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Abstract 4 

Port state control inspection is seen as the safety net to guard marine safety, protect the marine environment, 5 

and guarantee decent onboard working and living conditions for seafarers. A substandard ship can be detained 6 

in an inspection if serious deficiencies are found onboard. Ship detention is regarded to be a severe result in port 7 

state control inspection, however, developing accurate prediction models for ship detention based on ship’s 8 

generic factors (e.g. ship age, ship type, and ship flag), dynamic factors (e.g. times of changing ship flag), and 9 

inspection historical factors (e.g. total previous detentions in PSC inspection, last PSC inspection time, and last 10 

deficiency number in PSC inspection) before an inspection is conducted is not a trivial task as the low detention 11 

rate leads to a highly imbalanced inspection records dataset. To address this issue, this paper develops a 12 

classification model called balanced random forest (BRF) to predict ship detention by using 1,600 inspection 13 

records at the Hong Kong port for three years. Numerical experiments show that the proposed BRF model can 14 

identify 81.25% of all the ships with detention in the test set which contains another 400 inspection records. 15 

Compared with the currently used ship selection method at the Hong Kong port, the BRF model is much more 16 

efficient and can achieve an average improvement of 73.72% for the 400 ships in the test set. 17 
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1. Introduction 22 

Maritime transport is the backbone of global trade (Rekik and Elkosantini, 2019; Abbassi et al., 2019). 23 

Although maritime transport is relatively safe, accidents and casualties involving maritime vessels can bring 24 

about huge losses to the shipping industry and the whole society. As reported by European Maritime Safety 25 

Agency (EMSA, 2019), from 2011 to 2018, 25,614 ships were involved in marine casualties, causing 7,694 26 

persons injured and 696 fatalities. Meanwhile, as the vessels are mainly powered by heavy fuel oil, heavy 27 

environmental footprint is created by emission of greenhouse gas and pollutants from vessels (Ramdin et al., 28 

2016). To guarantee maritime safety and protect the marine environment, numerous international regulations 29 

and conventions are proposed and implemented by the International Maritime Organization (IMO), such as 30 

the International Convention for the Safety of Life at Sea (SOLAS) and the International Convention for the 31 

Prevention of Pollution from Ships (MARPOL). In recent years, onboard living and working conditions of the 32 

crew members have gained much attention from the International Labour Organization (ILO), and international 33 

agreements such as Maritime Labour Convention (MLC) was implemented to set out seafarers’ rights to decent 34 

conditions of work. These international instruments provide comprehensive standards serving as the base for 35 

regulating the design, manning, equipment, operation, management, maintenance, and disposal of ships 36 

(Graziano et al., 2018).  37 

Ships with hull, machinery, equipment or operational safety substantially below the international standards 38 

or whose crew is not in conformance with the safe manning document are called “substandard ships” (IMO, 39 

2017).The flag state of a ship, which is the jurisdiction under whose laws the ship is registered and licensed and 40 

is deemed as the nationality of the ship, is the first line of defense against substandard shipping. However, it is 41 

widely believed that the flag states cannot perform their duty well (Cariou et al., 2008; Li et al., 2014; Wang et 42 

al., 2019; Yan et al., 2020). Under this circumstance, port state control (PSC), which is an inspection to verify 43 

that the foreign visiting ships are manned and operated in compliance with the international rules, is established 44 

as a complement to flag state control and it is regarded as the second line of defense against substandard shipping 45 

(Cariou et al., 2009; Heij et al., 2011). To allow information exchange and avoid multiple inspections in a certain 46 

region over a period of time, as well as to standardize inspection criteria and processes, the regional 47 
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Memorandum of Understandings on port state control (i.e. MoUs on PSC) are signed and established. As of 1 48 

July 2020, nine MoUs on PSC have been established all over the world. 49 

Before the ships coming to the port state, the PSC officers (PSCOs) would first select the ships with higher 50 

risk to inspect. Different decision support systems are used in different MoUs to target high-risk ships. For 51 

example, the Paris MoU and Tokyo MoU adopt ship risk profile (SRP) to select ships that are more likely to 52 

have larger number of deficiencies and to be detained (Paris MoU, 2014; Tokyo MoU, 2014). The results of an 53 

inspection mainly contain identified deficiencies and ship detention (IMO, 2017). A ship deficiency is a 54 

condition found not to be in compliance with the requirements of the relevant convention, whereas ship 55 

detention is an intervention action taken by the port state when the ship is unseaworthy (IMO, 2017). Ship 56 

deficiencies are clearly classified and listed by the MoUs. For example, 17 deficiency codes are listed by Tokyo 57 

MoU regarding ship safety, management, condition and structure, and communication and navigation (Tokyo 58 

MoU, 2017b). If serious deficiencies which make the ship unsafe to sail at sea are identified, the PSCO can 59 

detain the ship and require the ship to rectify the deficiencies before departing. Ship detention is the most 60 

important decision generated during an inspection and can be regarded as the most severe result of PSC 61 

inspection. Ship detention not only indicates poor ship condition and higher probability of involvement in future 62 

incidents and accidents but may also delay ship schedule. Besides, ship detention can adversely influence the 63 

reputation of its flag state, recognized organization, and company and thus can lead to higher inspection rate of 64 

their ships. Generally, ship detention rate is low in Tokyo MoU. The years from 2009 to 2018 have witnessed a 65 

decrease in the detention rate in the Tokyo MoU from 5.78% to 2.96%. In 2019, there is a slight increase in ship 66 

detention rate to 3.13% (Tokyo MoU, 2020). Although ship detention is the most importance decision in PSC 67 

inspection and the detention rate is usually low, several steps in a PSC inspection, ranging from ship selection 68 

to ship inspection and final decision making, might lead to inaccuracy and inefficiency. First, several studies 69 

have reported that the SRP ship selection scheme is inefficient for targeting high-risk ships (Xu et al., 2007a, 70 

2007b; Gao et al., 2008; Wang et al., 2019). As a result, ships selected for inspection by the port states using 71 

SRP are not necessarily the ones with the largest number of deficiencies and highest probability of detention. In 72 

other words, ships that should be detained may be ignored in the process of ship selection. Second, even if the 73 
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SRP ship selection scheme can pick out the high-risk ships for inspection, no specific risk scores can be 74 

generated for the ships in the same risk profile. Consequently, to what extent the ships should be inspected is 75 

highly dependent on the judgement of the PSCO. For those PSCOs who are lack of expertise, they may let the 76 

substandard ships go without further inspection. Third, to the best of our knowledge, no detainable deficiencies 77 

are specifically illustrated by the IMO or the MoUs. Instead, only rough description of the deficiencies 78 

warranting detention is given in the documents (IMO, 2017). Therefore, the decision of detention is also highly 79 

dependent on the expertise and judgement of PSCOs. If too excessive PSC inspections are conducted, the 80 

competitiveness of the ports is harmed and the burden of the ship owners is increased. On the contrary, a loose 81 

inspection policy cannot guarantee the implementation of effective PSC inspections and thus increase the 82 

possibilities of marine accidents and casualties’ occurrence (Yang et al., 2018b).  83 

