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Abstract

Explicit time-marching schemes are popular for solving time-dependent partial
differential equations; one of the biggest challenges these methods suffer is increasing
the critical time-marching step size that guarantees numerical stability. In general,
there are two ways to increase the critical step size. One is to reduce the stiffness of
the spatially discretized system, while the other is to design time-marching schemes
with larger stability regions. In this paper, we focus on the recently proposed ex-
plicit generalized-α method for second-order hyperbolic equations and increase the
critical step size by reducing the stiffness of the isogeometric-discretized system.
In particular, we apply boundary penalization to lessen the system’s stiffness. For
p-th order Cp−1 isogeometric elements, we show numerically that the critical step

size increases by a factor of
√

p2
−3p+6

4
, which indicates the advantages of using the

proposed method, especially for high-order elements. Various examples in one, two,
and three dimensions validate the performance of the proposed technique.

Keywords isogeometric analysis, boundary penalization, hyperbolic equations, ex-
plicit generalized-α method, critical time step size

1 Introduction

We consider the following second-order hyperbolic equation

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ü(x, t) − ∇ ⋅ (κ(x)∇u(x, t)) = f(x, t), x ∈ Ω, t ∈ (0, T ],
u(x, t) = uD, x ∈ ∂Ω, t > 0,

u(x,0) = u0, x ∈ Ω,

u̇(x,0) = v0, x ∈ Ω,

(1.1)
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where Ω = [0,1]d ⊂ Rd, d = 1,2,3, is a bounded open domain with Lipschitz boundary ∂Ω.∇⋅ is the divergence operator, ∇ is the gradient operator, 0 < κ0 ≤ κ(x) ≤ κ1 is a diffusion
coefficient representing the material property, f is a forcing function, u is the unknown,
uD provides boundary data, u0 and v0 provide initial data. The superposed dots refer
to the time-derivatives where u̇ = ∂u

∂t
, ü = ∂2u

∂t2
denote the velocity and acceleration,

respectively. Equation (1.1) arises in mathematical modeling of various engineering and
scientific problems. For example, in structural engineering, we model the structural
vibrations due to dynamic excitations from wind, earthquakes, blasts, vehicular traffic,
and operating machinery, as a system second-order hyperbolic differential equations [8,
39, 9]. In particular, undamped structural dynamics are usually modeled as (1.1); see,
for example, [34]. Equation (1.1) is also referred to as the wave equation [20, 38, 8], often
seen in models where the underlying medium is homogeneous (when κ is constant) [38].
While the regularity (existence, uniqueness, and smoothness) of the solution of (1.1)
has been well-understood, finding its analytical solutions is impossible. Therefore, the
modeling equation (1.1) with a general domain is usually solved numerically.

Various numerical methods have been developed to solve equation (1.1). For the
spatial discretization, isogeometric analysis (IGA) [26, 6] is a state-of-the-art method
that combines classical finite element analysis with computer-aided design and analysis
tools. A series of research works on IGA studies the advantages of the method over
the classical finite element method (FEM) for spectral approximations [33, 7, 28, 27,
4, 36, 14, 21, 23, 13] as well as to expand its applications to various engineering and
scientific problems [43, 22, 2, 40, 41, 37, 18, 17, 12, 10]. We herein use IGA for the
spatial discretization of problem (1.1).

There are explicit and implicit time-marching schemes to advance the problem in
time [3]. The forward and backward Euler schemes are the simplest explicit and implicit
schemes, respectively. For the second-order hyperbolic problem, especially in the field
of structural dynamics, the generalized-α method [5] is a widely-used implicit scheme.
In this paper, we adopt the recently-developed explicit generalized-α methods [1, 29]
for the temporal discretization of problem (1.1). While maintaining the second-order
accuracy and other features of the original generalized-α method, this scheme also has
the advantages of an implicit scheme. Generally speaking, implicit schemes are popular
due to their unconditional stability. In addition, the numerical errors vary continuously
with the time step size; see the red line of Figure 1 as an example. Their main drawback
is that one needs to invert large sparse algebraic systems, which can be computationally
costly. Moreover, implementing an implicit scheme is generally harder than an explicit
one. Explicit schemes are widely-used for the sake of simplicity and computational
efficiency. In particular, they do not require inverting matrices. In the region where
the time step size τ ≤ τc, explicit schemes are significantly cheaper than implicit ones to
reach the same approximation accuracy. Figure 1 shows an example of the critical time
step size τc for the explicit forward Euler scheme. The scheme fails for larger time-step
sizes, τ > τc due to the lack of stability. Thus, less accurate approximations are not
possible when using an explicit scheme by enlarging the time step size.

