s rule of thumb [27] as

h2s = 1.062N−2/5V̂ ar(φ(1:N)
x |xo

0:(s−1)T ).

Thus in order to evaluate (11), we need only evaluate the observed data likelihood contribution from
the beginning of the current window until the current time. Furthermore, by taking the proposal
density to be q(φ∗

x|φx) = π̃(φ∗
x|x0:(s−1)T ), the kernel density estimate need not be evaluated in the

MH acceptance ratio. The choice of the window width has a direct influence on computational
efficiency and posterior accuracy. A simulation study comparing IBIS and online IBIS for different
window lengths is given in Section 4.2. The online IBIS scheme is summarised by Algorithm 2.

3.4 Parallelising the algorithm

The incremental weighting steps are readily parallelised in an SMC scheme. Additionally, for IBIS
the move step can be performed independently for each particle. However, commonly used resam-
pling schemes, such as the multinomial approach considered here, involve a collective operation
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Algorithm 2 Online IBIS scheme

1. Initialisation. Divide the observed period into b windows, s ∈ {1, . . . , b}. Denote by tsi the
ith observation time in window s, i = 1, . . . , ns. For s = 1, implement the IBIS scheme
(Algorithm 1). For s = 2, . . . , b and i = 1, . . . , ns:

2. Sequential importance sampling. For k = 1, . . . , N :

(a) Perform iteration i (corresponding to time tsi ) of the forward filter to obtain

π(xo
tsi
|xo

0:tsi−1
,φ

(k)
x ), m

(k)
tsi

and C
(k)
tsi

.

(b) Update and normalise the importance weights using

ω̃
(k)
tsi

= ω̃
(k)
tsi−1

π(xo
tsi
|xo

0:tsi−1
,φ(k)

x ), ω
(k)
tsi

=
ω̃
(k)
tsi∑N

z=1 ω̃
(z)
tsi

(c) Update the observed data likelihood contribution in the current window using

π(xo
ts1:t

s
i
|xo

0:(s−1)T ,φ
(k)
x ) = π(xo

ts1:t
s
i−1
|xo

0:(s−1)T ,φ
(k)
x )π(xo

tsi
|xo

0:tsi−1
,φ(k)

x ),

with the convention that π(xo
ts1:t

s
i
|xo

0:(s−1)T ,φ
(k)
x ) = π(xts1

|xo
0:(s−1)T ,φ

(k)
x ) for i = 1.

3. If ESS < δN resample and move. For k = 1, . . . , N :

(a) Sample indices ak ∼M
(
ω1:N

)
and set {φ(k)

x , ω̃
(k)
tsi
} := {φ(ak)

x , 1}, m(k)
tsi

:= m
(ak)
tsi

, C
(k)
tsi

:=

C
(ak)
tsi

and π(xo
ts1:t

s
i
|xo

0:(s−1)T ,φ
(k)
x ) := π(xo

ts1:t
s
i
|xo

0:(s−1)T ,φ
(ak)
x ).

(b) Propose φ∗
x ∼ logN(logφ

(k)
x , h2s). Using m∗

(s−1)T = m
(k)
(s−1)T and C∗

(s−1)T = C
(k)
(s−1)T ,

perform iterations 1, . . . , i (corresponding to times ts1, . . . , t
s
i ) of the forward filter to

obtain π(xo
ts1:t

s
i
|xo

0:(s−1)T ,φ
∗
x). With probability

min

1,
π(xo

ts1:t
s
i
|xo

0:(s−1)T ,φ
∗
x)

π(xo
ts1:t

s
i
|xo

0:(s−1)T ,φ
(k)
x )


put φ

(k)
x := φ∗

x, π(xo
ts1:t

s
i
|xo

0:(s−1)T ,φ
(k)
x ) := π(xo

ts1:t
s
i
|xo

0:(s−1)T ,φ
∗
x), m

(k)
tsi

:= m∗
tsi

and

C
(k)
tsi

:= C∗
tsi

.