To improve the accuracy and efficiency of PSC inspection, this paper aims to propose a ship detention 84 

prediction model serving as the decision support tool for ship selection and inspection for the port states. The 85 

model takes ship generic factors (i.e. ship age, gross tonnage, type, depth, length, beam, flag performance, 86 

recognized organization performance, and company performance), ship dynamic factors (i.e. times of changing 87 

flag and casualties in last 5 years), and ship inspection historical factors (i.e. total previous detention, last 88 

inspection time, last deficiency number, and PSC follow-up inspection rate) into account to predict ship 89 

detention probability. It addresses the imbalanced distribution of ships with and without detention (i.e. ships 90 

without detention significantly outnumbers ships with detention) by using a revised version of random forest 91 

classifier. The probability of detention of each ship can be generated and thus the inspection sequence can also 92 

be given. A comparison of the working processes between the proposed model and the currently implemented 93 

ship risk profile ship selection scheme which is based on expert knowledge is shown in Figure 1. 94 
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 95 
Figure 1. Comparison between the proposed and currently implemented  96 

ship detention prediction/decision models 97 

 98 

2. Literature review 99 

There is a large volume of published studies on PSC inspection. Several studies have investigated how to 100 

improve the efficiency and effectiveness of PSC inspection, including how to select ships for inspection (Xu et 101 

al., 2007a, 2007b; Gao et al., 2008; Degré, 2007, 2008; Yang et al., 2018a, 2018b; Wang et al., 2019; Heij and 102 

Knapp, 2019; Knapp and Heij, 2020), how to assign PSCOs considering their background and expertise and the 103 

deficiency conditions of the ships (Yan et al., 2020), and how to determine the onboard inspection sequence 104 

(Tsou, 2018; Yan et al., 2020). Besides, various studies have assessed the impact of PSC inspection on reducing 105 

incidents and accidents (Hänninen et al., 2014; Li et al., 2014; Fan et al., 2020), on future PSC inspection results 106 

(Cariou et al., 2008), on ship behavior (Cariou and Wolff, 2011; Fan et al., 2014), and on protecting the marine 107 

environment (Heij et al., 2011). In addition, several studies have provided general comments on MoU 108 

management, such as the development process of the MoUs (Mansell, 2009), the future developing directions 109 

of the MoUs (Liou et al., 2011; Grazianoa et al., 2017), and the critical challenges faced by port states and the 110 

MoUs (Grazianoa et al., 2017; Graziano et al., 2018). Factors influencing the final inspection results (i.e. 111 

identified deficiencies and detention) have also been analyzed and discussed from different perspectives (Cariou 112 

et al., 2007, 2009; Knapp and Franses, 2007; Cariou and Wolff, 2015; Ravira and Piniella, 2016; Chen et al., 113 
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2019; Xiao et al., 2020; Şanlıer, 2020). In this section, studies on how to select ships for inspection and the 114 

factors influencing the final inspection results are reviewed as they are highly related to ship detention. For 115 

comprehensive review of the studies on PSC inspection, readers are referred to Yan and Wang (2019).  116 

2.1 Ship selection for inspection 117 

Before a foreign ship comes to the port state, the PSCOs need to first decide whether to inspect the ship 118 

based on its risk calculated by a decision system. In Tokyo MoU and Paris MoU, SRP ship selection scheme is 119 

used which gives different weighting points to ship generic factors and previous inspection factors. However, 120 

this simple weighted-sum method may not be efficient enough to identify the substandard ships. In this 121 

circumstance, several studies have proposed ship selection methods to improve ship selection efficiency. As the 122 

results of PSC inspection contain the identified ship deficiencies and ship detention, many studies aim to select 123 

ships with larger number of deficiencies or with higher probability to be detained from the numerous visiting 124 

ships. For studies aim to predict ship detention, Xu et al. (2007a) developed a risk assessment system based on 125 

support vector machine to identify high-risk ships that are highly likely to be detained. The performance of the 126 

system was improved by combining new input features extracted by web mining technology (Xu et al., 2007b). 127 

The system was further improved by combing support vector machine with K-nearest neighbor and bag-of-128 

words model (Gao et al., 2008). Numerical experiments of the three studies suggested that among all the ships 129 

predicted to be detained, only about 20% of them were actually detained. Bayesian networks were developed 130 

by Yang et al. (2018a) to predict the detention probabilities of bulk carriers in Paris MoU considering ship 131 

generic factors and PSC inspection factors. Based on the model, a risk-based game model was constructed to 132 

figure out the optimal inspection policy at a certain port (Yang et al., 2018b). For studies predicting ship 133 

deficiencies, Wang et al. (2019) proposed a Bayes classifier called TAN to help the port state to select ships with 134 

large number of deficiencies for inspection. Apart from ship detention and deficiency, marine casualties are also 135 

considered for ship selection. Risk concept combining the occurrence of casualties and the potential 136 

consequences of such occurrences was proposed by Degré (2007) to select high-risk vessels for PSC inspection. 137 

In addition, a black-grey-white list of ships based on their observed casualties in a given period was proposed 138 

by Degré (2008) to help Paris MoU to target high-risk ships. Risk score of ships, which combined ship detentions 139 
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and incidents was employed by Heij and Knapp (2019) and Knapp and Heij (2020) to help port state authorities 140 

to identify high-risk ships for inspection and to guide the onboard inspection priorities.  141 

Although ship detention is the major consequence of a PSC inspection which guarantees its effectiveness, 142 

there are few studies aiming to propose accurate prediction models for ship detention. Among all the visiting 143 

ships to the port state, ships without detention significantly outnumber ships with detention as ship detention 144 

rate is very low. According to the annual report of Tokyo MoU, 24 ships were detained among the total 716 PSC 145 

inspections conducted at the Hong Kong port in 2017 and thus the detention rate was 3.35%. The overall 146 

detention rate within Tokyo MoU in 2017 was only 2.96% (Tokyo MoU, 2018a). The imbalance between the 147 

number of ships of the two classes (i.e. with and without detention) makes the prediction problem difficult. 148 

However, the issue is not addressed in the current literature. Even if there are some machine learning models in 149 

the studies that directly make prediction on ship detention, the accuracy of identifying ships with detention was 150 

low. In addition, these studies do not generate a specific inspection sequence considering the risk level of the 151 

ships for the port state’s reference.  152 

2.2 Factors influencing PSC inspection results 153 

The results of a PSC inspection contain ship deficiencies identified and ship detention decision. The 154 

literature on analyzing PSC inspection results has highlighted several influencing factors including ship generic 155 

factors (e.g. ship age, ship type, and ship flag) and inspection resource related factors (such as inspection 156 

authorities and background of PSCOs). Ship deficiency is mainly influenced by ship generic factors. Cariou et 157 

al. (2007) concluded that ship age, flag of registry, and ship type were the main determinants of the reported 158 

number of deficiencies in PSC inspection. As for factors influencing the decision of ship detention, both ship 159 

generic factors and the detected deficiencies can have impacts. Regarding the deficiency types that were highly 160 

likely to lead to ship detention, it was found that deficiencies on International Safety Management (ISM) 161 

incompliance, emergency system, and fire-safety measures were the main factors leading to ship detention 162 

(Chen et al., 2019). Xiao et al. (2020) developed binary logistic regression and decision tree models and 163 

suggested that ship age, type, performance of flag state, and deficiency number had significant impact on 164 

detention decision. Ship generic factors and inspection related factors can influence both detected deficiencies 165 
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and detention. Knapp and Franses (2007) reported that differences in the use of deficiencies towards detention 166 

among the port states were the main reason for different decisions on ship detention, given that basic ship 167 

profiles did not vary significantly across the regimes. Cariou et al. (2009) suggested that ship age, recognized 168 

organization, and inspection authority were the determinants of deficiency number and detention probability. 169 

Based on Probit and count data models, Cariou and Wolff (2015) reported that factors influencing the probability 170 

of detention and the number of deficiencies were quite similar. Besides, professional profiles of PSCOs might 171 

also impact the identified deficiencies and detention (Ravira and Piniella, 2016). Şanlıer (2020) also indicated 172 

that ship generic factors such as ship age, type, flag of registry, and recognized organization as well as inspection 173 

authority would influence the detected deficiencies and detention. 174 

A summary of current literature on analyzing factors influencing PSC inspection results is presented in 175 

Table 1. Overall, these studies are mainly focused on ship generic factors and inspection resource related factors. 176 

