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Abstract

We investigate publications trough their citation histories – the his-
tory events are the citations given to the article by younger publications
and the time of the event is the date of publication of the citing arti-
cle. We propose a methodology, based on spectral clustering, to group
citation histories, and the corresponding publications, into communities
and apply multinomial logistic regression to provide the revealed com-
munities with semantics in terms of publication features. We study the
case of publications from the full Physical Review archive, covering 120
years of physics in all its domains. We discover two clear archetypes of
publications – marathoners and sprinters – that deviate from the aver-
age middle-of-the-roads behaviour, and discuss some publication features,
like age of references and type of publication, that are correlated with the
membership of a publication into a certain community.

Keywords: Citation histories, Clustering, Regression analysis, Physical Re-
view.

1 Introduction

In bibliometrics, the number of citations received by a publication is a rough
indicator of the impact of the work among its peers. Several more elaborated
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citation measures have been proposed. All of them, regardless of the complexity
of their defining formulas, assign a publication with a single rating, so that a
total ranking among a set of publications can be compiled.

In this paper, we take a different perspective: citation temporalization, by
considering citation histories [Redner, 2004]. There are two main approaches
to study the citation history of a publication: synchronous and diachronous.
The former approach focuses on the distribution of the publication years of
cited publications, the latter on the distribution of received citations over time
[Nakamoto, 1988]. We mainly focus on the the latter: instead of the single
number of citations received by a publication at a given time, we consider the full
citation history of the publication since its origin. More precisely, the citation
history of publication i is a vector

hi,∗ = (hi,1, hi,2, . . . , hi,m),

where hi,j is the number of citations received by i during period j and T =
(1, 2, . . . ,m) is a series of consecutive temporal periods in some time granularity
(e.g., months or years), where we assume 1 to be the period of publication of
i. Citation histories extend citation counts by adding a temporal dimension,
providing a more informative and less immediate indication of the impact of
a publication. While citation counts are snapshots of publication impact at
a given time, citation histories move publication impact over time and map a
publication’s ageing process.

The study of patterns of ageing of scientific publications has been very ac-
tive since decades, its main focus being understanding scientific discourse in
different fields and times, and the determinants of the success of a publication.
As an example, this problem was posed by Garfield [1980] as one of trying to
individuate publications subject to delayed recognition or premature discovery.
He framed the task in the following steps: understanding (i) what is a typical
citation pattern for every scientific field; (ii) what is a deviation from this typical
citation pattern; and (iii) what really qualifies as a premature discovery. Natu-
rally, delayed recognition is but one of the citation patterns which deviate from
the typical one. The ageing of scientific literature has also been compared more
generally to the process of obsolescence of any kind of phenomena [Pollmann,
2000]. The average or typical citation history is linked with information diffu-
sion processes, where several effects interact in causing a considerable amount of
information items to go unnoticed, others to be considered for a short amount
if time and then fade out (causing the attention peak), others still to remain
relevant for longer, even indefinitely (causing the long tail). The speed of recog-
nition, if any, is also driven by intrinsic as well as extrinsic factors (cf. e.g. Line
and Sandison [1974]). For example, curves similar to archetypal citation histo-
ries are to be found in the proportion of re-shares of Facebook photos during
the first hours since upload: even identical photos were found to be associated
with very different diffusion “histories” [Dow et al., 2013].

Citation histories are not meant to rank publications in a compilation. Nev-
ertheless, citation histories associated with different publications can be com-
pared in a more involved way with respect to a total ordering relation. In this
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paper, we use clustering techniques to group citation histories, and hence their
corresponding publications, into a set of clusters or communities. Each cluster
corresponds to a set of publications with similar citation histories. Hence, the
total, non-symmetric ordering relation used to rank publications with citation
counts is substituted with a symmetric similarity relation that prescribes which
publication belongs to which community. Each community can be represented
with its average citation history – we call this aggregated history the citation
macrohistory of the cluster. Different clusters correspond to different citation
macrohistories, and the flexibility of hierarchical clustering methods allows us
to tune the granularity of clusters and hence to calibrate the degree of difference
of the corresponding macrohistories. Furthermore, we identify a set of determi-
nants, that is independent variables such as the number of received citations, the
number of references, the age of references, the number of authors, the length of
a publication, and the publication year and type. We use these determinants to
elucidate the membership of a publication to a given cluster, in order to provide
each cluster with semantics in terms of publication characteristics. We apply
the described methodology to the full Physical Review archive, containing more
than half a million publications spanning all domains of physics during the last
120 years.

