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Abstract—Lattice Boltzmann methods are a popular mesoscopic
alternative to classical computational fluid dynamics based on the
macroscopic equations of continuum mechanics. Many variants
of lattice Boltzmann methods have been developed that vary in
complexity, accuracy, and computational cost. Extensions are
available to simulate multi-phase, multi-component, turbulent,
and non-Newtonian flows. In this work we present lbmpy, a code
generation package that supports a wide variety of different lat-
tice Boltzmann methods. Additionally, lbmpy provides a generic
development environment for new schemes. A high-level domain-
specific language allows the user to formulate, extend and test var-
ious lattice Boltzmann methods. In all cases, the lattice Boltzmann
method can be specified in symbolic form. Transformations that
operate on this symbolic representation yield highly efficient com-
pute kernels. This is achieved by automatically parallelizing the
methods, and by various application-specific automatized steps
that optimize the resulting code. This pipeline of transformations
can be applied to a wide range of lattice Boltzmann variants, in-
cluding single- and two-relaxation-time schemes, multi-relaxation-
time methods, as well as the more advanced cumulant methods,
and entropically stabilized methods. lbmpy can be integrated into
high-performance computing frameworks to enable massively
parallel, distributed simulations. This is demonstrated using the
WALBERLA multiphysics package to conduct scaling experiments
on the SuperMUC-NG supercomputing system on up to 147 456
compute cores.

I. INTRODUCTION

Computational science and engineering is an interdisciplinary
field. The workflow of creating computational models starts at
(physical) reality and ends with the production of efficiently
executable computer code [47]. However, on the route from
physical phenomena to machine code lies the formulation of
mathematical models and their discretization, the construction
of time stepping schemes and solution methods, the design
and analysis of parallel algorithms, the realization of complex
software systems, and finally the transformation to code that
can be executed on a given hardware. The target computer
architecture may be a massively parallel system, possibly
heterogeneous and using accelerators that can only be exploited
by special programming techniques. During the development,
many choices must be taken and alternatives considered. Thus,
creating computational science software is a work-intensive,
time-consuming, and error prone task, whose complexity is
easily underestimated, despite its fundamental relevance for
extracting reliable predictions from scientific principles. In this
article, we will present progress towards the systematic design

of scientific software based on the automatic derivation of
methods including the automatic design of efficient software.
When designing scientific software with conventional program-
ming techniques, it is often difficult to find the right balance
between the flexibility of an approach and its performance,
since these are often conflicting goals. Often the specialization
to a restricted class of problems would permit special optimiza-
tions and can thus lead to more efficient codes. However, a
flexible software design may lead to more extensible and more
generally usable software. Additionally, using general-purpose
libraries for subtasks, such as for the solution of linear systems,
may reduce development time, but may also lead to overheads
when special structures that would lead to faster algorithms
can not be exploited.
Furthermore, it is typical that computational software outlives
the computer systems that it was originally designed for. This
leads to the problem of performance portability. The choice of a
specific algorithm and a specific software design may have been
good for the efficient execution on older computer architectures,
but these design choices may turn out to be a major bottleneck
on the accelerator-based architectures that dominate high-end
computing today. A complete rewrite would be necessary, but
since this is too time-consuming and expensive. Legacy code
today may stay in use though it severely underperforms on
modern hardware.
A generic approach to overcome these difficulties are more ad-
vanced abstractions. For example, libraries such as Kokkos [13]
or programming systems such as OpenACC [15] present
abstractions of fine-granular concurrent execution on modern
hardware that can help to alleviate the problems of performance
portability. An alternative to such libraries can be metaprogram-
ming techniques and the usage of domain specific languages
(DSL). Here machine optimized code is generated utilizing
program transformations and compiler technology. Using DSLs
opens additional possibilities based on application-specific
abstractions. A prominent and successful example for a finite
element specific DSL is UFL (unified form language) [1]
which is embedded in python. It is e.g. used in FeniCS [40] or
Firedrake [45]. These automated computing platforms permit
the generation of computational models based on a wide variety
of partial differential equations that can be expressed in a
DSL. For stencil based computations there exist a number
of different DSLs e.g. [54], [31], [29], [27] that work on
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structured grids and e.g. the ExaSlang DSL that can also
work on block-structured grids [38]. These DSLs succeed in
supporting a wide variety of mathematical models with high
flexibility. Additionally, most of them also support parallel
program execution. Such approaches can exploit application
knowledge represented in the DSL design and can thus use
optimization techniques that are more powerful than optimizing
compilers for general-purpose languages.
In the present article, we will focus alternatively on the
lattice Boltzmann method (LBM), as a promising mesoscopic
modeling paradigm. Our scope of modeling thus supports
kinetic schemes as an alternative to continuum mechanics for
fluid dynamics. Kinetic schemes are often performance-hungry,
but they also offer a high degree of parallelism. Therefore the
scalability and performance on modern computer architectures
is a central goal of our work. In particular, we will attempt
to reach the performance of the best manually optimized
LBM codes by developing a new application-specific code
generation technology. To achieve this, we will leverage long
term experience in manually optimizing general stencil codes
and systematic performance engineering for LBM methods
[59], [57], [58], [22], [17]. In particular, we will build on
WALBERLA as a state-of-the-art LBM software framework
with excellent performance characteristics [5], [39].
However, the current article goes beyond developing tools
that help to optimize given kinetic simulation algorithms for a
variety of computer architectures. While this alone is also useful,
we here extend the code transformation approach to the earlier
stages of the computational science workflow. In particular, we
point out that the design and derivation of lattice Boltzmann
models follows a complex but systematic methodology. The
development of a specific LBM for a given application is
characterized by various options and choices that the method
designer must make. This involves selecting a lattice model,
defining momenta and relaxation rates, and many more, as
will be elaborated in detail below. Based on these choices, a
very wide variety of LBMs can be derived. While any such
model could be constructed manually and then optimized using
program generation technology, this article goes an essential
step further. The manual development of advanced LBM can
also be time-consuming and error-prone. We will present
here, how the derivation of the models themselves can be
conceptualized so that it becomes amenable to automation. In
lbmpy, the tedious mechanical steps of the LBM development
can be performed by automatic symbolic manipulations, saving
precious developer time and making the methods more reliable
and reproducible.
In summary, lbmpy jointly with WALBERLA becomes a
computing platform for LBMs that is equivalent to what
FEniCS is for finite elements. lbmpy helps to realize highly
efficient LBM implementations and makes it easy for the
developer to experiment with different variants of the methods.
Fully grown implementations of many different LBMs can
be generated with a single mouse click. We emphasize here
specifically that our code generation technology has the unique
capability to generate highly efficient parallel code that is ready

to run with optimal scalability on the largest supercomputers.
The LBM is based on concepts from statistical mechanics. The
fluid is modeled on the mesoscopic level using distribution
functions that represent the statistical behavior of the particles
constituting the fluid. Compared to traditional computational
fluid dynamics (CFD), that describes the fluid macroscopically
with the Navier-Stokes equations, the mesoscopic description
permits higher modeling expressivity, leading to a variety of
LBMs, e.g., for porous media or multi-phase flows. Its local
data access pattern makes the method very well suited for
modern hardware architectures that draw their computational
power of ever-increasing concurrency. To run code efficiently
on these architectures, parallelism on different levels must be
exploited, starting from single-instruction-multiple-data (SIMD)
instruction sets, utilizing multiple cores per node with OpenMP,
to distributed memory parallelism with MPI. Optimizing LB
compute kernels to get the best possible performance requires
hardware-specific adaptation. This process costs significant
development time. Unfortunately, it must be repeated for each
new hardware platform. Furthermore, the optimization process
often leads to code that is hard to read and maintain. In practice,
this can lead to the effect that for prototyping and development,
a slow but flexible code is used, and only a few proven methods
are re-implemented in a highly optimized way.
Over time a large variety of LBMs have been proposed [34].
Starting from the simple, but widely used, BGK single-
relaxation-time (SRT) operator that relaxes the current state
linearly to equilibrium with a single relaxation rate, over
two-relaxation-time methods (TRT) [21] to general multi-
relaxation-time (MRT) [11] methods. All these methods relax
to equilibrium in moment space and can be viewed as special
cases of MRT. Then, there are multiple advanced methods like
cumulant [20] or entropic LBMs [10], where a different set
of statistical quantities is chosen for relaxation or the discrete
equilibrium is modified. All LB versions have in common
that they are parameterized by a set of relaxation rates, which
can either be chosen constant or adapted locally. Computing
relaxation parameters from local quantities, e.g., shear rates,
is used to implement turbulence models or to simulate non-
Newtonian fluids. Entropic KBC-type models [10], [2], [18]
can also be placed into this group since they are constructed
based on an MRT method with two relaxation rates, where one
relaxation rate is chosen subject to a local entropy condition.
Additionally, LBMs could be extended with different forcing
schemes [53], [26], and the equilibrium could be approximated
up to different orders either in the so-called incompressible [28]
or the standard compressible version. During the implemen-
tation phase, the space of options is growing still. Different
storage patterns for the distribution functions can be chosen [3],
[19]. Hardware-dependent optimizations, like loop splitting and
non-temporal stores, further increase the performance on recent
CPU architectures.
Faced with this space of physical models and implemen-
tation/optimization options, developers of LB frameworks
are faced with two options: Either pick a small set of LB
methods and optimize them for a specific target architecture,



repeating the full process when a new LB method or hardware
platform must be supported or, trying to abstract and automate
the development task. In this work, we show that it is
indeed possible to automate many tedious development tasks,
like reformulating equations to save floating-point operations,
splitting loops for better memory access behavior, or fusing
stream and collision kernels. We present the lattice Boltzmann
code generation package lbmpy that solves these problems
by automating large parts of the LBM development and
optimization process. Its source code and documentation are
available open-source under the GNU AGPLv3 license 1.
lbmpy is a system for development of computational fluid
dynamics codes based on the LBM. In this regard, it is
comparable to other LBM frameworks such as OpenLB [30],
[42], Palabos [36], [43], elbe [41], [14], LB3D [24], [50],
[37], and HemeLB [25]. Some of these LB frameworks
like Sailfish [48] and TCLB [55] also use metaprogramming
techniques, mainly for portability to GPUs. While these
frameworks support many LB methods, systematic performance
evaluations and optimizations are predominantly available for
simple LB collision operators like single- and two-relaxation-
time methods [60], [61], [58], [22].
In this work, we first give an overview over the specific
LBM design workflow and the associated code generation
pipeline in section II. Then we describe the formalism for
LB method specification in section III that comprises the two
upper abstraction layers. The transformation to an algorithmic
description and its optimization is discussed in section IV.
Finally, we present performance and scaling results in section V.