Although ship generic factors were taken into account, factors regarding ship structure, such as ship length, ship 177 

depth, and ship beam were rarely analyzed. In addition, the influence of historical inspection factors, such as 178 

previous deficiencies, previous detentions, and follow-up inspections were rarely considered. Meanwhile, 179 

factors related to ship dynamic information, e.g. ship flag change, which may be due to the bad performance in 180 

previous PSC inspections, were seldom considered. To bridge this gap, this study aims to develop a prediction 181 

model of ship detention in PSC inspection which considers a wider range of related features by combing 182 

different databases. The proposed model considers the imbalanced distribution of the ships with and without 183 

detention and would also generate specific inspection sequence considering ship detention probability.  184 

  185 
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Table 1. Summary of literature on analyzing factors influencing PSC inspection results 186 

Author(s) Methods/Models Main influencing factors Analysis target 
Cariou et al. (2007) Count data models Ship age, flag of registry, and ship type Ship deficiency 
Chen et al. (2019) Grey rational analysis model Deficiencies on International Safety 

Management (ISM) incompliance, 
emergency system, and fire-safety 
measures 

Ship detention 

Xiao et al. (2020) Binary logistic regression 
model and decision tree model 

Ship age, type, performance of flag state, 
and deficiency number 

Ship detention 

Knapp and Franses 
(2007) 

Binary logistic regression Differences in port states across several 
regions  

Ship deficiency 
and detention 

Cariou et al. (2009) Probit models and count data 
models 

Ship age, recognized organization, and 
inspection authority 

Ship deficiency 
and detention 

Cariou and Wolff 
(2015) 

Probit model and count data 
models 

Ship age, gross tonnage, type, flag of 
registration, recognized organization 

Ship deficiency 
and detention 

Ravira and Piniella 
(2016) 

Survey and basic statistical 
analysis 

professional profiles of PSCOs Ship deficiency 
and detention 

Şanlıer (2020) Basic statistical analysis Ship age, type, flag of registry, and 
recognized organization as well as PSC 
inspection authority 

Ship deficiency 
and detention 

 187 

3. Data 188 

3.1 Introduction of imbalanced dataset 189 

The ship detention rate in PSC inspection is usually quite low. Actually, the detention rate of our whole 190 

case dataset is only 3.55%, which means that on average, there are only 3.55 ships with detention (denoted by 191 

minority class or class “1”) among 100 inspected ships while 96.45 ships are without detention (denoted by 192 

majority class or class “0”). As the majority examples significantly outnumber the minority examples, the 193 

distribution is highly imbalanced (Galar et al., 2012; Wu et al., 2020). Imbalanced class distribution in a dataset 194 

would bring about a serious difficulty in most classifier learning algorithms which assume a relatively balanced 195 

distribution (i.e. class size ratio of about 1:1) (Sun et al., 2009). Therefore, many widely-used classical classifiers, 196 

such as support vector machine, decision tree, and logistic regression may not be suitable if applied directly to 197 

the imbalanced dataset as they are highly likely to ignore examples in minority class (Galar et al., 2012).  198 

Addressing class imbalanced problem is significant as it is present in many real-world classification 199 

problems. Generally, there are three main approaches to learning from imbalanced data: (a) Data-level methods, 200 

which aims to create balanced distribution by modifying the data collection methods (e.g. sub-sampling and 201 
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over-sampling) in training set. Standard learning algorithms are then applied to the new balanced dataset. (b) 202 

Algorithm-level methods, which modify the existing learning algorithms directly to reduce the bias towards 203 

majority examples and adapt them to data mining with imbalanced distributions. (c) Hybrid methods, which 204 

combines methods (a) and (b).  205 

3.2 Overview of databases and data preprocessing 206 

In this study, PSC inspection records at the Hong Kong port from 1 Jan 2016 to 31 Dec 2018 are used to 207 

calibrate and validate the ship detention prediction model. The data are collected from two databases: the web-208 

based Asia Pacific Computerized Information System (APCIS) provided by the Tokyo MoU 1  and Word 209 

Register of ships (WRS). APCIS provides detailed inspection records at the Hong Kong port and PSC-related 210 

information of the inspected ships within the Tokyo MoU, while WRS provides information of ship-related 211 

factors.  212 

Based on the current literature and shipping domain knowledge, we select 15 input features that are 213 

regarded to be highly related to ship detention from the APCIS database and WRS database. The features from 214 

the two databases are combined by ship’s IMO number, which is a ship unique identifier. The 15 features 215 

comprise ship generic factors (e.g. ship age, gross tonnage, length, depth, beam, and type), ship historical factors 216 

(e.g. times of changing flag and casualties in the last five years), and PSC-related factors (e.g. total detentions 217 

in previous PSC inspections, ship flag performance, recognized organization performance, and company 218 

performance evaluated by Tokyo MoU, last inspection time, last deficiency number, and follow-up inspection 219 

rate within Tokyo MoU). The prediction target is ship detention in the current inspection. The 16 variables and 220 

their explanation are shown in Table 2. After deleting the inspection records with missing values (no more than 221 

5%), we form the whole dataset which contains 2,000 inspection records with 71 records with detention and 222 

1,929 records without detention. We randomly divide the whole dataset into training set (80%) and test set 223 

(20%). The training set contains 1,600 records in total with 55 records with detention, and the test set contains 224 

400 records in total with 16 records with detention. The proposed ship detention prediction model is constructed 225 

                                                      
1 http://www.tokyo-mou.org/inspections_detentions/psc_database.php 



10 
 

using the training set and its performance is validated by the test set. 226 

Table 2. Variables in the model  227 

Variable  Explanation 
(a) Detention (prediction target) Whether a ship is detained (set the state as “1”) or not detained (set the state as 

“0”) in the current inspection. The detention rate over the whole dataset is 
3.55%. 

(b) Age The time interval (in years) between the keel laid date and the current PSC 
inspection date. 

(c) GT (Gross tonnage) Ship GT is a nonlinear measure of a ship’s internal volume, with 100 cubic feet 
as the unit.  

(d) Type Ship type (container ship, general cargo/multipurpose, bulk carrier, passenger 
ship, tanker, and other). 

(e) Depth The vertical distance (in meters) measured from the top of the keel to the 
underside of the upper deck at side. 

(f) Length The overall maximum length of a ship (in meters). 
(g) Beam  The width of the hull (in meters). 
(h) Flag-changing-times The total times of ship flag changing from keel laid date to the current PSC 

inspection date. 
(i) Casualties-in-the-last-five 
years 

Whether the ship is involved in casualties or not in the last five years. 

(j) Total-detentions  Total detentions of the ship in all previous PSC inspections. 
(k) Ship-flag-performance Ship flag performance is calculated based on the flag Black-Grey-White list 

provided by Tokyo MoU (Tokyo MoU, 2018b). It gets worse from “white”, 
“grey” to “black”. If the flag is not listed, the value for this variable is set to be 
“not listed”. 

(l) Ship-RO (recognized 
organization)-performance  

Ship RO performance is calculated based on RO performance list provided by 
Tokyo MoU (Tokyo MoU, 2018b). It gets worse from “high”, “medium”, 
“low” to “very low”. If the RO is not listed, the value for this variable is set to 
be “not listed”. 

(m) Ship-company-performance Ship company performance is calculated based on company performance list 
provided by Tokyo MoU (Tokyo MoU, 2018b). It gets worse from “high”, 
“medium”, “low” to “very low”. If the company is not listed, the value for this 
variable is set to be “not listed”. 

(n) Last-inspection-time The time of last PSC inspection within Tokyo MoU (in months). 
(o) Last-deficiency-number The number of deficiencies identified in last PSC inspection within Tokyo 

MoU. 
(p) Follow-up-inspection-rate The total number of follow-up inspections divided by the total number of 

inspections within Tokyo MoU. 