The layout of the paper is as follows. We describe the methodology proposed
in this work in Section 2. In particular, we define histories and macrohistories
in Section 2.1, we describe the clustering methods adopted to group citation
histories in Section 2.2, we discuss the many choices of our experimental set-
ting in Section 2.3, and briefly present the Physical Review dataset in Section
2.4. Section 3 contains the main results of the application of the method to
the dataset. In particular, Section 3.1 is devoted to the results of clustering
and Section 3.2 identifies the determinants for the detected clusters. Section 4
compares the present work with related literature and Section 5 concludes and
outlines further directions of research.

2 Methodology

In this section we formally discuss citation histories as a way to recover the tem-
poralization in received citations. We also introduce and motivate the choice
of spectral clustering in order to cluster publications according to their cita-
tion histories, present our experimental setup and briefly describe the Physical
Review dataset, which will be used as a case study.

The matrix notation we use in this paper is the following: given a matrix A
and two valid indices i and j, the entry of A in row i and column j is denoted by
ai,j . The i-th row of A is denoted by ai,∗ and the j-th column of A is denoted
by a∗,j .
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2.1 Citation histories

The citation history of a publication P tracks the citations that P received
since its origin (the date of publication). The events composing this special
history are the citations given by younger publications Q towards P , the time
of the event being the date of publication of the citing article Q. Suppose, for
instance, that P is published in year 2011 and now is end of 2015. If P received
5 citations in 2011, 10 citations in 2012, 3 citations in 2013, 2 citations in 2014,
and no citations in 2015, then the citation history of P , using a yearly temporal
granularity, is the vector hP = (5, 10, 3, 2, 0). Notice that sum of the citation
history vector components corresponds to the total number of citations accrued
by P at the present moment (20 in the example). A publication brought out
before P has a longer history, while a publication issued after P has a shorter
history.

Formally, let i be a publication, m ≥ 1 be an integer and T = (1, 2, . . . ,m) be
a series of consecutive temporal periods in some time granularity (e.g., month or
year), where we assume 1 to be the period of publication of i. For every j ∈ T ,
let hi,j be the (non-negative integer) number of citations received by i during
period j. The citation history of publication i over T is the following vector:

hi,∗ = (hi,1, hi,2, . . . , hi,m)

In the following, we discuss relevant choices for the definition of a proper
citation history. First of all, what is the minimum length of a history? And,
related to history length, what is the minimum number of events (citations)
that define a history? If we want to evaluate an object (publication) according
to its history, a minimum length has to be imposed. If, otherwise, histories are
used only for aggregated histories, then any length might be acceptable, with
the caveat of using histories of equal length for comparison. It seems reasonable,
moreover, that a history, to be considered as such, has a minimum number of
citations. This threshold can be fixed in advance (eg., 20), or can be a function
of the history length, for instance, a history of length t must contain at least
t citations (on average, one per temporal period, which is the global average
number of citations per paper suggested by De Solla Price [1965]).

Another relevant choice for the definition of citation histories is temporal
granularity. Granularities, which are intrinsic to temporal data, provide a mech-
anism to hide details that are not known or not pertinent for an application
[Bettini et al., 2009]. Day, month, and year are examples of temporal granulari-
ties related to the Gregorian calendar. Usually, we know the year of publication,
and sometimes the month. Hence year or month might be suitable temporal
granularities for citation histories. Working with a finer granularity is preferable
since it enhances precision of the analysis; nevertheless, the dataset is larger and
hence more computationally intensive. Hence, a compromise between precision
and complexity is necessary.

A final issue about citation histories is normalization: do we use raw citation
counts as elements of the history vector of do we normalize them by dividing
by the total number of citations contained in the history? Given a publication
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i, let us define

ci =

m∑
t=1

hi,t

as the total number of citations accrued by publication i. Normalization entails
defining probabilities pi,t = hi,t/ci that publication i receives a citation during
time t as well as the normalized history as follows:

pi,∗ = (pi,1, pi,2, . . . , pi,m)

Notice that for every t ∈ T we have 0 ≤ pi,t ≤ 1 and
∑m

t=1 pi,t = 1,
hence the normalized history pi,∗ is indeed a probability distribution. The ad-
vantage of working with normalized histories is that we can compare two or
more histories on the same playground. For example, consider two citation his-
tories hi,∗ = (5, 10, 3, 2, 0) and hj,∗ = (15, 30, 9, 6, 0) of publications i and j.
The raw citation values are quite different (citation counts of j are exactly 3
times those of i). Nevertheless, the normalized citation histories are the same
pi,∗ = pj,∗ = (0.25, 0.50, 0.15, 0.10, 0); for instance, there is the same probability
of 1/2 that both i and j receive a citation during the second temporal period.
The disadvantage of normalized histories is that the magnitude of citations is
lost. For instance, considering only the two normalized histories, it is not clear
anymore that j received much more citations than i.