(summing the weights) precluding obvious parallelisation of the full IBIS scheme. [28] and [29]
describe a forward adder tree method which parallelises the calculation of the cumulative weight.
[30] suggest parallel Metropolis resampling and rejection resampling schemes to mitigate numerical
instabilities of summing the weights for a large number of particles. However, these methods still
require information exchange and global operations and they are designed mainly for use on GPU
shared memory systems.

Distributed memory systems are naturally amenable to heavy parallelised jobs, where trunks
of jobs are allocated and processed over multiple cores in different processors. In this context, a
number of parallel resampling methods have been discussed in the literature; see, for example, [31]
and [32, 33]. We follow the local resampling method [31] by partitioning particles into disjoint
subsets, within which resampling is performed. The algorithm proceeds by first calculating a local
ESS for each subset of particles. If a local ESS is less than a threshold, then the rejuvenation
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step is triggered locally. The innovation variance for the MH proposal in the move step is also
calculated locally based on the individual particle subset. To mitigate load-balance problems that
can occur when the resample-move step is executed for some subsets but not others, we also
carry out a rejuvenation step at regular time points, e.g. every 20 time points. This approach
naturally fits within the distributed memory architecture and allows full parallelisation of the IBIS
scheme. In principle, this approach should significantly improve computational efficiency of the
inference scheme, as there is no need for task communication. However, in practice the number of
informative particles may reduce significantly in some subsets as the algorithm runs. This in turn
results in the rejuvenation step being executed more frequently. Therefore, a trade-off has to be
considered carefully between the number of particle subsets and the number of particles in each
subset. Section 4.1 describes a simulation study comparing a standard serial implementation with
a fully parallelised version (with local resampling).

4 Simulation study

In order to assess the performance of the proposed online IBIS scheme and the effect of local
resampling, we looked at results from synthetic data generated from the marginal model in (5). We
consider 2 spatial locations (giving 14 parameters in total) and simulated n = 1300 observations
at each location. The true parameter values used to produce the synthetic data are W j

k = 0.01,
V j = σ2k = 1 and ψk = 0.01 for j = 1, 2 and k = 1, 2, 3, and these values are shown in Figure 3. As
this is a data-rich scenario, we assumed very weak independent inverse Gamma IG(1, 0.01) prior
distributions for all these parameter components, but truncated them above at 10 as values in
excess of 10 are far from plausible. We also took the prior distribution for the initial system state
as θ0 ∼ N(m, C), where m = (0, 0, 17, 0, 0, 17)T and C = I6. We used 107 particles and an ESS
threshold of δ = 0.5 for triggering the resample-move step. All computer code was written in C
and executed on a high performance cluster with Intel Xeon E5-2699 v4 processors (2.2 GHz, 55
MB cache), where each processor has 22 cores (2.9 GB CPU memory per core).

4.1 Comparison of full IBIS with serial resampling and parallelised local re-
sampling

We consider first two parallelised implementations of the full IBIS scheme: (i) weighting and move
steps are performed in parallel over 22 cores through a shared memory system (within one processor)
with the resampling step performed in serial; (ii) particles are divided over 200 cores and local
resampling is used. Figure 3 shows the parameter marginal posterior densities obtained by using
method 1 (IBIS with serial resampling) and method 2 (IBIS with parallelised local resampling). It
is clear that both approaches give posterior output consistent with the true values (used to simulate
the data). Moreover, the posterior densities from the fully parallelised method 2 match up well
with those from the exact (simulation based) method 1. However the run time for method 1 (IBIS
with serial resampling) is around 23 hours whereas that for method 2 (IBIS with parallelised local
resampling) is around 4 hours, a speed-up of around a factor of 6.

