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ABSTRACT
Graph Neural Networks (GNNs) have become one of the indispensable tools to learn from graph-
structured data, and their usefulness has been shown in wide variety of tasks. In recent years, there
have been tremendous improvements in architecture design, resulting in better performance on various
prediction tasks. In general, these neural architectures combine node feature aggregation and feature
transformation using learnable weight matrix in the same layer. This makes it challenging to analyze
the importance of node features aggregated from various hops and the expressiveness of the neural
network layers. As different graph datasets show varying levels of homophily and heterophily in
features and class label distribution, it becomes essential to understand which features are important
for the prediction tasks without any prior information. In this work, we decouple the node feature
aggregation step and depth of graph neural network, and empirically analyze how different aggregated
features play a role in prediction performance. We show that not all features generated via aggregation
steps are useful, and often using these less informative features can be detrimental to the performance
of the GNN model. Through our experiments, we show that learning certain subsets of these features
can lead to better performance on wide variety of datasets. Based on our observations, we introduce
several key design strategies for graph neural networks. More specifically, we propose to use softmax
as a regularizer and "soft-selector" of features aggregated from neighbors at different hop distances;
and L2-Normalization over GNN layers. Combining these techniques, we present a simple and
shallow model, Feature Selection Graph Neural Network (FSGNN), and show empirically that the
proposed model achieves comparable or even higher accuracy than state-of-the-art GNN models in
nine benchmark datasets for the node classification task, with remarkable improvements up to 51.1%.
Source code available at https://github.com/sunilkmaurya/FSGNN/

1. Introduction
Graph Neural Networks (GNNs) have opened a unique

path to learning on data by leveraging the intrinsic relations
between entities that can be structured as a graph. By im-
posing these structural constraints, additional information
can be learned and used for many types of prediction tasks.
With rapid development of the field and easy accessibility
of computation and data, GNNs have been used to solve a
variety of problems like node classification [1, 2, 3, 4, 5], link
prediction [6, 7, 8], graph classification [9, 10], prediction
of molecular properties [11, 12], node ranking [13, 14] and
natural language processing [15].

In this work, we focus on the node classification task
using graph neural networks. Since the success of early GNN
models such as GCN [1], researchers have successively
proposed numerous variants [16] to address its various short-
comings in model training and to improve the prediction
capabilities. Some of the techniques used in these variants
include neighbor sampling [17, 18], attention mechanism
[2], use of Personalized PageRank matrix instead of adja-
cencymatrix [19], leveraging proximity in feature space [20]
and simplified model design [21]. Also, there has been an
increasing trend in making the models deeper by stacking
more layers and using the residual connections to improve
the expressiveness of the model [22, 4]. For example, GCNII
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[4] incorporates up to 64 layers with scaled residual weights.
However, most of these models by design are more suitable
for homophily datasets, where nodes that are linked to each
other are more likely to belong to the same class. As a
result, these GNNs may not perform well with heterophily
datasets, which are more likely to have nodes with different
labels connected together. This problem was highlighted
by Zhu et al. [23] and the authors proposed node’s ego-
embedding and neighbor-embedding separation to improve
performance on heterophily datasets. Other recent works
approach this problem in different manner e.g, [24] utilizes
belief propagation, [25] uses adaptive gating on edges etc.

In general, GNN models combine feature aggregation
and transformation using a learnable weight matrix in the
same layer, often referred to as graph convolutional layer.
These layers are stacked together with the non-linear trans-
formation (e.g., ReLU) and regularization (e.g., Dropout) as
a learning framework on the graph data. Stacking the layers
also has the effect of introducing powers of adjacencymatrix
(or laplacian matrix), which helps to generate a new set of
features for a node by aggregating neighbor’s features at mul-
tiple hops, thus encoding the neighborhood information. The
number of these unique features depends on the propagation
steps or the depth of the model. The final node embeddings
are the output of just stacked layers or, for some models, also
have skip connection or residual connection combined at the
final layer.

However, such a combination muddles the distinction
between the importance of features and the expressiveness
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of Multi-layer Perceptron (MLP). It becomes challenging to
analyze which component contributes more over a specific
prediction task. In this paper, we treat feature propagation
and learning on neural network separately and run extensive
experiments to study the importance of features in improving
the prediction capabilities of the model. Based on our analy-
sis, we propose a simple GNN model to improve prediction
accuracy in the node classification task.
Our Contributions

• We run extensive experiments onmultiple node classi-
fication benchmark datasets and show that hop feature
selection is an essential requirement for higher predic-
tion accuracy.

• We experimentally confirm the feature generation re-
quirement for homophily and heterophily graphs.

• We propose a simple 2-layered GNNmodelFSGNN1,
which incorporates a "soft-selection" mechanism to
learn the importance of features during training of the
model.

• Our proposed model empirically outperforms other
state-of-art (SOTA) GNN models (both shallow and
deep) and achieves up to 51.1% higher node classifi-
cation accuracy.

The rest of the paper is organized as follows: Section 2
outlines formulation of graph neural networks and details
node classification task. In Section 3, we explore the im-
portance of features by running extensive experiments and
present our observations. Based on our experimental obser-
vations, in Section 4, we propose our GNN model FSGNN.
In Section 5, we briefly introduce relevant GNN literature.
Section 6 contains the experimental details and comparison
with other GNNmodels. In Section 7, we present our results
and empirically analyze our proposed design strategies and
their effect on the model’s performance. Section 8 summa-
rizes the paper.

2. Preliminaries
LetG = (V ,E) be an undirected graph with n nodes and

m edges. For numerical calculations, graph is represented
as adjacency matrix denoted by A ∈ {0, 1}n×n with each
element Aij = 1 if there exists an edge between node viand vj , otherwise Aij = 0. When self-loops are added
to the graph then, resultant adajcency matrix is denoted as
Ã = A+ I . Diagonal degree matrix of A and Ã are denoted
as D and D̃ respectively. Each node is associated with a
d-dimensional feature vector and the feature matrix for all
nodes is represented as X ∈ ℝn×d . In our discussion, we
will interchangeably refer to feature matrix as features of the
nodes.