Given a set of n publications with citation histories defined over m temporal
periods, we can collect all citation histories in a citation history matrix H of
size n × m such that hi,j is the number of citations received by publication i
in period j. Normalization can be easily defined as a transformation of matrix
H. Let r = (r1, . . . , rn) be the row sum vector of H, that is, ri is the sum of
the i-th row of H. Let R be a diagonal matrix with vector r on the diagonal.
Then, the normalized citation history matrix is R−1H, where R−1 is a diagonal
matrix with elements 1/ri on the diagonal.

After normalization has been applied to the history matrix, let H be the
resulting n×m history matrix. We can finally compute the aggregated citation
history for all publications contained in H, that is, what we call the citation
macrohistory. The citation macrohistory of H is a vector ΩH = (µ1, . . . , µm)
such that

µj =
1

n

n∑
i=1

hi,j

that is, µj is the average number of citations received by publications in H
during period j. Notice that, if H is a normalized history matrix, then for every
j we have 0 ≤ µj ≤ 1 and

m∑
j=1

µj =

m∑
j=1

1

n

n∑
i=1

hi,j =
1

n

n∑
i=1

m∑
j=1

hi,j =
1

n
· n = 1

hence ΩH is a probability distribution like the rows of H. Examples of macro-
histories of different lengths are given in Figure 1.
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Figure 1: Macrohistories of all publications published in the given year in Phys-
ical Reviews that received at least 20 citations using year granularity.

2.2 Clustering method

Given the citation macrohistory of a set of articles, representative for example
of a journal or an academic field, the following question is meaningful: if we split
the whole macrohistory in a set of macrohistories, in order to group articles with
a citation history of similar shape, what would be the outcome? A pulverization
into small groups or a set of few large clusters? Previous work has mostly
relied on heuristics or external variables (e.g. venue or field) in order to group
articles into similarly cited groups. We propose to automatize this procedure by
using clustering techniques and systematically analyze the outcome in order to
see what patterns determine increasingly refined and smaller cluster of citation
histories.

We begin by defining our task as one of finding if two empirical probability
distributions are the same or not. In our case the probability distributions to
compare are the macrohistories of increasingly smaller clusters of articles: given
a suitable clustering procedure, we keep increasing the number of clusters until
the most similar pair of cluster macrohistories is statistically indistinguishable.
Several clustering methods exist in the literature, for what follows we adopt
spectral clustering, specifically Normalized Cuts (Ncut) [Shi and Malik, 2000,
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Yu and Shi, 2003]. Ncut is often found to be superior to traditional methods such
as k-means, and to other spectral clustering approaches, such as unnormalized
spectral clustering. For more details on spectral clustering and its experimental
tuning, refer to von Luxburg [2007].

Define H ∈ Rn×m as the row-stochastic matrix of filtered and normalized
citation histories hi,∗ to analyze, according to the definitions given in Section
2.1. In what follows we assume all individual histories to be of equal length
m, therefore filtering out (at least) articles published after end−m, where end
is the last year represented in the dataset (m × 12 if we consider months and
not years). Intuitively, the goal of spectral clustering is to divide datapoints
according to their pairwise similarity, and do this through the definition of a
weighted graph and its partition into communities. The first step of spectral
clustering is therefore the definition of a distance matrix V ∈ Rn×n among data
points (citation histories in our case), in order to reformulate clustering as a
graph partition problem: finding groups such that edges among them have low
weights and edges within the group have high weights. Each element vi,j in V is
a distance between data points (histories) hi,∗ and hj,∗. The construction of a
distance matrix requires the choice of a metric: common options are Euclidean,
radial and cosine distances. In order to have a graph, represented as a (possibly
sparse) weighted adjacency matrix W ∈ Rn×n, we also need a construction
method in order to establish edges between similar datapoints: common choices
are the ε-neighborhood (keep all the edges between a node and its neighbors at
a distance ≤ ε), the r-nearest neighborhood (keep all edges between a node and
its r nearest neighbors), and a fully connected graph.

