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Abstract

Deep learning has driven a great progress in natural and bi-
ological image processing. However, in material science and
engineering, there are often some flaws and indistinctions in
material microscopic images induced from complex sample
preparation, even due to the material itself, hindering the de-
tection of target objects. In this work, we propose WPU-net
that redesigns the architecture and weighted loss of U-Net,
which forces the network to integrate information from adja-
cent slices and pays more attention to the topology in bound-
ary detection task. Then, the WPU-net is applied into a typical
material example, i.e., the grain boundary detection of poly-
crystalline material. Experiments demonstrate that the pro-
posed method achieves promising performance and outper-
forms state-of-the-art methods. Besides, we propose a new
method for object tracking between adjacent slices, which can
effectively reconstruct 3D structure of the whole material. Fi-
nally, we present a material microscopic image dataset with
the goal of advancing the state-of-the-art in image processing
for material science.

Microstructure is crucial for controlling the properties and
performance in material science (Hu et al. 2017). And dur-
ing quantitative analysis of that, an important step is micro-
scopic image processing, which is used for extracting the
key information.

Unlike the image processing task in natural and biolog-
ical scenes, the microscopic image in material science has
its unique problems, which increase the difficulty of image
processing and analyzing. Take microstructure analysis of
polycrystalline iron for example, the ultimate objective is to
obtain the 3D structure of the sample. Due to the opacity of
materials, researchers can only use serial section method to
obtain serial 2D slices (images) and stack it to reconstruct
3D structure, shown in Figurem Thus, there are two impor-
tant steps in the process: 2D image analysis and 3D recon-
struction. Both of them have their own difficulty.

For 2D image analysis, flaws in material microscopic im-
ages seriously hinder the target object detection (Ma et al.
2019). The region of interest in polycrystalline microscopic
images is the single-pixel closed boundary of grain (like a
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cell in biological image) (Cantwell et al. 2014)), as shown
with black straight and thick arrows in Figure |1} Unfortu-
nately, during sample preparation, such as polish and etch
processes, the sample will unavoidably produce flaws. There
are three types of flaws in polycrystalline microscopic im-
ages, which will pose significant problems for boundary de-
tection task.

e Blurred or missing boundary: caused by incomplete etch-
ing in the nital solution, as shown with red straight and
thin arrows. This kind of flaw may occur in any position
of slices, even in the same position of serial slices. It is
necessary for an algorithm to recover them correctly.

e Noise: caused in sample preparation, as shown with yel-
low curved arrows.

e Spurious scratch: unavoidably caused in polished process,
which looks similar to the boundary and tends to con-
fuse the image processing algorithm, as shown with blue
notched arrows.
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Figure 1: Microscopic serial slices of polycrystalline iron.
The left is the demonstration of serial slices. The right top is
five serial raw slices and its corresponding boundary results
at right bottom. For interpretation of the references to color
in this figure legend, the reader is referred to the web version
of the article.

Attribute to high representative model, convolution neural
networks(CNN) has driven a great success on image seg-
mentation (Long, Shelhamer, and Darrell 2015) and bound-



ary detection (Xie and Tu 2015) in recent years. However, as
far as we know, there is no deep learning-based method spe-
cially designed for polycrystalline structural materials with
such kind of flaws.

For 3D reconstruction, it is a challenge to identify the
same grain regions in adjacent slices. Different degrees of
deformation exists in the same grain between adjacent slices.
In addition, grain disappearance and appearance often occur
in slices. Therefore, it is necessary to design an algorithm
which can solve all these problems when transforming 2D
boundary detection images to 3D label result.

In this work, to solve the problem existed in 2D micro-
scopic images of polycrystalline materials, we propose a
novel Weighted Propagation Convolution Neural Network
based on U-Net(WPU-Net), which propagates boundary in-
formation from adjacent slice to aid the boundary detection
in the target slice.