 228 

3.3 Feature encoding and outlier detection 229 

Among all the 15 features considered in the detention prediction model, three features are related to 230 

historical PSC inspection: last-inspection-time, last-deficiency-number, and follow-up-inspection-rate. For the 231 

ships that are inspected for the first time, the states of the three features are not available and we set them to be 232 

“−1” in both training set and test set. Besides, there are five categorical features that need to be encoded, namely 233 
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type, casualties-in-the-last-five-years, ship-flag-performance, ship-RO-performance, and ship-company-234 

performance. Ship type and casualties-in-the-last-five-years are nominal data and thus one-hot encoding is 235 

applied. Ship-flag-performance, ship-RO-performance, and ship-company-performance are ordinal data and 236 

thus label encoding is applied. After encoding categorical features, we have 10 categorical features and 10 237 

numerical features. To detect the outliers in the numerical features in the training set, we further analyze the 238 

distribution of the numerical features in the training set in boxplot. The results are shown in Appendix A. 239 

Although some “outliers” are indeed detected using the boxplot, one thing needs to be mentioned is that all 240 

the data is collected from official website and database and the data quality can be guaranteed. Therefore, the 241 

detected “outliers” are mainly due to the variation in feature values instead of data inaccuracy or noise. As 242 

shown in Appendix A, five features do not contain outliers: beam, depth, length, GT, and follow-up-inspection-243 

rate. Meanwhile, the outliers contained in the other features can be justified as follows. The oldest ship in the 244 

training set is 42 years old, while the oldest sailing ship still afloat over the world is more than 200 years old 245 

(Babamail, 2020), and thus the outliers detected for feature “age” are reasonable in our dataset. Although Figure 246 

A-1(d) shows that inspection records of ships with more than four ship flag changes are regarded to be outliers, 247 

there can be several reasons for the ship owners to decide to change ship flag, such as the policy on crew 248 

nationality requirements, trade flexibilities, and lower operating costs (Luo et al., 2013), and the value can be 249 

larger for older ships. Figure A-1(g) and Figure A-1(j) indicate that there are a lot of outliers for features “last-250 

deficiency-no” and “total-detentions” as more than 16 deficiencies in last inspection and more than 4 times of 251 

total detentions are regarded to be outliers. This is because in practice, the average number of deficiencies in a 252 

PSC inspection is about 2 and the regional detention rate is about 3% in Tokyo MoU in 2018 (Tokyo MoU, 253 

2019), which means that most of the ships are in satisfactory condition with few deficiencies and rare previous 254 

detentions. Therefore, ships with large number of deficiencies in last PSC inspection and several previous 255 

detentions should be paid more attention to as the features of these ships can provide valuable information on 256 

ship detention prediction. A lot of outliers also occur in the feature “last-inspection-time” for the records with 257 

the last inspection time more than 30.8 months ago. The reason is that as required by Tokyo MoU, the longest 258 

inspection time window for the ships is 18 months, out of which the ships are required to be inspected. 259 
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Nevertheless, some inspected ships only visit the Hong Kong port as well as other ports in the region of Tokyo 260 

MoU occasionally and some of them may have gone through ship repair, which means that the last inspection 261 

time can be much longer than 18 months (and even 30.8 months) and thus those values are also plausible. 262 

Therefore, although there are “outliers” detected by boxplot among the numerical features, we neither process 263 

them nor delete them based on the above domain knowledge. The distribution of the variables is shown in 264 

Appendix B in the supplementary materials.  265 

To summarize, the data preprocessing scheme used in this study is summarized in Table 3.  266 

Table 3. Summary of data preprocessing scheme 267 

Data preprocessing method Task 
Feature selection Selection of 15 features consisting of ship generic factors, dynamic factors, and 

inspection historical factors that are regarded to be highly related to ship detention 
Data fusion Combination of PSC inspection records from the public database provided by Tokyo 

MoU and ship related factors from World Register of Ships using ships’ unique 
identifier 

Dataset split Randomly splitting the whole dataset into training set (80% of data) and test set 
(20% of data) 

Categorical feature encoding One-hot encoding for ship type and casualties in the last five years, and label 
encoding for ship flag performance, RO performance, and company performance 

Outlier detection and analysis Outlier detection and analysis is applied to numerical features 

 268 

4. Ship detention prediction model 269 

4.1 Introduction of decision tree (DT) 270 

In this study, we adopt a classifier named balanced random forest (BRF) implemented in imblearn library 271 

in Python based on the framework proposed by Chen et al. (2004). BRF is a data-level method which is based 272 

on classification decision tree and random forest to address imbalanced classification problem. Before 273 

introducing the BRF model, we first introduce DT model, which is a popular supervised machine learning model 274 

for both regression and classification tasks. BRF contains several classification DTs based on classification and 275 

regression tree (CART) algorithm. All the training examples are first stored in the root node, and the root node 276 

is further split into successive nodes which contain subsets of the training examples in order to reduce node 277 

impurity. For each split, a feature and one of its values are selected for splitting. The criteria used to evaluate a 278 

split is Gini index (Breiman et al., 1984). CART algorithm requires recursively and binarily splitting the nodes 279 



13 
 

to build a binary DT. Originally, the split stops when all the nodes contain examples of the same output value. 280 

However, this may lead to too complicated trees that suffer from overfitting. Therefore, hyperparameters can be 281 

preset to control tree dimension. In this study, two hyperparameters for a single DT are used: 282 

(a) $max depth$: the depth of a leaf node is the number of splits taken from the root node to that leaf node. The 283 

criterion of $max depth$ requires the depth of all the leaf nodes in the DT not to exceed the value of $max 284 

depth$. The value of $max depth$ is an integer, and too large value results in a complicated tree while too small 285 

value results in a too simple tree. Therefore, the value for $max depth$ needs to be tuned. 286 

(b) $min samples leaf$: the minimum number of examples that is required to be contained in a leaf node. The 287 

value of $min samples leaf$ is an integer, and too small value results in a complicated tree while too large value 288 

results in a too simple tree. Therefore, the value for $min samples leaf$ also needs to be tuned.  289 

The procedure to generate a classification DT based on CART algorithm is presented in Appendix C in the 290 

supplementary materials (Breiman et al., 1984). 291 

4.2 Introduction of random forest (RF) and balanced random forest (BRF) 292 

Although DTs are interpretable and intuitive, a single DT is easy to overfit and is of high variance. To 293 

improve the performance of DTs, ensemble models based on DTs are proposed. An ensemble model contains 294 

multiple weak learners, which are prediction models performing a little better than random guessing. Random 295 

forest (RF) consisting of multiple DTs as weak learners is based on bootstrap aggregating (bagging) and is a 296 

state-of-the-art learning model that performs well in many applications (Breiman, 2001; Liaw and Wiener, 2002; 297 

Biau and Scornet, 2016). Compared to the construction process of a single DT, two layers of randomness are 298 

incorporated in RF construction process to reduce the dependence among the DTs: a bootstrap sample is used 299 

to construct each DT and a subset of features are considered for each split in a DT. Therefore, apart from the 300 

two hyperparameters in a single DT (i.e. $max depth$ and $min samples leaf$), RF model has two more 301 

hyperparameters:  302 

(c) $n estimators$: the number of DTs contained in the RF model. Averaging/voting of more trees is generally 303 

believed to better alleviate variance, and thus the value for this hyperparameter should be set as large as possible. 304 

(d) $max features$: the number of features considered in each split. The value for $max features$ is an integer 305 
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and the maximum value is the total number of input features. If the value is set to be too small, the performance 306 

of a single DT is negatively affected, whereas if the value is too large, the correlations of the DTs are increased. 307 

Therefore, the value for $max features$ needs to be tuned.  308 

If classical RF models are directly applied to imbalanced dataset, it is highly likely that bootstrap data 309 

contain few or even none of the minority samples, resulting in a tree with poor performance for predicting the 310 

minority class (Chen et al., 2004). This issue is addressed by the BRF model based on the idea of RF 311 

implemented by imblearn library in Python (Imbalanced-learn API, 2020). The only difference between the 312 