Ncut approximates a solution to the optimization problem of finding a num-
ber k of partitions of W by balancing two divergent objectives: the cut operator,
defined as the sum of the weights of the edges between the vertices of any clus-
ter and the rest of the vertices in W , which we want to minimize, and the
volume operator of each cluster, which is the sum of the weighted degrees of its
vertices, which we want to maximize. The motivation behind Ncut is to find
cohesive clusters which are not too unbalanced in the number of vertices. The
relaxed solution to the Ncut problem is equivalent to finding the first k (small-
est) eigenvalues, and corresponding eigenvectors x1, . . . , xk, of the random walk
normalized Laplacian of W , defined as L = I −D−1W , where I is the identity
matrix and D a diagonal matrix with di,i equal to the sum of the i-th row of
W (that is, the weighted degree of node i in the graph of W ). Let Z ∈ Rn×k

be the matrix whose j-th column z∗,j = xj . The method uses each row zi,∗ of
Z as a representant of row hi,∗ of H and then takes advantage of k-means to
cluster the rows zi,∗ of Z into k clusters. Finally, it assigns citation history hi,∗
to the cluster of its representant zi,∗.

In order to find the appropriate number of clusters for a given dataset,
we propose an iterative method starting with a number of clusters k = 2, and
increasing their amount until the citation macrohistories of the two most similar
clusters are found to be not significantly different by a Kolmogorov–Smirnov
two-sample test (KS test). The desired level of significance is a parameter of
the algorithm. We settle for the value of k just before this event happens. This
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iterative method is especially amenable to clustering approaches which require
the number of clusters k to be specified, but it can nevertheless be applied
to approaches which do not require k to be specified, by helping tuning their
parameters instead. Such is for example the case of the Louvain community
detection method by Blondel et al. [2008], using its resolution parameter. Other
methods to chose a good number of clusters k are possible, for example the
eigengap heuristic [von Luxburg, 2007], which nevertheless gave ambiguous and
unhelpful results in our setting.

2.3 Experimental setup

We summarize here our experimental setup ad parameter choices. To begin with,
we filtered the articles to be considered for analysis using a method suggested
by Radicchi and Castellano [2011]. Define the relative success si of an article i
using the following ratio:

si =
ci

max(µ, 5)
(1)

where ci is the number of citations accrued to article i during the time window
of interest, and µ is the mean number of citations accrued to articles from the
same year of publication during the same time window. We use max(µ, 5) at
denominator of the success formula in order to account for years with low average
citation rates. We consider for analysis only articles with a value si ≥ 1, which
means an above average relative performance. This technique can be adopted
in order to select articles for analysis before calculating their history, and so
doing guarantee a minimum amount of received citations from which to analyze
the citation history. Other methods could also be used in order to determine
an above norm performance, such as the median [Lin et al., 2016]. In this way
we can account for the varying amount of citations papers receive due to the
time of publication, while at the same time maintain a minimum threshold to
produce meaningful citation histories. Crucially, we always consider histories of
equal length for clustering, and normalize them as described in Section 2.

Ncut entails several design choices, which we detail here along a summary
of its steps. First we construct a symmetric distance matrix V , where vi,j is the
distance between histories hi,∗ and hj,∗. We use the Euclidean metric, which
anyway yielded similar results to the cosine and radial alternatives. Secondly,
we build the symmetric weighted adjacency matrix W . To be sure, we would like
edges to be weighted proportionally to the similarity of the two datapoints: the
lower the distance between data points, the more similar two data points are,
the higher the weight of the corresponding edge. This is why W is sometimes
called affinity matrix. In order to build our affinity matrix, we follow and extend
a technique proposed by Zelnik-Manor and Perona [2004]. First of all, we keep
only the r-nearest neighbors j for every datapoint i in V . We settle for a number
of neighbors r = 100, after experimenting r from 25 to 500. Then, we define:

wi,j = exp

(
−
v2i,j
δ2

)
(2)
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for pairs i, j that are neighbors, and wi,j = 0 otherwise.
The quantity δ is a scale parameter, normally taken to be global for every

datapoint, e.g. using the mean of distances in V . Zelnik-Manor and Perona
[2004] proposed to use instead a local scaling parameter δi, which has the benefit
of considering the local statistics of the neighborhood of every datapoint i. The
local scaling, which we adopt, entails changing the above definition to

wi,j = exp

(
−
v2i,j
δiδj

)
(3)

for pairs i, j that are neighbors, with δi defined as the maximum distance be-
tween i and any of its r neighbors. Intuitively, local scaling allows neighborhoods
at different relative distances to be weighted similarly in W , therefore improving
the result of clustering.