In this paper, we enlarge the critical time step size by reducing the high-frequency
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Figure 1: An example: L2-norm errors versus time step sizes for both backward (implicit)
and forward (explicit) Euler methods. The critical time step τc is the maximal time step
size that ensures stability of the explicit scheme.

unphysical stiffness of the spatial discretization. For any explicit time-marching scheme,
the stability condition boils down to a condition τ2λ ≤ C where C > 0 is a constant. λ ∈ C
is the largest eigenvalue in magnitude, which characterizes the stiffness of the spatial
discretization. The critical time step size is then τc =

√
C/λ, implying that a reduced

stiffness (smaller λ) enlarges the critical time step size τc. Our recent work [15, 16]
introduces a boundary penalization technique that significantly reduces the stiffness of
the IGA discretized system by eliminating the outliers. These outliers correspond to
stopping bands in the finite element discrete spectrum. In the spectral approximation
of second-order elliptic operators, this technique removes the outliers that were first
observed in [7]. Recently, alternative outlier removal techniques [24, 31] build extra
boundary conditions in the approximation space. The elimination of the outliers reduces
the unphysical stiffness of the discretized system. We herein focus on the use of the
boundary penalization technique developed in [15]. We show numerically that the critical

time step size increases by a factor of
√

p2−3p+6
4

when using p-th order IGA elements for
the wave equation (i.e., Equation (1.1) with κ = 1).

The rest of this paper is organized as follows. Section 2 presents a numerical method
for solving the problem (1.1); we start with an IGA spatial discretization and then
introduce the explicit generalized-α method for time marching. Section 3 describes the
boundary penalization technique and discusses the advances in stiffness reduction and
critical time step size increment. Section 4 collects numerical results that demonstrate
the performance of the proposed method. We focus on the study of the critical time
step size increment. Concluding remarks are presented in Section 5.
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2 Fully discrete solver

First, we discretize (1.1) in space using isogeometric analysis and then discretize the
resulting ordinary differential matrix system using the explicit generalized-α method.

2.1 Isogeometric discretization

Before discretizing in space the problem (1.1), we obtain the weak form of the problem;
from it we obtain the Galerkin formulation. Multiplying the equation (1.1) by a test
function and integrating by parts, we obtain the weak form of the problem (1.1) [30]:
for f ∈ L2, find u(⋅, t) ∈H1

0(Ω) such that

a(ü,w) + b(u,w) = ℓ(w), ∀w ∈H1

0(Ω), (2.1)

where

a(w,v) = (w,v), b(w,v) = (∇w,∇v), ℓ(w) = (f,w), ∀w,v ∈H1

0(Ω).
The method imposes the boundary conditions through the approximation space H1

0
(Ω)

where the time-marching method enforces the initial conditions. We introduce a finite-
dimensional approximation to H1

0
(Ω) within the Galerkin framework; we adopt the

isogeometric analysis for spatial discretization.
For simplicity, at the discrete level, we first partition the unit domain Ω = [0,1]d, d =

1,2,3, into a mesh with uniform tensor-product elements. Let E be a generic element and
denote its collection as Eh such that Ω = ∪E∈EhE. We denote h = maxE∈Eh diameter(E).
Isogeometric analysis uses the B-splines as basis functions in the Galerkin framework.
In 1D, they are given by the Cox-de Boor recursion formula [11, 35] while in multiple
dimensions they are given as tensor-products of the 1D functions. We refer to [2, 19, 37,
10] for detailed constructions and define the approximation space as

V h
p = {w ∈ Cp−1(Ω) ∶ w∣∂Ω = 0,w∣E ∈ Pp,∀E ∈ Eh} ⊂H1

0(Ω), (2.2)

where P
p is the space of p-th order polynomials.