Our work presents four contributions and our code and
data are available in https://github.com/clovermini/WPU-
Netl

e We propose an adaptive boundary weighted loss to force
the network to tolerate minor difference in boundary lo-
cation and pay more attention to topology preservation.

e We modify u-net by introducing 3D information into
U-net architecture, which makes better use of domain
knowledge between slices.

e We propose a new solution to reconstruct the 3D structure
of sample by using CNN to perform grain object tracking
between slices.

e We present a dataset with the goal of advancing the state-
of-the-art in image processing for materials sciences.

Related work
Boundary Detection

Many existing methods have been used to detect the bound-
ary of 3D polycrystalline material microscopic images. They
can be broadly categorized into two classes: 2D image-based
and 3D image-based methods, according to the input of
method.

For 2D image-based, Deep Learning based meth-
ods (Long, Shelhamer, and Darrell 2015; Ma et al. 2018))
for 2D semantic segmentation have become the de facto
standard by virtue of its powerful feature learning and ex-
pression ability. The U-Net (Ronneberger, Fischer, and Brox
20135)) is one of the most commonly used methods as its ex-
cellent performance. Many improved methods (Oktay et al.
2018;/Alom et al. 2018)) including ours are based on it. How-
ever, the 2D image-based methods have an inherent draw-
back, that is, it can not make use of the 3D context informa-
tion between adjacent slices.

The 3D image-based methods can also be broadly
grouped into three classes based on how to use 3D informa-
tion. (I) 3D fully convolution network(FCN) (Januszewski
et al. 2018} |Lee et al. 2017)), which employs 3D convolution
to replace 2D convolution. 3D U-Net (Cicek et al. 2016) and
V-Net (Milletar1, Navab, and Ahmadi 2016)) are the two most
representative methods. (II) Combining 2D FCN with RNN.

A representative method is UNet+BDCLSTM (Chen et al.
2016), which uses 2D FCN to extract intra-slice contexts,
and recurrent neural network (RNN) to analyze inter-slice
contexts. (III) Tracking-based method. (Hu et al. 2017) de-
veloped an interactive segmentation method based on break-
point detection, but a lot of artificial correction is needed.
(Waggoner et al. 2013)) proposed the concept ’propagation
segmentation” based on graph-cut, it sets the energy func-
tion of the target image with information of last slice. (Ma
et al. 2019) improved the setting of binary terms in energy
function, filling the blurred or missing boundary in target
images with the same boundary in last slice. The tracking-
based methods show superior performance when dealing
with blurred or missing boundaries and spurious scratches.
However, they are usually designed by hand-crafted fea-
tures which is very time consuming. Our method combines
the deep learning-based architecture with tracking-based
method to take advantage of both, achieving the promising
performance in comparison with state-of-the-art methods.

Weighted Loss

Weighted loss is widely used to handle the class imbalance
problem in deep learning, weighted cross-entropy for exam-
ple (Xie and Tu 2015). However, it does not tolerate minor
differences in boundary location. U-net (Ronneberger, Fis-
cher, and Brox 2015) has proposed a weighted map loss to
pay more attention to the border of two objects. However,
it can only be applied to loosely arranged regions. Besides,
it will be equal to weighted cross-entropy when applied to
tightly arranged regions.

3D Reconstruction

There are two classes of 3D reconstruction methods to rec-
ognize the same regions in adjacent slices. The segmenta-
tion based, such as 3D watershed (Meyer 1992), uses dis-
tance information or gradient information to determine the
relationship between two adjacent pixels. Unfortunately, the
polycrystalline structure is complex and staggered, the grain
region in one slice is connected to other grains in voxel re-
lation on adjacent slices so that the 3D watershed cannot be
applied to this task. The track based methods calculate shape
similarity and overlap area between two connected compo-
nents in two adjacent slices (Xue 2016). However, both of
them rely on hand-crafted features which will unavoidably
cause the over-segment problem.