II. OVERVIEW: LB METAPROGRAMMING PIPELINE

In this section, we first give an overview of the various
abstraction layers of lbmpy’s metaprogramming pipeline. In
the following sections, we then discuss each layer in detail.
All abstraction layers are implemented based on the computer
algebra system sympy. The code generation system itself is
implemented in Python, but the generated code is produced in
C/C++/LLVM for CPUs and in CUDA or OpenCL for GPUs.
As illustrated in fig. 1 the most abstract layer represents a
LBM in q-dimensional collision space for a DdQq stencil.
This collision space is either based on moments or cumulants
[20]. To specify an LB scheme, the user defines a basis of the
collision space as well as an equilibrium value and a relaxation
parameter for each component. Relaxation parameters do not
have to be constants but can be chosen as a symbolic expression
that depends on local quantities like shear rates. This permits
the formulation of models for non-Newtonian fluids, turbulence
models, or entropic stabilization.
lbmpy transforms this high-level representation into a symbolic
description of the collision operator. The collision operator is
stored as a symbolic function Ω : Rq → Rq, where q is the
number of discrete distribution functions.
In the next step, the collision operator is mapped to a
computational kernel. This stage allows the generation of pure
collision kernels as well as fused stream-collide kernels.

1https://i10git.cs.fau.de/pycodegen/lbmpy

Figure 1: Abstraction layers of metaprogramming pipeline.

Additionally, a concrete storage pattern for the distribution
functions is selected, e.g., two-array push or pull patterns or
more elaborate single array storage schemes. Optionally one
can integrate boundary handling or output of macroscopic
quantities at this layer as well. The output of this stage is a
symbolic stencil representation of an LB compute kernel. This
stencil representation is passed to the pystencils package [7]
that produces the actual code for CPUs or GPUs. pystencils is
extended with custom optimization passes to extend the code-
generation pass with domain-specific knowledge. In this work
we focus on the CPU backend, GPU-specific optimizations
and performance results are part of a second publication.

III. MODEL DESCRIPTION IN COLLISION SPACE

In this section we first give a short overview over the theory that
is used to define LBMs on the highest abstraction level. Then
we describe the “LB method layer” in more detail followed
by examples showing how common collision operators can be
specified on this layer.

A. Collision in moment space

All LBMs considered here discretize the computational domain
using a Cartesian, uniformly spaced grid. The discretization
is specified in stencil notation as DdQq, describing a d-
dimensional domain where each cell contains q particle distri-
bution functions (PDFs) labeled fq(xi, t) with q ∈ {1, ..., q}.
The PDF fq represents the mass fraction of particles moving
along a lattice velocity cq. In the following, we use lattice
units, i.e., the positions xi and the time t are integers.
The most basic and probably also the still most commonly used
collision operator for LBMs is the single-relaxation-time (SRT)

https://i10git.cs.fau.de/pycodegen/lbmpy


or BGK operator. It relaxes each population to its equilibrium
distribution using a single relaxation parameter ω. The SRT
LBM can be succinctly written as

fq(x + cq, t+ 1) = ω f (eq)q (x, t) + (1− ω) fq(x, t), (1)

describing a single time step of the LBM, evolving the system
from time t to t+ 1. It can be split into a local collision step
that computes a convex combination of the current state with
the equilibrium state and a non-local streaming step that copies
PDFs to neighboring cells. The collision is formulated using a
relaxation rate ω which is the inverse of the relaxation time τ ,
i.e., ω = 1/τ . The local density ρ and velocity u are computed
from the distribution function as

ρ =
∑
q

fq and ui =
1

ρ0

∑
q

cqifq. (2)

With these macroscopic values the equilibrium is given as

f (eq)q = wqρ+ wqρ0
[cqαuα

c2s
+

1

2c4s
uαuβ(cqαcqβ − c2sδαβ)︸ ︷︷ ︸

2nd order

+
1

2c6s

(
uαuβuγ(cqαcqβcqγ − c2scqαδβγ)

)
︸ ︷︷ ︸

3rd order

]
.

(3)

The reference density ρ0 can either be chosen as 1 to obtain a
so-called incompressible LBM [28], for standard compressible
LBM set ρ0 = ρ. Note that both versions approximate the
incompressible Navier-Stokes equations (NSE) [34]. Equation
(3) shows a third-order equilibrium approximation. To obtain
the NSE in the macroscopic limit, the equilibrium is required
only up to second order in u [34].
While the BGK collision operator is still widely used in practice,
we aim for a more generic description of LBMs. To develop a
high-level description of LBMs that is used as the input to the
metaprogramming pipeline, we rely on the formalism of multi-
relaxation-time methods. It includes the BGK operator and
the popular two-relaxation-time method as special cases. With
this approach lbmpy is able to generate all LB schemes whose
collision operator can be written in linear matrix form. This
covers the majority of LBMs, with the most notable exception
being the cumulant collision operator that will be treated in
section III-B.
The MRT formalism also allows us to derive the discrete
equilibrium (3) from its continuous counterpart instead of
manually specifying it. The collision operator of MRT methods
first transforms the PDFs from population space into moment
space via a moment matrix M. The components of this moment
vector m = Mf are relaxed to equilibrium values m(eq) using
a diagonal matrix of relaxation rates S. One collide-stream
step of an MRT method then reads

fq(x + cq, t+ 1) = M−1
[
Sm(eq) + (I− S)Mf

]
(4)

with I denoting the identity matrix. To fully specify the method,
we have to define a concrete moment matrix M, a vector

of corresponding equilibrium values m(eq), and a diagonal
relaxation matrix S. We now discuss how each of these three
ingredients can be specified in lbmpy.
1) Moment Space: We begin with the transformation from
population space to moment space via the moment matrix
M. To derive an invertible transformation M, a set of q
independent moments is required. Moments can be identified
with polynomials in the lattice velocities P(cq) : Rd → R.
For example, the zeroth moment, i.e., the density, is given by
the constant polynomial 1. The first moments, i.e., the x, y,
and z momentum densities, are represented by cqx, cqy, and
cqz . Second order polynomials describe viscosity modes, for
example in 2D, c2qx + c2qy is a mode related to bulk viscosity,
whereas cqx · cqy and c2qx − c2qy are modes related to shear
viscosity. The moment value is then computed as

ΠP(f) =
∑
cq∈S

P(cq)fq (5)

with a stencil S that is given by a sequence of directions with
integer components. Given a sequence of moment polynomials
P1...Pk the elements of the moment matrix are computed as
Mkq = Pk(cq)fq . So we have to select q moment polynomials
that yield an invertible moment matrix M. In lbmpy, there
are various options to provide these moment polynomials. The
most basic but also most flexible option is to list them explicitly.
Then lbmpy automatically computes the moment matrix and
checks that it is invertible. This option is useful if code for a
given MRT method from literature has to be generated.
One central goal of lbmpy is to derive LB methods automat-
ically, and not having to pass in, for example, the discrete
equilibrium or even the moment basis. Thus, our system
additionally offers routines to construct the moment basis for
first neighborhood stencils automatically. First, these routines
have to find q monomials that lead to an invertible moment
matrix M, which can then be orthogonalized in a second step.
To illustrate this procedure, we first consider the D3Q27 stencil.
Since the velocity vector components only contain the values
{−1, 0, 1}, moments with velocity powers larger than 2 alias
a lower order moment. For example∑

cq∈S
c3qifq =

∑
cq∈S

cqifq if cqi ∈ {−1, 0, 1}. (6)

Similarly, moments with even exponents larger or equal
than 4 are aliases by corresponding moments with exponent
2. Potentially non-aliased moments are thus ce0q0c

e1
q1c

e2
q2 with

ei ∈ {0, 1, 2}. These systematically constructed 27 monomial
moments can be used for the D3Q27 stencil to construct an
invertible moment matrix. Similarly, in 2D, this strategy also
yields an invertible moment matrix for the D2Q9 stencil. For
D3Q15 and D3Q19 the situation is slightly more complex. For
D3Q19, we start with the 27 possible monomial moments and
discard moments that produce a zero line in the moment matrix,
like e.g. the moments defined by the polynomials c2q0cq1cq2
or cq0cq1cq2. For this stencil, there are in total 8 out of the
27 possible monomial moments leading to zero lines, leaving
19 independent rows. For the D3Q15 stencil this procedure



has to be further refined. There, some monomial moments
produce the same non-zero row in the moment matrix, which
are trivially linear dependent. lbmpy groups moments together
that yield the same row, resulting in 15 groups. One group
of moments, for example is [c2q0cq1, cq1c

2
q2, c

2
q0cq1c

2
q2]. In each

group, we keep only the lowest order moments. If there is
more than one moment remaining, their sum is used. In case
of above example this leads to c2q0cq1 +cq1c

