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Abstract: Governmental initiatives around scientific policy have progressively raised 

collaboration to priority status. In this context, a need has arisen to broaden the traditional 

approach to the analysis and study of research results by descending to the group or even the 

individual scale and supplementing the output-, productivity-, visibility- and impact-based 

focus with new measures that emphasize collaboration from the vantage of structural analysis. 

To this end, the present paper proposes new hybrid indicators for the analysis and evaluation 

of individual research results, popularity and prestige, that combine bibliometric and structural 

aspects. A case study was conducted of the nine most productive departments in Carlos III 

University of Madrid. The findings showed hybridization to be a tool sensitive to traditional 

indicators, but also to the new demands of modern science as a self-organized system of 

interaction among individuals, furnishing information on researchers’ environments and the 

behavior and attitudes adopted within those environments. 
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1. Introduction 

In the last few decades, scientific collaboration has been a core area of study for many 

researchers. Most of the literature has focused on the analysis of international and national 

output, scientific domains or research institutions, while studies addressing smaller units such 

as departments or research groups are less common (Bordons, Zulueta, Cabrero, & Barrigón, 

1995; Bordons & Zulueta, 1997; Molina, Muñoz, & Losego, 2000; Molina, Muñoz, & 

Domenech, 2002; Zulueta, Cabrero, & Bordons, 1999; Zulueta & Bordons, 1999). 

Science is a collective activity and collaboration, as an intrinsic feature, is more a need than a 

choice (Beaver & Rosen, 1978; Beaver & Rosen, 1979). For this reason, any number of 

initiatives have been undertaken to encourage, stimulate and enhance collaboration among 
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researchers, while many a policy has been adopted to improve the connections between 

science and technology through intersectoral scientific collaboration (universities, health 

systems, private enterprise, and so on). 

The message conveyed by governments and bodies that finance research is increasingly 

explicit: collaboration and association are requisite to research investment, the funding that 

ensures the quality of the work performed and the savings inherent in equipment and 

competence sharing. Recent examples are to be found in the latest tenders organized on the 

European  (VII Research Framework Programme (European Union, 2006)), national (Spanish 

Ingenio 2010 Programme (Ministry of Education and Science, 2006)) and regional (Madrid’s IV 

Scientific Research and Technological Innovation Plan (Community of Madrid, 2005)) level, in 

which collaboration is a conditio sine qua non and research project applications are only 

accepted if submitted jointly by several research groups from different institutions, regions 

and/or countries. 

Consequently, scientific collaboration, which is apparently organized and controlled by the 

scientists themselves, is conditioned by science policy initiatives that have progressively made 

it a priority (Melin & Persson, 1996). 

In this context, a need has arisen to broaden the traditional approach to the analysis and study 

of research results, descending to the group or even the individual scale and supplementing 

the output-, productivity-, visibility- and impact based focus with new measures that 

emphasize collaboration from the vantage of structural analysis (Acedo et al., 2006; Bonaccorsi 

& Daraio, 2003; Börner et al., 2005; Calero et al., 2006; Cohen, 1991; Colman, Dhillon, & 

Coulthard, 1995; García-Aracil, Gutiérrez Gracia, & Pérez-Martín, 2006; Genest & Thibault, 

2001; Kretschmer, 1997; Lee, 2003; Moed et al., 1998; Noyons, Moed, & van Raan, 1999; 

Qurashi, 1993; Rey-Rocha, Martín-Sempere, & Garzón-García, 2002; Rey-Rocha, Garzón-García, 

& Martín-Sempere, 2006; Seglen & Aksnes, 2000; van Leeuwen & Moed, 2005). 

2. Objectives 

As noted above, collaboration is inherent in scientific activity. And yet its quantitative and 

qualitative assessment is systematically overlooked, particularly in personal evaluations. The 

literature contains recurrent references to scoring and crediting systems and indeed, a recent 

review by Gauffriau et al. described all the methods used to calculate such scores and credits 

(Gauffriau et al., 2007). One characteristic that most of these have in common is the 

penalization for collaboration in whatever type of national, institutional or individual 

aggregate. 

The emphasis placed on collaboration by funding bodies is, then, paradoxical, given the 

general disrepute accorded to collaboration by evaluative bibliometry. This raises a number of 

questions that call for answers: is it possible to estimate the important role of scientific 

collaboration when evaluating individual researchers’ merits? Can network analysis be used to 

obtain indicators that furnish information on collaboration and its relationship to individual 

researcher development? 
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The present paper explores the co-authorship networks characterizing Carlos III University of 

Madrid’s (UC3M) nine most productive departments, in an attempt to respond to these 

questions. The objective is to obtain indicators that combine bibliometric and structural 

analysis from which to estimate the importance of scientific collaboration, not only when 

applying for research funding, but also for measuring and evaluating individual achievement. 