BRF model and the classical RF model when applied to binary classification is that when sampling for each 313 

single tree, BRF first draws all examples in the minority class and the same number of examples from the 314 

majority class without replacement to create a balanced dataset. Then, a bootstrap sample is drawn on the new 315 

balanced dataset before feeding to a single tree. For example, in our training set which contains 55 minority 316 

examples and 1,545 majority examples, the BRF would first draw all the 55 minority examples and 55 majority 317 

examples without replacement to form a new dataset containing 110 samples for a single tree. Then, a bootstrap 318 

sample of the new dataset is drawn for this tree. Like the classical RF, it only considers a subset of all the features 319 

for each split. All the other settings and the hyperparameters in BRF are the same as those in the RF models: $n 320 

estimators$ DTs are contained; the depth of each DT should not exceed $max depth$ and the minimum number 321 

of examples contained in a leaf node is $min samples leaf$. The number of features considered for each split is 322 

$max features$, and Gini index is used to evaluate a split.  323 

4.3 Evaluation metrics  324 

The evaluation metrics for binary classification problems are defined based on Table 4. Traditionally, model 325 

accuracy, which is represented by  326 

TP TNaccuracy
TP FP FN TN

+
=

+ + +
, 327 

is the most commonly used measure to evaluate the performance of classifiers. However, it is not suitable to be 328 

applied to evaluate the performance of classifiers developed for imbalanced data. Under this condition, other 329 

effective evaluation metrics should be used. 330 
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 331 

Table 4. Confusion matrix for binary classification problem 332 

 Predicted to be in class “1” 
(with detention) 

Predicted to be in class “0” 
(without detention) 

Actual in class “1”  
(with detention) 

True positives (TP) False negative (FN) 

Actual in class “0”  
(without detention) 

False positive (FP) True negative (TN) 

In this study, we adopt four popular metrics to evaluate the performance of the classifiers developed for 333 

imbalanced data (He and Garcia, 2009; Sun et al., 2009; Galar et al., 2012): recall, precision, F-measure and 334 

area under a Receiver Operating Characteristics (ROC) curve (ROC AUC) as our main focus is on the detained 335 

ships. The four metrics are defined based on Table 4 and the reasons for choosing them in this study is 336 

summarized in Table 5. 337 

Table 5. Summary of metrics 338 

Metric Definition  Reason for choosing the metric 

recall TP
recall

TP FN
=

+
 

It shows the percentage of detained ships that are correctly 
identified by the proposed model, which is also called true positive 
rate. 

precision TP
precision

TP FP
=

+
 

It shows the percentage of detained ships among all the ships that 
are predicted to be detained by the proposed model. 

F-measure 
2

-
1 1

F measure

recall precision

=

+

 It shows how accurate and robust a classifier is, especially when 
dealing with imbalanced data. 

ROC AUC 

Area under the curve composed 
by pairs of ( , )

rate rate
FP TP , where 

rate

FP
FP

FP TN
=

+
 and rate

TP recall=  

It is an expectation that a uniformly drawn ship with detention is 
ranked before a uniformly drawn random ship without detention 
as predicted by the proposed classifier.  

 339 

5. Model evaluation and results 340 

5.1 Model performance 341 

As mentioned in Section 4.2, a hyperparameter tuple containing 3 hyperparameters in the BRF model needs 342 

to be tuned: $max depth$, $max features$, and $min samples leaf$. We use grid search with 5-fold cross-343 

validation and ROC AUC as the metric on the training set to tune the three hyperparameters. We fix $n 344 

estimators$ to be 200, and if more than half of the trees in the BRF model (i.e. more than 100 trees) vote a ship 345 

to be detained, the ship is predicted to be detained as the final output. Otherwise, the ship is predicted not to be 346 
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detained. The search value space for $max depth$, $max features$, and $min samples leaf$ and the optimal 347 

values found are shown in Table 6. 348 

Table 6. Hyperparameter tuning in the BRF model 349 

Hyperparameter Search boundary Optimal value 
$max depth$ from 5 to 11 7 
$max features$ from 4 to 9 9 
$min samples leaf$ from 1 to 7 3 

Both $max depth$ and $min samples leaf$ are used to control tree complexity: a deeper tree with smaller 350 

minimum number of samples required to be in a leaf node would fit the training data better and reduce bias to 351 

a larger extent. Meanwhile, as a tree gets more complex, the model variance becomes higher. As we are in the 352 

context of RF which contains a certain number of estimators to reduce variance, we can try deeper trees with 353 

smaller minimum number of samples required to be in a leaf node. Therefore, we let the search space for $max 354 

depth$ contain large values from 5 to 11, and let the search space for $min samples leaf$ contain small values 355 

from 1 (which is the minimum allowable value for this hyperparameter) to 7. As for $max features$, as the 356 

recommended value in regression problem is about n_features / 3  (Friedman et al., 2001), which is between 6 357 

and 7 in this problem. We extend the recommended value by 2 from two sides to form the search value space 358 

ranging from 4 to 9. It should also be mentioned that if we apply the BRF model to other problems with 359 

imbalanced datasets and even when dealing with the same problem with different datasets (e.g. the inspection 360 

records from other ports or other MoUs), the optimal hyperparameter values found in this problem may not be 361 

directly applied, as in practice the best values for these hyperparameters will depend on the problem, and should 362 

be treated as tuning parameter (Friedman et al., 2001). We then use the optimal hyperparameters to construct 363 

the BRF classifier on the whole training set and validate its performance on the test set. The confusion matrix 364 

of the test set is shown in Table 7. The performance of the BRF model is shown in Table 8. 365 

  366 
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Table 7. Confusion matrix of the test set by using BRF 367 

 No. of predicted samples 
with detention 

No. of predicted samples 
without detention 

Total 

No. of actual samples with detention 13 3 16 
No. of actual samples without detention 46 338 384 
Total 59 341 400 

 368 

Table 8. Model performance on test set by using BRF 369 

Metric Average* precision Average recall Average F-measure ROC AUC  
Score 0.61 0.85 0.64 0.85 

Note*: Average here means the arithmetic mean of the metric for class “1” and class “0” 370 

The precision of class “0” (i.e. without detention) and class “1” (i.e. with detention) is 0.99 and 0.22, 371 

respectively, which means that among all the ships predicted not to be detained, 99% will not be detained. 372 

Meanwhile, 22% of the ships predicted to be detained will actually be detained. The arithmetic mean of the 373 

precision scores for class “0” and class “1” is 0.61. The recall of class “0” (i.e. without detention) is 0.88 and 374 

that of class “1” (i.e. with detention) is 0.81, which indicates that 88% of the ships without detention are 375 

accurately predicted whereas 81% of the ships with detention are accurately predicted by the BRF model. The 376 

arithmetic mean of the recall scores for class “0” and class “1” is 0.85. Given the precision and recall scores, 377 

F-measure for class “0” is 0.93 and F-measure for class “1” is 0.35, and thus the arithmetic mean of F-measure 378 

is 0.64. The ROC AUC of the BRF model is 0.85, which shows that the proposed model performs 70% better 379 

than random guessing.  380 

In the above analysis, a ship is predicted to be detained if over half of the trees contained in the BRF predict 381 

it to be detained. We can further adjust the threshold (i.e. the number of trees that predict a ship to be detained 382 

divided by the total number of trees) if the decision maker would like to inspect less ships when the resources 383 

are limited (setting a higher threshold) or the decision maker would like to capture more ships that might be 384 

detained (setting a lower threshold). The decisions under different thresholds are shown in Table 9. 385 

Table 9. Decisions for detention under different thresholds  386 

Threshold 0.3 0.4 0.5 
(benchmark) 

