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Abstract

In this paper, we investigate the demand-flexibility of large-collections of electric vehi-

cles (EVs) by scheduling their demand to flatten the electricity duck curve that emerge

as a result of growing solar power production. The scheduling problem is investigated

in a bi-objective setting and an additional objective function related to the amount of

charge provided to EVs is also analyzed. The first objective is the minimization of

the ramp-up requirements of the system. The second objective reflects the quality of

service and the potential level of charging station’s profit margins. An important char-

acteristics of the proposed model is the effect of total charging capacity on the two

objective functions. The analysis is carried out based on a quadratic programming

model which is used to calculate the Pareto Front of the two objective functions. This

is done through a case study based on real-world data for EV driver behavior, solar

generation, and energy consumption. The computational experiments show that there

is a high level of competition between these two objectives. Moreover, the effect of

different maximal charging capacities on these objectives is observed.
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1. Introduction

In the past several years, there has been an immense increase in the use of solar

energy for electricity production. Even though renewable generation reduces carbon

emissions and improves air quality, the power grid operators face operational chal-

lenges with high solar penetration. The main one is related to the imbalance between5

peak electricity demand and renewable energy production during afternoons, resulting

in the “duck curve” issue. As the difference between peak demand and production from

non-renewables increase, power system operators need to ramp up their production ca-

pacity, which leads to financial losses [1, 2]. As the share of renewable solar increases,

it is expected that “duck curves” will be more problematic.10

In parallel, many governments have provided significant incentives for electric ve-

hicle (EV) adoption to meet net-zero emission goals. This has resulted in a staggering

growth in the rate of EVs adoption, and it is expected that in the next few decades, EVs

will become a primary mode of ground transportation. These new developments have

resulted in the emergence of a new field in research that is dedicated to evaluating the15

potential of exploiting EV demand flexibility to address congestion issues and release

additional capacity, which in turn enables higher connection of low carbon technolo-

gies such as EVs and renewables. For the case of EVs, this is often done through

scheduling the charging of large groups of vehicles, in a way that minimizes the ramp-

up requirements of non-renewable power generation. In addition to EVs, residential20

and industrial demand response programs, as well as energy storage technologies are

used to achieve this goal[3].

EV charging infrastructures can be divided into three groups. The first one is fast

charging which can fill up a typical EV battery in less than 30 minutes with a 50+ kW

charger. Second option is to charge vehicles at home typically during night time with25

2-3 kW residential chargers. However, none of the charging options are suitable for

smoothing duck curves since the charging duration is very short for fast charging and
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there is no solar generation during night time charging. Therefore, optimal charging

of EVs located at parking lots (e.g. workplace, university, etc.) with level 2 chargers

(5-7 kW) can effectively contribute to reduction in power system ramping requirements30

[4, 5]. Over the last years, there is a growing body of literature on optimal scheduling

of EVs located in parking lots [6, 7, 8]. For example, small-scale PV charging systems

can effectively lower charging demand and increase carbon savings [9]. Research has

been dedicated to exploring a wide range of other benefits of using smart scheduling

of EV charging at the workplace [10, 11, 12] and commercial [13] parking lots. The35

potential of scheduling EV charging to lessen the duck curve has also been assessed in

the context of park-and-ride facilities [14].

Optimal demand-side scheduling approach has also been applied to home appli-

ances and thermostatically controlled loads for lowering peak demand [15, 16]. How-

ever, the demand flexibility potential of EVs is much higher due to the size, aggregate40

load, and the duration of EV charging. Some examples of EV demand scheduling can

be found in [17], [18], and [19]. Some important new issues that arise in EV charging

systems are connected to the amount of satisfied charging requests [20, 21]. When

designing such systems, the choice of an adequate maximal charging capacity (MCC)

of the facility is of utmost importance due to its relation to the operations of electric45

distribution systems and infrastructure costs[22, 23, 24].

In the majority of published research, the analysis of positive effects of schedul-

ing EV charging are observed from a single objective perspective, usually minimizing

ramp-up requirements or peak loads. In this paper, the focus is on a more holistic ap-

proach. To be exact, we explore the relationship between the minimization of ramp-up50

requirements and the level of satisfied EV charge requests. In addition, this relation is

examined for different values of the MCC. To achieve this, a quadratic programming

model is developed.