Given the weighted adjacency matrix W , we apply the iterative process of
increasing the number of clusters k from 2 to the maximum significant value,
according to the procedure described in Section 2.2. We use a significance level
of 0.1 to be rather tolerant with the desired number of clusters. The KS test’s
p-value is monotonically increasing in all experiments we did, as the number of
clusters is raised until reaching non-significance.

To summarize, the steps we follow to cluster the citation history matrix H
are:

1. compute the distance matrix V , where vi,j is the Euclidean distance among
histories hi,∗ and hj,∗;

2. set the number of neighbors r = 100 and compute the weighted adjacency
matrix W using Eq. 3;

3. construct the random walk normalized Laplacian L = I −D−1W ;

4. set the initial number of clusters k = 2;

5. find the first k eigenvectors x1, . . . , xk of L and put them as columns of a
matrix Z;

6. cluster the rows zi,∗ of Z with k-means, to find the required k clusters,
and put the history hi,∗ in the cluster of zi,∗;

7. evaluate the quality of the clustering by comparing the macrohistories of
every cluster with a KS test at significance 0.1;

8. stop if any two cluster macrohistories do not significantly differ using the
KS test and set k = k− 1. Otherwise, set k = k+ 1 and iterate steps 5-8.

2.4 The Physical Review dataset

We consider the full Physical Review dataset—from now on APS dataset, to
distinguish it from one of its journals, the Physical Review (PR)—from 1893
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to 2013 for the purpose of demonstrating and testing the proposed approach.1

The APS dataset contains articles from several journals which stemmed from
the original Physical Review, and is currently an important venue for publi-
cations in all domains of physics. The history of the Physical Review is in a
sense that of physics, as a growing theoretical maturity has being paralleled
by an increased structuring of scientific discourse and practices, as this over
100-year old dataset highlights [Bazerman, 1988, Chapter 6]. We specifically
considered the following article typologies: normal articles, letters, rapid and
brief communications, excluding non-standard (from a citations point of view)
article typologies such as editorials, comments and errata. A total number of
510137 publications is considered, divided in 31769 rapid, 34572 brief and 8247
letter communications, and 435549 articles.

The following journals are part of the APS dataset:

• PR (Physical Review, 1893-1969, articles: 47940): All of physics.

• RMP (Reviews of Modern Physics, 1929-today, articles: 3139): All of
physics.

• PRL (Physical Review Letters, 1958-today, articles: 110080): All of
physics.

• PRA (Physical Review A, 1970-today, articles: 65170): Atomic, molecu-
lar, and optical physics and quantum information.

• PRB (Physical Review B, 1970-today, articles: 161257): Condensed mat-
ter and materials physics.

• PRC (Physical Review C, 1970-today, articles: 34443): Nuclear physics.

• PRD (Physical Review D, 1970-today, articles: 69481): Particles, fields,
gravitation and cosmology.

• PRE (Physical Review E, 1993-today, articles: 46009): Statistical, non-
linear and soft matter physics.

Three caveats of the APS dataset were identified by Redner [2004]: first,
the dataset is fully self-contained, with citations from and to articles within
the APS dataset itself, meaning that only an estimated 20% of APS articles
total citations are accounted for. Secondly, approximately 5 to 10% of citations
are incorrect. In order to mitigate the impact, we discarded all citations which
were patently erroneous—such as made by articles published before the cited
article. Thirdly, as it is well known, raw citation counts vary widely according
to time and academic field. The same author stressed how skewed the APS
citation distribution is, given a very few articles are cited more than 10 times
during their lifespan (less than 20% over the largest analyzed dataset) [Redner,
1998]. For these lucky few, citation lifespans are nevertheless long, suggesting

1The dataset was kindly provided by the American Physical Society (APS), and is available
for request here: http://journals.aps.org/datasets.
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how different citation regimes apply once a publication becomes popular. This
consideration supports at the same time a focus on above-average cited articles,
and the selection of fixed time windows for the analysis of citation histories,
in order to set a boundary to the long tail of the accumulation procedure and
compare histories of equal length.

3 Results

In this section we apply spectral clustering to the APS dataset, discuss the
resulting archetypical macrohistories and investigate their determinants through
multinomial logistic regression.