2
q2. This systematic

procedure constructs moment matrices that span the same space
as MRT matrices reported in [11], [12], [49].
However, the constructed q independent moments are not
orthogonal yet. For MRT methods, typically, an orthogonal
moment set is required. Using a symbolic Gram-Schmidt
procedure, lbmpy can orthogonalize the moments, either
utilizing the standard scalar product, or a scalar product
weighted by the lattice weights. The exact outcome of the
Gram-Schmidt orthogonalization depends on the ordering of
the non-orthogonal moments that are put in. For reproducible
results lbmpy sorts the input by moment order and within each
order lexicographically. Before the orthogonalization, also the
second-order moments are manually split into bulk and shear
part.
2) Equilibrium State: The second element necessary for the
construction of an MRT method is the equilibrium. It can
either be given in population space (3) or directly as a vector
of equilibrium moments m(eq). In this mode, the user has full
control over the equilibrium values and can create LBMs not
only for the Navier-Stokes equations but also for other partial
differential equations.
Beyond this, our meta-programming approach attempts to
derive as much as possible from a more general formulation.
Therefore, we provide functionality in lbmpy to derive equilib-
rium values for hydrodynamic LBMs automatically. One way
to obtain a hydrodynamic discrete equilibrium is to compute
the equilibrium moments directly from the continuous Maxwell-
Boltzmann distribution

f (MB)(ρ,uuu,ξξξ) =
ρ

(2πc2s)
D
2

exp

(
−||ξ

ξξ − uuu||2

2c2s

)
(7)

with ∫
P (ξξξ) f (MB)(ρ,uuu,ξξξ) dξξξ. (8)

In this case, the user first chooses a value for the speed of sound
cs, typically cs = 1/

√
3 for first neighborhood stencils, then

the integral (8) is evaluated symbolically with the help of sympy.
The resulting continuous moments of the Maxwellian are
used in the equilibrium moment vector m(eq). Optionally the
moments can be truncated to a given order in the macroscopic
velocity u. If the equilibrium is required in population space,
it can be easily transformed using the assembled moment
matrix with M−1 m(eq). For the cartesian product stencils
D2Q9 and D3Q27, this method yields exactly the standard
equilibrium (3). For the D3Q15 and D3Q19 velocity sets,
however, a different equilibrium is obtained. A comparison of
the standard equilibrium and the equilibrium obtained with this
moment-matching technique can be found in [9]. The standard

equilibrium for D3Q15 and D3Q19, including the weights, can
also be derived by lbmpy using a Hermite projection of (7).
3) Relaxation rates: The third building block to fully define
the method are the relaxation parameters. In lbmpy, the
user can specify a relaxation rate separately for each of the
previously selected moments. Each relaxation rate can either
be a constant value, a symbol, or an arbitrary expression of
local or neighboring values. In the simplest case, the relaxation
rate is a compile-time constant and equal for all time steps and
lattice cells. This case allows the computer algebra system to
pre-evaluate and simplify expressions containing constants only,
thus leading to significant savings. If the relaxation parameter
is chosen as a symbol, it becomes a run-time parameter of the
generated kernel function. In this case it can be changed, e.g.,
in a configuration file of the final application without requiring
re-compilation. Of course this comes possibly at the cost of
executing more FLOPs as compared to the pre-evaluation. The
third option, where the relaxation rate is given as a symbolic
expression, gives the most modeling power and flexibility. The
expression may contain any local or neighboring quantities
like equilibrium or non-equilibrium moments. This allows the
formulation of a wide range of turbulence models, where the
relaxation rate needs to be adapted depending on shear rates.
Entropically stabilized schemes like the KBC-type models [10]
can also be described in this way. The relaxation rate expression
may also contain values of other arrays, allowing for easy
coupling of multiple LB schemes, e.g., for multiphase or
thermal flows.

B. Collision in cumulant space

Recently an alternative collision space has been proposed
in [20]. Before collision, cumulants of the distribution func-
tion are calculated that are relaxed against their respective
equilibrium value. Conceptually, cumulant collision operators
are realized in lbmpy similar to collision operators in moment
space. The user specifies a set of cumulants, together with
relaxation rates. The cumulant equilibrium values are obtained
from the continuous Maxwellian. This allows the formulation
of cumulant methods not only for D3Q27 and D2Q9 but also
for D3Q19 and D3Q15 stencils.
Cumulants can be succinctly defined through the cumulant-
generating function

K(ξξξ) = ln

∑
cq∈S

fq exp(cq · ξξξ)

 . (9)

The cumulants are computed by multi-differentiation of (9)
and evaluating the derivative at zero. For example, the “bulk
cumulant”, that we associated with the polynomical c2qx + c2qy
is computed as

∂2K(ξξξ)

∂ξ20

∣∣∣∣
ξξξ=0

+
∂2K(ξξξ)

∂ξ21

∣∣∣∣
ξξξ=0

. (10)

Originally, we implemented the cumulant transformation with
this approach in lbmpy, however, the resulting expressions get
very elaborate, especially for large stencils. sympy’s common



subexpression evaluation capabilities then run an unpracticable
long time manipulating these expressions. Thus we have
developed an alternative multi-step transformation, where the
populations are first transformed to moment space and then to
cumulants. The moments are intermediate quantities that serve
as common subexpressions. In lbmpy, we use Faà di Bruno’s
formula [46] to derive the transformation of raw moments to
cumulants and vice versa.

C. Collision Model Examples

In this section, we demonstrate how LBMs can be formu-
lated in lbmpy by constructing collision operators of varying
complexity.
1) SRT, TRT: We start with the single- and two-relaxation-time
collision operators. Even if these methods are typically not
derived in moment space, we use the MRT formalism for these
operators as well to not introduce special cases. The challenge
with this general approach is, however, that the simplification
system needs to be able to reduce the resulting expressions to
their short form.
The following code example shows the definition of a D2Q9
TRT method. Stencils are represented by a tuple of discrete
directions with integer components. Common stencils, like the
D2Q9, can be obtained by their name. This stencil is used to
construct a set of independent raw moments using the algorithm
described above.

d2q9 = get_stencil("D2Q9")
moments = independent_raw_moments(d2q9)
ω_e, ω_o = symbols("ω_e, ω_o")
ωs = [ω_e if is_even_moment(m) else ω_o

for m in moments]
m_eq = maxwellian_moments(moments, dim=2,

c_s=1/sqrt(3))
trt = create_method(d2q9, moments, ωs, m_eq)

In this example, the moment equilibrium values are computed
from the continuous Maxwellian, and the relaxation rates are
defined for each moment. lbmpy offers various classification
functions for moments like the is_even_moment function,
used here. Other functions can determine the order of a moment,
or if it is related to shear or bulk viscosity. Putting these
elements together, the method is fully defined and can be
displayed to the user in a Jupyter notebook [33] in tabular
form, as shown below.

Moment Equilibrium Relaxation rate
1 ρ ωe
x ρu0 ωo
y ρu1 ωo
x2 ρu20 + ρ

3 ωe
y2 ρu21 + ρ

3 ωe
xy ρu0u1 ωe
x2y ρu1

3 ωo
xy2 ρu0

3 ωo

x2y2
ρu2

0

3 +
ρu2

1

3 + ρ
9 ωe

For better readability we denote moment polynomials using
variables x, y and z instead of cqx, cqy and cqz . Note that no
explicit equilibrium formulation similar to (3) was necessary
to construct this method. Only the stencil, the continuous
Maxwellian, and a systematically constructed set of indepen-
dent raw moments have been used to derive this method.
2) MRT: Next, we show how to construct a generic MRT
method in lbmpy. We stick with the D2Q9 stencil to keep
the listing of the method tableaus short. Similar to the TRT
method above, we start with a set of independent raw moments.
For MRT methods, the moments have to be orthogonalized.
In lbmpy we provide an orthogonalization routine based on
the Gram-Schmidt procedure. This routine either uses the
standard or a weighted scalar product. A common choice
is to use a scalar product weighted with the lattice weights,
which we demonstrate in the code example below. If we
want to control bulk and shear viscosities using different
relaxation rates, the second-order moments must be mod-
ified before the orthogonalization. This is handled by the
split_shear_bulk_moments function. We pass in the
list of all raw moments, containing the second-order moments
x2, y2 and xy. These are split into the bulk moment x2+y2 and
the remaining xy and x2 − y2 moments. In 3D, this function
works analogously.

moments = independent_raw_moments(d2q9)
moments = split_shear_bulk_moments(moments)
moments = gram_schmidt(moments, d2q9,

weights=get_weights(d2q9))
ω = symbols("ω_:4")
ωs = [0 if get_order(m) < 2 else

ω[0] if is_shear_moment(m) else
ω[1] if is_bulk_moment(m) else
ω[get_order(m)-1]
for m in moments]

m_eq = maxwellian_moments(moments, dim=2,
c_s=1/sqrt(3))

mrt = create_method(d2q9, moments, ωs,
to_incompressible(m_eq))

The Gram-Schmidt orthogonalization step then produces the
moments listed in the first column of the following table. Then
a list is constructed that defines the relaxation rate for each
moment. Moments of order less than two are conserved and
the relaxation rate can be chosen arbitrarily. In this example,
the relaxation rate is set to zero for these moments. Having
split up the second order bulk and shear moments, we can
pick separate relaxation rates ω0 and ω1 for these. In this
example, we choose a common relaxation rate for the third-
and fourth-order moments.