3. Methods 

Most bibliometric indicators are formulated on the national scale. Data are gathered on 

system actors, analyses are conducted on national collaboration, or the numbers of citations 

obtained by the articles published in a country, region or subject area are tallied. Analyses 

involving indicators that examine national science systems with data disaggregated by centre 

or even department are less frequent but nonetheless necessary, for such analyses explore the 

internal dynamics of national systems in detail. Moreover, to achieve the objectives proposed, 

indicators must be designed to calibrate individuals’ degree of collaboration. 

In this context, the use of units of measure deriving from structural analysis acquires particular 

relevance. Nonetheless, despite their long history and internationally accepted use, network 

theory and analysis constitute an approach seldom used in Information Science theory or 

methodology (Otte & Rousseau, 2002). Fortunately, this trend is changing and network theory 

and its analysis may signify a quantitative and qualitative leap in the representation and 

analysis of the structure of all manner of scientific domains, be they defined in terms of 

geography, subject matter or institution (Vargas-Quesada & Moya-Anegón, 2007). 

In this regard, scientific collaboration networks obtained from co-authorship data are 

particularly useful for analyses such as addressed here. The advantages of this approach are: (i) 

these networks describe the characteristics of “academic society” and can reveal the structure 

of scientific knowledge; (ii) they contain all the necessary components to be regarded to be 

small worlds: the mean inter nodal distance is small, the clustering coefficient is high and the 

degree distribution of its nodes fits a power-law distribution; (iii) they are constantly 

expanding due to the addition of new authors to the databases, ensuring the existence of new 

nodes that explain the dynamic evolution of this type of networks; (iv) the time when nodes 

and ties are added to the network, a determining factor for managing their dynamics, can be 

controlled. 

Co-authorship networks are ideal for the intents and purposes of this study. Generated from 

bibliometric information, they are a source of new information in the form of structural 

indicators. Such structural information is valuable for the analysis of both the network as a 

whole and of each of its component actors. The following chapters contain a detailed 

description of the methodology used to formulate such social networks and introduce the 

hybrid indicators resulting from the combination of bibliometric and structural analysis. 

3.1. Co-authorship as a unit of measurement 

The author of a scientific paper is defined to be the person who creates the information and 

drafts the written document. Consequently, intellectual creativity and originality are the basis 

of scientific authorship. A scientific document is said to be co-signed if there is more than one 
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author. And it is regarded to be institutionally co-signed when there is more than one author 

and each is affiliated with a different institution, department or similar. 

Despite the limitations of co-authorship-based inventories (Laudel, 2002; Melin & Persson, 

1996; Subramanyam, 1983; Vuckovic-Dekic, 2003), many a study has used this approach to 

determine the structure of scientific collaboration and individual researcher status or position. 

Co-authorship entails stronger social links than bonds based on citation inventories, for it 

implies that authors are contemporaries and acquaintances; their relationships, therefore, fall 

within the scope of social network analysis (Liu et al., 2005). 

Measuring collaboration in terms of co-authorship embodies several advantages: it is 

invariable and reliable, in as much as other researchers may access the same series of papers, 

contributing to the reproducibility of results; it is a practical and inexpensive method of 

quantifying collaboration; and it can accommodate very large samples, providing for more 

statistically significant results (Katz, 1992; Katz & Martin, 1997; Miquel et al., 1989; Smith & 

Katz, 2000). 

3.2. Data 

A relational database built with records for the period 2000–2004 taken from the Web of 

Science (SCI-expanded, SSCI and A&HCI), in which at least one author was affiliated with the 

Carlos III University of Madrid (UC3M), was used for the bibliometric analysis of research 

development. In the first phase, all the papers containing the word “Spain” in the address field 

were retrieved. In a second phase, the subset of papers was further reduced to include only 

those published from 2000 to 2004 and containing the university’s (UC3M) or any of its 

departments’ names or any of its mailing addresses. Thomson Reuters (former Institute for 

Scientific Information) assigns each journal one or several subject categories. Journal Citation 

Reports (JCR) for both science and social science for the years analyzedwas the reference used 

to assign each paper a subject (ISI category). Of the 1383 papers retrieved in all, 442 had been 

cited. 

3.3. Data refinement 

Bibliographic databases generate problems when used for bibliometric purposes, particularly 

as regards data errors and inconsistencies (Braun et al., 1995). Quality control is an essential 

and reiteratively cited issue, but no solution has been in press to date. For both database 

producers and researchers who download data for scientific purposes, the lack of 

standardization and errors entail a loss of information, calling for the development of nearly 

always personalized corrective systems to guarantee scientific rigour, which depends heavily 

upon data quality (Calero et al., 2006; Gálvez & Moya-Anegón, 2006; Gálvez & Moya-Anegón, 

2007a; Gálvez & Moya-Anegón, 2007b). 