3.1 Clustering citation histories

We analyzed several sets of data using histories of different time windows, and
settled for a comparison over citation histories of four different spans: 6, 12, 24
and 48 years, with a filter on the minimum number of received citations during
the period as described in Section 2.3. The normalized macrohistory of the
12 years dataset, in Figure 2, shows the typical rapid peaking and slow decay
of highly cited scientific literature. A decrease in the ageing time of articles
is also apparent if we consider (not normalized) macrohistories from different
publication years in Figure 1. These time windows have been chosen because
6 years is just more than what impact factors normally consider (2-5 years),
and is often suggested to be the maximum average delay for citation peaks in
most fields of science [Amin and Mabe, 2003], albeit some disciplines, such as
social sciences, might take even longer to peak [Glänzel and Schoepflin, 1995].
Moreover, 12, 24 and 48 years are multiples of 6, which should allow us to
investigate the long-term behaviors of citation histories and their determinants.

Remarkably, the number of clusters obtained with the KS test was always
low and significant, in the sense that it provided with the maximum number of
qualitatively different curves/clusters, in terms of the position and magnitude of
the peak, and speed and shape of the descending curve. Results are summarized
in Table 1. For the largest datasets (windows of 6 and 12 years), we provide
in what follows results from samples for computational reasons. Multiple sam-
plings have been taken and tested from the same dataset in order to assure the
coherence of our results.

We find a low number of significantly different clusters, which are essentially
variations over a continuous space between two extremes: citation histories
of sprinters and marathoners, with a relevant number of articles close to the
average, “normal” citation history. We define three types of citation histories
as follows: (i) Marathoners which present fast or slow-rise, moderately peaked
histories, followed by a slow decline, or absence of decline, or even a constant rise
in received citations over time. (ii) Sprinters instead have an early and high peak
and a fast decline. (iii) Middle-of-the-roads articles are and in-between average.
See for example the results of clustering from 50000 randomly selected articles of
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Figure 2: The macrohistory for the 12 years dataset, with a yearly and monthly
granularity.

the 12 years dataset, in Figure 3a: marathoners are on average more represented
in cluster 1, average articles in cluster 2, and sprinters in cluster 3. Increasing
the number of clusters does not give qualitatively different curves, as shown in
Figure 3b, where the two last clusters are very small in the number of datapoints,
and similar to each other. Different time-spans yield similar results as well:
macrohistories can slightly change in peak and shape, and the proportion of
articles for any given typology as well, but the overall interpretation does not.
This can be seen in Figure 4a for the time windows of 48 years, were marathoners
are proportionally fewer in numbers but more markedly so, and the same is true
if we increase to 4 clusters as in Figure 4b. We will therefore mostly use a time

Window Valid Data Filtered data KS clusters
6 years 399617 117243* 2
12 years 302810 85861* 3
24 years 158819 42976 4
48 years 40044 10089 3

Table 1: Summary of datasets used for different time windows, and results of
clustering. The valid data represents all articles with a sufficiently long history,
filtered data is the amount of articles which received an above average number of
citations compared to articles published in the same year. KS clusters indicates
the number of clusters found using the KS test. * indicates time windows for
which the provided results come from samples of data.
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(a) 3 clusters: marathoners (C-1), middle-of-the-roads (C-2),
and sprinters (C-3).

(b) 4 clusters: middle-of-the-roads (C-1), marathoners (C-
2), and two clusters of sprinters (C-3 and C-4).

Figure 3: Clustering results for the dataset of length 12 years over a 50000
sample. The number of articles in each cluster is indicated in the title of each
figure, which are given in decreasing order.

(a) 3 clusters: middle-of-the-roads (C-1), marathoners (C-2)
and sprinters (C-3).

(b) 4 clusters: middle-of-the-roads (C-1), marathoners (C-
3), and two clusters of sprinters (C-2 and C-4).

Figure 4: Clustering results for the dataset of length 48 years. The number of
articles in each cluster is indicated in the title of each figure, which are given in
decreasing order.
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period of 12 years to exemplify our findings.
Marathoners represent the most rich typology of citation histories, as they

tend to amalgamate quite different curves, as can be seen in Figure 5, where we
kept dividing cluster 1 in Figure 3a into three further clusters. A considerable
proportion of marathoners are close to their cluster average curve (cluster 1-1),
but two sub-clusters are in fact made by sprinting marathoners (publications
with a slow rise, relatively fast decline and a plateau on a positive asymptote,
cluster 1-2), and extreme marathoners (publications with little sign to stop rising
in terms of received citations, cluster 1-3). Notably, the same effect is not at all
present if we keep splitting clusters 2 and 3 in Figure 3a, as we find very similar
clusters. The reason for this more complex nature of marathoners might be
the fact that several known relevant yet rare typologies of citation histories are
contained within this category: sleeping beauties [Van Raan, 2004], all-elements-
sleeping-beauties [Li, 2014], persistently relevant publications (stable positive
asymptote in the number of received citations over the long-term), increasingly
relevant publications (monotonic increase in the number of received citations),
to name but a few.