At the spatial semi-discrete level, the isogeometric analysis of (1.1) is to find uh(⋅, t) ∈
V h
p such that

a(üh,wh) + b(uh,wh) = ℓ(wh), ∀ wh
∈ V h

p , (2.3)

which leads to the matrix problem

MÜ +KU = F, (2.4)

where Fk = ℓ(φk
p), Mkl = a(φk

p, φ
l
p),Kkl = b(φk

p, φ
l
p), and U is the vector of the coefficients

of the basis functions φk
p in a solution representation. The matrix problem (2.4) is

usually referred to as a semi-discretized system of the problem (1.1) and it is a system
of ordinary differential equations (ODEs).
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2.2 Explicit generalized-α method

For the temporal discretization, we adopt the explicit generalized-α method to solve the
ODEs (2.4). We partition of the time interval [0, T ] with a grid 0 = t0 < t1 < ⋯ < tN = T .
The time-marching step size τn = tn − tn−1. Again, for simplicity, we assume a uniform
step size τ . We approximate U(tn), U̇(tn), Ü(tn) as Un, Vn,An, respectively.

Given Un, Vn,An, the explicit generalized-α time-marching method is to find Un+1,
Vn+1, An+1 such that

MAn+αm +KUn = Fn+αf
,

Vn+1 = Vn + τnAn + τ
2

nγ⟦An⟧,
Un+1 = Un + τnVn +

τ2n
2
An + τ

2

nβ⟦An⟧,
(2.5)

where
Fn+αf

= F (tn+αf
) = F (tn + αfτn),

⟦An⟧ = An+1 −An,

An+αm = An +αm⟦An⟧
(2.6)

with initial conditions
U0 = U(0),
V0 = V (0),
A0 =M

−1(F0 −KU0).
(2.7)

We use the parameter settings of [29], which allow dissipation control and second-order
accuracy. These parameters are:

αf = 0, γ =
1

2
+ αm, αm =

2 − ρ

ρ + 1
, β =

3ρ − 5

(ρ − 2)(ρ + 1)2 , (2.8)

where 0 ≤ ρ ≤ 1 is a user-specified parameter that controls high-frequency dissipation.
When ρ = 1, the scheme has the largest stability region and is equivalent to the second-
order explicit central finite difference method [42]. This formulation is also a special
case of the Newmark family [32]. In this case, the conditional stability condition is as
follows [25, Chapter 9]

τωh
≤ 2, (2.9)

where ωh is the discrete frequency such that

KU = (ωh)2MU. (2.10)

The critical time step size is τc = 2/ωh
max, which is inversely proportional to the maximal

discrete frequency ωh
max. In isogeometric discretizations of (1.1), the resulting matrix

problem (2.10) has “outliers” in the highest-frequency region. These outliers are un-
physical approximations to the maximal physical frequency ωmax from above (meaning
ωh
max > ωmax) with large errors. The removal of these outliers reduces the approxima-

tion errors on the maximal discrete frequency. Consequently, their removal increases the
critical time step size τc, enlarging the stability regions for explicit time marching.
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3 Boundary penalization for isogeometric analysis

Following [15], we present a boundary penalization technique that removes outliers from
the discrete frequency. The method depends on the order of the isogeometric element,
thus we first define

α = ⌊p − 1
2
⌋ =
⎧⎪⎪⎨⎪⎪⎩
p−1
2
, p is odd,

p−2
2
, p is even.