Method
Adaptive Boundary Weighted Map

Traditional weighted cross-entropy rigidly controls the lo-
cation of the predicted boundary at pixel level. However,
in a practical point, the topology of grain and boundary is
what truly focused. U-net (Ronneberger, Fischer, and Brox
2015) has proposed a weighted map to force the network
to learn the separation borders between two regions. This is
very suited to loosely arranged regions. However, for tightly
arranged regions, d; and ds are equals to 0 and the result is
same with weighted cross-entropy.
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By getting inspiration from U-net, an adaptive boundary
weighting method is proposed, which is a weighted map in-
corporated with cross entropy calculation. The formulas are
shown as below:
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FE is the loss function computed by a pixel-wise soft-
max over the final feature map combined with the cross-
entropy function. The soft-max is defined as pg(z) =

exp(ak(z))
S eap(ag ()
channel k at the pixel position z. K is equal to the number
of classes. w.(x) is the weighted map to balance the class
frequencies. We design two types of weights, wp.r(z) and
Wopj (), for background and object respectively. For each
pixel z in grain i, we calculate its distance d(x) to the near-
est boundary and get the maximum of d(z) in grain 4, the
mazx_dis;. We customize the weight for each grain by using
maz_dis; in the above formulas. By making such optimiza-
tion, the algorithm adaptively control the convergence speed
of normal function. The smaller the grain size, the faster the
weight converge, which protects the tiny grain and tolerate
minor differences in boundary location. mg is the dilating
result of the single-width mask which controls the range of
variation of the boundary. The standard deviation of normal
function in each grain ¢ is the result of max_dis; divided
by . In our experiment, 7 is set to 2.58 because the possi-
bility of normal distribution in range [—2.58 X 0, 2.58 X o]
is 99.00%. The basic principle of these weights is to model
the variantion rule of boundary. For wy.(z) , the center of
the grain has a larger weight, and the closer to the grain
boundary, the smaller the weight. While for we;(z), the
closer to the grain boundary, the weight inclines to be larger.
For better understanding, we visualize the adaptive bound-
ary weighted map with wy.;, and wy,; together, as shown in

Figure[2]

Integrate Propagation Information in Network

In order to better solve the problem of blurred or missing
boundaries and spurious scratches in the microscopic images
of polycrystalline materials, we draw on the advantages of
the tracking-based method and deep learning-based method
and propose a new network architecture for 3D image seg-
mentation, especially applicable to the polycrystalline im-
age. This architecture propagates the mask information from
the last slice to the next target image to assist the boundary

where ay () denotes the activation in feature
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Figure 2: Demonstration of the adaptive boundary weighted
map. From left to right, they are raw image, mask and corre-
sponding weighted map. A tiny grain is specifically marked
with red circle to visually display how adaptive weighting
protects tiny grains from dilated mask.

detection of target image accurately. More specifically, as
shown in Figure[3] the information of the last slice (as shown
with the gray image on the left side of Figure [3) is sent to
U-Net along with raw image as input. As CNN has strong
learning and modeling capabilities, it can learn a powerful
feature extraction function related to a specific task based
on the training data. The core of our work is to build a deep
learning model can use the power of the neural network to
learn a much more complex modeling function between two
adjacent slices. The ideal state of this function is that it can
not only recognize blurred or missing boundaries and spuri-
ous scratches in target image with the help of the last slice
but also keep the topology of the target image itself.
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Figure 3: Proposed Weighted Propagation Convolution Neu-
ral Network based on U-Net(WPU-Net) architecture with
Multi-level fusion.

To improve the effect of model, we present a multi-level
fusion strategy to make better use of multiple levels of in-
formation. As U-Net is a cascaded framework, with the
number of convolution layers increases, it gradually extracts
high-dimensional information representations. In layer 1 (as
shown in Figure [3), U-Net may only learn simple boundary
information, but in layer 4, it may be able to learn high-
dimensional structural information, which is important in
boundary detection on the polycrystalline image. The upper
information sent to the network contains not only boundary
information, but also rich structural information. Thus, we
use a multi-level fusion strategy to make the most of it. The
simplest concatenation is used as the fusion strategy.