1This work is an extension of our previous work [26].
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Figure 1: No-loop and Self-loop aggregation of node features

2.1. Graph Neural Networks
GNNs leverage feature propagation mechanism [11] to

aggregate neighborhood information of a node and use non-
linear transformation with trainable weight matrix to get the
final embeddings for the nodes. Conventionally, a simple
GNN layer is defined as

H (i+1) = �(ÃsymH (i)W (i)) (1)

where Ãsym = D̃− 1
2 ÃD̃− 1

2 is a symmetric normalized
adjacency matrix with added self-loops. H (i) represents
features from the previous layer,W (i) denotes the learnable
weight matrix, and � is a non-linear activation function,
which is usually ReLU in most implementations of GNNs.
However, this formulation is suitable for homophily datasets
as features are cumulatively aggregated, i.e. node’s own
features are added together with neighbor’s features. The
cumulative aggregation of node’s self-features with that of
neighbors reinforces the signal corresponding to the label
and helps to improve accuracy of the predictions. On the
other hand, in the case of heterophily, nodes are assumed
to have dissimilar features and labels to their neighbors. For
heterophily datasets, H2GCN [23] proposes to separate fea-
tures of neighbors from node’s own features, thus avoiding
aggregation of dissimilar features. So we use the following
formulation for the GNN layer,

H (i+1) = �(AsymH (i)W (i)) (2)

where Asym = D− 1
2AD− 1

2 is symmetric normalized adja-
cency matrix without added self-loops. To combine features
from multiple hops, concatenation operator can be used
before the final layer.

Following the conventional GNN formulation [1] using
Ã, a simple 2-layered GNN can be represented as,

Z = Ãsym�(ÃsymXW (0))W (1) (3)
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2.2. Node Classification
Node classification is an extensively studied graph based

semi-supervised learning problem. It encompasses training
the GNN to predict labels of nodes based on the features and
neighborhood structure of the nodes. GNN model is consid-
ered as a function f (X,A) conditioned on node features X
and adjacency matrix A. Using Eq. (3), GNN aggregates the
features of two hops of neighbors and outputs Z. Softmax
function is applied row-wise, and cross-entropy error is
calculated over all labeled training examples. The gradients
of loss are back-propagated through the GNN layers. Once
trained, the model can be used to predict labels of nodes in
the test set.
2.3. Feature Generation in GNNs

As discussed in section 2.1, we can generate different
features for the nodes capturing homophilic and heterophilic
properties in the graph by modifying the feature aggregation
step. The number of different features generated is dependent
on the number of hops of aggregation over neighbors. In
addition, node features can also be generated based on
proximity in feature space or based on some other arbitrary
criterion. Feature generation steps can differ among GNNs
based on their architecture. Many GNN models have feature
aggregation and representation learning combined in single
layer [1, 19, 4], while in other models features can be
precomputed beforehand [21, 27].

3. Feature Selection in Graph Neural
Networks
On any given graph-structured data, a set of features

can be generated for the nodes (e.g. using Eq. (1) & (2)).
The number of features depends on the problem in hand,
properties of the dataset, design choice of practitioner etc.

We assume a function,
g(X,A,K) ↦ {X1, X2,… , Xl}

The function takes X ∈ ℝn×d as node features matrix, A as
an adjacency matrix,K as the power of the adjacency matrix
or number of hops to propagate features and outputs a set of
l node features.

However, in the node classification task, for given label
distribution, only a subset of these features are relevant to
predict the label of the node. For example, a feature Xi isrelevant to class Ci, if Xi and Ci are highly correlated[28,
29, 30]. Irrelevant or noisy features may not correlate with
target labels but can still affect the learning process.

In this section, we explore the importance of features
generated by the aggregation step at different hops. We run
a series of extensive experiments to study how different
features affect predictions for graph neural networks in the
node classification task. Using these experiments, we aim to
answer the following three questions:

Q.1 How useful are individual features generated from
multi-step aggregation in graph neural networks?

Q.2 What is the effect of training the model over all
the features, and what are the effects of different aggregator
schemes?

Q.3 What is the impact of adding or removing features
on the model’s performance?

Exploring these questions provides a deeper understand-
ing of how GNN models can be designed to have better
prediction capabilities.
3.1. Experiment Setting
3.1.1. Model Design

Conventionally, GNN models have feature propagation
and transformation combined into a single layer, and the
layers are stacked together. This step makes it difficult to
distinguish the importance of the features and the role of
MLP, and it becomes harder to analyze their impact on
the prediction results of the model. For our experiments,
we decouple the feature generation step and representation
learning over features separately.

We use 2-layer neural network for our experiments. For
the model design, instead of a single input channel, we
propose to have all these features as input in parallel. Each
feature is mapped to a separate linear layer. Hence the linear
transformations are uniquely learned for all input features.
In addition, we use L2-normalization to row-wise normalize
the output of the linear layer. L2-normalization scales the
node embedding vectors to lie on the "unit sphere". ReLU
and Dropout are used for non-linear transformation of hidden
features and regularization respectively. In the case of a
single input feature matrix, hidden features are mapped to
the final layer, and in the case of multiple input features, all
hidden features of the node are aggregated and mapped to
the final layer. We use two different aggregator schemes: sum
and concatenation, and compare the results.
3.1.2. Input Features

In our experiments, we consider node features of up to
3-hop neighbors (commonly used setting) in the graph. As
we analyze both heterophily and homophily properties in a
graph, we calculate both self-looped and no-loop features
of the nodes. Hence, including node’s own features, our
feature set has total of 7 different features for the node
Xfeat = {X,AX, (A + I)X,A2X, (A + I)2X,A3X, (A +
I)3X}. To explore the answers to the three questions defined
earlier, we design three experiment settings: Single_feature,
All_feature and Sub_feature. In Single_feature setting, we
use only one out of seven features to train the model, and
results are compared among all features. In this way, we an-
alyze how informative each feature is for the label prediction
of the nodes. In All_feature setting, we train the model on
all features together and ascertain the model’s performance.
In addition, we use two aggregation schemes, i.e. sum and
concatenation of hidden node features as they are commonly
used in GNN models. Please note that All_feature with
concatenate setting is similar to the SIGN model[27] as the
model uses simple concatenation of features. In Sub_feature

setting, we train the model on all possible combinations of
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Table 1
Mean Classification Accuracy on fully-supervised node classification task on 2-layered MLP with hidden dimension size as 64.
CAT and SUM refers to concatenation and sum aggregation operation respectively.