Another issue with existing literature is the lack of use of real-world data for charg-

ing sessions of individual EVs. This is, to a large extent, a consequence of the absence55

in availability of such data sets. In [25] and [26], data collected for a Dutch smart EV

charging provider ElaadNL was used. In [27], data collected from a Chinese charging

system was adopted, while in [28] data from charging network in Los Angeles was
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used. The problem with these data sets is difficult access for the wider research com-

munity. This gap has recently been filled by researchers from the California Institute60

of Technology (Caltech) by providing the ACN-Data [21] set that provides the infor-

mation on a large number of individual EV charging sessions. It should be noted that

similar data can be found for residential EV charging through the Pecan Street Dataport

[29] that is publicly available for academic research. Since this paper considers public

charging, the ACN-Data is used to generate case studies.65

The paper is organized as follows. The next section introduces the quadratic pro-

gramming model used for finding the optimal schedules for EV charging. The third

section gives details on the method used for generating test instances for the case study.

In the fourth section, the results of the conducted computational experiments are given.

This section is divided into three subsections. The first one focuses on the effect of dif-70

ferent MCCs; the second one, on the relation between these values and the duck curve,

and the third one explores the link between ramp-up requirements and the amount of

satisfied charging requests.

2. Mathematical Model

In this section, the proposed quadratic program(QP) is presented in detail. The75

model extends the one presented in [21]. The main differences are the consideration of

maximal charge of the station at each time period, minimal amount of charge received

by an EV and a new objective focused on maximizing the total charge provided to EVs

visiting the facility. The proposed model is based on the following assumptions. The

scheduling is done over a predefined time window, which is divided into time periods80

of equal length. It is assumed that EVs arrive at the charging station (office parking)

in different time periods. The arrival and departure time of each EV are known in

advance. An EV can be charged during all time periods at the charging station and

the charge rate can be adaptable. Upon arrival, each EV requests a specific amount of

charge that it wishes to receive. It is further assumed that the maximal charging rate85

of the EV is higher that the power of the chargers used in the station. Consequently,

the charging rate is independent of the vehicle being charged. The base load, the total
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electricity consumption minus renewable generation, are known for each time period.

The proposed QP model is designed in a bi-directional setting. The goal of the

model is to find a schedule for EV charging with the following requirements. The first90

one is related to the power system operator who wishes to avoid periods with high

ramping requirements. The second goal, on the other hand, is related to EV drivers

who wish to maximize the amount of energy transferred to EVs. The parameters used

in the model are given as below:

• The total number of time periods is T , and a corresponding set T = {1..T }95

denotes all time periods.

• The total number of EVs that visit the charging station is N. In addition, a set

E = {1..N} of all EVs is defined.

• Parameters ai / di are defined for each i ∈ E, and provide the arrival / departure

time period for an EV i.100

• A parameter mt is defined for each t ∈ T , which provides the maximal charging

capacity of the charging station. To be more precise, mt is the upper bound for

the amount of charge that the station can provide at time period t to the EVs. For

the sake of simplicity, a unified MCC m has been used for all time periods.

• For each time period t ∈ T a parameter bt specifies the base load of the system.105

It is equal to the total electric demand minus renewable generation of the system

at the time period t.

• For an EV i ∈ E, a the parameter ki is equal to the requested amount of charge.

• The real parameter α is used for the minimal relative charge an EV must receive

compared to the requested one. The same α value, between 0 and 1, is used for110

all EVs.

• The real parameter r is used for the maximal amount of charging that the facil-

ity can provide to a single EV at each time period. This constraint is directly

connected to the level 2 charger power.
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In addition to the parameters given above, the following set of decision variables115

are defined for specifying the optimal scheduling:

• For each EV i ∈ E and time period t ∈ T a real variable rit is defined and

represents the level of charge received by EV i at time period t. Note the modern

EV chargers are capable to deliver power at a certain level instead of legacy

EV charger’s turn on/off capability, consequently a binary variable would not be120

sufficient.

• For each time period t ∈ T an auxiliary real variable lt is defined to denote the

total charging received by EVs at time period t.