(3.1)

In one dimension, the boundary penalization technique for isogeometric analysis of (1.1)
discretizes (2.1) to find ũh(⋅, t) ∈ V h

p for all f ∈ L2(Ω) such that

ã(¨̃uh,wh) + b̃(ũh,wh) = ℓ(wh), ∀ wh
∈ V h

p , (3.2)

where for w,v ∈ V h
p

ã(w,v) = ∫ 1

0

wv dx + α∑
ℓ=1

ηb,ℓh
6ℓ−1 ∫ 1

0

w(2ℓ)v(2ℓ) dx, (3.3a)

b̃(w,v) = ∫ 1

0

w′v′ dx + α∑
ℓ=1

ηa,ℓπ
2h6ℓ−3 ∫ 1

0

w(2ℓ)v(2ℓ) dx, (3.3b)

and ηa,l, ηb,l are penalty parameters set ηa,l = ηb,l = 1 by default. With the one-
dimensional bilinear forms defined above, using the tensor-product structure, we define
the 2D bilinear forms as

ã(⋅, ⋅) = ãx(⋅, ⋅) ⋅ ãy(⋅, ⋅),
b̃(⋅, ⋅) = b̃x(⋅, ⋅) ⋅ ãy(⋅, ⋅) + ãx(⋅, ⋅) ⋅ b̃y(⋅, ⋅) (3.4)

and the 3D bilinear forms as

ã(⋅, ⋅) = ãx(⋅, ⋅) ⋅ ãy(⋅, ⋅) ⋅ ãz(⋅, ⋅),
b̃(⋅, ⋅) = b̃x(⋅, ⋅) ⋅ ãy(⋅, ⋅) ⋅ ãz(⋅, ⋅) + ãx(⋅, ⋅) ⋅ b̃y(⋅, ⋅) ⋅ ãz(⋅, ⋅) + ãx(⋅, ⋅) ⋅ ãy(⋅, ⋅) ⋅ b̃z(⋅, ⋅), (3.5)

where ãξ, b̃ξ, ξ = x, y, z are the bilinear forms in each dimension that we define similarly
to (3.3a) and (3.3b). These bilinear forms lead to a new matrix problem

M̃
¨̃
U + K̃Ũ = F, (3.6)

which we solve using the explicit generalized-α method, see Section 2.2.

Remark 3.1 (Coercivity and optimality of (3.2)). The boundary penalization bilinear
terms are positive semi-definite. Thus, the new bilinear forms are coercive from the
finite element theory, ensuring the stability of the spatial discretization. The discretiza-
tion (3.2) is a Galerkin finite element method. The collection of B-spline basis functions
forms a space that is a subspace of the usual finite element space. The a priori error esti-
mate established for Galerkin finite elements also holds for the discretization (3.2). As a

6



consequence, we expect optimal convergence rates for the overall method to approximate
a smooth solution u to problem (1.1). That is,

∥u(⋅, T ) − uh(⋅, T )∥L2(Ω) ≤ C(hp+1 + τ2), (3.7)

∣u(⋅, T ) − uh(⋅, T )∣H1(Ω) ≤ C(hp + τ2), (3.8)

where C is independent of the mesh size h and time-marching step size τ . We validate
these estimates numerically in the next Section 4.

4 Numerical examples

Numerical experiments validate the a priori error estimates (3.7) for both the spatial
and temporal discretization. We then demonstrate the critical time step size increases in
various examples. The spectrum outliers appear when using isogeometric discretization
with high-order elements; thus, we focus on p ≥ 3 in our numerical experiments.
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Figure 2: L2-norm (left plot) and H1-seminorm (right plot) errors of the boundary-
penalized isogeometric analysis with C2 cubic (p = 3), C3 quartic (p = 4), and C4 quintic
(p = 5) elements for the problem (1.1) with κ = 1 in 1D.

4.1 Optimal approximation errors

4.1.1 Spatial approximation dominates the error

We first consider the test problem (1.1) with κ = 1 and a manufactured solution u(x, t) =
et sin(3πx) in 1D and u(x, t) = et sin(3πx) sin(3πy) in 2D. where we derive the forcing
functions from (1.1). We show how the spatial discretization may dominate the errors in a
1D problem; we set the final time T = 1 with 10,000 time steps for the explicit generalized-
α with ρ = 1. This setting guarantees that the spatial discretization dominates the
error. Figure 2 shows the L2-norm and H1-seminorm errors of the boundary-penalized
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Figure 3: L2-norm (left plot) and H1-seminorm (right plot) errors of the boundary-
penalized isogeometric analysis with C2 cubic (p = 3), C3 quartic (p = 4), and C4 quintic
(p = 5) elements for the problem (1.1) with κ = 1 in 2D.

isogeometric analysis for p = {3,4,5}. The mesh sizes are N = 5,10,20,40, 80. We
observe optimal error convergence rates which confirm the theoretical estimates in (3.7)
for the spatial discretization error dominance.