0.6 0.7 0.8 

No. of ships without detention & predicted to be detained 107 64 46 28 21 12 
No. of ships with detention & predicted to be detained 15 13 13 10 6 6 
Total no. of ships predicted to be detained 122 77 59 38 27 18 
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Table 9 indicates that if the inspection resources are quite limited, e.g. only no more than 30 ships can be 387 

inspected among all the 400 ships, then about 22.22% of the inspected ships will be detained. Considering the 388 

actual detention rate is about 3.55%, the proposed model can identify the detained ships about six times more 389 

efficiently. On the contrary, if the port state authority would like to identify more ships that will actually be 390 

detained, after inspecting 122 ships, 15 ships that are detained can be accurately identified and the detention 391 

rate is 12.30%, which is about 3.5 times as efficient as the currently implemented scheme.  392 

5.2. Comparison with other machine learning models and Ship Risk Profile 393 

5.2.1 Comparison with current literature 394 

To the best of our knowledge, there are three studies that aim to predict detention rate of all ship types 395 

visiting a port in current literature: Xu et al. (2007a), Xu et al (2007b), and Gao et al. (2008). The three studies 396 

all use the precision of ships in class “1” (i.e. with detention) as the evaluation metric: the models first make 397 

prediction on the ships that are highly likely to be detained (i.e. of high-risk) and inspect them. If the ship is 398 

detained, the prediction is regarded to be accurate. The highest precision scores in the test sets of the three 399 

studies are 13.44%, about 20%, and 20.93%, respectively. In our model, 13 ships are detained among the 59 400 

ships that are predicted to be high-risk, and thus the precision score is 22.03%, which is higher than that in the 401 

current literature.  402 

5.2.2 Comparison with other machine learning models 403 

In this section, the proposed BRF model is compared with the performance of several popular supervised 404 

and unsupervised machine learning models. For supervised machine learning models, we consider random 405 

forest (RF) (Breiman, 2001), gradient boosting decision tree (GBDT) (Breiman, 1997), RF with synthetic 406 

minority over-sampling technique (SMOTE) (Chawla et al., 2002), GBDT with SMOTE, RF in groups, and 407 

GBDT in groups. The RF and GBDT models are implemented by sklearn library in Python (Pedregosa et al., 408 

2011) while fixing the number of trees to be 200, and the hyperparameters (i.e. $max depth$, $max features$, 409 

and $min samples leaf$) are tuned by grid search. The SMOTE algorithm is implemented by imblearn library 410 

(Imbalanced-learn API, 2020). More specifically, in RF with SMOTE and GBDT with SMOTE, balanced 411 

training set by over-sampling of the samples in minority class is first generated by using SMOTE algorithm 412 
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before feeding into the RF and GBDT models. In RF in groups and GBDT in groups, the training set are 413 

randomly split into several sub-training sets with each containing all the 55 records with detention and 55 414 

records without detention (i.e. by sub-sampling the majority class). To reduce overfit, records without detention 415 

contained in the sub-training sets are mutually exclusive with each other, and thus we can form a total of 28 416 

sub-training sets. In each sub-training set, a record is predicted to be detained if more than half of the decision 417 

trees in the RF/GBDT model predict it to be detained. The final prediction result is then voted by all sub-training 418 

sets: a record is predicted to be detained if more than 14 sub-training sets predict it to be detained; otherwise, 419 

the record is predicted not to be detained.  420 

Apart from using supervised machine learning models to predict ship detention, it is also interesting to treat 421 

ship detention as anomaly and thus unsupervised anomaly detection methods can be applied. We adopt two 422 

popular anomaly detection models for comparison: isolation forest (denoted by iForest) (Liu et al., 2008) which 423 

is implemented by sklearn library and the number of trees contained in the model is set to be 200, and auto-424 

encoder neural network (denoted by auto-encoder NN) (Ballard, 1987) which is implemented by PyOD library 425 

in Python (Zhao et al., 2019). It should be mentioned that as auto-encoder NN requires feature standardization, 426 

we re-encode the missing values of the features related to previous PSC inspection, i.e. “last-inspection-time”, 427 

“last-deficiency-number”, and “follow-up inspection rate” for the inspection records without PSC inspection 428 

before. The values of “last inspection time” and “follow-up-inspection-rate” for ships without detention in both 429 

training set and test set are filled by the mean values in the training set and “last-deficiency-number” is filled 430 

by the median value in the training set. Then another feature called “first-time-inspection” is added, which is 431 

set to 1 if a ship is not inspected before and 0, otherwise. Therefore, we have a total of 21 features, and thus 432 

both the input layer and output layer of an auto-encoder NN should have 21 nodes. We consider three auto-433 

encoder NNs with one or two hidden layers as we only have limited number of features and training samples. 434 

More specifically, we consider two auto-encoder NNs of one hidden layer with 5 nodes and 10 nodes 435 

respectively (denoted by auto-encoder NNs(a), auto-encoder NNs(b)), and one auto-encoder NN of two hidden 436 

layers with 8 nodes in each layer (denoted by auto-encoder NNs(c)). We further set the ratio of anomalous 437 

samples to be 15%, which means that a sample is regarded to be anomalous if and only if its generated score is 438 
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in top 15%. All the other settings are in default. The performance of the supervised and unsupervised machine 439 

learning models is shown in Table 10. 440 

Table 10. Model performance and comparison 441 
Metric/Model Average 

Precision 
Average recall Average  

F-measure 
ROC AUC  

BRF 0.61 0.85 0.64 0.85 
RF 0.52 0.50 0.51 0.50 
GBDT 0.68 0.56 0.58 0.56 
RF+SMOTE 0.58 0.58 0.58 0.58 
GBDT+SMOTE 0.62 0.58 0.60 0.58 
RF in groups 0.61 0.82 0.65 0.82 
GBDT in groups 0.60 0.82 0.64 0.82 
iForest 0.59 0.71 0.62 0.71 
auto-encoder NNs(a) 0.56 0.71 0.58 0.71 
auto-encoder NNs(b) 0.56 0.71 0.58 0.71 
auto-encoder NNs(c) 0.56 0.71 0.58 0.71 

 442 

Table 10 indicates the BRF model performs best among all the models listed if evaluated by average recall 443 

and ROC AUC, while GBDT performs best if evaluated by average precision and RF in groups performs best if 444 

evaluated by average F-measure. If evaluated by ROC AUC, two models combining random sub-sampling of 445 

majority class with classical RF and GBDT models (i.e. RF in groups and GBDT in groups) perform second 446 

best, followed by the unsupervised anomaly detection models: iForest and auto-encoder NNs in three different 447 

structures. Meanwhile, applying the classical RF model and GBDT model directly to the imbalanced dataset 448 

has the worst performance, and the performance of RF model is even no better than random guessing. The 449 

results indicate that classical machine learning models for classification could not perform well on imbalanced 450 

dataset, even for the state-of-the-art models such as RF and GBDT, which is consistent with current literature 451 

(Sun et al., 2009). Besides, the performance of the models which combine over-sampling or generation of 452 

synthetic samples in minority class (such as SMOTE) with traditional machine learning models neither perform 453 

well as a result of overfitting and the inaccuracy brought about by the generation process of synthetic samples. 454 