• For each time period t ∈ T0, where T0 = T \ {1}, an auxiliary real variable ct

is defined to represent the difference in load (the sum of charging load and base125

load) between two consecutive time periods.

Recall that the focus of this work is on the relation between the goals of the power

system operator on the one side and the users of EVs and the charging facilities on the

other side. In case of the former, the main objective is the minimization of ramp-up

requirements which can be formalized using the following equation:

Minimize
∑
t∈T0

c2
t (1)

Eq. 1 simply states that the objective is to minimize the sum of demand changes be-

tween consecutive time periods. Instead of using the absolute value of the linear terms

ct, the quadratic c2
t is used with the intention of avoiding steep slopes in the demand

curve. Note that the objective of minimizing ramping up requirements is often modeled130

as the minimization of the maximal change of total demand between two consecutive

time periods [14]. The issue with this approach is that it often results in solutions that

frequently the sign of the derivative of the function of total demand overtime.

The second goal is related to the preferences of the EV drivers and the charging

facility. In this case, the objective is to maximize the total charge received by the EVs,

which can be formalized as follows:

Maximize
∑
t∈T

lt (2)
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Eq. 2 simply maximizes the sum of received charge lt overall the time periods. The

goal of the charging facility is understandably to maximize profits, which is directly135

related to the total charge provided. At the current state of adoption of EVs, the max-

imization of profits is equivalent to the level of charge. The main reason for this is a

high difference between the cost of a charging kWh and the price of kWh given by the

electric utility company. For example, at California Institute of Technology (Caltech)

campus, the unit price electricity (kWh) is around 10 cents while the dynamic price140

of a kWh from the distribution company would vary between 1.5 and 2.1 cents. The

presented scheduling model is further subject to the following constraints:

∑
t=ai..di

rit ≤ ki i ∈ E (3)∑
t=ai..di

rit ≥ αki i ∈ E (4)

rit = 0 i ∈ E, t < ai (5)

rit = 0 i ∈ E, t > di (6)

lt =
∑
i∈E

rit t ∈ T (7)

lt ≤ m t ∈ T (8)

ct = lt + bt − lt−1 − bt−1 t ∈ T0 (9)

0 ≤ rit ≤ r (10)

The constraint given in Eq. (3) states that for each EV i, the sum of received charge

is less or equal than the requested charge ki. Eq. (4) provides that each vehicle will

receive a minimal amount of charge which is a certain part of the requested charge. In145

this equation, α is an input parameter that is used for all the EVs. Eqs. (5) and (6) only

allow charging to be done at time periods when an EV i is at the station. Eq. (7) is

used for setting the auxiliary variable for the total received charge by EVs at the station

at time period t. The constraints given in Eq. (8) are used to set a limit on the MCC,

maximal amount of charge that EVs can receive at the facility at a time period. Eq. 10150

enforces the maximal charge rate of an EV and forbids negative charge.
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3. Case Study Setup

Although there has been a significant amount of published research on the schedul-

ing of EV charging to lessen duck curves, the use of real world data has been limited.

To be more precise, statistical data of EV driver behavior is used to generate the case155

study setting. One of the main reasons for this is the lack of publicly available data sets.

Recently, a research group from Caltech has provided an extensive data set (ACN-Data)

containing information about individual charging sessions of EVs for several locations.

A detailed description of this data set and examples of its usage can be found at [21].

The proposed case study uses the ACN-data set in combination with data on real re-160

newable generation and electricity usage in California (California Independent System

Operator (CAISO) [30]).

Next, we present the details of the ACN-data set. Firstly, only the sessions with

complete information have been used. The ACN-data contains sessions from three

different parking lots with EV charging. When generating test instances, only sessions165

from Caltech’s parking lots are used. In addition, only workdays are considered since

the use of office charging drops drastically during weekends. The used information for

a charging session, from the ACN-Data set, are the arrival and departure times of an

EV and the requested amount of charge. These values are naturally mapped to the ai,

di and ki parameters of the model.170

Different instances have been generated based on real world data for winter, spring,

summer and autumn. To be more precise, we consider the net demand (total demand

minus renewable generation) from CAISO data for specific dates as a representative of

typical days at each season. The corresponding values are used for calculating the base

loads bt in the model. This type of analysis is highly relevant since the load curves175

(demand and renewable generation) are significantly different for different seasons.