Dataset Single_feature All_feature Sub_feature SOTAX AX (A + I)X A2X (A + I)2X A3X (A + I)3X CAT SUM CAT SUM
Cora 73.40 79.55 84.28 83.86 85.47 83.58 85.41 87.68 87.5 88.10 88.04 88.49 [31, 4]
Citeseer 71.66 69.10 73.53 72.38 74.07 70.55 73.92 77.08 77.09 77.52 77.43 77.99 [32]
Pubmed 87.79 81.77 88.27 84.70 88.06 83.06 86.63 89.75 89.55 89.88 89.83 90.30 [4]
Chameleon 46.05 77.74 71.22 76.07 71.77 75.26 71.62 75.61 72.25 78.59 78.55 66.47 [31]
Wisconsin 87.45 63.13 58.03 62.54 52.94 60.00 51.76 85.09 79.8 87.84 88.62 86.98 [33]
Texas 85.40 66.21 61.35 67.29 58.64 62.43 58.10 84.32 78.91 88.64 88.91 86.49 [31]
Cornell 85.94 58.64 63.51 58.64 61.62 58.91 60.27 81.89 72.25 86.21 86.75 82.16 [23]
Squirrel 30.24 73.18 63.79 71.28 63.37 64.42 62.82 73.02 64.68 74.16 73.12 49.03 [31]
Actor 35.32 25.47 29.22 25.38 27.95 25.27 26.43 35.15 35.39 35.63 35.67 36.53 [33]

the features in Xfeat excluding the subsets already used in
Single_feature and All_feature. Hence in this setting, we
train the model on 119 different subsets of input features and
report the result for the best one. We use both aggregator
schemes in this case too.
3.1.3. Datasets and Hyperparameters

We run experiments on nine different datasets with vary-
ing homophily and heterophily properties. More details on
datasets and preprocessing are provided in Section 6. For
each input feature setting, we perform a search over 54
hyperparameter combinations of learning rate, weight decay
and dropout.
3.2. Analysis of results

Table 1 shows the mean node classification accuracy
with different input features for hidden dimension size of
64. We also include current state-of-the-art (SOTA) results
for a comparison with our results. We find many interesting
observations as follows:
Observation 1. We find that each hop features contribute
differently to the prediction performance of the model. Some
hop features are more informative than the others. For ho-
mophily datasets: Cora, Citeseer, and Pubmed self-looped
features have higher node classification accuracy. In many
recent publications that have considered heterophily, there
is often more emphasis on Texas, Wisconsin and Cornell as
good heterophily datasets, and Squirrel and Chameleon are
considered to have low-quality node features as heterophily
datasets [23]. However, we observe that for Wisconsin,
Texas, Cornell and Actor, the best features are node’s own
features, and features of the neighbors are not informative
enough. In case of Squirrel and Chameleon, we achieve best
performance with node’s first hop no-loop features. In these
two datasets, node’s own features and self-looped features
have a low correlation with node’s labels. Hence, they are, in
fact, very good representation of heterophily datasets. These
observations highlight the importance of using both self-
looped and no-looped adjacency matrices in GNNs for bet-
ter generalization over homophily and heterophily datasets
respectively.

Based on our above observations, we postulate that the
problem of homophily and heterophily in graphs is a fea-
ture generation problem. With appropriate feature genera-
tion measures, GNNs can learn on different types of graph
datasets.
Observation 2. In All_feature setting, we train the model on
all features with both concatenation and sum as aggregation
operation. Our first observation is improved performance
compared to Single_feature, which is natural as all features
in combination provide more information. Comparing the
aggregator schemes, for many datasets: Chameleon, Wis-
consin, Texas, Cornell, and Squirrel sum operation has sig-
nificantly lower accuracy compared to concatenation opera-
tion even with higher dimension embeddings (Please refer
to Table 5 for additional results with d=128 & 256). In
this setting, we find concatenation operation overall provides
better accuracy values compared with sum operation.
Observation 3. In Sub_feature setting, we find significant
improvements in performance of the model on all datasets
compared to both Single_feature setting and All_feature

settings. This observation implies that among all features,
there are subsets of features that are more informative than
others for better prediction performance. In addition, other
less informative features, if present in the input, can act as
noise and may lead to worse performance of the model. This
leads to the idea that feature selection is an important aspect
of the design of graph neural networks. By reducing the
effect of less informative/noisy features, higher prediction
accuracy can be achieved even with a simple two-layered
neural network. Over-smoothing problem in GNNs is con-
sidered to be due to node features becoming less informative
because of feature averaging over many hops. However, with
a feature selection mechanism, these uninformative features
can be ignored. With these observations, we postulate that
graph learning and over-smoothing mitigation is a feature
selection problem. With a good feature selection strategy,
GNNmodel can provide good prediction accuracy and elim-
inate the over-smoothing problem.

In addition, we find another interesting observation that
in Sub_feature setting, the difference in the performance of
concatenation and sum aggregation operation is reduced and
is not as significant as observed with All_feature setting.
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Figure 2: Figure shows model diagram of FSGNN. Input features are generated based on powers of A and Ã.