Moment Equilibrium Relaxation rate
1 ρ 0
x u0 0
y u1 0

x2 − y2 u20 − u21 ω0

xy u0u1 ω0

3x2 + 3y2 − 2 3u20 + 3u21 ω1

3x2y − y 0 ω2

3xy2 − x 0 ω2

9x2y2 − 3x2 − 3y2 + 1 0 ω3



Compared to the TRT example, we have done another
modification here. The equilibrium moments are modified
to yield a so-called incompressible equilibrium [28]. The
incompressible equilibrium moments are obtained by writing
them as polynomial in the velocity u and substituting ρ = 1
in all terms that contain at least one velocity component, e.g.,
ρ+ ρu0 → ρ+ u0.
Having full information about an LB method in the form of
the moment table, as shown above, enables us to analyze
the method using a Chapman-Enskog procedure symbolically,
as long as relaxation rates are chosen constant. The primary
input for this analysis are the moment equilibrium values. The
automated analysis can show the user the approximated PDE
as well as higher-order error terms. Additionally, it can derive
the connection between relaxation parameters and macroscopic
parameters, e.g., viscosities. The following snippet shows the
analysis of the MRT method defined here.

>>> ce = ChapmanEnskogAnalysis(mrt)
>>> ce.get_bulk_viscosity()
-1/9 - 1/(3*ω_1) + 5/(9*ω_0)
>>> ce.get_macroscopic_equations()[0]
∂_t ρ + ∂_0 u_0 + ∂_1 u_1

3) Boundary Conditions: Similar to the collision operator,
boundary conditions are also described in symbolic form.
Boundary conditions have to specify the value of a population
that is streamed in from a boundary lattice cell. Here is an
example of a velocity-bounce-back boundary that models a
moving wall.

def vel_bounce_back(f, c, method, vel):
c_s = method.speed_of_sound
w_q = method.weights[method.stencil.idx(c)]
vel_term = 2 / c_s**2 * c * v * w_q
return f.center(c) - vel_term

In the boundary definition, the user has access to the method
definition, that offers properties like speed of sound or lattice
weights. The lattice direction c is an integer vector pointing
from the fluid to the boundary cell. With this information,
an expression for the missing population is constructed. The
population field f and macroscopic properties can be accessed
using relative addressing, where the center is the fluid cell.
Additional information, like in this example, the velocity of the
moving wall, can be used. This data can be supplied by various
sources. In the simplest case, it is a compile-time constant value.
It can also be an expression that depends on spatial coordinates,
time step, local population values, or macroscopic quantities.
It can also be supplied at runtime. In this case the data is
read from a field or a sparse list data structure that stores this
information for every connected boundary cell. More details
will be covered in the section on the algorithmic treatment of
boundary conditions. However, in all these cases, the boundary
definition, as shown in the above example, does not change at
all. The definition and implementation are strictly separated.
Boundary conditions are defined per lattice link, not by lattice
cell. That means, for example, that for each link a different
velocity can be prescribed.

4) Turbulence models: Up to now, we have presented methods
with constant relaxation rates. The modeling power of LBMs
stems partially from the ability to vary relaxation rates on
a cell-by-cell basis, depending on local quantities. With this
technique, one can for example, model non-Newtonian fluids
or implement turbulence models. To provide this modeling
power to the user, lbmpy does not only allow for compile-
and run-time constants as relaxation rates. It can also take
arbitrary expressions of neighboring distribution functions or
macroscopic quantities as relaxation rates. We illustrate this
for the example of a Smagorinsky subgrid turbulence model.
This model adds an eddy viscosity νt to represent energy
damping on unresolved scales [32]. The eddy viscosity is
calculated from the local strain rate tensor as

νt = (CS∆)2|S|︸ ︷︷ ︸
νt

(11)

where CS is a constant and ∆ is a filter length chosen as 1 in
lattice coordinates. |S| =

√
2SijSij is the Frobenius norm of

the local strain rate tensor

Sij =
1

2
(∂iuj + ∂jui) = −3ω

2ρ
Π

(neq)
ij . (12)

This uses the fortunate property of LBMs that the strain rate
tensor can be computed from local quantities, only using the
second non-equilibrium moment [35]

Π
(neq)
ij =

∑
q

cqicqj

(
fq − f (eq)q

)
. (13)

Equation (12) contains the total relaxation rate ω which is
computed from the total viscosity ν = ν0 + νt which again
depends on the eddy viscosity νt that we want to determine

ω =
2

6C2
S |S|+ 6ν0 + 1

. (14)

Thus we have a system of two equations in ω and |S| that we
now like to solve for ω. Here it pays off that lbmpy is based
on the computer algebra system sympy where these steps can
be performed automatically:

S, ω = symbols("|S|, ω", positive=True)

f_neq = pre_collision_symbols() - equilibrium_symbols()
Π = frobenius_norm(second_order_moment_matrix(f_neq))

eqs = [ Eq(ω, ω_from_ν( ν_from_ω(ω_0) + C_S**2 * S )),
Eq(S, 3 * ω / 2 * Π) ]

effective_ω = solve(eqs, [ω, S])[ω]

The resulting symbolic expression for the effective ω value
can be be used in all places where in previous examples a
constant has been used. Thus, one can construct MRT or
cumulant methods where some or all relaxation rates vary
locally, using potentially different expressions for different
relaxation rates. For brevity, we have shown here only the
construction of a simple turbulence model. The possibility to
employ arbitrary expressions as relaxation rates in lbmpy can
be used to realize also more advanced turbulence models with



only little programming effort. Additionally, lbmpy also comes
with several pre-defined turbulence models. Thus the user does
not have to perform the steps outline above manually, if only
a common turbulence model is required.
5) Entropic KBC Models: Another important class of models,
where relaxation rates are varied locally, are entropic LB
schemes. In this section, we show how entropic MRT methods,
labeled KBC models by the authors in [10], are realized in
lbmpy. The central idea of these methods is to maximize a
discrete entropy measure S of the post-collision state. The free
variable that is tuned to obtain maximum entropy is a relaxation
rate associated with higher-order moments. Single relaxation
time entropic methods also change the effective viscosity by
varying this single rate to maximize entropy. KBC models
present an improvement by using two relaxation rates: One
rate for the shear moments called ωs, and a second relaxation
rate ωh that controls higher order moments. Only ωh is changed
according to the entropy condition. The shear relaxation rate
ωs is not altered, and thus also the viscosity remains constant.
By choosing which moment is relaxed by which relaxation
rate, one obtains different KBC variants, that are labeled by
the authors as KBC-N1 up to KBC-N4.
In the original work [10], the notion of mirror states and
according relaxation parameters is used. Here we use a different
notation that is closer to the formalism of MRT methods. We
start with an arbitrary MRT method that uses two symbolic
relaxation rates ωs and ωh. The rate ωs must include the
shear moments if shear viscosity should remain constant. The
collision operator in population space is then of the form

f ′q = fq − ωs∆sq − ωh∆sh, (15)

where f ′q is the post-collision state, fq the pre-collision state,
and ∆sq,∆hq being the coefficients multiplying the relaxation
rates. Then we need to maximize the entropy

S(f ′) = −
∑
q

f ′q(ωh) ln

(
f ′q(ωh)

f
(eq)
q

)
(16)

in every cell at every time step by varying ωh. Taking the first
derivative of (16) w.r.t. ωh we get the optimality condition∑

q

∆h

[
ln

(
f ′q(ωh)

f
(eq)
q

)
+ 1

]
= 0. (17)

This condition could be solved numerically in every cell using
Newton’s method. However, in this case, a more efficient
way can be devised. We expect f ′ to be close to f (eq) and
approximate the logarithm around 1 up to first order with
ln(x) ≈ x− 1. t The optimality condition then simplifies to∑

q

∆h
f ′q(ωh)

f
(eq)
q

= 0. (18)

Inserting the post-collision value as f ′q = fq − ωs∆sq −
ωh∆sh, and introducing the entropic scalar product 〈a, b〉E :=∑
q aqbq

[
f
(eq)
q

]−1
, we can solve for wh and obtain

ωh = 1 + (1− ωs)
〈∆s,∆h〉E
〈∆h,∆h〉E

. (19)

To obtain this result, one has to replace fq = f
(eq)
q + ∆sq +

∆hq and use
∑
q ∆hq = 0, which holds because of the mass

conservation property of the collision operator. All steps leading
to (19), are implemented using sympy, to obtain an automatic
derivation of KBC methods from high-level principles.
Using this technique, we can construct a wide range of
entropically stabilized methods, not only for D3Q27 stencils as
in [10] but for D3Q19 and D3Q15 stencils as well. Furthermore,
we offer a more costly but also more general numerical
maximization procedure for the post-collision state entropy,
which is based on Newton’s method. This can e.g. be used
for cumulant methods where the update is not linear in the
relaxation rates any more as in (15), but has the quadratic form
f ′q = fq − a1ωs − a2ω2

s − b1ωh − b2ω2
h.

IV. COMPUTE KERNEL GENERATION

All steps described up to now produce a symbolic representation
of the collision operator Ω : Rq → Rq. Together with the
stencil, represented as a list of q discrete velocities with integer
components, an efficient LB compute kernel must be generated
for various hardware platforms. This process is discussed in
the following section.