4.2 Comparison of full IBIS and online IBIS

We now compare the full IBIS scheme with online IBIS and in both schemes we use the parallelised
local resampling method. For online IBIS, we consider three widths for the fixed window: T = 100,
300 and 500. Figure 4 shows the output of the marginal posterior densities from the online IBIS
scheme for each window size, together with the densities from the full IBIS scheme. As expected,
as the larger window increases, so does posterior accuracy. The marginal posteriors from online
IBIS using T = 300 and T = 500 almost overlay those from full IBIS. However, there are noticeable
differences when using T = 100. In terms of computational efficiency, online IBIS with both
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T = 300 and T = 500 take roughly 2 CPU hours, that with T = 100 takes approximately 1 CPU
hour. Consequently, for this example, online IBIS with T = 300 and local parallel resampling gives
an overall reduction in computational cost of around a factor of 12 compared to full IBIS with serial
resampling.

5 Application

In this section we analyse the data on hourly average temperature and humidity values introduced
in Section 1.1. Recall that these data are measurements recorded during the period 8th July 2017
to 31st December 2017 and that the observations are irregularly spaced due to network and sensor
failures. We take independent inverse Gamma IG(1, 0.01) prior distributions, truncated above
at 10, for all the static parameters in both temperature and humidity DLMs. To incorporate our
prior belief that the underlying system should be smoother than the observation process, we also
impose the constraint that at each location j = 1, . . . , 5, W x,j

i < V x,j (i = 1, 2, 3) and W y,j
k < V y,j

(k = 1, 2). We ran the online IBIS scheme with N = 107 particles, fully parallelised (with local
resampling) over 200 cores using an ESS threshold of δ = 0.5. Regular particle rejuvenation steps
were set up for the process at every 20 time points, and the resample-move step was executed in
any batch whose ESS fell below half the number of particles (in the batch). Finally, to balance
accuracy and computational efficiency, we used a window width of T = 1500, and this gave a run
time of approximately 9.5 days.

5.1 Inference results

Table 2 shows the marginal posterior medians and quantile-based 95% credible intervals for the
static parameters in the joint temperature and humidity model. These summaries were obtained
from output of the online IBIS scheme. Inspection of the posterior medians for the system variances
(governing both temperature and humidity models) reveals that these components are larger at
location 1 (Newcastle) than at the other locations. This is perhaps not surprising given that
location 1 has the largest fraction of missing data (see Table 1.1). Also sampled posterior values
of the observation variance components V x,j and V y,j are generally very much larger at location 2
(Seaham), and this too is consistent with the simple data summaries in Table 1.1 – Seaham is the
least spatially consistent location in terms of median temperature and humidity. Variation across
sites is accounted for by the elements of σ2. The relatively large values of σ2x,3 and σ2y,2 suggest

that there is some spatial inconsistency in the dynamically varying mean level components θx,jti,3
and

θy,jti,2
. Spatial consistency of these mean level components can be assessed further by noting that

Cor(θx,jti,3
, θx,j

′

ti,3
) = exp(−ψx,3djj′), Cor(θy,jti,2

, θy,j
′

ti,2
) = exp(−ψy,2djj′).

Hence, fixing ψx,3 and ψy,2 at their posterior medians gives a simple linear relationship between
distance and log correlation. For example, within a 10km radius from each location, there is a
spatial correlation of at least 0.76 for temperature and 0.64 for humidity. These areas are displayed
in Figure 5. We note that it is not surprising that spatial correlation for humidity is lower than
that for temperature, as the humidity records are also easily influenced by other factors, such as
urban structure and distance from the sea, in addition to temperature.