The importance of standardizing institutional data lies in the progressive rise in the number of 

papers focusing on such domains. The lack of precision in organizations’ names in scientific 

publications may distort the results of bibliometric analyses (spelling variations, typographical 

errors, incorrect use of upper case, abuse of initials or abbreviations or mistakes in 

transliteration), particularly in micro-analysis, and their rectification and unification translate 
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into very costly manual procedures. The author field raises similar difficulties: homonymy (two 

authors with the same name) and synonymy (the existence of different variations on an 

author’s name). To obviate these difficulties, we used ad hoc software that avoids homonymy 

by combining author and institution and synonymy by combining author and paper, while 

(Gálvez & Moya-Anegón, 2006; Gálvez & Moya-Anegón, 2007b) corrected the lack of precision 

in institutional denominations. 

This study analyzes the data for the UC3M’s nine most productive departments (with over 60 

papers during the period). In the first refinement step, papers were assigned to each 

department on the grounds of the data included in the address field, eliminating duplication 

due to variations in names or postal addresses (Fig. 1). The following step consisted simply in 

obtaining a list of the authors of each departmental set of papers. The result was that not only 

department professors, but all national or international authors with whom they had shared 

authorship, were assigned to departmental output. With the final operation, the removal of 

the variations in authors’ names, the number of authors was lowered from 1949 to 1809. 

3.4. Matrix generation 

Calculating co-authorship from the database described gave rise to symmetric matrices. The 

headings on the rows and columns in each of the departmental matrices analyzed were 

authors’ names, which led to undirected reciprocal concurrence among them. To avoid the 

imbalances generated by loops, the values of the main diagonals were eliminated. 

Absolute co-authorship values were used in all calculations and analyses. In this regard, a 

number of authors have maintained that measure normalization introduces distortion in data 

distributions and that raw data are valid and sufficient for conversion to distance (Leydesdorff 

& Vaughan, 2006; White, 2003). Table 1 lists the main indicators for the nine networks 

analyzed. 

Fig. 1. Software for refining author affiliation. 
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3.5. Popularity and prestige 

A clustering measure must be defined if evidence usable for evaluating authors’ scientific 

collaboration is to be obtained. Watts and Strogatz introduced what they called the clustering 

coefficient. The following example explains the idea simply: if A cooperates with four authors 

and they in turn have all worked together, each of them can be connected by a tie, generating 

a total of six such links. Now assume that one of A’s partners does not collaborate with the 

others. The number of ties in this case will be less than six. Here the clustering coefficient of 

A’s circle of partners is obtained by dividing the actual by the total possible number of ties 

(Watts & Strogatz, 1998). 

The clustering coefficient, then, indicates the density of the relationships among the partners 

around a given node. Values close to one denote a high rate of collaboration among the actors. 

Figures close to zero, by contrast, mean that the node is the sole tie among partners (Barabási, 

2002). This indicator has been used, for instance, in studies analyzing research projects 

awarded by the European Union, albeit as a global structural indicator to estimate the degree 

of network cohesion rather than to evaluate individual actors (Wagner & Leydesdorff, 2005). 

The clustering coefficient is defined as follows (Batagelj & Mrvar, 2004): 

 

where deg(v) is the degree of vertex v, |E(G1(v))| is the number of ties among the vertices in 

neighborhood 1 around vertex v, MaxDeg is the maximum degree attained by any vertex in the 

network and |E(G2(v))| is the number of ties or edges among the vertices in neighborhoods 1 

and 2 around vertex v. If deg (v) is less than or equal to one, all the coefficients for this vertex 

will be zero. 

Degree, in turn, is the simplest and most intuitive way to measure graph centrality, and is 

defined to be the number of actors to whom an actor is directly linked. This measure of 

centrality ranks actors by their number of direct relations in the network as a whole (Degenne 

& Forsé, 1999; Hanneman & Riddle, 2005; Herrero, 2000; Mrvar, 2000; Rogers & Kincaid, 

1981). 

 

where d(ni) is the actor’s degree and N the total number of nodes in the network. 

In real networks, most nodes exhibit attachment preferences. A new website, for instance, will 

tend to include links to very popular documents or pages. This example illustrates that the 

probability that a new node will connect to existing nodes is not evenly distributed, but rather 

that the likelihood of connection to nodes with a larger number of ties is higher, as (degree, 

closeness and betweenness) centrality measures show. But the existence of cumulative 

advantage or preferential attachment (Barabási, Albert, & Jeong, 1999; Price, 1976), 

characteristic of network theory, is also applicable to bibliometric indicators. 
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Table 1. Basic network indexes. 2000–2004. 