Figure 5: Three clusters obtained from cluster 1 on the 12 years dataset.
Marathoners and sprinters appear again, within the marathoners cluster. The
number of articles in each cluster is indicated in the title of each figure.

To summarize, we find the following typologies of citation curves in the APS
dataset:

1. Marathoners: publications which start fast or slow, reach a moderate peak
and keep improving the ratio of received citations, or at least keep being
relevant over prolonged amounts of time by manifesting a slow decline or
a plateau. Marathoners in effect tend to age slowly, or not at all, and are
also more numerous and varied than sprinters.

2. Sprinters: publications with fast, even extremely fast and high peak, and
equally rapid ageing. These publications are immediately relevant for their
community, and rapidly forgotten thereafter, and are fewer in number in
the APS dataset.

3. Middle-of-the-roads: publications with a citation history close to the global
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average citation history, that is, a fast but moderately peaking curve with
a gradual decay over time.

Citation histories can also be used to investigate the venue of articles, and
verify where different journals stand with respect to the sprinters and marathon-
ers balance. Every APS journal has a characteristic citation history, shown in
Figure 6 for a time period of 12 years. Relative differences in the ageing pat-
terns of journals from the same domain are a known phenomenon [Moed et al.,
1998]. Interestingly, the original Physical Review seems to be the top sprinter:
to what extent this effect is partially due its older and thus less reliable data
is unknown. The rest of the journals seem to be marathoners instead, with a
more or less rapid peak but slow decline. At the opposite sides of the spectrum
we find the PRL (slightly more of a sprinter, likely due to the format of let-
ters, which are meant to be quickly digested by the community) and the RMP
(more of a marathoner as a review journal, publishing fewer articles which are
relevant for a longer time). To be sure, the average filtered APS article has a
clear long-tail with slow ageing.
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Figure 6: The macrohistories of the journals in the APS dataset, for a time
period of 12 years. The number of articles in each journal is indicated in the
legend.

Our clustering procedure can be applied to articles from specific journals
as well. If we cluster the articles of the PRL and RML, as shown in Figure 7,
we find different macrohistories. The PRL, also due to the amount of articles
from this journal in the dataset, has all macrohistories which are similar to the
global ones in Figure 3a. Conversely the RMP, which has fewer articles in the
dataset, emerges as a journal distinct for its focus on reviews. As a consequence,
sprinters are almost absent and we can find a monotonically increasing cluster
(number 2 in Figure 7b), representing articles that continue to be increasingly
more relevant over several years after publications. Nevertheless even for the
RMP, the first cluster macrohistory is similar to the first global cluster in Figure
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(a) Physical Review Letters: marathoners
and sprinters reappear.

(b) Review of Modern Physics: cluster 2 is
made of monotonically increasing articles.

Figure 7: Comparing journals in the APS dataset: 3 clusters for histories of 12
years.

3a.

3.2 Determinants of citation histories

In order to further investigate some determinants of different citation histories,
we run a series of multinomial logistic regressions with the results of clustering
as dependent variable, and a set of metadata on articles as independent, as
summarized in Table 2. Multinomial logistic regression works on nominal (not
ordered) categories, taking one as reference category, and evaluating the relative
risk of being in one of the remaining categories against the reference using
a linear combination of predictors. The resulting MLE-estimated coefficients
represent the effects of every predictor variable in the log-odds of being in any
other cluster versus the reference cluster. In other words, given any coefficient β,
the probability of being in a certain cluster against the reference cluster increases
exp(β) times for each unit increase in the corresponding independent variable,
all else kept constant. For example, given a hypothetical coefficient β of −0.1823
on the number of authors for, say, cluster 2 against cluster 1, we have that a unit
increase in the number of authors increases the probability of being in cluster
2 relative to cluster 1 by a multiplicative factor of exp(−0.1823) = 0.833, thus
actually decreases it by −17.7%. The effect of a single feature unit increase on
the probability of a datapoint being in a given cluster, all else being equal, is
instead calculated via marginal effects, that is the derivative of the probability
of being in a given category with respect to a predictor. We provide both
regression and marginal effects coefficients in what follows. See e.g. Greene
[2012] for a thorough introduction to multinomial logistic regression.