5.2 Predictive performance

We assess the validity of the proposed model by comparing observed data with their model-based
within-sample posterior predictive distributions and with model-based out-of-sample forecast dis-
tributions. Simulation methods can be used to construct these distributions and details on how
to generate draws from them is provided in Appendix A.2. Figure 6 shows discrepancies between
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Figure 3: Marginal parameter posterior densities obtained from the output of the full IBIS scheme
with a standard serial resampling step (histograms) and a parallelised local resampling step (——).
The true parameter values are shown as solid circles.
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Figure 4: Marginal parameter posterior densities obtained from the output of the full IBIS scheme
(histograms) and the online IBIS scheme with window widths T = 100 (−·−·−), T = 300 (· · · · · · )
and T = 500 (——). The true parameter values are are shown as solid circles.
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Temperature Humidity

φx Median 2.5% 97.5% φy Median 2.5% 97.5%

W x,1
1 0.0050 0.0011 0.0110 W y,1

1 0.0156 0.0118 0.0208

W x,1
2 0.0056 0.0013 0.0114 W y,1

2 0.0074 0.0019 0.0183

W x,1
3 0.0053 0.0014 0.0116 W y,2

1 0.0071 0.0049 0.0102

W x,2
1 0.0026 0.0008 0.0089 W y,2

2 0.0072 0.0018 0.0183

W x,2
2 0.0031 0.0008 0.0095 W y,3

1 0.0024 0.0014 0.0038

W x,2
3 0.0039 0.0009 0.0096 W y,3

2 0.0048 0.0015 0.0144

W x,3
1 0.0021 0.0006 0.0082 W y,4

1 0.0032 0.0017 0.0054

W x,3
2 0.0023 0.0006 0.0075 W y,4

2 0.0050 0.0016 0.0156

W x,3
3 0.0021 0.0006 0.0083 W y,5

1 0.0020 0.0010 0.0035

W x,4
1 0.0027 0.0007 0.0083 W y,5

2 0.0049 0.0016 0.0148

W x,4
2 0.0032 0.0007 0.0095 V y,1 0.0265 0.0147 0.0826

W x,4
3 0.0036 0.0009 0.0102 V y,2 0.4520 0.3362 0.5822

W x,5
1 0.0042 0.0008 0.0103 V y,3 0.0201 0.0137 0.0382

W x,5
2 0.0026 0.0007 0.0089 V y,4 0.0199 0.0137 0.0383

W x,5
3 0.0038 0.0007 0.0092 V y,5 0.0190 0.0134 0.0331

V x,1 0.0089 0.0047 0.0173 σ2y,1 0.0257 0.0209 0.0315

V x,2 0.0230 0.0110 0.0419 σ2y,2 1.6054 1.4961 1.7228

V x,3 0.0078 0.0044 0.0138 ψy,1 0.0016 0.0008 0.0029

V x,4 0.0088 0.0049 0.0251 ψy,2 0.0447 0.0388 0.0511

V x,5 0.0164 0.0061 0.0380

σ2x,1 0.0423 0.0105 0.1611

σ2x,2 0.0627 0.0250 0.1672

σ2x,3 0.2310 0.0837 0.2706

ψx,1 0.0014 0.0004 0.0496

ψx,2 0.0013 0.0004 0.0606

ψx,3 0.0274 0.0011 0.0354

Table 2: Marginal parameter posterior medians and quantile-based 95% credible intervals obtained
from the output of the online IBIS scheme.

observations and their within-sample predictive distribution over the first 500 hours at each of the 5
locations. These distributions are characterised by their mean and 95% credible interval. It is clear
that the mean difference at each time-location combination is small and that a mean difference of
zero is plausible (the 95% credible intervals include zero). Similar results were obtained for the full
data set (not shown). Figure 7 shows the mean and 95% credible interval at each location for the
one-step ahead forecast. The times displayed were chosen at random over a two day period and,
for comparison purposes, the observations at these times are also shown. Unsurprisingly forecast
uncertainty grows during periods of prolonged missingness. The figure shows that observations
typically lie within the forecast interval and that the model-based one-step forecast distribution
is consistent with the observed data. Figure 8 shows the mean and 95% credible interval at each
location for the two-step ahead forecast. Similar to the one-step forecasts, this figure shows that
these forecast distributions are consistent with the data but, of course, have larger uncertainty.
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Figure 5: Map showing site locations and a 10 km radius from each site, within which the spatial
correlation for temperature is at least 0.76, and for humidity, is at least 0.64.