4. Proposed Architecture
As discussed in Section 3.2 that feature selection is

important to improve prediction capability of the model.
However, using Sub_Feature is not feasible for real-world
applications as the number of input feature combinations
increase exponentially with an increase in the number of
hops, making it computationally expensive. Nevertheless,
a GNN model can be designed to approximate feature se-
lection strategy. When all input features are provided, the
model should be able learn to assign higher weights to
more relevant and informative features and actively reject
features that are not useful. To construct such a model,
we propose to weight input features with a single scalar
value that is multiplied to each input feature matrix. We
impose a constraint on these scalar values by the softmax
function as follows. Let �i be the scalar value for the itℎ
feature matrix, then �i scales the magnitude of the features
as �iXiW

(0)
i . Softmax function is used in deep learning as

a non-linear normalizer, and its output is often practically
interpreted as probabilities. Before training, the scalar values
corresponding to each feature matrix are initialized with
equal values, and softmax is applied on these values. The
resultant normalized values �i are then multiplied with the
input features, and the concatenation operator is applied.
Considering L number of input feature matrices Xl, l ∈
{1 .. L} , the formulation can be described as,

H (1) =
Ln

l=1
�lXlW

(0)
l (4)

where ∑L
l=1 �l = 1 and ∥ denotes concatenation operation.

While training, the scalar values of relevant features
corresponding to the labels increase towards 1 while others
decrease towards 0. The features that are not useful and rep-
resent more noise than signal have their magnitudes reduced

with a corresponding decrease in their scalar values. Since
we are not using a binary selection of features, we term this
selection procedure as "soft-selection" of features.

The formulation discussed above can be understood in
two ways. As GNNs have been represented with a polyno-
mial filter,

g�(P ) =
K−1
∑

k=0
�kP

k (5)

where � ∈ ℝK is a vector of polynomial coefficients and P
can be adjacency matrix [1][4][31], laplacian matrix [34] or
PageRank based matrix [35]. As the polynomial coefficients
are scalar parameters then our scheme can be considered
as applying regularization on these parameters using the
softmax function. The other way to look is to simply consider
it as a weighting scheme. The input features can be arbitrarily
chosen, and instead of a scalar weighting scheme, a more
sophisticated scheme can be used.

For practical implementation since all weights are ini-
tialized as equal, they are all set to 1. After normalizing
with softmax function, the individual scalar values become
equal to 1∕L. During training, these values change, denoting
the importance of the features. As the scalar values affect
the magnitude of the features, they also affect the gradients
propagated back to the linear layer, which transforms the
input features. Hence it is important to have a unique weight
matrix for each input feature matrix.
Feature Selection Graph Neural Network

Combining the model designs formulated earlier, we
propose a simple and shallow (2-layered) graph GNNmodel
called Feature Selection Graph Neural Network (FSGNN).
Figure 2 shows the diagrammatic representation of our
model. Input features are precomputed using Asym and
Ãsym and transformed using a linear layer unique to each
feature matrix. L2-normalization is applied on the output
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activations of the first layer and weighted with scalar weights
regularized by the softmax function. Output features are
then concatenated and non-linearly transformed using ReLU
and mapped to the second linear layer. Cross-entropy loss is
calculated with output logits of the second layer. The model
can be represented as,

Z = �
(

CONCATl(�lXlW
(0)
l )

)

W (1) (6)
where CONCATl,∀ l ∈ {1 .. L},Xl are input features and �is ReLU activation function.

5. Related Work
GNNs have emerged as an indispensable tool to learn

graph-centric data. Many prediction tasks like node clas-
sification, link prediction, graph classification, etc. [36][1]
introduced a simple end-to-end training framework using
approximations of spectral graph convolutions. Since then,
there has been efforts in the research community to im-
prove the performance of GNNs, and a variety of tech-
niques have been introduced. Earlier GNN frameworks uti-
lized a fixed propagation scheme along all edges, which
is not always scalable for larger graphs. GraphSAGE[17]
and FastGCN[18] introduce neighbor sampling approaches
in graph neural networks. GAT [2] introduces the use of
the attention mechanism to provide weights to features that
are aggregated from the neighbors. APPNP [19], JK [37],
Geom-GCN [32], SimP-GCN [20], and CPGNN [24] aim
to improve the feature propagation scheme within layers of
the model. More recently, researchers are proposing to make
GNN models deeper [4, 38, 39]. However, deeper mod-
els suffer from over-smoothing, where after stacking many
GNN layers, features of the node become indistinguishable
from each other, and there is a drop in the performance
of the model. DropEdge [22] proposes to drop a certain
number of edges to reduce the speed of convergence of over-
smoothing and relieves the information loss. GCNII [4] use
residual connections and identity mapping in GNN layers to
enable deeper networks. RevGNN [38] uses deep reversible
architectures and [39] uses noise regularisation to train deep
GNN models.

Researchers find that traditional GNNs work well in ho-
mophily graphs but fail to generalize to heterophily graphs.
Several models that are explicitly designed to handle het-
erophily graphs are proposed, includingH2GCN [23], CPGNN
[24], TDGNN [5], Geom-GCN [32], and GPRGNN [31].
However, a recent work [40] reveals that GCNs can achieve
strong performance on heterophily graphs under certain
conditions.

Similar to our work, the idea of decoupling feature
generation and representation learning has been adopted by
several existing works, such as SGC [21] and SIGN [27].
However, these models are equivalent to Single_feature

and All_feature setting, thus suffer from similar drawbacks.
Many GNN models exhibit similarity of weighting the fea-
tures, however, many of them have fixed weighting scheme

Table 2
Statistics of the node classification datasets

Datasets Hom. Ratio Nodes Edges Features Classes
Cora 0.81 2,708 5,429 1,433 7
Citeseer 0.74 3,327 4,732 3,703 6
Pubmed 0.80 19,717 44,338 500 3
Chameleon 0.23 2,277 36,101 2,325 4
Wisconsin 0.21 251 499 1,703 5
Texas 0.11 183 309 1,703 5
Cornell 0.30 183 295 1,703 5
Squirrel 0.22 5,201 198,353 2,089 5
Actor 0.22 7,600 26,659 932 5

like JK-Net [37], APPNP [19], and GCNII [4]. In case of
models with adaptableweighting scheme like ChebyNet [36]
and GPR-GNN [31], learned weights do not show feature
selection pattern due to lack of explicit regularization.More-
over, these GNN models do not use no-loop features by
design, thus limiting their learning capability on heterophily
datasets.