Indicators COMP ECO BUSI STAT PHY MATER MATH COMM ELEC 

Nodes 177 169 64 138 340 184 204 139 151 

Density 0.05 0.02 0.03 0.06 0.04 0.04 0.02 0.04 0.16 

Degree 0.16 0.1 0.11 0.16 0.26 0.31 0.16 0.15 0.29 

Betweenness 0.35 0.01 0.01 0.05 0.43 0.32 0.09 0.15 0.09 

Clustering coefficient 0.13 0.1 0.12 0.23 0.05 0.03 0.03 0.07 0.3 

Components 4 32 32 12 6 4 13 5 7 

Size principal component (%) 93.79 15.38 15.63 29.71 93.24 74.73 31.86 64.23 52.32 

Size second component (%) 3.39 10.06 9.38 26.09 2.06 20.97 29.9 16.79 19.87 

COMP: Computer Science, ECO: Economy, BUSI: Business Administration, STAT: Statistics, PHY: Physics, 

MATER: Materials Science, MATH: Mathematics, COMM: Communication Technologies, ELEC: Electronic 

Technology. 

Indeed, a very prolific professor will tend to draw a larger number of new researchers. In this 

case, popularity is understood to mean not a preference for nodes with a larger number of 

ties, but the choice of larger nodes (in co-authorship networks node volume is generally 

determined on the basis of the number of documents published). Both the centrality indicators 

used in network analysis and the output indicator deriving from bibliometric analyses are 

understood to be measures of prominence or popularity. 

But such prominence or popularity should be scaled or supplemented by indicators that reflect 

and distinguish among popular nodes. In this regard, another series of bibliometric indicators 

plays a decisive role in the evaluation of contributions, based on visibility or utility for the 

scientific community, rather than quantity. Of the several possibilities, citation tallying, 

particularly the observed or real and not expected or estimated citations, is the most 

prominent (Aksnes & Sivertsen, 2004; Molas-Gallart & Salter, 2002; Tijssen, Visser, & van 

Leeuwen, 2002), once the problems inherent in aggregate citation counts are solved (Olmeda 

Gómez et al., 2005). The indicators designed to qualify popularity can be understood to be 

measures of prestige. Several previous papers have also addressed this question from both the 

bibliometric (combination of production and citation in the H-index, (Hirsch, 2005) and 

structural perspectives (weighting of the importance of the inter-relationships (citations) 

between journals or papers, using the impact factor (Thomson Reuters, 2008), the SCImago 

Journal Rank (SCImago Research Group, 2007), the Eigenfactor (Bergstrom Laboratory, 2008) 

or journal status (Bollen, Rodríguez, & van de Sompel, 2006). 

Mählck and Persson, in turn, noted that information visualization analysis would benefit if an 

appropriate combination of bibliometric and structural magnitudes could be found, able to 

characterize and put into perspective the observations about the actors drawn from the 

graphs obtained, which would always be supplementary to existing indicators (Mählck & 

Persson, 2000). 
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To this end, the present paper proposes an innovative combination and synthesis of known 

structural and bibliometric indicators: node clustering coefficient, output and number of 

citations referring to such output. 

CC�(v) × ndoc(v)               CC�(v) × ncitations(v) 

Popularity index                 Prestige index 

where ndoc (v) is total node v output in the period and n citations(v) is the total number of 

citations observed for the same node and period. 

The clustering coefficient is what relates the bibliometric popularity (number of papers) and 

prestige (number of citations) indicators to the author’s collaboration practices. A new 

measure can therefore be obtained with which to distinguish between two authors with the 

same productivity or number of citations. Authors with more cohesive networks of 

collaborators are regarded to be more “popular” or “prestigious”. 

The choice of this indicator affords certain advantages over the typical centrality measures 

(degree, betweenness and closeness), which determine an actor’s prominence with respect to 

other members of the network, but only in terms of relations with the node analyzed. The 

clustering coefficient, by contrast, evaluates not only the number of relationships (co-authored 

papers), but also the degree of inter-relationship among neighboring nodes. Therefore, an 

actor’s prominence is not defined solely by the number of inter-connected authors, but by 

his/her participation in a “neighborhood” where collaboration is open to everyone, and not 

only to the actor in question. 

In short, the popularity index provides a measure that weights the number of papers 

(popularity) by the cohesion of each node’s collaboration pattern. Analogously, the prestige 

index would qualify the number of citations (prestige) by the degree of cohesion of each 

author’s collaboration pattern. 

Such hybrid indicators embody a new approach to research, placing the necessary weight on 

the degree of collaboration among researchers, which has been ignored to date, despite its 

vital importance for science and technology policy managers. 

4. Results 

Taken alone, the prestige and popularity indicators are scantly useful for evaluating something 

as multidimensional as an individual’s research merit. Nonetheless, they do make a valuable 

contribution when combined with other measures. Tables 2–10 give a number of individual 

indicators, both structural and bibliometric, for the main authors in each of the departments 

analyzed to create a context as widely informative as possible. The data include author 

position, output (ndoc), number of observed citations, normalized impact factor (NIF) for 

output, nodal degree and betweenness centrality, the clustering coefficient and the new 

hybrid indicators, popularity and prestige. 
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Table 2 . Computer Science (more than 6 documents). 2000–2004. 