6 Discussion

We have developed and fitted a spatio-temporal model to around six months of data on hourly
temperature and humidity values at five locations in the North East of England. The data were ob-
tained from a sensor network providing streaming data on environmental variables such as climate,
pollution and traffic flow, held at the Newcastle Urban Observatory. The model we use for observed
seasonality in temperature is a dynamic linear model (DLM) whose observation equation takes the
form of a sinusoid, with time varying amplitude and phase described by the system equation. We
capture the observed linear relationship between humidity and temperature via a conditional DLM
in which humidity is regressed on temperature. Also spatial consistency at nearby sites is accounted
for by adding a Gaussian process in the system equations.

Our primary goal is real time forecasting of temperature and humidity. To this end, we have
developed a sequential Monte Carlo (SMC) algorithm which updates the parameter posterior as
each measurement becomes available. The tractability of the observed data likelihood allows us
to construct the SMC algorithm using an iterated batch importance sampling (IBIS) scheme, first
introduced by [18]. The IBIS scheme tries to deal with particle degeneracy by employing a resample-
move step which allows the particle set to be rejuvenated by moving each particle through a
Metropolis-Hastings kernel that leaves the target posterior invariant. The computational cost of
this step increases as the algorithm runs, due to the time taken to calculate the observed data
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Figure 6: Mean (——) and 95% credible intervals for the difference between the within-sample
predictive and the observations, at each location (1–5) over time. The observation period is from
8th July 2017 04:00:00 to 29th July 2017 00:00:00.
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Figure 7: One-step ahead forecast means (——) and 95% credible intervals, at each location (1–5)
over time. The observations are indicated (•). The observation period is from 12th July 2017
08:00:00 to 14th July 2017 00:00:00.
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Figure 8: Two-step ahead forecast means (——) and 95% credible intervals, at each location (1–5)
over time. The observations are indicated (•). The observation period is from 12th July 2017
08:00:00 to 14th July 2017 00:00:00.
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likelihood at each particle, as more data is included. This problem is made much more accute by
the long length of the observed time series and the high dimension of the parameter space and
this makes the algorithm unusable as an on-line algorithm. To circumvent this issue, we have
modified the resample-move step in two ways. First, we use a sequence of observation windows and
calculate the observed data likelihood for the data within the window. As the data in each window
are included, the parameter posterior (at the start of the window) is approximated using a kernel
density estimate and then updated using the observed data likelihood for the window. This places
an upper bound on the computational cost. We looked the effect of the choice of window length
on computational efficiency and posterior accuracy and found that reasonable posterior accuracy
can be achieved for modest window length. Finally, we speed up the algorithm by using a fully
parallel implementation which divides the particles into batches and performs the resampling step
locally, for each batch. We term the resulting scheme online IBIS and find that for our data
set, an observation (consisting of both temperature and humidity hourly averages at each of five
locations) can be assimilated in around 3 minutes on average, with this average time dominated by
the rejuvenation steps. One-step and two-step forecast distributions can then be determined very
quickly. Given that observations arrive every hour, this makes the scheme entirely feasible for use
in real time.

This work can be extended in a number of ways. For example, covariate information such
as altitude, distance from the coast and wind direction/speed could be included in the model.
Unfortunately this information is not currently available. Developing a joint model for all sensor
streams, which would also include pollution data and traffic data, is also of interest. However, fitting
models of multiple heterogeneous sensors is likely to require further methodological development
of the inference scheme considered here.