6. Experiments
In this section, we evaluate the empirical performance

of our proposed model on real-world datasets on the node
classification task and compare with other graph neural
network models.
6.1. Datasets

For fully-supervised node classification tasks, we per-
form experiments on nine datasets commonly used in graph
neural networks literature. Details of the datasets are pre-
sented in Table 2. Homophily ratio [23] denotes the fraction
of edges which connects two nodes of the same label. A
higher value (closer to 1) indicates strong homophily, while
a lower value (closer to 0) indicates strong heterophily in
the dataset. Cora, Citeseer, and Pubmed [41] are citation
networks based datasets and in general, are considered as
homophily datasets. Graphs in Wisconsin, Cornell, Texas
[32] represent links between webpages, Actor [42] represent
actor co-occurrence in Wikipedia pages, Chameleon and
Squirrel [43] represent the web pages in Wikipedia dis-
cussing corresponding topics. These datasets are considered
as heterophily datasets. To provide a fair comparison, we use
publicly available data splits taken from [32]2. These splits
have been frequently used by researchers for experiments
in their publications. The results of comparison methods
presented in this paper are also based on this split.
6.2. Preprocessing

We follow the same preprocessing steps used by [32] and
[4]. Other models to which we compare our results also fol-
low the same set of procedures. Initial node features are row-
normalized. To account for both homophily and heterophily,
we use the adjacency matrix and adjacency matrix with
added-self loops for feature transformation. Both matrices
are symmetrically normalized. For efficient computation,
adjacency matrices are stored and used as sparse matrices.

2https://github.com/graphdml-uiuc-jlu/geom-gcn
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Table 3
Mean classification accuracy on fully-supervised node classification task. Results for GCN, GAT, GraphSAGE, Cheby+JK, MixHop
and H2GCN-1 are taken from [23]. For GEOM-GCN, GCNII and WRGAT results are taken from the respective article. Best
performance for each dataset is marked as bold and second best performance is underlined for comparison.

Cora Citeseer Pubmed Chameleon Wisconsin Texas Cornell Squirrel Actor Mean Acc.
GCN 87.28±1.26 76.68±1.64 87.38±0.66 59.82±2.58 59.80±6.99 59.46±5.25 57.03±4.67 36.89±1.34 30.26±0.79 61.62
GAT 82.68±1.80 75.46±1.72 84.68±0.44 54.69±1.95 55.29±8.71 58.38±4.45 58.92±3.32 30.62±2.11 26.28±1.73 58.55
GraphSAGE 86.90±1.04 76.04±1.30 88.45±0.50 58.73±1.68 81.18±5.56 82.43±6.14 75.95±5.01 41.61±0.74 34.23±0.99 69.50
Cheby+JK 85.49±1.27 74.98±1.18 89.07±0.30 63.79±2.27 82.55±4.57 78.38±6.37 74.59±7.87 45.03±1.73 35.14±1.37 69.89
MixHop 87.61±0.85 76.26±1.33 85.31±0.61 60.50±2.53 75.88±4.90 77.84±7.73 73.51±6.34 43.80±1.48 32.22±2.34 68.10
GEOM-GCN 85.27 77.99 90.05 60.90 64.12 67.57 60.81 38.14 31.63 64.05
GCNII 88.01±1.33 77.13±1.38 90.30±0.37 62.48±2.74 81.57±4.98 77.84±5.64 76.49±4.37 N/A N/A -
H2GCN-1 86.92±1.37 77.07±1.64 89.40±0.34 57.11±1.58 86.67±4.69 84.86±6.77 82.16±4.80 36.42±1.89 35.86±1.03 70.71
WRGAT 88.20±2.26 76.81±1.89 88.52±0.92 65.24±0.87 86.98±3.78 83.62±5.50 81.62±3.90 48.85±0.78 36.53±0.77 72.93
GPRGNN 88.49±0.95 77.08±1.63 88.99±0.40 66.47±2.47 85.88±3.70 86.49±4.83 81.89±6.17 49.03±1.28 36.04±0.96 73.37

FSGNN (Homo/Hetero) 3-hop 87.61±1.39 77.17±1.48 89.70±0.44 78.93±1.03 88.24±3.40 87.57±4.71 87.30±5.93 73.86±1.81 35.38±0.81 78.42
8-hop 88.23±1.17 77.35±1.17 89.78±0.38 78.95±0.86 87.65±3.51 87.57±4.86 87.30±4.53 73.94±2.02 35.62±0.87 78.49

FSGNN (All) 3-hop 87.73±1.36 77.19±1.35 89.73±0.39 78.14±1.25 88.43±3.22 87.30±5.55 87.03±5.77 73.48±2.13 35.67±0.69 78.30
8-hop 87.93±1.00 77.40±1.93 89.75±0.39 78.27±1.28 87.84±3.37 87.30±5.28 87.84±6.19 74.10±1.89 35.75±0.96 78.46

6.3. Settings and Baselines
For a fully-supervised node classification task, each

dataset is split evenly for each class into 48%, 32%, and 20%
for training, validation, and testing [32, 23]. We report the
performance asmean classification accuracy over 10 random
splits.