A. Simplification

To obtain an efficient formulation of the resulting compute
kernel, the symbolic collision operator must be rewritten in
a form where as few as possible floating point operations
(FLOPs) are required to compute post-collision values. This is
a very challenging task, since the automatic operator derivation
yields a highly inefficient formulation by default. Consider,
for example, the case of an SRT model that is derived by
transforming populations to moment space, relaxing with a
single rate, and transforming back. The matrix products produce
lengthy expressions, that are mathematically equivalent to the
usual SRT formulation but are now expressed using many more
FLOPs. With standard mathematical techniques, like expanding
or factoring, terms can already be simplified considerably.
However, the most significant reduction in the number of
FLOPs is achieved with common subexpression elimination
(CSE). General CSE algorithms implemented in computer
algebra systems are not guaranteed to find the global optimum
and have to rely on heuristics to find a reasonably good solution.
These algorithms do not just identify common subtrees as it
is typically done as a compiler optimization, but they also try
to rewrite the expressions in a form where they have more
common subtrees.
For an illustration of the optimization possible in lbmpy we
present here results for the D3Q19 BGK method. The first
row of Table I shows the number of FLOPs in the expressions
as they are produced by the automatic derivation. In total,
this initial automatically generated code version needs 1263
operations. To reduce cost, we first employ the simplification
and CSE capabilities of the sympy computer algebra system
directly. The results are labeled “Only CSE” in the table. This
reduces the number of operations significantly, down to only
261. However, a manually optimized implementation of the



Additions Muls Divs Total
Only CSE:

initial 686 574 3 1263
sympy CSE 199 61 1 261

Custom:
initial 686 574 3 1263
expand 173 423 3 599
quadratic velocity prod. 203 447 3 653
expand 179 423 3 605
factor ω’s 179 305 3 487
common quadratic term 131 161 3 295
substitute existing subexpr. 119 119 3 241
sympy CSE 119 73 1 193

Table I: Detailed simplification results for compressible D3Q19
SRT

BGK method developed by the authors requires only 204
FLOPs. A value around 200 FLOPs is also reported by Wellein
et al. [58]. The default simplification and CSE of sympy thus
is unable to produce code as good as manually tuned, since it
needs about 30% more FLOPs than the best solutions known.
We also tested the simplification capabilities of other computer
algebra systems, including Maple and Mathematica which also
could not find simplifications competitive with hand-tuned
code. Therefore, it was necessary to develop a new set of
custom transformations to rewrite the equations before they are
passed to the CSE function of sympy. These transformations
are listed in the order of application in the lower part of
table I as “Custom” transformations. Next to the name of
the transformation we display the number of FLOPs after the
transformation has been applied. Some of these transformations
use LBM application knowledge, e.g., they treat density and
velocity symbols differently.
We now study these transformations one by one and describe
them in detail. The initial formulation is first expanded, i.e.,
transformed into a sum of products using a function provided
by sympy. The next transformation called “quadratic velocity
products” is specifically developed for LBM simplification.
It picks out mixed quadratic terms in macroscopic velocity
components uiuj and replaces them by (e2 − u2i − u2j )/2,
with a new subexpression e := ui + uj . This transformation
may seem counterintuitive since it increases the number of
FLOPs. However, it helps the following transformations to
obtain better results. This is an example of a transformation that
requires domain knowledge since this replacement may only be
applied to the velocity symbols. Next, a standard expansion is
performed. The previously introduced subexpression e prevents
this expansion from undoing the previous transformation. The
next transformation uses a generic sympy function to factor out
relaxation rates. The “common quadratic term” step introduces
a subexpression that is obtained by taking the expression for
the center point, setting all pre-collision values to zero, and
relaxation rates to one. For the TRT method this yields ρ −
3/2ρ(u20 +u21 +u22). After this transformation, already existing
subexpressions like density and velocity are searched in the
equations, and finally, a CSE from sympy is performed. With

this custom simplification pipeline, we eventually arrive at
a kernel that costs only 193 FLOPs. Note that this is even
slightly better than the previously known and carefully hand-
optimized version. The improvement compared to using only
the generic simplification is 35%. Note also, that the same
automatic simplification and optimization steps can now be
performed for other LBM methods.

Table II shows the total number of FLOPs for a selection
of LB schemes that lbmpy can generate and optimize. We
compare methods that use the so-called compressible and
incompressible equilibrium [28]. We also compare SRT, TRT,
MRT, and the SRT with Smagorinsky turbulence model. The
table does not display in detail which type of FLOPs each
method is composed of. However, all methods only require
additions and multiplications with the following exceptions:
All compressible models have one division by the density, and
the Smagorinsky methods additionally require two square root
operations. The results in the first column are obtained by
using only the sympy CSE. The third column uses the custom
simplification strategy introduced above. The second column
also uses the custom simplification strategy, with a modified
CSE step at the end. In this CSE step, we first search for
subexpressions in terms that update opposing lattice directions.
By construction, these contain terms that differ in sign only
and are good common subexpression candidates. This step is
then again followed by a global CSE. This approach is labeled
“direction CSE” since lattice directions are taken into account.
The lowest FLOP count is marked for each method in boldface.

Let us first discuss the results for all methods with one or
two relaxation rates. We see that for SRT and TRT methods
the custom simplification pipeline consistently leads to better
results. It is generic enough to work not only for the SRT
method it was designed for, but leads to good results for TRT
methods as well. Also turbulence models built on top of these
collision operators are simplified better by the custom strategy,
as shown in the table with the Smagorinsky example. Whether
the direction-aware CSE is beneficial depends on the stencil.
For the D3Q27, it gives the best or equal result across methods,
for D2Q9 and D3Q19 it is helpful only for the SRT operators.

We also have chosen two example MRT methods. One, that uses
the standard scalar product for moment orthogonalization, and
one with moments that are orthogonal w.r.t. to the weighted
scalar product. Second order shear and bulk moments are
relaxed with different rates, and for each order larger than 2
a separate relaxation rate is chosen. Table II shows that the
custom simplification pipeline cannot handle MRT methods.
A straight application of CSE obtains much better results for
all tested MRT methods, regardless of the stencil.

Currently we employ these three simplification options for
each method, and then automatically select the best one. In
the future we plan to also use machine learning techniques to
optimize the application order of transformations or for finding
new transformations.



Only CSE Custom with
direction CSE

Custom,
default CSE

D2Q9
compr. SRT 113 90 90
incompr. SRT 107 75 75
compr. Smag. 137 122 122
compr. TRT 114 110 101
incompr. TRT 108 103 94
compr. MRT 150 349 317
compr. weighted MRT 153 350 325
D3Q19
compr. SRT 261 193 193
incompr. SRT 252 162 162
compr. Smag. 306 251 251
compr. TRT 262 233 214
incompr. TRT 253 225 206
compr. MRT 444 1098 962
compr. weighted MRT 406 947 903
D3Q27
compr. SRT 444 293 389
incompr. SRT 435 289 346
compr. Smag. 510 370 370
compr. TRT 446 379 516
incompr. TRT 437 374 482
compr. MRT 651 3155 4054
compr. weighted MRT 786 3290 3984

Table II: Total number of FLOPs for different LB schemes.
The “Only CSE” columns runs only a CSE from sympy. The
“Custom with direction CSE” runs the custom simplification
pipeline, then a PDF direction-aware CSE followed by a
standard CSE. “Custom with default CSE” is the similar, but
without the direction-aware CSE.

B. Collision Operator to Stencil

1) Streaming and Collision: After simplification we have
the collision operator given as a function Rq → Rq. It
is represented by a list of q symbolic expressions for the
post-collision population values accompanied by a set of
subexpressions. The next stage transforms this formulation
into a stencil representation.
The stencil representation and all following low-level trans-
formations are part of the pystencils package2 that is also
developed by the authors [7]. pystencils generates stencil
kernels, i.e., routines that iterate over arrays, applying the
same operation on every cell. It distinguishes between spatial
and index dimensions. Only spatial dimensions are iterated over,
while index dimensions are used to address values stored inside
a cell, e.g., the q populations for a PDF array or components
of a vector field. The central concept of pystencils are fields,
and field accesses. A field is defined by a name and its number
of spatial and index coordinates. Fields are indexed relatively,
so the field access f[1][0](q), for example, refers to the
q’th population value of the east neighbor cell in a 2D setup.
pystencils is built on top of SymPy, and field accesses can be
used just like a built-in symbol. The collision operator can be
transformed into a stencil representation by replacing the pre-
and post-collision symbols by field accesses. Two additional
pieces of information are required for this process. The user
has to choose the data layout of the population array and a

2https://i10git.cs.fau.de/pycodegen/pystencils

Figure 2: Visualization of stream-pull-collide update pattern
using two arrays. The left part encodes the reads of pre-collision
values, the right part shows where post-collision values are
written to.

kernel type that describes the operations done inside a kernel
call.
lbmpy supports three different population storage options. The
simplest approach is to have two arrays, where, during one
kernel invocation, one array is read-only and the second array
is write-only. For this storage pattern the system can generate
a fused stream-pull-collide, a fused collide-stream-push, or a
collision-only kernel. For a pure LBM simulation that is not
coupled to other simulation models, typically a stream-pull-
collide kernel gives the best performance. In lbmpy the data
access patterns are encoded by the field accesses where pre-
collision values are loaded from, and field accesses where post-
collision values are written to. These are visualized in fig. 2 for
a stream-pull-collide kernel. This mechanism cleanly separates
the LB method definition from algorithmic- and data structure
aspects, avoiding any code duplication.
Besides the simple two array swapping technique, lbmpy
supports also more advanced storage patterns that operate
on a single PDF array and thus require only half the memory.
Supported single-array schemes are the AA pattern [3] and
the esoteric twist (EsoTwist) update scheme [19]. Single array
storage schemes that introduce a data dependency between cell
updates like [44] are not supported.

Figure 3: AA update pattern. The two leftmost schematics
show the even time step consisting of an in-place collision
with inversed storage of populations. The odd time step (right)
is a fused stream-pull, collide, stream-push step.