References

[1] S.D. Campbell and F.X. Diebold. Weather forecasting for weather derivatives. Journal of the
American Statistical Association, 100:6–16, 2005.
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A Appendix

A.1 Forward filter

To simplify notation we consider the spatial temperature model and drop x. Given the form of the
observation model in (7), we have that

Xo
ti = F̃tiθti + ṽi, ṽi

indep∼ N(0, Ṽ ),

θti = θti−1 + w̃i, w̃i
indep∼ N(0, W̃ ),

(12)

where F̃ti = PtiFti , Ṽ = Ptidiag(V 1, . . . , V  L)P T
ti and W̃ = k2i diag(W 1, . . . ,W  L) +K. Since the

parameters φ remain fixed throughout this section, we drop them from the notation where possible.
Now suppose that θt1 ∼ N(m,C) a priori and recall that t1 = 0. The observed data likelihood
increments π(xo

ti |x
o
0:ti−1

), and hence the full observed data likelihood π(xo
0:tn |φ), can be obtained

from the forward filter described in Algorithm 3.

A.2 Within-sample predictions and out-of-sample forecasts

In order to compute within-sample predictions, the smoothing density π(θ0:tn |xo
0:tn ,φx) is required.

Draws from this density can be readily obtained by using a backward sampler that recursively draws
from

π(θti |θti+1 ,x
o
0:ti ,φx) = N{θti ; mti +Bti(θti+1 −mti) , Cti −BtiRti+1B

T
ti}, (13)

whereBti = CtiR
−1
ti+1

andRti+1 = Cti+W̃ ; see, for example, [15]. Hence, given an equally weighted

sample {φ1:N
x } from the marginal posterior π(φx|xo

0:tn), we can integrate over parameter uncertainty
to generate draws from the within-sample system posterior predictive density π(θ0:tn |xo

0:tn) by

recursively drawing from (13) for each particle φ
(k)
x (and the associated quantities m

(k)
ti

, C
(k)
ti

generated by the forward filter). Subsequently, the within-sample observation posterior predictive
density π(x0:tn |xo

0:tn) can be sampled by drawing

X
(k)
ti
|θ(k)ti

,φ(k)
x ∼ N(Ftiθ

(k)
ti
, V (k)), i = 1, . . . , n, k = 1, . . . , N.
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Algorithm 3 Forward filter

1. Initialisation (i = 1). Compute π(xo
t1) = N(xt1 ; F̃t1m , F̃t1CF̃

T
t1 + Ṽ ). The posterior at

time t1 = 0 is therefore θt1 |xo
t1 ∼ N(mt1 ,Ct1), where

mt1 = m+CF̃ T
t1 (F̃t1CF̃

T
t1 + Ṽ )−1(xo

t1 − F̃t1m)

Ct1 = C −CF̃ T
t1 (F̃t1CF̃

T
t1 + Ṽ )−1F̃t1C .

Store the values of mt1 , Ct1 and π(xo
t1).

2. For i = 2, . . . , n,

(a) Prior at ti. Using the system equation, we have that θti |xo
0:ti−1

∼ N(mti−1 ,Cti−1 + W̃ ).

(b) One step forecast. Using the observation equation, we have that

Xo
ti |x

o
0:ti−1

∼ N{F̃timti−1 , F̃ti(Cti−1 + W̃ )F̃ T
ti + Ṽ }.

Compute the observed data likelihood increment

π(xo
ti |x

o
0:ti−1

) = N{xo
ti ; F̃timti−1 , F̃ti(Cti−1 + W̃ )F̃ T

ti + Ṽ }.

(c) Posterior at ti. Combining the distributions in (a) and (b) gives the joint distribution
of θti and Xo

ti (conditional on x0:ti−1) as(
θti
Xo

ti

)
∼ N

{(
mti−1

F̃timti−1

)
,

(
Cti−1 + W̃ (Cti−1 + W̃ )F̃ T

ti

F̃ti(Cti−1 + W̃ ) F̃ti(Cti−1 + W̃ )F̃ T
ti + Ṽ

)}

and therefore θti |xo
0:ti
∼ N(mti ,Cti), where

mti = mti−1 + (Cti−1 + W̃ )F̃ T
ti {F̃ti(Cti−1 + W̃ )F̃ T

ti + Ṽ }−1(xo
ti − F̃timti−1)

Cti = Cti−1 + W̃ − (Cti−1 + W̃ )F̃ T
ti {F̃ti(Cti−1 + W̃ )F̃ T

ti + Ṽ }−1F̃ti(Cti−1 + W̃ ) .