Rank Position Ndoc Citations NIF Degree Betweenness Cluster Coef Popularity Prestige 

1 Associate Professor 23 3 0.81 0.15 0.172 0.234 5.387 0.703 

2 Full Professor 19 3 0.85 0.09 0.226 0.060 1.139 0.180 

3 Full Professor 14 1 0.93 0.11 0.075 0.365 5.110 0.365 

4 Full Professor 13 13 0.83 0.21 0.288 0.899 11.682 11.682 

5 Associate Professor 13 1 0.95 0.10 0.055 0.303 3.935 0.303 

6 Full Professor 12 13 0.88 0.06 0.054 0.013 0.159 0.172 

7 Part-time Professor 11 0 0.87 0.12 0.187 0.168 1.850 0 

8 Full Professor 10 6 0.88 0.07 0.068 0.034 0.336 0.201 

9 Associate Professor 10 0 0.86 0.13 0.137 0.239 2.388 0 

10 Associate Professor 10 0 0.97 0.07 0.088 0.098 0.979 0 

11 Associate Professor 8 2 0.78 0.04 0.031 0.020 0.162 0.040 

12 Associate Professor 7 4 0.81 0.06 0.360 0.012 0.083 0.047 

   Highest 2nd highest 3rd highest     

 

Table 3. Economy (more than 3 documents). 2000–2004. 

Rank Position Ndoc Citations NIF Degree Betweenness Cluster Coef Popularity Prestige 

1 Full Professor 9 4 0.88 0.12 0.0113 0.96 8.63 3.84 

2 Full Professor 8 6 1.20 0.07 0.0042 0.46 4.13 2.75 

3 Full Professor 8 5 0.94 0.02 0.0004 0.20 1.60 1 

4 Full Professor 7 2 0.87 0.06 0.0030 0.50 4 1 

5 No UC3M 6 5 0.92 0.01 0 0.03 0.20 0.17 

6 No UC3M 6 5 0.92 0.01 0 0.03 0.20 0.17 

7 Full Professor 4 4 0.99 0.02 0.0004 0.20 1.20 0.8 

8 Associate Professor 4 2 0.88 0.02 0.0020 0.07 0.27 0.13 

9 Full Professor 4 5 0.93 0.04 0.0012 0.20 1.40 1 

   Highest 2nd highest 3rd highest     

 

Table 4. Business Administration (more than 2 documents). 2000–2004. 

Rank Position Ndoc Citations NIF Degree Betweenness Cluster Coef Popularity Prestige 

1 Full Professor 9 4 0.85 0.14 0.0143 1 9 4 

2 Associate Professor 6 4 1.10 0.06 0.0020 0.44 3.56 1.78 

3 No UC3M 6 3 0.82 0.06 0.0008 0.12 0.73 0.36 

4 Associate Professor 5 2 1.36 0.08 0.0046 0.56 2.78 1.11 

5 Associate Professor 4 0 0.99 0.06 0.0018 0.44 1.78 0 

6 No UC3M 4 0 0.91 0.03 0 0.06 0.22 0 

7 No UC3M 4 2 0.78 0.03 0 0.02 0.07 0.03 

8 Associate Professor 3 1 1.07 0.05 0.0015 0 0 0 

9 Full Professor 3 3 1.38 0.06 0.0020 0.44 1.33 1.33 

10 No UC3M 3 0 1.03 0.05 0.0003 0.22 0.67 0 

   Highest 2nd highest 3rd highest     

 

 

For reasons of space, each table shows only a sampling of the main authors in each 

department, listed by output volume. The scale of greys identifies the most prominent values 

(the darker the higher) in a selection of the indicators listed. 
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Table 5. Statistics (more than 3 documents). 2000-2004. 

Rank Position Ndoc Citations NIF Degree Betweenness Cluster Coef Popularity Prestige 

1 Full Professor 20 14 1.02 0.10 0.0534 0.053 1.12 0.75 

2 Part-time Professor 9 3 1.09 0.08 0.0042 0.367 3.3 1.1 

3 Associate Professor 9 5 0.85 0.02 0.0001 0.067 0.73 0.33 

4 No UC3M 8 1 0.93 0.03 0.0104 0.038 0.38 0.04 

5 Full Professor 8 8 0.88 0.04 0.0196 0.021 0.17 0.17 

6 Full Professor 7 5 1.31 0.04 0.0277 0.006 0.04 0.03 

7 Associate Professor 7 16 0.99 0.07 0.0056 0.171 2.06 2.74 

8 Associate Professor 6 3 0.83 0.04 0.0026 0.067 0.47 0.2 

9 Associate Professor 6 7 0.85 0.03 0.0072 0.022 0.13 0.16 

10 Visiting Professor 5 2 0.93 0.03 0.0082 0.027 0.16 0.05 

11 Researcher 5 0 1.16 0.04 0.0002 0.056 0.28 0 

12 Associate Professor 5 7 0.98 0.05 0.0324 0.003 0.02 0.02 

13 Visiting Professor 4 3 0.91 0.01 0 0.003 0.01 0.01 

14 Associate Professor 4 2 0.93 0.04 0.0043 0.035 0.14 0.07 

15 Associate Professor 4 8 1.11 0.02 0.0014 0 0 0 

16 Full Professor 4 6 1.25 0.04 0.0122 0.019 0.07 0.11 

17 No UC3M 4 1 0.94 0.01 0 0.017 0.07 0.02 

18 Full Professor 4 2 1.02 0.04 0.0010 0.167 0.83 0.33 

    Highest 2nd highest 3rd highest     

 

Table 6. Physics (more than 11 documents). 2000–2004. 