In 2D, the problem size of the spatial discretization increases quadratically with the
discretization size in one dimension; we thus set the final time T = 0.01 with 100 time
steps to show the spatial accuracy. Figure 3 shows the L2-norm and H1-seminorm errors
of the problem in 2D with mesh sizes N = 4 × 4,8 × 8,16 × 16,32 × 32; the figure shows
optimal spatial convergence.

4.1.2 Temporal approximation dominates the error

Now we focus on the L2-norm error and analyze the limit where the temporal errors
dominate. For this purpose, we apply the boundary-penalized isogeometric analysis
with a fine mesh with N = 100 in 1D. C4 quintic (p = 5) elements deliver a highly
accurate spatial discretization so that the temporal discretization dominates the errors.
Figure 4 shows the L2-norm error for the explicit generalized-α method with ρ = 0,0.5,1.
The left plot shows the errors for κ = 1, while the right plot shows the errors for κ = ex−x

2

.
We observe second-order accuracy in time which confirms the theoretical estimate (3.7)
for the temporal discretization by the explicit generalized-α method.

4.2 Growth of the critical time-step size

We consider the impact of boundary penalization on the critical time step sizes for
the explicit generalized-α method. In general, the critical time-step size depends on
the parameter ρ and the spatially discretized system’s largest discrete eigenvalue (or
frequency). The conditional stability for the explicit generalized-α method is of the
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Figure 4: L2-norm errors of the explicit generalized-α method for the problem (1.1) with

κ = 1 (left plot) and κ = ex−x
2

(right plot) in 1D.

form
τωh
≤ Cρ,

being Cρ > 0 a constant independent of time-step τ and ωh but dependent on the
parameter ρ of the scheme. Then, the critical time step size becomes

τc = Cρ/ωh
max,

where ωh
max is the largest frequency, that is, λh

L = (ωh
max)2 is the largest eigenvalue

to (2.10). We perform a numerical study of critical time-step size using the examples
from the subsections above.

Table 1 compares the critical time steps for the explicit generalized-α method with
ρ = 0 for (1.1) with κ = 1 in 1D. There are N = 5,10,20,40,80 isogeometric elements
with p = {3,4,5,6} and maximal continuity. The parameters with tildes denote the
corresponding values when using boundary-penalized isogeometric elements. The critical

time-step size grows by a factor of about ρc,p =

√
(p−1)(p−2)

4
+ 1 for p = {3,4,5,6}. For

p = 1,2, this formula also holds true as the boundary-penalized isogeometric analysis (3.2)
reduces to the standard isogeometric analysis (2.3) that leads to the same critical time
step size. Figure 5 shows the comparison of the stability regions when using both the
standard and boundary-penalized isogeometric analysis. Herein, we utilize C5 sextic
B-spline basis functions with 80 elements. We observe that the critical time step size
increases nonlinearly as the parameter ρ increases. For the largest critical time step size,
one sets ρ = 1. For all values of ρ, the critical time-step size increases when using the
boundary penalization technique to improve the performance of isogeometric analysis.

Lastly, Table 2 shows the critical time-step sizes for (1.1) with κ = ex−x
2

in 1D while
Table 3 shows the critical time step sizes for (1.1) with κ = 1 in 2D. For the case with

9



p N λh
L λ̃h

L τc τ̃c τ̃c/τc
5 402.8 246.9 7.72E-2 9.86E-2 1.28
10 1473.6 987.5 4.04E-2 4.93E-2 1.22