To be able to process all cells in parallel, while only having
a single array for PDF storage, the AA pattern needs two
different access patterns for even and odd time steps (fig. 3).
This also leads to two different kernels that have to be run in an
alternating fashion. The different data layout after even and odd
steps may complicate boundary handling and coupling the LBM

https://i10git.cs.fau.de/pycodegen/pystencils


to other solvers, when traditional implementation techniques
are used. With our code generation approach this additional
complexity can be handled automatically. The symbolic, high
level formulation of method, boundaries, and update scheme
is sufficient to e.g. generate boundary handling for even and
odd steps automatically.

Figure 4: Esoteric twist split in even (left) and odd (right) time
step kernels. Black arrows indicate reads, red arrows writes.

The esoteric twist pattern also requires only a single array. In
contrast to the AA pattern, it was designed to not require an
even and odd time step. If the populations for different lattice
velocities are stored in separate arrays, a pointer swapping
technique can be used for streaming. In lbmpy, however, we
do not use this technique, in order to keep a common kernel
interface with a single population array. Instead we also use
an even and an odd time step for the EsoTwist pattern as well
(fig. 4).
2) Boundary Conditions: In this section we discuss in more
detail how boundary conditions are realized algorithmically.
One option is to leave the LB kernel unchanged, and run
separate boundary handling kernels before. These kernels
prepare the population array by writing values that will be
streamed in from boundary cells. lbmpy can take symbolic
boundary definitions, as shown above, and generate one kernel
per boundary. In the simplest case, these boundary kernels
operate on a rectangular subdomain, e.g., at the borders of
the computational domain. This very simple, but also very
common case can thus be handled in the most efficient way
possible.
For more general boundary shapes a flag field is used. The flags
store a bitmask in every cell that encodes the type of boundary.
The flag field is initialized by the user using image/voxel data
or with the help of surface meshes. The boundary condition
kernel could iterate over the full domain, masking out cells, but
especially if boundary conditions are static, this would be rather
inefficient. Thus, lbmpy also offers an alternative approach,
where instead of iterating over all cells, a pre-processing step
extracts boundary cell coordinates from the flag field and
creates a list of indices for each boundary condition. This
index list contains the spatial coordinate of the boundary cell
together with the lattice direction to the neighboring fluid
cell. Consequently, this list has one entry per boundary link.
For each boundary link, custom boundary data can be stored
additionally, e.g., the wall velocity for a velocity bounce-back
boundary. The flag field then only acts as a convenient way to
setup boundaries. During the simulation itself, it is not required

any more since all necessary information is stored in the list
data structure to accelerate the processing.
So far we have studied time steps where the boundaries are
treated in a separate kernel. With lbmpy, boundaries can also
be compiled directly into the LB compute kernel. Then a
conditional is added to the kernel that determines the cell type
either by using a flag field or by a boolean expression that
depends on the spatial coordinates.
Using the information about the data access pattern, the
symbolic formulation is transformed to obtain a concrete
boundary assignment. We point out that it is particularly
beneficial to automate the error prone implementation of
boundary conditions for the single-array patterns AA or
EsoTwist.
All boundary treatment options discussed above are not new
since they have already been implemented in existing frame-
works or applications. The new contribution here is that code
for all these options can be automatically generated avoiding
tedious manual coding and debugging. Since all versions can
be generated easily, this makes it possible to benchmark all
versions and to choose the fastest version for a specific setup.
Furthermore, there is no trade-off between flexibility and
performance any more. It is now possible to compile a specific
boundary treatment into a kernel to get an application-specific
implementation with the best performance. Different from a
hand-tuned version of the same method, the lbmpy approach
keeps the system maintainable and extensible. The separation
of concerns is realized on the symbolic abstraction level.

C. Transformations in the Intermediate Representation

In this section we describe low level optimizations executed
on the intermediate representation of pystencils with the goal
to further accelerate the LB compute kernels. pystencils is
designed as a modular package that allows the user to write
custom code transformations specific to the application.
1) Splitting inner loop: For LB kernels we expect that the
memory interface to be the performance limiting factor, if
domains exceed the capacity of the outer level cache. The first
optimization we discuss here, aims to increase the maximum
attainable bandwidth of the kernel by reducing the number of
parallel load/store streams from/to memory. A standard LB
kernel iterates over all cells, loads all q pre-collision values
at once, computes the post-collision values and stores all
q of them. This leads to q parallel load and store streams.
Reducing the number of parallel streams to memory can
increase the obtained bandwidth [57]. Therefore we develop
an automatic transformation that splits the innermost loop
into multiple smaller loops. To avoid the re-computation of
common subexpressions in every inner loop, buffer arrays are
introduced. The first inner loop computes density and velocity
and writes them to the buffer arrays. The following loops
then handle only two lattice direction updates and have only
two parallel load and store streams. Algorithm 1 shows the
state after the transformation in pseudo-code. It assumes a
simple two-field storage pattern with source and destination
array. There are different options on how to exactly perform



Algorithm 1 Stream-collide kernel with split inner loops
for all slices y, z do

ρ arr ← array[x-size]
u arr ← array[x-size]
for line x do

f ← src[x, y, z]
ρ arr[x] ← ρ(f)
u arr[x] ← u(f)
dst[x, y, z, center] ← Ω(f, ρ arr[x], u arr[x])

end for

for line x do
f ← src[x, y, z]
dst[x, y, z, east] ← Ω(f, ρ arr[x], u arr[x])
dst[x, y, z, west] ← Ω(f, ρ arr[x], u arr[x])

end for
for line x do

f ← src[x, y, z]
dst[x, y, z, north west] ← Ω(f, ρ arr[x], u arr[x])
dst[x, y, z, south east] ← Ω(f, ρ arr[x], u arr[x])

end for
... (more loops for remaining directions)

end for

this transformation. One free parameter is the number of
directions that are updated in the inner loops. In the example,
we update two opposing directions at once, since these updates
share many common subexpressions. One could also create a
separate inner loop for each direction, or group more than two
directions together. This transformation is also parametrized by
the common subexpressions that are pre-computed in temporary
arrays. lbmpy can introduce additional temporary arrays for
other subexpressions besides density and velocity as well. A
heuristic is used to determine subexpressions that are compute
intensive enough to justify introducing a temporary array for
them. It is important that all temporary arrays fit into the inner
level cache so that they do not generate additional pressure
on the memory interface. In the simple example, as shown in
algorihm 1, the temporary arrays grow with the domain size
in x-direction. To make this optimization work for arbitrary
domain sizes, the inner loop is blocked before splitting it up.
The chunk size can be selected such that the arrays fit into L1
cache.
2) OpenMP and SIMD vectorization: All LB kernels are
designed in a way that cells can be updated in parallel.
pystencils uses the fact that loop iterations are independent to
automatically parallelize the kernel with OpenMP. By default
the outer loop is parallelized using a static scheduling strategy.
If the domain size is known at compile time, and the outer
dimension is very small, pystencils uses OpenMP collapse
to increase the number of parallel interations.
Knowing that iterations are independent, allows pystencils to
vectorize the code. To have full control over the vectorization
process, we do not rely on compiler auto vectorization or
pragma-based approaches but generate C code with SIMD

intrinsics. pystencils currently supports SSE, AVX, AVX2 and
AVX512 vector instruction sets. If the data layout and alignment
of the population array is known at compile time, we generate
aligned load/store instructions where possible.
3) Non-temporal stores: The intrinsics-based vectorization
allows us to explicitly use non-temporal (NT) stores, also called
streaming stores, in kernels that use two population arrays. This
optimization reduces the total amount of data that has to be
transferred from/to memory. By default, modern CPUs have
a “write-allocate” or “read for ownership” cache policy [61].
This means that a store operation causes the respective cache
line to be read into cache and thus generates twice the memory
traffic that is actually required. This actually causes 3q values
to be transferred over the memory interface per lattice cell. The
custom vectorization allows us to change the store instructions
from default to streaming stores that bypass the cache. Then
only 2q values have to be loaded and stored per cell. So this
optimization can increase the performance of two-array LB
kernels by a factor of 1.5, assuming they are memory-bound
and the PDF array does not fit into the outer level cache.

D. Framework Integration

The intermediate representation of the compute- and boundary
kernels is finally transformed by a backend to either C, CUDA
or OpenCL code. For each kernel a C function with a well-
defined interface is generated. Arrays are passed in as raw
pointer, together with shape and stride information that define
the memory layout of the arrays. Symbolic quantities that
have not been replaced during the code generation process
automatically become parameters to the generated C function,
e.g., values for relaxation rates or constant external forces.
This simple interface was chosen, such that the generated
kernels can be called from a variety of different languages
and can be easily integrated into existing frameworks. In this
section we describe different ways of utilizing lbmpy. The
first option allows the user to completely work in a Python
environment, preferably an interactive Jupyter notebook for a
convenient display of symbolic expressions. There, the user
derives the LBM symbolically and passes the method definition
to lbmpy. After automatic simplification and optimization the
generated C/CUDA/OpenCL code is automatically compiled
and dynamically loaded as a Python module. The compilation
process is fully transparent to the user. The optimized, shared-
memory parallel kernel can then be directly called from Python.
Data is stored in numpy for CPU simulation or in gpuarray’s
from the pycuda package for GPU simulations. In this mode
lbmpy offers a flexible and fast prototyping environment for
LB methods, where simulations can be run on a single node
or a single GPU.
For distributed memory parallelization we use the WAL-
BERLA framework [16], a multiphysics software system that
is optimized for massively parallel simulations with stencil
codes. The distributed memory parallelization uses a block-
structured domain partitioning based on a forest of octrees
and is characterized by excellent scalabilty since it uses
no central nor globally shared data structures so that no



global communication is necessary [51]. This fully parallel
data structure enables adaptive grid refinement and dynamic
load balancing between MPI processes [52], [5]. WALBERLA
has Python bindings [8] that allow for simple distributed
simulations with lbmpy generated kernels directly from Python
on a uniform grid. For advanced use cases, e.g., those that
require grid refinement, the user has to switch to C++ as the
driving language. Integrations of lbmpy into the CMake build
system of WALBERLA control the generation of LB compute
kernels, boundary kernels and packing/unpacking kernels for
distributed memory MPI communication. The reason why we
also generate communication kernels are the single-field AA
and EsoTwist storage patterns. Manually determining what
values have to be sent to neighboring processes is tedious
and error-prone in these cases. Since the compute kernels are
available in symbolic form, we can extract that information and
generate the necessary communication routines automatically.