Grain Object Tracking Slice By Slice

After analyzing all 2D images, there is still a task to recon-
struct the 3D structure, which is to recognize the same grain
regions in adjacent slices. As shown in Figure {] Image;qs;
and Image,n;s are two adjacent slices. Boundary;,s; and
Boundary,y;s are boundary detection results. Label;,s; and
Label,y; s are the label results, which can be used to 3D re-
construction. Each grain region is given to a unique label and
a certain color to visualize. In Figure[] various deformations
such as deformation, appearance, disappearance may occur
with grains in Z direction as shown in detailed demonstra-
tion. Therefore, there is a challenge to design an algorithm
to solve all these deformations when transform boundary re-
sults to label result.
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Figure 4: Tracking demonstration. The left column is raw
images. The medium column is the boundary result. We
need to track each grain between two neighbor slices and
transform boundary to label. In label result, each grain re-
gion is given to a unique label and a certain color to visual-
ize.

Traditional methods can not solve this problem very well,
because they often produce over-segment results. Therefore,
we intend to use a learning algorithm to handle this task. Un-
fortunately, many object tracking algorithms based on deep
learning rely on the different appearance of each objects,
which is very suited to track the objects in natural scene. By
contrast, all the grains have the same pixel value in boundary
result or approximate value in origin image.

We propose a new grain object tracking solution using
convolution network in image classification task. For each
pair of two connected grain regions in three dimensions, we
apply a classification network to recognize whether they are
belong to the same label.

We use Figure [4] and Figure [5] for detailed illustration.
Label;,; is a set of labels in the last slice, and Label;},;s is
a set of labels in this slice. We pick up image classification
algorithm to track grain objects. For each grain in this slice,
Label?). . for example, we find its all connected components
(such as Label}?.,, Label}! , and Label}?,,) in Label;qs; in

Z direction. Then we resize and concatenate each Label]
with Label?). . to form 2 channels image and feed it to an im-
age classification network. The network has simple 2-class
output to get the similarity of two regions or the probability

of successful tracking. After that, we can obtain the label j
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Figure 5: we use image classification network to achieve the
similarity of two regions. The similarity is the probability of
success tracking.

of Label!_ , which has maximum similarity with Label2),..
If the maximum similarity is beyond a threshold, the track-
ing process can be thought to success and the label j can be

assigned to Label?). .

The pure iron grain dataset

Recently progress in image segmentation has been driven
by high-capacity models trained on large dataset. However,
unlike public data in nature and biological scenes, the pro-
duction and labeling of material microscopic image are very
time-consuming. Because of the opacity of materials, scien-
tist can only use serial section method to obtain the 2D slices
(images) of materials. Besides, the images may suffer many
flaws during sample preparation, which makes the labeling
process consume much more time than other image data. In
total, we think the progress of material microscopic image
processing is hindered by the lack of public data.

Therefore, we present our dataset with its label in order
to provide a referenced dataset for computer vision com-
munity. We provide two types of pure iron data, one real
anisotropic dataset and one simulated isotropic dataset. The
real dataset is produced and collected in practical experi-
ments with serial section method. It has a stack of 296 mi-
croscopic pure iron slices with large resolution (1024 x 1024
pixels) for two classes (grain and grain boundary). The goal
of processing task is to achieve 3D structure of microstruc-
ture. Usually, it is need to firstly detect single-pixel closed
the boundary of each grain in each slice, and then recon-
struct 3D information. The ground truth of real dataset is
labeled by professional material researchers. The simulated
dataset is generated by Monte Carlo Potts model, which is
used to mimic grown procedure of polycrystalline grain. The
simulated dataset consists of a sequence of 2D label slices
and corresponding serial boundary images. It contains 400
slices with resolution of 400 x 400 pixels. Due to the nature
of simulation, it does not have the corresponding real orig-
inal image. Besides, due to the polishing process of sample
preparation, the resolution of Z direction is always smaller
than X and Y direction for real dataset. By contrast, the sim-
ulated dataset is isotropic.