This is best reflected in the time of peak loads and the periods of high ramp-up. On the

other hand, the difference in the behavior of EV users is less dependent on the seasons

since there is no change in work hours. In the modeling of EV adoption, our focus is

on high levels that are expected in the future. To that end, we scaled up the adoption180

rates and assumed that 3 million vehicles are on the road.
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In the proposed model, this is reflected by the number of real world EVs that are

presented by a single EV in the model. For example, in an instance with 200 EVs,

each EV in the model represents 15000 EVs in the real world. The maximal rate of

charging for an EV has been assumed to be limited to the charging capabilities of the185

charger and is set to 7 kW. This value is scaled in the same way as the number of cars.

In practice this means that the requested charge (ki), maximal charging rate for an EV

(r) and the maximal charging rate for the facility (m) have been scaled appropriately.

The upper bound for the MCC of the facility is one of the values that is analyzed

in the case study, so details for this value are given in the next section. The evaluated190

time window was a day (24 hours). Each time period in the model corresponded to

5 minutes and the value of parameter T is 288. It should be noted that in late night

periods nearly no EVs are at the charging facility. The base load, MCC and maximal

charging rate for an EV need to be scaled relative to the length of the time period,

which is done in the same way as in [21].195

The proposed QP has been implemented using OPL in IBM ILOG CPLEX Opti-

mization Studio Version: 12.6.1.0, and executed using the default solver settings. The

Pareto Front has been calculated using the standard ε-constraint method [31]. It should

be noted that solving a single problem instance to optimality, generally took less than

five seconds, in case of calculating the Pareto front multiple such instances needed to200

be solved.

4. Case Study

In this section, a number of computational experiments are presented to analyse the

proposed scheduling framework and evaluate its aspects. The first part is dedicated to

the influence of the station’s MCC on the flattening of a duck curve. In the works of205

[22, 23, 24], it has been shown that the maximal charging capacity of an EV charging

stations is generally limited by the electrical distribution system. The second part of

the tests focuses on the effect of different customer satisfaction levels on the shape of

the duck curve in relation to the MCC. The final group of tests evaluate the relation of

these two properties to ramp-up requirements. This is done using an adaptation of the210
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(d) Autumn

Figure 1: Illustration of the maximal levels of flattening of the duck curve that can be achieved for different

values of the MCC. Separate subfigures are used for each season.

Pareto Front for the presented quadratic model.

4.1. Maximal Charging Capacity of the Station

As previously stated, the MCC of a station is often constrained by the electrical

distribution company due to issues related to stability of the system. On the other

hand, a high charging capacity of a facility requires a high capital investment cost.215

Because of this, we analyze the effect of having different levels of MCC in relation to

the expected requested charge by the users of the charging facility. The upper bound

U for the MCC’s is equal to the number of chargers it contains and their capacity. A

natural lower bound for the MCC is related to the sum of expected daily charge requests

by the users of the facility. To be more precise, the lower bound L is equal to this value220

divided by the number of time periods over which the scheduling is conducted.
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The difference in these two bounds (L and U) can be significant; the upper bound

is nearly five times higher than the lower bound for the Caltech data. These values are

of course dependent on the occupancy rate of the facility but in case of the ACN data

these are the observed values. In the evaluation, the following notation is used:

Ci = L +
i
N

(U − L) (11)

In Eq. (11), N is used to indicate the number of different charging rates that have been

evaluated. The notation Ci is used for the ith tested MCC, where i is a value between

0 and N. In our tests N is set to 10. Note that, since the U
L is around 5, C5 will be

around three times the minimal charging rate. An evaluation of the effects of MCC,

corresponding to values of Ci, on the duck curve are presented in Fig 1. For each of

the seasons, several values of Ci load curves are presented. For each value of Ci, the

load curve corresponds to the one acquired from the presented model in the following

way. Firstly, the minimal value of objective given in Eq. (1) R, related to the ramp-

up requirements is calculated by solving the model. In the next step, a schedule is

found that maximizes the total provided charge, given in Eq. (2) having the ramp-up

requirements equal to the value R. This is achieved by adding the following constraint

to the model ∑
t∈T0

c2
t = R (12)