We fix the embedding size to 64, similar to othermethods
and set the initial learnable scalar parameter with respect to
each hop to 1. Thus, the initial scalar value �i is set to 1∕L.
Hyper-parameter settings of the model for best performance
are found by performing a grid-search over a range of hyper-
parameters. We train the model under two input settings.
In first setting, we follow the conventional classification of
the datasets as homophily datasets and heterophily datasets.
For homophily datasets, we use input features as node’s self
feature and self-looped aggregated features. For heterophily
datasets, we use self-features and no-loop aggregated fea-
tures. In the second setting, we use all features to train the
model.

We compare our model to 10 different baselines and
use the published results as the best performance of these
models. GCNII [4] and H2GCN [23] have proposed mul-
tiple variants of their model. We have chosen the variant
with the best performance on most datasets. GPRGNN uses
random splits in their published results. For fair comparison,
we ran their publicly available code on our standard splits
while keeping other settings same. To get the best results,
we performed hyperparameter search as mentioned in the
repository.

7. Results
7.1. Node Classification Results

Table 3 shows the comparison of the mean classification
accuracy of our model and other popular GNN models. In
general, traditional GNN models like GCN and GAT have
higher performance on homophily datasets, however, they
perform poorly on heterophily datasets. More recent models
like H2GCN, WRGAT and GPRGNN perform relatively
better on both homophily and heterophily datasets.

On heterophily datasets, our model shows significant
improvements especially 51.1% on Squirrel and 18.8% on
Chameleon dataset. Similarly, on Wisconsin, Texas, and
Cornell, improvements are 1.6%, 1.2%, and 6.9%, respec-
tively. On homophily datasets, we observe that different
models perform best on different datasets. Our model still
has consistent and comparable performance to SOTA.
7.2. Comparison with Sub_feature

In our work, we aim to maintain performance as close
as possible to Sub_feature (hidden dimension, d = 64) in
Table 1. On five datasets: Cora, Chameleon, Cornell, Squir-
rel and Actor, our model performs as well as Sub_feature,
however for other datasets, performance is comparable, al-
beit a bit lower. During the training, our model starts with
all input features and learns to identify relevant features
and reduce the effect of irrelevant features. However, it is
difficult to completely reduce the effect of noisy/irrelevant
features without an explicit forgetting scheme. We consider
the development of such a scheme to completely remove
the impact of noisy features in GNN training as the future
direction of our work.
7.3. Ablation Studies

In this section, we consider the effect of various proposed
design strategies in section 3.1.1 on the performance of
the model. In general, graph neural networks are sensitive
to the hyperparameters used in training and require some
amount of tuning to get the best performance. Since each
dataset may have a different set of best hyperparameters,
it can be difficult to judge design decisions based just on
best performance of the model with single hyperparameter
setting. To provide a comprehensive evaluation, we compare
the average accuracy of the model over 1080 combinations
of the hyperparameters. The hyperparameters we tune are
learning rate and weight decay of layers and dropout value
applied as regularization between layers. Table 4 shows
the average of classification accuracy values under various
settings.

For most datasets, our proposed design schemes lead to
better average accuracy. Cora and Citeseer show better aver-
age performance without softmax regularization; however,
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Table 4
Ablation study over 1080 different hyperparameter settings.

Cora Citeseer Pubmed Chameleon Wisconsin Texas Cornell Squirrel Actor
Proposed 83.68±2.22 74.48±1.44 89.24±0.27 72.48±4.16 81.48±5.62 78.80±5.88 78.09±2.22 63.57±6.83 33.54±1.21
Without soft-selection 87.07±0.26 76.45±0.27 89.09±0.39 72.27±1.34 78.03±6.55 76.28±6.72 74.32±6.54 61.73±4.15 34.15±0.64
Common weight (W (0)) 83.19±1.41 72.15±1.02 88.96±0.28 68.24±6.03 70.56±10.94 68.45±7.65 68.18±9.13 56.63±8.54 32.73±1.48
Without L2-normalization 77.12±3.49 71.40±10.01 87.72±0.77 53.06±6.18 82.60±2.68 76.33±3.87 76.18±3.43 32.60±6.38 36.66±0.55

the peak performance is marginally less with regulariza-
tion. Even thoughWisconsin shows higher average accuracy
without normalization, however, the best performance on the
dataset was achieved with the normalization layer. We found
that Actor was the only dataset where accuracy was reduced
with the addition of the normalization layer. Without the
normalization layer, our model achieves 37.63% accuracy.
However, to maintain consistency, we do not include it in
the main results. These variations also highlight that a single
set of design choices may not apply to all datasets/tasks and
some level of exploration is required.

It is interesting to note that performance on almost all
datasets is sensitive to the choice of the hyperparameters for
training the model as there is a wide gap between best and
average performance. One exception is Pubmed, where the
model’s performance is relatively unperturbed under various
hyperparameter combinations.

X AX (A + I)X A2X (A + I)2X A3X (A + I)3X

Cora

Citeseer

Pubmed

Chameleon

Wisconsin

Cornell

Texas

Squirrel

Actor 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Heatmap of average of learned soft-selection scalar
for all datasets

7.4. Soft-Selection Parameter Analysis
We analyze the learned soft-selection parameters on

average over different model hyperparameter combinations.
We use four different settings: 1) Proposed model setting, 2)
without softmax regularization on scalar weight parameters,
3) shared linear transformation layer on input features, and 4)
without L2-normalization on input feature activations. For
homophily datasets, it is easy to see that self-looped features
are given more importance. Among heterophily datasets,
Wisconsin, Cornell, Texas, and Actor have the most weights

on node’s self features. In these datasets, graph structure
plays a limited role in the performance accuracy of the
model. For Chameleon and Squirrel datasets, we observed
that the node’s own features and first-hop features (without
self-loop) were more useful for classification than any other
features.
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Figure 4: Figure shows the effect on classification accuracy
of FSGNN with increase in the number of hops of feature
aggregation. x-axis is in logarithmic scale.