Although balanced dataset can be formed by using random sub-sampling methods in majority class before 455 

feeding into classical machine learning models, such as RF in groups and GBDT in groups, model performance 456 

can be adversely impacted as only a very small number of samples in majority class are used in the model of 457 

each group. The samples in minority class can be regarded as anomalies, which refer to the patterns in the data 458 
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that do not conform to a well-defined notion of normal behavior. Within this context, anomaly detection models 459 

can also be applied to the classification task of highly imbalanced dataset. Anomaly detection refers to the 460 

problem of finding patterns in data that do not conform to expected behavior (Chandola et al., 2009). As ship 461 

detention is mainly determined by whether detainable (fatal) deficiencies are detected in the current PSC 462 

inspection (which can only be observed during the inspection process), ships with detention may not have 463 

distinct and abnormal features (including ship-related features and PSC inspection related features) compared 464 

to ships without detention, and thus the performance of applying anomaly detection methods to predict ship 465 

detention may not have supreme performance. Meanwhile, data of normal samples can often contain features 466 

that tend to be similar to the actual anomalies and hence makes the anomalies difficult to be distinguished and 467 

removed (Chandola et al., 2009).  468 

The main reason for us to choose BRF model as the prediction model of ship detention is threefold. First, 469 

it actually makes a compromise between sub-sampling and over-sampling, which are both popular methods to 470 

deal with imbalanced dataset. To be more specific, it randomly formulates balanced datasets and bootstraps on 471 

the datasets to construct each tree (sub-sampling in majority class). Meanwhile, as several trees contain in a 472 

BRF model, over-sampling of minority class and several times of sub-sampling of majority class can be realized 473 

as the forest grows, and thus the problem of overfitting and ignoring too many majority samples can be reduced. 474 

Besides, it does not require the samples in minority class to have remarkable abnormal features compared with 475 

the samples in majority class and thus is more suitable to the task of ship detention detection. On top of that, as 476 

BRF model is based on decision tree which are explainable and can be visualized, the working process of the 477 

BRF model is more comprehensible and acceptable for the experts in shipping industry.  478 

5.2.3 Comparison with Ship Risk Profile  479 

The currently implemented ship selection scheme at the Tokyo MoU is Ship Risk Profile (SRP). SRP 480 

assigns different weighting points to different states of ship type, ship age, ship flag, RO and company 481 

performance, and the number of deficiencies and detentions in previous PSC inspections (Tokyo MoU, 2014). 482 

Based on the total points, ships are divided into three risk categories: low risk ship (LRS), standard risk ship 483 

(SRS), and high risk ship (HRS). Inspection time windows are attached to the profiles, and thus the inspection 484 
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priority can be determined as presented in Wang et al. (2019). Based on the SRP ship selection scheme, the PSC 485 

inspection rate (No. of individual ships inspected/No. of individual ships visited) at the Hong Kong port is 12.02% 486 

(621 out of 5,165) in 2016, 11.97% (632 out of 5,280) in 2017, and 13.52% (708 out of 5,235) in 2018, and the 487 

average inspection rate over the three years is 12.50% (Tokyo MoU, 2017a, 2018a, 2019). As there are 400 488 

ships in our test set which are actually inspected, the total number of visiting ships can be estimated to be 3,200 489 

and 16 of them are detained. We compare the ship selection efficiency of the SRP and the proposed BRF model 490 

by calculating the number of detentions identified after inspecting 0.5%, 1%, 1.5%, 2%, …, 12.5% of the total 491 

3,200 foreign visiting ships. The inspection sequence generated by the SRP is calculated by using the formulas 492 

proposed by Wang et al. (2019). The inspection sequence generated by the BRF model is determined by the 493 

voting rate of the trees in the BRF model for each ship in descending order. The voting rate for a ship is the 494 

number of trees predicting the ship to be detained divided by the total number of trees in the BRF model. The 495 

results are shown in Figure 2. 496 

 497 

Figure 2. Comparison between BRF and SRP regarding ship detention 498 

In Figure 2, the Y axis shows the total number of identified ships with detention, and the X axis shows the 499 

percentage of ships that are inspected among all the foreign visiting ships. We analyze Figure 2 from three 500 

perspectives: 501 

(a) Two red vertical lines in Figure 2 show the differences between the BRF model and the SRP considering the 502 

ability to identify detained ships after inspecting the same number of ships (using the same inspection resources). 503 

For example, when the inspection rate is 2.0% (i.e. selecting 64 ships for inspection out of the total 3,200 coming 504 
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ships), the proposed BRF model can identify 13 ships with detention whereas the total number of detained ships 505 

identified by SRP is only six. Therefore, the BRF model is 2.17 times more efficient than the SRP considering 506 

the ability to identify detained ships. Meanwhile, the BRF model could pick out the total 16 detained ships after 507 

inspecting 6% of all the visiting ships as indicated by the red vertical dash line. If 6% of ships are inspected by 508 

the SRP, only eight of the detained ships can be identified. 509 

(b) The intersections of the black dot horizontal line with the red dash vertical line and black dot vertical line 510 

show the resources needed to identify all the 16 detained ships in the test set. The BRF model needs to inspect 511 

6% of all ships to find out the total 16 detained ships whereas the SRP needs to inspect 11.5% of all ships to 512 

identify all the detained ships. Therefore, the overall efficiency of BRF model is 1.92 times higher than that of 513 

SRP ship selection scheme.  514 

(c) Overall, after inspecting the total 400 ships, the average improvement ((No. of detentions identified by BRF 515 

− No. of detentions identified by SRP)/No. of detentions identified by SRP) when the inspection rate is 0.5%, 516 

1.0%, …, 12.0% of the BRF model over the SRP is 73.72%.  517 

5.3 Decision tree performance in the BRF model 518 

We further denote the ratio of ships selected for inspection as r , 0.5%,  1.0%,  ,12.5%r …= , and the total 519 

number of visiting ships as 400N = . We calculate the total number of detentions identified by an average tree 520 

(the average detentions identified by one tree in BRF model, denoted by avg_tree for short), the whole BRF 521 

model, and SRP selection scheme given the inspection ratio r  to compare their performance. Denote the total 522 

number of trees contained in the BRF model as M , and one tree is denoted by m . For tree m , denote the 523 

number of ships predicted to be detained as mα , and thus the number of ships predicted not to be detained is 524 

400 mα− . mβ  ships will actually be detained among the mα  ships predicted to be detained, and ˆ
mβ  ships will 525 

actually be detained among the 400 mα−  ships predicted not to be detained. The detention rate of the ships 526 

predicted to be detained is /m m mη β α=   and the detention rate of the ships predicted not to be detained is 527 

ˆˆ / (400 )m m mη β α= − . Given the inspection ratio r , the procedure to construct an avg_tree rΘ  is presented in 528 

Procedure 2: 529 
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 530 
Figure 3. Comparison results of the BRF, SRP, and the avg_tree in BRF 531 

Procedure 2: Construction of avg_tree given inspection ratio 

Input    inspection ratio r ; total number of ships N ; total number of trees M ; the number of 

ships predicted to be detained mα  , 1,...,m M=  ; the detention rate mη   among ships 

predicted to be detained and ˆmη  among ships predicted not to be detained, 1,...,m M= . 

Output   avg_tree rΘ  given r  

Step 1: for tree 1,...,m M=  

if m N rα ≥ ×  

Randomly pick out N r×  ships from all the ships predicted to be detained for 

inspection. The estimated number of identified ships with detention is 
r
m mN rθ η× ×= . 

else 

Select all the mα   ships predicted to be detained and mN r α× −   ships 

randomly from the ships predicted not to be detained. The estimated number of 

identified ships with detention is ˆ( )r
m m m m mN rθ α η α η−× + × ×= .  

end if 

end for 

Step 2: Calculate avg_tree rΘ  given r  as 
1

( ) /
M

r r
m

m
Mθ

=

Θ = ∑  and return rΘ . 