3 20 5823.5 3950.1 2.03E-2 2.46E-2 1.21
40 23289.6 15800.4 1.02E-2 1.23E-2 1.21
80 93158.2 63202.2 5.08E-3 6.16E-3 1.21

5 680.9 246.8 5.94E-2 9.86E-2 1.66
10 2473.6 987.2 3.11E-2 4.93E-2 1.58

4 20 9797.3 3948.6 1.57E-2 2.47E-2 1.58
40 39184.6 15794.5 7.83E-3 1.23E-2 1.58
80 156738.5 63177.9 3.91E-3 6.16E-3 1.58

5 1105.5 246.8 4.66E-2 9.86E-2 2.12
10 3976.8 987.5 2.46E-2 4.93E-2 2.01

5 20 15722.0 3952.3 1.24E-2 2.46E-2 1.99
40 62874.0 15845.2 6.18E-3 1.23E-2 1.99
80 251495.8 63894.6 3.09E-3 6.13E-3 1.98

5 1703.9 246.8 3.75E-2 9.86E-2 2.63
10 6040.7 987.2 1.99E-2 4.93E-2 2.47

6 20 23810.0 3949.2 1.00E-2 2.47E-2 2.46
40 95199.4 15802.2 5.02E-3 1.23E-2 2.45
80 380797.4 63297.0 2.51E-3 6.16E-3 2.45

Table 1: Comparison of the critical time steps for the explicit generalized-α method
with ρ = 0 when using isogeometric and boundary-penalized isogeometric discretizations
for (1.1) with κ = 1 in 1D.

non-constant diffusion coefficient, the critical step size increment factor

ρc,p =

√(p − 1)(p − 2)
4

+ 1
remains valid for coarse grids. For finer meshes, this factor decreases and tends to

ρc,p = p − 2
for p = {3,4,5,6}. For the 2D cases, the critical time-step size increases by a similar
factor, that is,

ρc,p =

√(p − 1)(p − 2)
4

+ 1.
In summary, the boundary penalization technique increases the critical time-step size
of the explicit generalized-α method in the isogeometric analysis of the second-order
hyperbolic equation.
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Figure 5: Stability regions with respect to the critical time step size τc and the parameter
ρ. Left plot: region when using isogeometric analysis; right plot: region when using the
boundary-penalized isogeometric analysis. The spatial discretization uses C5 sextic B-
spines with 80 uniform elements.

5 Concluding remarks

We study the impact of a boundary penalization technique for outlier removal on the
resulting critical time-step size for isogeometric analysis with the explicit generalized-
α method. The boundary penalization technique reduces unphysical overshooting of
the largest eigenvalues of the spatial discretization; consequently, the penalization in-
creases the critical time-step sizes. For the second-order hyperbolic equation (1.1), the
spatially discrete eigenvalue λh and the time step size τ are grouped into a form of
λhτ2. The boundary penalization technique reduces the largest eigenvalue by a factor of
(p−1)(p−2)

4
+1, which then leads to an increment on the critical time step size by a factor of√

(p−1)(p−2)
4

+ 1. In the case of parabolic equation such as the heat equation u̇−∆u = f ,

the discrete eigenvalue λh and the time step size τ are grouped into a form of λhτ , we

thus expect an increment on the critical time step size by a factor of
(p−1)(p−2)

4
+ 1.

With this in mind, one direction for future work would be to study the performance
of the boundary penalization technique for solving the high-order initial-value second-
order boundary-value problems. For a partial differential equation with k-th order in
time and second-order in space, one expects a critical time step size increment factor of

( (p−1)(p−2)
4

+ 1)k/2. An application of the proposed method is to use it to speed up the

inverse modeling problems where a forward model is solved many times.
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p N λh
L λ̃h

L τc τ̃c τ̃c/τc
5 449.9 247.0 8.80E-2 1.19E-1 1.35
10 1588.6 1071.7 4.68E-2 5.70E-2 1.22

3 20 6058.7 4753.3 2.40E-2 2.71E-2 1.13
40 23762.8 19687.5 1.21E-2 1.33E-2 1.10
80 94105.8 79970.9 6.08E-3 6.60E-3 1.08

5 732.5 292.3 6.90E-2 1.09E-1 1.58
10 2578.1 1176.4 3.68E-2 5.44E-2 1.48

4 20 10009.4 4778.8 1.87E-2 2.70E-2 1.45
40 39616.1 19596.4 9.38E-3 1.33E-2 1.42
80 157607.6 79726.3 4.70E-3 6.61E-3 1.41