7.5. Over-smoothing Analysis
Many GNN models suffer from the over-smoothing

problem when the number of hops for feature aggregation is
increased. In section 3.2, we discussed how feature selection
can be helpful to overcome over-smoothing problem. In this
section, we evaluate the change in model’s performance
with increase in the hops for aggregation. We run additional
experiments with hop values set to 16, and 32 with all
features as input as described in Section 6. Figure 4 shows
the performance of the model for hop setting of 3,8,16
and 32. We observe that there is little variation in the
performance of the model on various datasets and the model
does not suffer from over-smoothing. This result is intuitive
as aggregated features from higher hops are not very useful,
and the model can learn to place low weights on them. For
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few datasets, wewere able to achieve higher accuracy values:
Citeseer (77.46%), Cornell (88.11%) and Squirrel (74.15%).

8. Conclusion
In this work, we explore the importance of feature se-

lection in GNN training. We run extensive experiments to
investigate GNN model design requirements for homophily
and heterophily datasets and how feature selection can lead
to higher prediction accuracy on benchmark datasets. Our
experimental observations provide a definite confirmation
that feature selection is a good direction for the exploration
of GNN architectures. Based on our experimental observa-
tions, we propose a novel GNNmodel called FSGNN. Using
extensive experiments, we show that FSGNN outperforms
the current SOTA GNN models on the node classification
task. Analysis of the learned parameters provides us the
crucial information of feature importance. In addition, we
show that even shallow models can learn and provide high
prediction accuracy, and with our model over-smoothing
phenomenon can be easily avoided.
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Table 5
Mean Classification Accuracy on fully-supervised node classification task with hidden dimensions set to 64, 128, 256 & 512.

Dataset #dimensions Single_Feature All_feature Sub_feature SOTAX AX (A + I)X A2X (A + I)2X A3X (A + I)3X CAT SUM CAT SUM

Cora

d = 64 73.40 79.55 84.28 83.86 85.47 83.58 85.41 87.68 87.5 88.10 88.04

88.49 [31, 4]d = 128 73.84 79.93 84.56 85.85 86.94 85.05 86.23 87.76 87.92 88.19 88.43
d = 256 74.06 82.25 85.97 86.27 87.54 85.67 86.86 87.70 87.68 88.09 88.41
d = 512 76.34 82.19 86.22 86.42 87.56 85.59 87.18 87.95 87.60 87.97 88.53

Citeseer

d = 64 71.66 69.10 73.53 72.38 74.07 70.55 73.92 77.08 77.09 77.52 77.43

77.99 [32]d = 128 71.94 70.74 73.96 73.70 74.58 71.42 74.28 77.35 77.04 77.70 77.63
d = 256 72.54 71.80 76.67 75.02 76.53 72.77 75.36 77.35 77.11 77.86 77.74
d = 512 73.57 71.95 76.62 75.11 76.83 73.19 75.91 77.32 77.35 77.78 78.04

Pubmed

d = 64 87.79 81.77 88.27 84.70 88.06 83.06 86.63 89.75 89.55 89.88 89.83

90.30 [4]d = 128 87.93 81.90 88.26 84.84 88.09 83.01 86.66 89.82 89.58 89.92 89.86
d = 256 88.01 81.89 88.31 84.86 88.08 83.02 86.74 89.81 89.64 89.97 89.89
d = 512 88.11 81.97 88.33 84.86 88.08 83.07 86.72 89.55 89.77 89.90 89.88

Chameleon

d = 64 46.05 77.74 71.22 76.07 71.77 75.26 71.62 75.61 72.25 78.59 78.55

66.47 [31]d=128 46.07 77.74 71.40 76.11 71.42 76.07 71.86 75.76 71.4 78.99 77.98
d = 256 46.09 77.63 71.25 76.77 71.07 76.2 72.58 76.77 70.81 79.01 77.63
d = 512 46.14 77.70 71.27 77.02 72.06 76.12 72.52 70.06 77.32 79.07 77.30

Wisconsin

d = 64 87.45 63.13 58.03 62.54 52.94 60.00 51.76 85.09 79.8 87.84 88.62

86.98 [33]d = 128 88.03 62.54 57.84 62.15 52.35 58.82 51.17 85.29 82.94 88.43 88.04
d = 256 88.03 62.54 58.03 61.96 51.76 57.84 50.78 87.45 83.92 89.02 89.22
d = 512 88.04 62.94 59.02 62.15 51.96 57.45 51.96 84.51 88.04 89.41 90.0

Texas

d = 64 85.40 66.21 61.35 67.29 58.64 62.43 58.10 84.32 78.91 88.64 88.91

86.49 [31]d=128 86.21 67.02 61.62 67.56 58.64 61.62 57.83 84.32 78.91 88.38 88.11
d = 256 85.94 67.83 61.08 67.29 58.91 61.35 58.10 86.48 82.92 88.65 88.65
d = 512 85.67 67.03 61.89 67.30 59.19 61.35 58.65 83.51 86.49 88.65 89.19

Cornell

d = 64 85.94 58.64 63.51 58.64 61.62 58.91 60.27 81.89 72.25 86.21 86.75

82.16 [23]d = 128 86.21 58.10 63.78 58.64 60.54 58.91 60.27 84.05 74.86 87.56 87.57
d = 256 87.83 58.64 65.40 58.64 61.08 58.91 60.54 85.13 77.29 88.11 87.57
d = 512 87.30 59.19 65.13 58.92 62.16 58.92 60.81 81.89 86.76 88.38 88.11

Squirrel

d = 64 30.24 73.18 63.79 71.28 63.37 64.42 62.82 73.02 64.68 74.16 73.12

49.03 [31]d = 128 30.30 72.83 63.66 71.49 64.43 64.49 63.59 72.55 62.50 73.87 72.78
d = 256 30.66 72.54 63.28 71.91 65.36 65.24 63.77 72.63 59.88 74.49 72.76
d = 512 30.74 73.11 63.22 72.24 65.84 65.48 64.38 58.02 72.87 74.76 73.16