Rank Position Ndoc Citations NIF Degree Betweenness Cluster Coef Popularity Prestige 

1 Full Professor 36 40 1.17 0.08 0.02793 0.030 1.10 1.22 

2 Associate Professor 30 61 1.34 0.30 0.43322 0.608 18.25 37.12 

3 PhD Assistant 29 53 1.21 0.17 0.13694 0.069 2.15 3.68 

4 Associate Professor 26 79 1.25 0.25 0.27295 0.141 3.96 11.18 

5 No UC3M 25 34 1.18 0.06 0.01297 0.017 0.43 0.58 

6 Associate Professor 23 52 1.23 0.14 0.09649 0.049 1.17 2.54 

7 Associate Professor 22 46 1.30 0.11 0.14356 0.025 0.58 1.16 

8 No UC3M 19 56 1.42 0.12 0.02569 0.066 1.25 3.69 

9 PhD Assistant 18 51 1.34 0.15 0.07581 0.066 1.33 3.38 

10 Associate Professor 17 23 1.27 0.09 0.07878 0.037 0.67 0.86 

11 Associate Professor 15 18 1.20 0.07 0.02338 0.056 0.85 1.01 

12 PhD Assistant 15 34 1.32 0.05 0.01604 0.030 0.45 1.03 

13 No UC3M 15 39 1.27 0.03 0.00037 0.008 0.13 0.33 

14 No UC3M 14 39 1.28 0.02 0.00007 0.006 0.08 0.22 

15 No UC3M 13 39 1.28 0.02 0.00007 0.006 0.07 0.22 

16 No UC3M 12 33 1.29 0.02 0 0.004 0.05 0.13 

17 Full Professor 12 32 1.37 0.15 0.02869 0.142 1.70 4.53 

   Highest 2nd highest 3rd highest     

 

5. Discussion 

An initial analysis of the behavior and evolution of the new indicators, popularity and prestige, 

yields suggestive results. By combining bibliometric and structural indicators, an author’s rank 

in a list based on either measure can be qualified. It is interesting to note, for instance, that the 

actors ranking highest in terms of collaborative output, citations or clustering coefficient lack 

the characteristics necessary to be ranked equally highly in terms of popularity and prestige. 
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The Spearman correlation values (Table 11) show the results of comparing three simple 

indicators (number of papers, number of citations and clustering coefficient) to the two hybrid 

indicators (popularity and prestige). The low correlation among variables confirms the lack of 

uniformity in authors’ positions under the various indicators used. In other words, since an 

author’s predominant position in terms of a simple indicator (production, visibility or 

collaboration) does not guarantee a comparable position in terms of popularity or prestige, 

these hybrid indicators, with respect to their predecessors, furnish novel and non-redundant 

information. 

Table 7. Materials Science (more than 13 documents). 2000–2004. 

Rank Position Ndoc Citations NIF Degree Betweenness Cluster Coef Popularity Prestige 

1 Full Professor 65 43 1.03 0.34 0.323 0.41 28.14 17.80 

2 Associate Professor 50 27 1.04 0.23 0.071 0.26 13.29 7.04 

3 Associate Professor 26 90 1.19 0.19 0.150 0.16 4.25 14.71 

4 Full Professor 20 43 0.93 0.16 0.023 0.37 7.78 15.92 

5 Associate Professor 20 2 1.02 0.15 0.075 0.11 2.16 0.22 

6 Associate Professor 15 15 0.90 0.12 0.037 0.06 0.84 0.84 

7 Associate Professor 15 30 0.94 0.10 0.005 0.16 2.76 4.87 

8 Full Professor 15 78 1.38 0.10 0.002 0.16 2.35 12.24 

9 Ayudante 14 12 1.05 0.09 0.009 0.04 0.60 0.52 

10 PhD Assistant 14 2 1.09 0.08 0.009 0.03 0.43 0.06 

   Highest 2nd highest 3rd highest     

 

Table 8. Mathematics (more than 9 documents). 2000–2004. 