5 1164.8 246.9 5.47E-2 1.19E-1 2.17
10 4091.2 1020.5 2.92E-2 5.84E-2 2.00

5 20 15954.0 4653.7 1.48E-2 2.74E-2 1.85
40 63345.2 19515.3 7.42E-3 1.34E-2 1.80
80 252445.0 79579.1 3.71E-3 6.62E-3 1.78

5 1773.4 292.2 4.43E-2 1.09E-1 2.46
10 6171.1 1174.8 2.38E-2 5.45E-2 2.29

6 20 24073.3 4755.8 1.20E-2 2.71E-2 2.25
40 95733.3 19478.2 6.03E-3 1.34E-2 2.22
80 381872.3 79452.8 3.02E-3 6.62E-3 2.19

Table 2: Comparison of the critical time steps for the explicit generalized-α method with
ρ = 0.5 when using isogeometric and boundary-penalized isogeometric discretizations
for (1.1) with κ = ex−x

2

in 1D.
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[22] H. Gómez, V. M. Calo, Y. Bazilevs, and T. J. R. Hughes, Isogeometric
analysis of the Cahn–Hilliard phase-field model, Computer methods in applied me-
chanics and engineering, 197 (2008), pp. 4333–4352.

[23] A. Hashemian, D. Pardo, and V. M. Calo, Refined isogeometric analysis for
generalized Hermitian eigenproblems, Computer Methods in Applied Mechanics and
Engineering, 381 (2021), p. 113823.

[24] R. R. Hiemstra, T. J. Hughes, A. Reali, and D. Schillinger, Removal of
spurious outlier frequencies and modes from isogeometric discretizations of second-
and fourth-order problems in one, two, and three dimensions, Computer Methods
in Applied Mechanics and Engineering, 387 (2021), p. 114115.

[25] T. J. Hughes, The finite element method: linear static and dynamic finite element
analysis, Courier Corporation, 2012.

[26] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer
methods in applied mechanics and engineering, 194 (2005), pp. 4135–4195.

[27] T. J. R. Hughes, J. A. Evans, and A. Reali, Finite element and NURBS
approximations of eigenvalue, boundary-value, and initial-value problems, Computer
Methods in Applied Mechanics and Engineering, 272 (2014), pp. 290–320.

[28] T. J. R. Hughes, A. Reali, and G. Sangalli, Duality and unified analysis of
discrete approximations in structural dynamics and wave propagation: comparison
of p-method finite elements with k-method NURBS, Computer methods in applied
mechanics and engineering, 197 (2008), pp. 4104–4124.

[29] N. A. Labanda, P. Behnoudfar, and V. M. Calo, An explicit predic-
tor/multicorrector time marching with automatic adaptivity for finite-strain elas-
todynamics, arXiv preprint arXiv:2111.07011, (2021).

[30] S. Larsson and V. Thomée, Partial differential equations with numerical meth-
ods, vol. 45, Springer, 2003.

[31] C. Manni, E. Sande, and H. Speleers, Application of optimal spline subspaces
for the removal of spurious outliers in isogeometric discretizations, Computer Meth-
ods in Applied Mechanics and Engineering, 389 (2022), p. 114260.

[32] N. M. Newmark, A method of computation for structural dynamics, Journal of
the engineering mechanics division, 85 (1959), pp. 67–94.

15



[33] V. P. Nguyen, C. Anitescu, S. P. Bordas, and T. Rabczuk, Isogeomet-
ric analysis: an overview and computer implementation aspects, Mathematics and
Computers in Simulation, 117 (2015), pp. 89–116.

[34] M. Paz, Structural dynamics: theory and computation, Springer Science & Business
Media, 2012.

[35] L. Piegl and W. Tiller, The NURBS book, Springer Science & Business Media,
1997.

[36] V. Puzyrev, Q. Deng, and V. M. Calo, Dispersion-optimized quadrature rules
for isogeometric analysis: modified inner products, their dispersion properties, and
optimally blended schemes, Computer Methods in Applied Mechanics and Engineer-
ing, 320 (2017), pp. 421–443.
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