V. PERFORMANCE RESULTS

In this section we present benchmark results using the auto-
matically generated LB kernels and compare them to manual
implementations with different optimization level.

A. Single Node Benchmark

1) Hardware: We first investigate the single-node performance
on two test systems. We scale all kernels on one socket of two
Intel Xeon processors with different microarchitecture. The
first system is an Intel Xeon E5-2695v3 Haswell system with
14 physical cores per socket. For benchmarking, we deactivate
the turbo mode of this processor and set the frequency to a
fixed value of 2.3 GHz using the likwid tool suite [56]. The
second system is an Intel Xeon Gold 6148 CPU Skylake that
has 20 cores per socket with a fixed frequency of 2.4 GHz. The
Sub-NUMA clustering features of both systems are switched
off to have one NUMA domain per socket. We use transparent
huge pages and disable automatic NUMA balancing in the
Linux kernel. For all benchmarks we use a domain size of
300× 100× 100 that is too large to fit in the outer level cache
of any of the tested systems.
To find an upper bound for the possible performance, assuming
kernels are memory-bound, we use bandwidth measurements
for both systems from [60]. Table III shows the measured
copy bandwidth for both machines where write-allocates
have already been taken into account. Additionally, we use
bandwidth measurements of scenarios that closely mimic the
memory access behaviour of the D3Q19 LB kernels. Kernels
with two-array population storage are compared to a stream
benchmark with 19 parallel streams and non-temporal stores,
labeled copy-19-nt-sl. Kernels with a single-array update
pattern are compared to a benchmark that updates 19 values
in place called update-19. The upper bound for the kernels,
as measured in million lattice updates per second (MLUP/s),
the bandwidth is divided by the number of bytes that have to
be transferred per lattice cell. We assume double precision for
all kernels. Thus each cell update requires 2 · q · 8 bytes per
cell.

processor Xeon E5-2695v3 Xeon Gold 6148
micro architecure Haswell Skylake
cores per socket 14 20
frequency 2.3 GHz 2.4 GHz
Measured Bandwidths
copy 52.0 GB/s 102.8 GB/s
copy-19-nt-sl 47.1 GB/s 92.4 GB/s
update-19 44.0 GB/s 93.6 GB/s

Table III: Test system specification with measured bandwidths
from [60]. copy uses one load and store stream, write-allocate
is already taken into account. copy-19-nt-sl uses 19
load and store streams and non-temporal stores. update-19
updates 19 values in-place.

The benchmark codes are compiled with Intel compiler 19.0.2
if not specified otherwise. Where explicitly noted, the GCC
in version 7.4.0 is used. For both compilers we set the
optimization flag -O3, enable AVX512 on Skylake and AVX2
on Haswell, and switch on fast math flags that allow the
compiler to reorder floating point operations. For the intel com-
piler these are -fp-model fast=2 -no-prec-sqrt
-no-prec-div and for GCC -ffast-math. All kernels
are parallelized with OpenMP.

2) Two-array kernels and comparison to manual implemen-
tations: As discussed before, there is a trade-off between
code quality and performance when developing LB kernels
manually in C/C++. Code is optimized by specializing it for
a particular scenario. To illustrate this trade-off we compare
lbmpy generated kernels with two manual implementations. The
code of the manual implementations can be accessed at [4]. For
this test we restrict ourselves to a SRT collision operator. The
first manually implemented code is written in a stencil-agnostic
way, where lattice velocities and stencil weights are abstracted
away through template meta-programming. Theoretically, the
compiler should be able to resolve these indirections fully
at compile-time. Relaxation rates are also passed in via a
templated functor, to enable a flexible integration of turbulence
models. While the main aim of this kernel is to be as generic
as possible it is still restricted to a single collision operator and
a single two-array population storage pattern. But it is easily
readable and extensible.
The second manual implementation is written specifically
for a D3Q19 stencil. All loops over lattice directions are
manually unrolled, expressions are simplified by leaving out
multiplications with zero lattice direction components, and
common subexpressions are eliminated. These steps lead to
code duplication and decreased readability, but may lead to
better performance. These optimization steps should not be
necessary since the compiler should be able to do them auto-
matically. However, the unrolled stencil-specific version is the
basis of further optimization like loop splitting. Figure 5 shows
benchmark results on the Skylake system for both manually
implemented kernels using GCC and the Intel compiler. We
can see that indeed the Intel compiler (right) was able to
resolve the compile-time abstractions, such that the generic
version is as fast as the stencil-specific one. However, GCC
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Figure 5: Comparison of kernels with different optimization level on Skylake using a BGK method with two-array population
storage on a 300× 100× 100 domain. Horizontal lines indicate the roofline estimate using the measured copy-19-nt-sl
(lower) and copy bandwidth (higher).

cannot optimize the generic code automatically, only obtaining
about half the performance. The manual implementations scale
perfectly, but are far from utilizing the available bandwidth on
the system. The generated kernel without loop splitting and
non-temporal stores already performs better than the manual
implementations. This kernel is explicitly vectorized with
AVX512 SIMD intrinsics and uses pointer arithmetic to access
the population arrays, whereas the manual implementations
use getter/setter methods of an array class. Splitting the inner
loops lets the kernel saturate at about 200 MLUP/s. Due to the
write-allocate strategy in total 1.5 times more data is moved
across the memory interface than necessary. As can be seen in
the plot, the performance of this kernel is consequently also
about a factor of 1.5 worse than the best kernel with NT stores.
Activating NT-stores results in the expected performance of
about 300 MLUP/s on this system, very close to the maximal
304 MLUP/s predicted by the roofline estimate obtained with
the copy-19-nt-sl bandwidth. So the loop splitting and
non-temporal stores optimizations are indeed necessary to
obtain best possible performance on this system. All manual
implementations, where these optimizations have been applied,
are lengthy and hard to read, due to the unrolled loops and
the usage of SIMD intrinsics. These hand-optimized codes
are not only difficult and time-consuming to develop, but also
their maintainability and flexibility have been sacrificed for
performance. With code generation it is possible to resolve
these conflicting goals. Figure 5 also shows, that the generated
code performs consistently across different compilers, since
all abstractions are already transformed to perform with best
possible efficiency by the code generation system, leaving only
standard optimizations to the back end compiler.
Figure 6 shows the corresponding results for the Haswell
system. Overall the behavior of this older system is similar to
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Figure 6: Two-field BGK D3Q19 kernels on Haswell. Config-
uration and roofline indicators as in fig. 5.

Skylake, with the exception that the system is apparently not
able to handle 19 parallel non-temporal store streams, as the
version with NT-stores without loop splitting performs very
poorly.
3) Kernels with AA pattern and boundary handling: Next,
we show performance results for single-array kernels that use
the AA update pattern. We use the TRT collision operator for
these benchmarks. SRT and TRT kernels have very similar
performance characteristics, because they have about the same
number of FLOPs. In fig. 7 we compare the best two-field
version with split loops and non-temporal stores to the corre-
sponding AA kernel. The two-array kernel saturates at about
13 cores, the AA version achieves the highest performance
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already with 6 cores. The additional development effort that
is required for the AA pattern pays off not only in half the
memory consumption but also in single core performance.
For the AA kernels the NT-store optimization is not applicable,
since all values are updated in-place. The inner loop splitting,
however, may be beneficial. Since there are two different
kernels for even and odd time steps, there are in total four
options, where the splitting transformation has been applied to
none, only one, or both kernels. We find, that loop splitting
does not help in this case. All four options yield almost equal
performance results. Thus, fig. 7 only shows the version where
neither of the two kernels has been split.
We can also see, that the roofline limit based on the measured
copy-19 bandwidth is a very good model for the performance
on the full socket. The D3Q27 version saturates at very close
to the expected value, that is by a factor of 19/27 lower than
that of the D3Q19 stencil.
Figure 7 also shows performance results of the TRT LB
benchmark kernel by Wittmann et al. [60]. From this benchmark
we use the fastest kernel list-aa-pv-soa on a channel
geometry. It also uses the AA pattern in a SoA layout. In
contrast to the lbmpy kernels, it operates on a sparse list data
structure, such that only populations in fluid cells have to be
stored. Also, the benchmark kernels have boundary handling
built in, while the lbmpy results in fig. 7 show the performance
of the compute kernel only.
The boundary handling performance of lbmpy is investigated in
fig. 8. It shows the lbmpy kernels where two different boundary
handling approaches are used for a channel scenario, where
non-periodic boundaries are set on all sides. The simplest option
is to generate separate, external kernels that handle boundaries.
Since cache lines containing population at the border must be
loaded twice during a time step, the final performance obtained
at the full socket is decreased by about 15%. The second
approach introduces conditionals in the compute kernel. With
this approach we can obtain about the same performance on
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Figure 8: TRT collision operator on Skylake using AA pattern
with different boundary options.