Rank Position Ndoc Citations NIF Degree Betweenness Cluster Coef Popularity Prestige 

1 Full Professor 41 36 0.86 0.17 0.08699 0.41 16.97 14.90 

2 Associate Professor 29 88 1.50 0.13 0.01957 0.61 17.63 53.49 

3 Associate Professor 25 58 1.31 0.09 0.06424 0.11 2.71 6.28 

4 Associate Professor 19 30 1.31 0.06 0.03302 0.09 1.65 2.61 

5 Associate Professor 12 37 1.50 0.07 0.02676 0.15 1.82 5.60 

6 Full Professor 12 7 0.92 0.08 0.03424 0.09 1.11 0.65 

7 No UC3M 10 12 1.00 0.01 0.00002 0.09 0.86 1.03 

8 No UC3M 10 12 1.02 0.01 0.00002 0.09 0.86 1.03 

9 No UC3M 10 40 1.31 0.03 0.00027 0.05 0.50 1.98 

   Highest 2nd highest 3rd highest     

 

Table 9. Communication Technologies (more than 7 documents). 2000–2004. 

Rank Position Ndoc Citations NIF Degree Betweenness Cluster Coef Popularity Prestige 

1 Full Professor 21 19 1.03 0.18 0.1535 0.26 5.36 4.85 

2 Full Professor 18 16 1.17 0.18 0.1554 0.23 4.06 3.61 

3 Associate Professor 13 17 1.10 0.12 0.0391 0.14 1.77 2.32 

4 Associate Professor 12 4 1.10 0.20 0.1135 0.56 6.73 2.24 

5 Associate Professor 10 16 1.13 0.10 0.0478 0.08 0.77 1.23 

6 Part-time Professor 8 7 1.21 0.15 0.0154 0.78 6.22 5.44 

7 Associate Professor 8 3 0.86 0.10 0.0054 0.31 2.51 0.94 

8 Researcher 8 3 0.83 0.10 0.0028 0.38 3.01 1.13 

   Highest 2nd highest 3rd highest     
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Table 10. Electronic Technology (more than 5 documents). 2000–2004. 

Rank Position Ndoc Citations NIF Degree Betweenness Cluster Coef Popularity Prestige 

1 Associate Professor 18 14 0.95 0.15 0.00650 0.25 4.42 3.44 

2 Associate Professor 18 14 0.93 0.17 0.01102 0.31 5.64 4.39 

3 Full Professor 15 9 1.33 0.12 0.06107 0.003 0.05 0.03 

4 Associate Professor 9 0 0.84 0.06 0.00157 0.09 0.81 0 

5 No UC3M 9 3 0.75 0.09 0.00226 0.07 0.61 0.20 

6 Associate Professor 9 3 0.87 0.09 0.00057 0.09 0.80 0.27 

7 Associate Professor 8 0 0.83 0.08 0.00636 0.15 1.16 0 

8 No UC3M 7 9 1.01 0.07 0.00028 0.05 0.33 0.42 

9 Associate Professor 7 4 1.53 0.05 0.00971 0.001 0.01 0.003 

10 PhD Assistant 7 0 0.87 0.13 0.00553 0.19 1.33 0 

11 Associate Professor 6 3 1.45 0.45 0.08932 0.99 5.94 2.97 

   Highest 2nd highest 3rd highest     

 

High correlation among authors’ positions was observed in the Materials Science Department 

only, and was more significant between number of documents and popularity than between 

citations and prestige. 

Moreover, the number of nodes in the co-authorship networks differed from one discipline to 

another, however, due to the variety and specialized nature of the research problems 

addressed and the number of years the network was in place. In addition, the mean number of 

co-authors per paper depended largely on whether the article was theoretical or experimental. 

Theory papers tended to have a smaller number of co-authors, while the number of 

collaborating researchers was larger in experimental science. Lastly, in co-authorship networks 

the clustering coefficient was sometimes affected by the existence in the network of sub-

groups of only a few authors who collaborated intensely and tended to form cliques or circles. 

Consequently, special network parameters may better characterize their degree of clustering. 

Table 11. Spearman’s rank correlation coefficient between simple and hybrid indicators. 

Indicators COMP ECO BUSI STAT PHY MATER MATH COMM ELEC 

ndoc-popularity 0.348 0.428 0.574 0.059 0.253 0.812 0.676 0.665 0.256 

ncit-prestige 0.359 0.283 0.382 0.212 0.258 0.700 0.503 0.705 0.564 

cc-popularity 0.209 0.377 0.746 0.545 0.343 0.669 0.702 0.645 0.239 

cc-prestige a0.086 0.150 0.639 g0.010 0.338 0.747 0.632 0.441 m-0.004 

cc-ndoc b-0.006 d0.033 0.356 h0.025 j0.039 0.673 0.547 0.283 n0.046 

cc-ncit c-0.001 e-0.005 f0.148 i0.042 k0.041 0.396 0.402 l0.149 o0.031 

popularity-prestige 0.626 0.860 0.915 0.234 0.984 0.576 0.769 0.805 0.748 

COMP: Computer Science, ECO: Economy, BUSI: Business Administration, STAT: Statistics, PHY: Physics, 

MATER: Materials Science, MATH: Mathematics, COMM: Communication Technologies, ELEC: Electronic 

Technology. 

p = 0.0 except: ap = 0.00004; bp = 0.94; cp = 0.35; dp=0. 01; ep = 0 .63; fp=0. 001; gp=0.12; hp=0. 04; ip = 

0. 009; jp = 0. 0001; kp = 0. 0001; lp = 0. 000002; mp = 0.49; np = 0. 005; op = 0. 02. 