Since the focus of the first part of the experiments is on the relation between the MCC

and the smoothening of the duck curve, the amount of satisfied customer demand is not

considered and will be presented in the next subsections. The load curves for different

values of the MCC can be seen in Fig. 1. From the load curves in case of the C10, it is225

evident that there is a very high level of flattening the duck curve. In case of low values

of MCC C0, although there is a notable level of decrease in the steep of the load curve,

it is significantly lower than in case of C10. The main reason is that a low MCC has

a limited impact on “filling” the valley and consequently does not manage to greatly

lower the ramp-up requirements.230

In case of the selected EV penetration, the MCC needed to reach near maximal

levels of flattening the duck curve is significantly lower than the upper bound and is
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nearly three times the lower bound for the MCC. The lowest value of the MCC needed

to achieve this is during summer, while it is the highest in winter. It is noteworthy that

these results cannot be directly extended to arbitrary regions, since California has mild235

winters and very hot summers which greatly impact the net demand curve.

4.2. Satisfaction of requested charges

In this subsection, we focus on the effect of different levels of satisfied demand on

the shape of the duck curve. This is evaluated for different values of the MCC for each

season. The upper bound Us for the level of satisfied charge for each MCC is calculated240

by solving the QP objective given in Eq. (2). Note that, this value is generally lower

than the total sum of requested charges for all the EVs. The lower bound Ls corresponds

to the load curves used in the previous subsection. More precisely, the maximal amount

of satisfied requests for the minimal value of the ramp-up related objective given in Eq.

(2).245

Similar to the previous section, we introduce the following notation for different

levels of satisfied charge rate,

S i = Ls +
i
N

(Us − Ls) (13)

In Eq. (13), N is used to indicate the number of different levels of satisfied requests

(LSR). The notation S i is used for the ith tested satisfaction level, where i is a value

between 0 and N. In our tests, N is set to 10.

A comparison of the effect of different values of the LSR, corresponding to values

of S i, on the duck curve are presented in Figures 2 and 3. For each value of S i the load

curve corresponds to the charging schedule acquired from the presented model. More

precisely, it is the schedule that minimizes the objective, given in Eq. (1) having the

total received charge equal to the value S i. This is achieved by adding the following

constraint to the model ∑
t∈T

lt = S i (14)

The first thing that can be observed from Figures 2 and 3 is that in case of the maximal

MCC, there is no significant difference for different values of S i. The main reason250

for this is that there are minuscule benefits to flattening the duck curve by lowering
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the amount of total provided charge. On the other hand, in case of the lower bound

for MCC (C0), the situation is drastically different. In case of S 10, maximal provided

charge, there is a significant increase in the values of the morning and afternoon peak

loads. The reason for this is that due to the low level of the MCC, a substantiation255

amount of requested charge needs to be provided during peak demand periods. This

type of behavior is noticeable for all seasons. In case of mid range values of Ci, similar

behavior can be observed but to a lesser extent. Such negative effects can be avoided

by dropping a certain amount of provided charge. It is important to note that in cases in

which the peak load is increased and the total provided load is decreased, the evening260

peak demand happens later when compared to the base demand curve. Consequently,

this produces a small decrease in ramp-up requirements.

4.3. Ramp-up and Satisfaction of Charging Requests

In this subsection, the analysis is focused on the relation between the ramp-up

requirements and the amount of satisfied charge requests. This is jointly done for265

different values of the MCC. In the general case, the best method for evaluating the

relation between two objectives is by exploring the Pareto Front.

The presented QP model has proven to well represent the problem of scheduling

EV charging for flattening the duck curve. The issue with using this model, for the

relation of interest, is that the objective given in Eq (1) is an abstraction that does not270

directly reflect the ramp-up requirements. When analyzing the need for an increase

in electricity production, the most interesting region is the time period 3 hours before

the evening peak load. This could relate to an objective of minimizing the difference

between total loads at the beginning and ending points of this period. The problem with

using such an objective in the presented model is that it generates schedules having275

some undesirable properties for real world systems (e.g., frequent changes in the sign

of the derivative of the load curve). The used quadratic objective given in Eq. (1)

avoids this problem.