Experiment Results

In this section, adequate experiments will be deployed to
demonstrate the effectiveness of our proposed method. We
split the real dataset into a train set and a test set with 1:1



ratio, and take 32 continuous images from the train set as a
validation set. To ensure sufficient training data, we perform
random cropping, flipping and rotation of the data during the
training process. And random seed is set for the repeatability
of experiments. The test set and validation set use 256 x 256
pixels images as the input of network and the results are
gathered to form a 1024 x 1024 slice by using overlap-tile
strategy (Ma et al. 2018)).

The goal of boundary detection in this work is to achieve
single-pixel closed boundary of each grain. Thus, the met-
ric should tolerate minor differences in boundary location
between prediction and mask and pay attention to under-
segment and over-segment errors.

For fair comparison, we use multiple metrics to evaluate
our algorithm, such as Variation of Information (VI) (Meil
2007; [Nuneziglesias et al. 2013), Adjusted Rand Index
(ARI) (Vinh, Epps, and Bailey 2010) and Mean Average
Precision (mAP) (Lin et al. 2014} [Hamilton 2018)). For VI
metric, a lower value indicates a better performance. While
for the other metrics, a larger value indicates a better perfor-
mance.

We first perform normalization to input images. The
weights of nets are initialized with Xavier (Glorot and Ben-
gio 2010) and all nets are trained from scratch. We adapt
batch normalization (BN) (loffe and Szegedy 2015) after
each convolution and before activation. All hidden layers
are equipped with Rectified Linear Unit (ReLU (Krizhevsky,
Sutskever, and Hinton 2012)). The learning rate is set to le-
4 initially, decaying by 80 percent per 10 epochs until le-
6. We optimize the objective function with respect to the
weights at all network layer by RMSProp with smoothing
constant («)=0.9 and e=1e-5. Each model is trained for 500
epochs on 1 NVIDIA V100 GPU with a batch size of 24.
Our implementation of this algorithm is derived from the
publicly available Pytorch framework (Pytorch 2019). Dur-
ing training, we pick up the parameters when it achieves the
smallest loss on the validation set. All the performance in the
experimental section is obtained on the testing set using the
above parameters. Except for some complex models, which
we have reduced the batch size.

Boundary Detection

All reported performance is the average of scores for all im-
ages in test set. To justify the effectiveness of our proposed
adaptive weighted loss and WPU-Net, we have conducted a
sufficient ablation experiment, the results are shown in Table
and [2| The following is detailed analysis and explanation
of the experimental results.

Adaptive Boundary Weighting As shown in Table [I}
adaptive boundary weight (ABW) performs better than
class-balanced weighted (CBW) loss in general, especially
on mAP. We can see the VI score of CBW and ABW may
behave differently on WPU-Net with Layer 1 mode, how-
ever, the mAP and ARI score of ABW always perform well.
This may benefit from the excellent performance of ABW
on small grains. As VI is less sensitive in tiny grains. We
can also see that Adaptive Boundary Weight can achieve
higher performance both on U-net and Attention U-net ar-

chitecture. That is suggesting that improvements induced by
adaptive boundary weight can be used directly with existing
state-of-the-art architectures.

Integrate Propagative Information in Network To sys-
tematically examine the effect of WPU-Net, we firstly con-
duct the experiment about two fusion modes. One mode is
Layer 1, which means the last slices information is only
merged in the first layer, another is Layer 1-4, means the
multi-level strategy. We can see from Table ] that the results
with multi-level fusion are generally better, it proves the ef-
fectiveness of multi-level strategy. what should be noted is
that in order to obtain a single-pixel boundary result image,
all the predictions of networks will undergo skeletonization
operation.