Store the values of mti , Cti and π(xo
ti |x

o
0:ti−1

).

Out-of-sample system and observation forecast distributions can be obtained by again exploiting
the linear Gaussian structure of the DLM. Given an equally weighted sample {φ1:N

x } from the
marginal posterior π(φx|xo

0:tn), samples from π(θtn+1 |xo
0:tn) and π(xtn+1 |xo

0:tn) can be obtained by
recursively drawing

θ
(k)
tn+1
|φ(k)

x ∼ N(m
(k)
tn , C

(k)
tn + W̃ (k)), k = 1, . . . , n

x
(k)
tn+1
|φ(k)

x ∼ N{Ftn+1m
(k)
tn , Ftn+1(C

(k)
tn + W̃ (k))F T

tn+1
+ V (k)}, k = 1, . . . , n.

A.3 Model selection

As noted in Section 2.1, seasonality in the marginal DLM can be accounted for in two ways.
A sinusoid can be specified in the observation equation, with a system equation describing the
evolution of the parameters governing the amplitude and phase. Alternatively, a Fourier form
structure can be used in the system equation where the appropriate number of harmonics must be
specified by the practitioner. Our joint model consists of a marginal DLM for temperature and
a conditional DLM for humidity given tempertaure. This induces a marginal DLM for humidity
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with the same form as that for temperature. We therefore consider three candidate spatial DLMs
for modelling temperature and humidity data marginally: 1. sinusoidal form DLM (sDLM); 2.
Fourier form DLM with 1 harmonic (FDLM1); 3. Fourier form DLM with 2 harmonics (FDLM2).
Choosing between these competing models is possible via computation of the Bayes factor [34, 35],
which, under the assumption of equal prior probability for two competing models, say M1 and M2,
is defined as the ratio of the evidence given M1, and that given M2. The Bayes factor based on
temperature data is therefore

BF =
p(xo

0:tn |M1)

p(xo
0:tn
|M2)

with a similar form for the humidity data Bayes factor. Note that BF < 1 suggests the data
support M2. Equation (10) gives an estimate of the evidence as a by-product of the IBIS scheme.

Unfortunately, the size of the observed dataset precludes calculation of the Bayes factor using
all measurements at all sites. Therefore, to guide our modelling approach we chose three of the five
locations at random and then 400 consecutive observations (starting at a random observed time)
at these locations. The evidence for each model was determine using the full IBIS scheme on these
data with a serial multinomial resampling step for each model, using N = 107 particles. To account
for Monte Carlo error, we repeat this process 30 times. Taking FDLM2 as a baseline for comparison,
we compute Bayes factors for sDLM vs FDLM2 and FDLM1 vs FDLM2. Figure 9 shows the mean
logBF value (and 95% credible interval) based on data xo

0:t and yo0:t against t. For the marginal
temperature DLM it is clear that FDLM2 is the least favoured model. Furthermore, for t > 80,
the log Bayes factors corresponding to the sinusoidal form DLM against FDLM2 are always strictly
greater than those corresponding to FDLM1 against FDLM2. For the marginal humidity DLM,
there is little difference in overall fit between the sinusoidal form DLM and FDLM1. Given that
computational cost scales as 1 : 1.1 : 1.3 for DLM : FDLM1 : FDLM2, we conclude that the
sinusoidal form DLM offers the best compromise between model fit and computational efficiency.
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Figure 9: Mean and 95% credible interval of the log Bayes factor comparing sDLM against FDLM2
and FDLM1 against FDLM2, over time. (Top: temperature models; bottom: humidity models.)
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