      The comparison results of the performance of the avg_tree in BRF, the whole BRF model and the SRP 532 

ship selection scheme given different inspection ratio r  are shown in Figure 3. 533 

Figure 3 shows that the performance of the avg_tree in the BRF model is better than the currently used SRP 534 

ship selection scheme while is worse than the whole BRF model. Particularly, the avg_tree performs better than 535 

SRP when the inspection rate is between 1.0% and 10.0% and at 11.0%. When the inspection rate is 0.5%, 536 
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10.5%, 11.5% or 12.0%, the avg_tree performs a little worse than SRP. In addition, the average improvement 537 

of the avg_tree over SRP is 26.13%. 538 

To better illustrate the structure of a decision tree in the BRF model, we randomly visualize a decision tree 539 

with average performance in the BRF model as shown in Figure 4. 540 

 541 

Figure 4. Visualization of a decision tree in BRF 542 

The decision tree contains three types of nodes: root node, internal node, and leaf node. As shown in Figure 543 

4, node 1 is the root node containing all the training examples. As the training set contains 55 examples in class 544 

“1”, the total number of examples in the new dataset generated by sampling all the examples in class “1” and 545 

the same number of examples in class “0” without replacement is 110. Then a bootstrap sample is drawn from 546 

the new dataset, with 50 examples in class “0” and 60 examples in class “1”. As bootstrapping relies on random 547 

sampling with replacement, there are 65 distinct examples among the total 110 selected examples. The leaf 548 

nodes (i.e. node 4, node 8, node 9, nodes 11 to 15) are the nodes that are not further split and give the final 549 

prediction results, while the internal nodes (i.e. node 2, node 3, nodes 5 to node 7, and node 10) are further split 550 

to other internal nodes or leaf nodes. The selected splitting feature and value are shown in the first line of the 551 

root node and the internal nodes. For example, the splitting feature selected by node 3 is “GT” and the 552 
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corresponding splitting value is “20304.0”. This means that among all the examples contained in node 3, 553 

examples with feature “GT” no more than “20304.0” are split to the left branch (i.e. node 6) while examples 554 

with “GT” more than “20304.0” are split to the right branch (i.e. node 7). In all the nodes shown in Figure 4, 555 

“gini” is the Gini index of the examples contained in this node. “Samples” is the number of distinct examples 556 

contained in this node, while “value” is a list with the first term representing the total number of samples in 557 

class “0” and the second term representing the total number of examples in class “1”. The confusion matrix 558 

generated by this decision tree on the test set is shown in Table 11, and its performance compared to the whole 559 

BRF model and SRP is shown in Figure 5. 560 

Table 11. Confusion matrix of test set generated by a decision tree in BRF 561 

 No. of predicted 
samples with detention 

No. of predicted samples 
without detention 

Total 

No. of actual samples with detention 13 3 16 
No. of actual samples without 
detention 

101 283 384 

Total 114 286 400 

 562 

Figure 5. The performance of BRF, SRP and one decision tree in the BRF model 563 

5.4 Model performance on balanced dataset 564 

To access the overall accuracy of the proposed BRF model, we apply the BRF model to a new balanced 565 

dataset formulated by applying the SMOTE algorithm to the original imbalanced dataset. Recall that we totally 566 

have 2,000 records in the whole dataset, while 71 of them are with detention and 1,929 of them are without 567 

detention. We first apply the SMOTE algorithm to form a new balanced dataset which contains 3,858 sample, 568 

with 1,929 samples with detention (71 are from the original dataset while 1,858 are synthetic) and 1,929 samples 569 
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without detention (all of them are from original dataset). Then, we randomly divide the new balanced dataset 570 

into training set (80% samples) and test set (20% samples). To find the optimal values for hyperparameters $max 571 

depth$, $max features$, and $min samples leaf$, we apply grid search method for hyperparameter tuning by 5-572 

fold cross-validation on the training set with metric as ‘accuracy’. The optimal values for $max depth$, $max 573 

features$, $min samples leaf$ are 9, 6, and 1, respectively. The BRF model is constructed on the whole training 574 

set with the optimal hyperparameter values. The confusion matrix of the prediction results is shown in Table 12 575 

and the performance of the model is summarized in Table 13. 576 

Table 12. Confusion matrix of the test set by using BRF (new balanced dataset) 577 

 No. of predicted 
samples with detention 

No. of predicted samples 
without detention 

Total 

No. of actual samples with detention 369 4 373 
No. of actual samples without 
detention 

21 378 399 

Total 390 382 772 

 578 

Table 13. Model performance on test set by using BRF (new balanced dataset) 579 

Metric Average* 
accuracy 

Average 
precision 

Average 
recall 

Average  
F-measure 

ROC AUC  

Score 0.97 0.97 0.97 0.97 0.97 
Note*: Average here means the arithmetic mean of the metric for class “1” and class “0” 580 

It can be seen from Table 13 that when applying the BRF model on balanced dataset, it can achieve 581 

satisfactory performance with average accuracy as 0.97 and ROC AUC as 0.97. Actually, the working process 582 

of the BRF model on balanced dataset is quite similar to the traditional RF model as the bootstrap sample is also 583 

generated on the whole dataset (with equal number of samples in two classes) for each tree.  584 

 585 

6. Conclusions and future work 586 

PSC inspection is the guard of marine safety, the marine environment, and the decent working and living 587 

conditions of seafarers. To help the port state authorities to identify ships that are highly likely to be detained in 588 

PSC inspections, a BRF model which is able to address the imbalanced distribution of the dataset in the 589 

classification problem is developed. The BRF model is constructed by using 1,600 inspection records at the 590 
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Hong Kong port from Jan 2016 to Dec 2018 and its performance is validated by another 400 inspection records 591 

conducted at the same port in the same time period. The average F-measure of the BRF model is 0.64 and the 592 

ROC AUC is 0.85 on the test set. Besides, 81.25% of the ships that are actually detained can be identified by 593 

the BRF model. If the same inspection resources (i.e. the resources used to inspect the same number of ships) 594 

are used to inspect the ships selected by the SRP, only six of the detained ships can be identified. Meanwhile, 595 

when the inspection resources allowing all the 16 ships with detention in the test set identified by the BRF model 596 

are allocated to inspect the ships selected by the SRP, only eight of the detained ship can be identified. To allow 597 

the SRP finding out all the ships with detention, 91.67% more ships need to be inspected compared to the BRF 598 

model. Overall, after inspecting the total 400 ships, the average improvement of the BRF model over the SRP 599 

is 73.72%. To better illustrate the working process of the BRF model, the performance of an average decision 600 

tree in the BRF model is analyzed. The average decision tree performs better than SRP ship selection scheme 601 

with the average improvement as 26.13%. A decision tree in the BRF model is also visualized and discussed.  602 

The BRF model which aims to address the problem of classification on imbalanced dataset can be further 603 

applied to address the practical problems in road transport and air transport where imbalance exists in datasets. 604 

For road transport, the BRF model can help to solve the problems of vehicle classification on imbalanced 605 

datasets, road traffic crashes detection and prediction, imbalanced traffic flow and traffic congestion prediction, 606 

and severe traffic accident prediction, etc. For air transport, the BRF model can be applied to air crash prediction, 607 

unqualified craft detection, airplane failure detection, and flight delay prediction, etc. 608 

The proposed BRF model is the very first few models that take the imbalanced distribution of ships with 609 

and without detention into account when developing prediction models on ship detention. It can help the port 610 

state authorities to target high-risk ships more accurately and efficiently, and thus enhance the role of PSC 611 

inspection for guaranteeing “safer shipping, cleaner oceans”. For future research, we can further combine 612 

different databases to incorporate more ship and port state features, such as the database of ship accidents and 613 

incidents, Lloyd’s Register database which provides information on ship assurance, certification, inspection, 614 

and training, and the background of port state control officers. Moreover, once new ship selection schemes based 615 

on machine learning models are implemented, we can continuously collect data and apply reinforced learning 616 
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to improve the outcome (Zhou et al., 2019; Qu et al., 2020). Besides, the proposed BRF model can be applied 617 

to other port states for ship detention prediction, and the predicted results can be analyzed and compared to 618 

generate insights on differences among ports as well as practical management strategies. 619 
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