Another experiment we conduct is a model compari-
son between WPU-net and seven state-of-the-art methods,
which are 3D U-Net (Cicek et al. 2016), Attention U-
Net (Oktay et al. 2018), RDN (Zeng 2016)), U-Net (Ron-
neberger, Fischer, and Brox 2015)), UNet+BDCLSTM (Chen
et al. 2016), HED (Xie and Tu 2015) and Fast-FineCut (Ma
et al. 2019). It should be mentioned that all the algorithms
we used in this experiment are re-implemented using py-
torch based on the original paper and source code (If it pro-
vides).

As shown in Table [2] and Figure [6] our proposed method
WPU-net outperforms others in every evaluation metrics,
especially on VI metrics (the summation of split error and
merge error), our method is about 7% smaller than other
methods. This proves the feasibility and effectiveness of
propagation segmentation network in the boundary detec-
tion task of 3D images, especially in polycrystalline ma-
terials. The problem of continuous blurring of same grain
boundaries and scratch noise in adjacent slices are the two
main reasons for the in-applicability of typical methods. To
further analyze it, we display the merge error and split error
of each method in VI evaluation metric separately in Fig-
ure[7] The merge error(under-segmentation) means the error
caused by unsuccessful detection of grain boundaries(FN),
resulting in two grains in the image being judged to be
the same grain (usually occurs at blurred grain boundaries).
While the split error (over-segmentation) means the wrong
detection of grain boundaries(FP), resulting in one grain in
the image is judged as two grains (usually occurs at spurious
scratches). From Figure[/] we can see that other models all
show much worse performance on blurred grain boundaries
generally, except our method. However WPU-net performs
better in both problems, especially on blurred boundaries.
One interesting phenomenon is that the merge error is abnor-
mally high in UNet+BDCLSTM when compared with the
split error, it may indicate that RNN is not good at dealing
with the problem of continuous missing.

Grain Object Tracking Slice By Slice

We evaluate our object tracking algorithm both on simu-
lated isotropic dataset and real anisotropic dataset. We use
VI and ARI as metrics of the object tracking experiments.
We compare our algorithm with maximum overlap area al-
gorithm and minimum centroid distance algorithm proposed



Algorithm Loss Mode VI mAP ARI
CBW ABW Layer 1 Layer 1-4

U-net v X X X 0.3165 0.6067 0.8155
X v X X 0.2952 0.6171 0.8297
Attention v X X X 0.2828 0.6264 0.8298
U-net X v X X 0.2808 0.6298 0.8370
v X v X 0.1868 0.6703 0.8530
WPU-net v X X v 0.1894 0.6718 0.8516
X v v X 0.1929 0.6925 0.8634
X v X v 0.1874 0.6959 0.8647

Table 1: Ablation experiments results on loss and mode. CBW means the class-balanced weight, ABW means the adaptive
boundary weight. The bold values mean the best performance in each metric.

Algorithm VI MAP ARI

WPU-net 0.1874 | 0.6959 | 0.8647

3D U-Net 0.2537 | 0.6496 | 0.8397
RDN 0.2691 0.6340 | 0.8418

Attention U-Net 0.2828 | 0.6264 | 0.8298
UNet+BDCLSTM | 0.3134 | 0.6193 | 0.8135

U-Net 0.3165 | 0.6067 | 0.8155
Fast-FineCut 0.4183 | 0.5660 | 0.8030
HED 0.4436 | 0.5651 0.7635

Table 2: Model comparison in real dataset. The bold values
mean the best performance in each metric.

in the article (Xue 2016). For image classification model,
we choose vggl3_bn (Simonyan and Zisserman 2015) and
densenet161 (Huang et al. 2017)) for comparison. The learn-
ing rate started from le-4 and is multiplied by 0.8 after each
epoch until decay to le-6. The batch size is 40 and uses RM-
SProp with 0.9 momentum to optimized. Each model was
trained for 20 epochs. The tracking threshold is 0.5. The
testing set was evaluated on the parameters where models
achieve the highest accuracy on the validation set.