In short, the new indicators emphasize not only the importance of the values furnished by 

traditional bibliometric indicators, but also the need for authors to have a prominent position 

from a structural standpoint. The Physics Department may be a good example of actors’ 

behavior and show that a well-structured research environment may be much more beneficial 

than a larger number of co-authored papers or citations. Therefore, much has to be gained 
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from the differentiation proposed, whereby authors are evaluated based not only on absolute 

volume but also their importance in the network. The latter is defined in terms of their ability 

to draw and shape working teams in which everyone collaborates with everyone else 

(distributed network), as opposed to groups in which the main node manages collaboration 

and keeps the various participating partners isolated (star network). 

While the analysis was limited to the nine most productive departments in a specific 

institution, the results obtained are valid at the micro level addressed. Clustering coefficient 

values may vary depending on the size of the network, certainly. And the individual results for 

the professors analyzed may (and, when the time comes, should) be transferred to higher 

levels of aggregation (providing they are compatible), as suggested in the future lines of 

research discussed in the following section. But at the same time, the evaluation of all 

researchers in a common context, namely their department, affords sufficient guarantees for a 

valid comparison. 

Nonetheless, certain reservations and exceptions must be borne in mind. The clustering 

coefficient values, like those of any other general or individual structural indicator, are 

impacted by the choice of the time period. A wide window for a given aggregate guarantees a 

larger number of papers and relationships, and vice versa. Moreover, the existence of different 

collaboration and citation cultures in different scientific fields, and even in different 

institutions, is an obstacle to inter-aggregate comparison. 

6. Conclusions 

The formulation of new convergence indicators has revealed the patterns of ties between 

actors as an invaluable aid to understanding networking on the individual scale. New formulas 

for characterizing researchers constitute valid and effective analysis and evaluation tools for 

identifying excellent authors, understood to be not only the most productive or visible, but 

also those able to combine those qualities with the effort involved in collective work. They are 

regarded to be excellent because their individual worth and capacity (number of articles 

published or citations) is enhanced by the merit deriving from joint work, with which they 

generate new, high quality scientific, technical and/or technological knowledge and guarantee 

the availability of new resources for further research. 

This has made it possible to rank individual scientists and determine the differences revealed 

by indicators that distinguish among central professors, the most prestigious authors and the 

ones who act as intermediaries, reflecting the collaboration strategies deployed by the various 

actors to achieve recognition and impress their ideas on their colleagues.  

Another interesting finding was that researchers’ collaboration modus operandi is 

independent of their output or visibility. 

These tools, then, are sensitive to traditional indicators, but also to the new demands of 

modern science as a self-organized system of interaction among individuals, furnishing 

information on researchers’ environments and their behavior and attitudes within those 

environments (always collaborating with the same colleagues and keeping to the same lines of 

research, or changing scientific partners in pursuit of new challenges, for instance). In this new 
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panorama, it does not suffice to “have” (published papers or citations): one must “be” from 

the perspective of the phrase so adeptly coined by Björneborn, connecto ergo sum 

(Björneborn, 2004). 

As noted earlier, the scientific environment may influence individual behavior, particularly if 

such behavior affects research funding. Despite the exceptions described above that may put 

upward pressure on its value, the clustering coefficient is sufficiently robust to reduce the 

possible inflationary effects of adaptations in researcher behavior to accommodate new 

funding requirements. This is because the coefficient is based not only on the number of an 

actor’s collaborative actions, but also on the degree of cohesion of the resulting relationships. 

The new popularity and prestige indicators broaden the range of indicators used to quantify 

individual researcher development. Information can naturally be obtained on known 

indicators, and the differences between two authors with the same number of papers and 

citations can be readily quantified (using the H-index). In much the same way, the combination 

of such indicators via the clustering coefficient can be used to distinguish between or qualify 

the positions of authors with the same number of papers or citations based on their 

collaboration practices. 

The future enlargement of this type of analysis to broader domains or the comparison 

between micro-domains addressing similar subject matters will lead to an understanding of 

the relationships between UC3M author popularity and prestige on the international arena. 

The effect of endogamic sub-structures as well as and network size and density will also be 

ascertained and a more detailed and precise view of the evolution and scope of the results will 

be obtained. Nonetheless, the complexity of such studies conducted at the individual level in 

meso- or macro-aggregates should not be underestimated. The standardization of authors’ 

names is the primary obstacle to analyzing such networks, for the number of authors may 

range from several thousand to several tens of thousands, depending on the domain and 

period analyzed. 
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