Actor

d = 64 35.32 25.47 29.22 25.38 27.95 25.27 26.43 35.15 35.39 35.63 35.67

36.53 [33]d = 128 35.75 25.38 29.26 25.25 27.71 25.26 26.21 35.94 35.57 35.96 36.05
d = 256 36.08 25.41 29.28 25.23 27.53 25.29 26.15 36.10 35.60 36.22 36.31
d = 512 36.38 25.38 29.26 25.42 27.39 25.26 26.08 36.02 36.34 36.52 36.42

Appendices
A. Extended experiment results
A.1. Node classification on higher dimensions

Table 5 shows the mean node classification accuracy
under Single_Feature, All_Feature and Sub_Feature settings
with hidden dimensions set to 64, 128, 256 and 512. We
observe that just with increase in hidden dimensions of 2-
layered MLP, we approach classification accuracy values
similar or higher than state-of-the-art more complex and/or
deeper GNNmodels. Thus the increase in number of param-
eters in the model help to improve the classification accu-
racy. However, there are diminishing returns over accuracy
improvements with increasing the hidden dimensions of the
model.
A.2. Experiments with no non-linear activation

As we observe in Table 5, with Sub_Feature scheme
enabling feature selection, a simple 2-layered MLP already
trains to very high accuracy. However, we would like to
further understand the requirements of GNN complexity for
the given benchmark datasets. In this section, we compare

Table 6
Mean node classification accuracy under Sub_Feature setting
with and without using ReLU activation and hidden dimensions
set to 256.

Dataset
Sub_Feature
(With ReLU)

Sub_Feature
(No ReLU) SOTA

CAT SUM CAT SUM
Cora 88.09 88.41 88.49 88.51 88.49
Citeseer 77.86 77.74 77.72 77.81 77.99
Pubmed 89.97 89.89 89.52 89.54 90.30
Chameleon 79.01 77.63 76.95 76.69 66.47
Wisconsin 89.02 89.22 88.63 88.82 86.98
Texas 88.65 88.65 89.73 88.38 86.49
Cornell 88.11 87.57 88.38 87.84 82.16
Squirrel 74.49 72.76 70.45 69.94 49.03
Actor 36.22 36.31 36.11 35.8 36.53

the effect of non-linear activation ReLU in 2-layered MLP
model under Sub_Feature setting with hidden dimensions set
to 256. We remove only ReLU unit between the two layers
and keep other settings same for learning rate, weight decay
and dropout.
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Table 7
Hyperparameter search space for FSGNN. Experiments in
Table 1 & 5 do not use hyperparameters for scalar parameter.

Hyperparameter Values
WDsca 0.0, 0.0001, 0.001, 0.01, 0.1
LRsca 0.04, 0.02, 0.01, 0.005
WDfc1 0.0, 0.0001, 0.001
WDfc2 0.0, 0.0001, 0.001
LRfc 0.01, 0.005
Dropout 0.5, 0.6, 0.7

Table 8
Hyperparameters of the 3-hop model (all-features)

Datasets WDsca LRsca WDfc1 WDfc2 LRfc Dropout
Cora 0.1 0.01 0.001 0.0001 0.01 0.6
Citeseer 0.0001 0.005 0.001 0.0 0.01 0.5
Pubmed 0.01 0.005 0.0001 0.0001 0.01 0.7
Chameleon 0.1 0.005 0.0 0.0 0.005 0.5
Wisconsin 0.0001 0.01 0.001 0.0001 0.01 0.5
Texas 0.001 0.01 0.001 0.0 0.01 0.7
Cornell 0.0 0.01 0.001 0.001 0.01 0.5
Squirrel 0.1 0.04 0.0 0.001 0.01 0.7
Actor 0.0 0.04 0.001 0.0001 0.01 0.7

Table 6 shows the accuracy comparisons of the models
with and without non-linear activation between layers. Com-
paring both settings, we find two interesting observations.
First, for Cora, Texas and Cornell datasets, we see further
improvement in accuracy values. Second, for other datasets
while accuracy values have decreased (expectedly), the dif-
ference is not significant except for Chameleon and Squirrel
datasets.

With these results, we infer that for these datasets, simple
graph convolution operation over node features combined
with hop-feature selection provides sufficient information.
Thus enabling a simple 2-layered model to perform well on
the node classification task.

B. Implementation Details of FSGNN
For reproducibility of experimental results, we provide

the details of our experiment setup and hyperparameters of
the model.

We use PyTorch 1.6.0 as deep learning framework on
Python 3.8. Model training is done on Nvidia V100 GPU
with 16 GB graphics memory and CUDA version 10.2.89.

For node classfication results (3), we do grid search for
learning rate and weight decay of the layers and dropout
between the layers. Hyperparameters are set for first layer
fc1, second layer fc2 and scalar weight parameter sca.
ReLU is used as non-linear activation and Adam is used
as the optimizer. Table 7 shows details of hyperparameter
search space. Table 8 and 9 show the best hyperparameters
for the model in 3-hop and 8-hop configuration respectively.
Patience value 100 is used for all datasets.

Table 9
Hyperparameters of the 8-hop model (all-features)

Datasets WDsca LRsca WDfc1 WDfc2 LRfc Dropout
Cora 0.1 0.02 0.001 0.0001 0.01 0.6
Citeseer 0.0001 0.01 0.001 0.0001 0.01 0.5
Pubmed 0.01 0.02 0.0001 0.0 0.005 0.7
Chameleon 0.1 0.01 0.0 0.0 0.005 0.5
Wisconsin 0.001 0.02 0.001 0.0001 0.01 0.5
Texas 0.01 0.01 0.001 0.0 0.01 0.7
Cornell 0.0 0.01 0.001 0.0001 0.01 0.5
Squirrel 0.1 0.02 0.0 0.0001 0.01 0.5
Actor 0.0001 0.04 0.001 0.0001 0.01 0.7
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