Due to preceding facts, when exploring the relation between ramping requirements

and satisfied charging requests, the following approach is used. Firstly, the Pareto Front280

is calculated for the two objectives given in Eqs. (1), (2). This has been done, using the
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standard ε-constraint method [31]. In the next step, for the solutions corresponding to

elements of the Pareto Front the ramp-up requirements, over the relevant time period,

have been calculated as the difference between the minimal and maximal total load.

The relevant time period varies between seasons of the the year, due to the length of285

the day and electrical consumption patterns. Because of this, we choose to use the

time periods considered most relevant by California ISO for evaluating ramp-up, for

the dates used in generating test instances. It should be noted that these time periods,

would vary for an hour between summer and winter.

To jointly analyze the interplay between ramping needs and the customer demand290

satisfaction for different values of the MCC, the following approach is used in the

presentation of results (Figure 4). The ramp-up requirements for each schedule are

given relatively to the corresponding value for the base load curve (the net demand

without the energy used for EV charging). Consequently, this value ranges from 0 to

1. The value for the satisfaction of requested charges is given relative to the maximal295

possible one. To be more precise, the maximal amount of satisfied requested charge is

the total amount of provided charge (Eq. (2)) for the case where MCC was equal to the

upper bound. These results are presented in separate subfigures for each season. Each

subfigure contains separate Pareto Fronts for different values of the MCC.

From the presented results, the following conclusions are made. As expected, in300

case of low values of the MCC, there is a significant decrease in the amount of satisfied

requests. Further, for such values of the MCC, there is a need for dropping additional

charging requests to achieve a greater decrease in the ramp-up requirements. In case

of larger values of the MCC, that are still significantly lower than the upper bound, this

becomes less relevant and even if a relatively small amount of charging requests are305

dropped a notable decrease in ramp-up requirements is achieved. Another interesting

property that can be observed for some high values of the MCC in case of summer, is

that the ramp-up requirements are even lower than in the case of the upper bound for

the MCC. This can be explained with the fact that the time of peak load is shifted for

a later time period. This indicates that the objective function given in Eq. (1) could be310

improved to avoid these types of issues.
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5. Conclusion

In this paper, an extensive analysis to investigate the potential contribution of EV

demand scheduling to flatten the duck curve has been presented. The scheduling frame-

work has been developed through the use of a QP model. The goal of the analysis was315

to show the relation between the maximal charging capacity of the facility, level of sat-

isfied requested demands and power grid ramp-up requirements. The investigation has

been carried out through a case study based on data of individual charging sessions of

EVs from a university campus and real energy consumption data in California. From

the conducted computational experiments, several important conclusions were made.320

Firstly, near maximal levels of flattening the duck curve can be achieved by MCC val-

ues that are 2 to 3 times higher than the ones corresponding to the minimal one based on

the total requested charge. Secondly, although EV charging schedules for lower values

of the MCC can decrease the ramp-up requirements, unless some additional charging

requests are dropped, there can be a significant increase in peak loads. For higher val-325

ues of the MCC, a decrease in the satisfaction of requested charges, compared to the

maximal possible level, can decrease the ramp-up requirements. This indicates that

these types of drops will be necessary in the real world applications of such systems.

The results of the conducted computational experiments provided some insight in

designing public charging infrastructures. A natural direction for extending this re-330

search is exploring financial aspects of such systems, more precisely the relation infras-

tructure cost and the effect of operational costs and profits. Another direction would

be improving the model by having the maximal charging speed of an EV dependent on

the current battery state.
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Figure 2: Illustration of the effect of different values of the MCC for different levels of satisfied requested

charge by users of the facility. Separate subfigures are used for different values of the MCC in winter and

spring.
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Figure 3: Illustration of the effect of different values of the MCC for different levels of satisfied requested

charge by users of the facility. Separate subfigures are used for different values of the MCC in summer and

autumn.
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Figure 4: Pareto Fronts for the two objectives: amount of satisfied charge and ramp-up requirements. Sepa-

rate subfigures are used for different seasons, and in each one of them separate lines represent Pareto Fronts

for a specific value of the MCC. The value of the ramp up requirements are given relative to this value for

the base load curve. In case of the base load, average ramp up over three hours for winter, spring, summer

and autumn, where 11.2GW, 8.98GW, 9.01GW and 9.80GW, respectively.
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