the full socket as the pure compute kernel, but the performance
on a few cores is much lower. The intrinsics-based SIMD
vectorization in pystencils cannot handle the conditionals in an
optimal way yet. This limitation is expected to be remedied in
future work.
4) Advanced collision operators: The goal of code generation
in lbmpy is not to make a single collision operator fast, but
provide a framework that is can obtain good performance for
a wide range of different LBMs. Figure 9 shows results for
different D3Q19 LB schemes on the test systems using the
AA update pattern. The TRT results, we have seen above are
included for reference again. A slightly more complex scheme
is the BGK operator with included Smagorinsky turbulence
model. In this kernel, the relaxation rate is determined on
a cell-by-cell basis. The computation of the adapted rate is
done on the fly inside the kernel, to not introduce additional
memory accesses. Schemes with variable relaxation rates are
oftentimes implemented in a way where the rates are computed
in a separate kernel and stored into an additional array, for
flexibility reasons. This is not necessary in lbmpy, so that the
Smagorinsky kernel obtains identical performance as the TRT
kernel on the full socket. On Skylake also the performance
on small core counts is almost identical to the TRT kernel,
whereas on Haswell the additional computational complexity,
like e.g., the two sqrt operators per cell, lead to lower single
core performance compared to TRT.
Next, we investigate performance characteristics of an MRT
kernel with weighted orthogonal moments. It has four relaxation
rates, two for controlling shear and bulk viscosity separately,
one for third, and one for forth order moments. All relaxation
rates remain symbolic at compile time and become run time
parameters. lbmpy is capable to optimize this model so that it
almost runs as fast as the TRT model on both test architectures.
This is true also for other MRT models that the system can
generate, e.g. weighted/unweighted moment orthogonalization
or compressible/incompressible equilibria.
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Figure 9: Comparison of different LB collision operators. All kernels use the AA pattern and a D3Q19 stencil.

Figure 9 also contains measurements for a D3Q19 cumulant
method. The non-linear transformation to cumulant-space
makes this collision operator more compute intensive than
MRT methods. Nonetheless, lbmpy can optimize the cumulant
kernel such that it saturates the available memory bandwidth on
both systems. Additionally, we try an entropic method of KBC
type. Shear and bulk viscosity is kept fix, the relaxation rate
for higher order moments is chosen adaptively to maximize
entropy. This method is too compute intensive to be memory-
bound on Haswell, but on a full Skylake socket it achieves
performance similar to the simpler methods.
Summarizing our findings, after careful optimization there is
no performance penality using complex LB collision operators.
On modern CPU architectures all LBM implementaions are
memory bound when they are properly optimized. This
optimization, however, is only achievable by tedious manual
coding by experts or by using automatic code generation with
tools like lbmpy.

B. Scaling Benchmark

Integrating the generated lbmpy kernels into the WALBERLA
framework allows us to run large scale simulations on dis-
tributed memory systems. We use the MPI communication
capabilities of WALBERLA together with generated serializa-
tion/deserialization kernels to run a large parallel simulations.
In contrast to previous work [23], [6], where scaling results for
manual implementations of TRT two-field kernels have been
shown, we demonstrate the performance of a more complex
MRT kernel with AA pattern here. As we have shown above,
this kernel runs as fast as a SRT or TRT collision operator on
the full node when properly optimized.
As test system the SuperMUC-NG supercomputer in Munich
is used. It consists out of Intel Xeon Platinum 8174 processors
with Skylake architecture. Each node has two sockets with 24

27 29 211 213 215 217

Cores

0

2

4

6

8

10

12

14

16
M

L
U

P
/s

p
er

co
re

Weak Scaling MRT on SuperMUC-NG

block size (300, 100, 100)

block size (16, 16, 16)

Figure 10: Weighted orthogonal MRT method with AA update
pattern scaled on SuperMUC-NG up to 147,456 cores (3072
nodes) using a channel geometry.

physical cores each. We run a weak scaling setup up to the
3072 compute nodes that we have access to. This is about half
of the full machine size.
Figure 10 shows the scaling results of a channel geometry. The
domain is partitioned into equally sized blocks and each block
is assigned to a physical core. The machine is best utilized
when choosing large block sizes, since the communication
overhead is kept small in this case. For a block size of
(300, 100, 100), we observe perfect scalability up to all 147,456
cores used. In this configuration we obtain about 1972 GLUP/s
on half of SuperMUC-NG. Besides this weak scaling scenario
demonstrating maximal GLUP/s rates, we may alternatively
want to maximize the number of time steps per second. To



illustrate the capabilities of lbmpy with WALBERLA we also
study a scaling scenario with much smaller block size. fig. 10
shows the scaling behavior for a block size of 163. Here
we achieve still good scalability up to 1024 nodes, then
the performance in GLUP/s drops to approximately 40% of
the performance that was observed for the large block size.
Note however, that in this configuration we can execute 1327
time steps per second. Note also that on the 3072 nodes on
SuperMUC-NG this is still for an LBM grid consisting of
6× 108 LBM cells.

VI. CONCLUSION AND OUTLOOK

In this article, we presented a programming system named
lbmpy that supports the flexible creation of highly optimized
parallel LBMs. The scope of lbmpy are moment-based MRT
methods plus cumulant and entropically stabilized collision
operators. All methods can be created with locally varying
relaxation parameters so that various turbulence models can
be realized or also models for non-Newtonian fluids. lbmpy
automatically optimizes the compute kernels with domain-
specific transformations and it can produce codes that employ
memory-efficient single-array population storage. Even for
complex LBM models, the kernels generated by lbmpy can
reach the same performance as manually optimized state-of-the-
art TRT implementations of [60]. After automatic optimization,
all methods are memory-bound on a recent Skylake system.
Thus, also advanced collision operators can be used without
performance penalty, provided that large domain sizes are used
and memory bandwidth is the bottleneck. Through integration
into the HPC framework WALBERLA, the lbmpy-generated
methods can be executed on large scale distributed-memory
systems with excellent scalability.
The lbmpy/WALBERLA programming system supports the
computational science workflow. It automizes the tedious
and error prone development steps. The support of lbmpy
is vertically integrated: it starts with the development of
advanced kinetic schemes, it assists the development of scalable
parallel codes, and it includes advanced hardware-specific
code optimizations. Note that the derivation of modern LB
schemes will usually require expertise in mathematics and
physics by specialists in LBMs, while the nodel-level kernel
optimization for modern CPU microarchitecture will require a
detailed understanding of CPU microarchitecture. In this sense
lbmpy/WALBERLA is an excercise in interdisciplinary co-design
to create advanced simulation software for future extreme schale
computing. The code-generation paradigm permits a higher
level of abstraction than it can be realized by conventional
software engineering methods. These new, application-specific
methods of abstractions can only be realized with automatic
code generation. They help to resolve the fundamental conflict
between flexibility of software and the need for hardware
specific optimizations. The approach taken in lbmpy offers
a road to performance portability and thus to improve the
sustainability of scientific software.
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kinetic models for hydrodynamics. In: Europhysics Letters 63 (2003),
Nr. 6, 798–804. http://dx.doi.org/10.1209/epl/i2003-00496-6. – DOI
10.1209/epl/i2003–00496–6. – ISBN 0295–5075

[3] BAILEY, P. ; MYRE, J. ; WALSH, S. D. ; LILJA, D. J. ; SAAR, M. O.:
Accelerating lattice Boltzmann fluid flow simulations using graphics
processors. In: 2009 international conference on parallel processing
IEEE, 2009, S. 550–557

[4] BAUER, M. : Implementation manual LB kernels. https://github.com/
lssfau/walberla/blob/48bd19800b0c46030ae7f5e510e896a9154d78b8/
apps/benchmarks/UniformGridGenerated/ManualKernels.h, 2020. –
[Online; accessed 24-January-2020]

[5] BAUER, M. ; EIBL, S. ; GODENSCHWAGER, C. ; KOHL, N. ; KURON, M.
; RETTINGER, C. ; SCHORNBAUM, F. ; SCHWARZMEIER, C. ; THÖNNES,
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; SCHILLER, U. D. ; HARTING, J. ; COVENEY, P. V.: LB3D: A
parallel implementation of the Lattice-Boltzmann method for simulation
of interacting amphiphilic fluids. In: Computer Physics Communications

https://www.tuhh.de/elbe/home.html
http://dx.doi.org/10.3929/ethz-a-010782581
http://dx.doi.org/10.3929/ethz-a-010782581
http://dx.doi.org/10.3390/computation5020019
http://dx.doi.org/10.3390/computation5020019
http://dx.doi.org/10.1016/j.camwa.2015.05.001
http://dx.doi.org/10.1016/j.jocs.2013.03.002
http://dx.doi.org/10.1016/j.jocs.2013.03.002
http://dx.doi.org/10.1023/B:JOSS.0000015179.12689.e4
http://dx.doi.org/10.1142/S0129183107010875
http://dx.doi.org/10.1142/S0129183107010875
http://arxiv.org/abs/comp-gas/9401004
http://arxiv.org/abs/comp-gas/9401004
http://dx.doi.org/10.1103/PhysRevE.79.046704
http://dx.doi.org/10.1103/PhysRevE.79.046704
http://dx.doi.org/10.1016/j.jcp.2012.03.015
http://dx.doi.org/10.1016/j.jcp.2012.03.015
http://ccs.chem.ucl.ac.uk/lb3d
http://dx.doi.org/10.1016/j.camwa.2018.04.022
https://www.openlb.net/
http://www.palabos.org/
https://github.com/sailfish-team/sailfish
http://www2.mpip-mainz.mpg.de/theory/Theses/Thesis{_}Documents/50/thesis
http://www2.mpip-mainz.mpg.de/theory/Theses/Thesis{_}Documents/50/thesis


217 (2017), S. 149–161. http://dx.doi.org/10.1016/j.cpc.2017.03.013. –
DOI 10.1016/j.cpc.2017.03.013
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