In addition, because of lacking information in Z dimen-
sion, the tracking algorithm can not achieve 100% accuracy
even for ground truth boundary result. Therefore, we choose
the best model tested with ground truth boundary track-
ing task and apply it to the boundary results with different
boundary detecting methods. It is reasonable to use tracking
results to evaluate the performance of different boundary de-
tect methods.

Note that the number of images is not limitation for CNN
classification. There are thousands of pair grain regions in
two adjacent slices. Thus, there are million of pair grain re-
gions as training set for real dataset and half million of pair
grain regions as training set for simulated one.

Simulated Dataset For simulated dataset, we use 240
slices as the training set, 80 slices as the validation set and
80 slices as the testing set. As shown in the Table[3] we re-

Algorithm VI ARI Duration(s)
Min Centroid Dis | 0.5798 | 0.9160 41.87
Max Overlap Area | 0.5754 | 0.9206 42.97
Vggl13_bn 0.5832 | 0.9192 426.92
Densenet161 0.5124 | 0.9391 759.90

Table 3: Performance of tracking on simulated dataset with
different algorithms.

port the tracking performance of different methods. Track-
ing methods with deep learning achieve the promising per-
formance in comparison with traditional methods. Besides,
it improves the performance when complex and advanced
network is applied. However, the duration of deep learning
based tracking algorithm consumes much more time than
traditional methods. We think it can be optimized by paral-
lel programming.

Algorithm VI ARI Duration(s)
Min Centroid Dis | 0.5508 | 0.8856 1100.95
Max Overlap Area | 0.6331 | 0.8582 1126.41

Vggl3_bn 0.5299 | 0.8972 7934.64

Densenet161 0.4829 | 0.9131 9228.82

Table 4: Performance of tracking on real dataset with differ-
ent algorithms.

Algorithm VI ARI
WPU-Net 1.4785 0.7577
Fast-Fine Cut 1.7517 0.7050
3D U-net 1.4864 0.7405
Attention U-net 1.6701 0.7348
U-net 1.7326 0.6932
Unet-BDCLSTM 1.7363 0.6841

Table 5: Performance of tracking on real data set with dif-
ferent boundary detection algorithms.
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Figure 6: Detection results with different methods. Four adjacent slices from top to bottom. The yellow arrows represent blurred
or missing boundary that does not recover accurately. The blue arrows refer to scratches that does not eliminate. And the red

circles mean break of boundary.
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Figure 7: Model comparison on merge error and split error.

Real Dataset For real dataset, We use 116 slices as the
training set, 32 slices as the validation set and 148 slices
as the testing set. As shown in Table [ it has shown the
same result with simulated data. In addition, we choose the
densenet161 to track the boundary result of different meth-
ods in Table[5] WPU-net achieves the promising result than
other methods.

Conclusion

In this work, we propose a Weighted Propagation U-net
(WPU-net) to handle the boundary detection in polycrys-
talline materials. The network integrates information from
adjacent slices to aid boundary detection in target slice. And

we present adaptive boundary weighting to optimize the
model, which can tolerate minor difference in boundary de-
tection and protect the topology of grains. Experiments have
shown that our network achieves the promising performance
that is superior to previous state-of-the-art methods. The VI
metric (summation of merge and split error) of our method is
about 7% smaller than the second-best method. In addition,
we develop a new solution to reconstruct the 3D structure
of the sample by using CNN to perform grain object track-
ing between slices. Our team will focus on accelerating the
speed of tracking and optimizing boundary detection in the
future.
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