We estimated two models for the 12 years and one for the 48 years datasets:
(i) a baseline for both windows using filtered articles, whose results are reported
in the Appendix; (ii) a model only for articles published from 1970 with a
window of 12 years, thus excluding the original Physical Review and the oldest
articles from PL and RMP. Both the full dataset and the post-1970 models were
also verified for history lengths of 6 and 24 years, providing coherent results.
The reference cluster is always cluster 1 (the first one in Figure 3a for the 12-
year window and the first one in Figure 4a for the 48-year window. Both are
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y (dependent) cluster number
cits total number of received citations during time window

citsNSL
total number of received citations from journals
different from publication venue during time window

refs total number of cited references

refsAge3P
3rd percentile of the distribution of the age
of cited references

refsAgeMean
mean of the distribution of the age
of cited references

numAuthors number of authors
numPages number of pages
pubYear publication year

isArticle
if article (as opposed to rapid, brief or letter
communication)

Table 2: Independent variables used for regression on cluster number. All refer-
ences, made and received, are to and from publications within the APS journals.

the most representative in the number of articles).
Regressions consistently point to specific features for clusters with different

degrees of marathoners/sprinters. Some features are stable to all time spans,
others change role predicting sprinters over short windows and marathoners over
long windows. It is useful to consider marginal effects and regression coefficients
together for an absolute and relative comparison. More specifically different
degrees of the two profiles compare in the following way:

• Marathoners are cited less on average over short windows (up to 24 years
included), but more over long windows (48 years). They are cited more
from other journals than the original venue over short windows but less
over long windows. They have fewer authors, are longer in number of
pages, and have older and (slightly) shorter bibliographies, despite review
articles being commonly marathoners. They are also younger on average,
and more likely to be articles than a rapid, brief or letter communication.

• Sprinters are cited more on average over short windows, but less over long
windows. They are cited less from other journals than the original venue
over short windows. They have more authors, are shorter, with (slightly)
longer and younger bibliographies. Finally, they are on average older and
more likely to be a rapid, brief or letter communication.

Several effects are weak even if significant. For example, the list of references
of sprinters and marathoners is found to be correlated in the sense of a longer
but younger list for sprinters. This effect is somewhat counter intuitive, espe-
cially as review articles are typically marathoners (see the RMP macrohistory in
Figure 6). To be sure, the length of bibliographies is correlated by a very weak
coefficient, while the age of cited articles is stronger as a signal, and intuitively
points to older reference lists for marathoners than sprinters.
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From our results we can identify some clear determinants of a citation his-
tory, broadly divided into extrinsic and intrinsic. Extrinsic determinants de-
pend on the context, timing and ensuing history of a publication, and can be
diachronic; intrinsic determinants are instead synchronic, related to the materi-
ality and content of a publication. The main extrinsic determinant is the year of
publication, which very clearly points to a slowing down in the ageing process of
articles over recent times, as already discussed in the literature (e.g. [Bouabid
and Larivière, 2013]). Received citations are also an extrinsic variable to some
extent, one that change in importance with different time windows. The shorter
the time window, the more significant is the impact of having more citations
for the likelihood of being a sprinter: indeed sprinters accumulate most of their
citations over short amounts of time after publication. This effect gets diluted
as the window is enlarged, with the number of citations becoming a (weak)
predictor of being a marathoner for the 48-year window. Interestingly, the op-
posite trend applies for citations coming from other venues than the publication
journal. This might signify that sprinters are short and rapidly digested pub-
lications which less likely surpass the boundaries of the original community of
interest.

Some intrinsic effects are also relevant, having to do with the contents
and structure of the article. The most important determinant is the type of
publication—a full article being more likely a marathoner. An important signal
also comes from the age of the reference list, as discussed before. Weak but
significant coefficients also come from the number of pages and authors of the
article. In general a cautionary word must be spent to highlight how the esti-
mated explanatory power of the model is rather low (pseudo squared R of circa
0.15 in for all models).

4 Related literature

The first result showing two groups of citation histories with a similar interpre-
tation to ours was Aversa [1985], where sprinters where identified as early rise
and rapid decline publications—also mentioned as “flashes in the pans” in the
literature (e.g. [Van Dalen and Henkens, 2005]); and marathoners as delayed
rise and slow decline ones. An important point is that our marathoners can in
fact early rise too, the only difference is in the decaying behavior (or lack of).
A further typology has been used by several authors, that of “normal science”
(e.g. [Van Dalen and Henkens, 2005]). Indeed a lot of articles close to the global
average citation curve exist, as shown in the second cluster in Figure 3a for the
12 years period: the average article is not an artifact of aggregation. We avoid
explicitly considering “sleeping beauties” (cf. e.g. [Van Raan, 2004]), that is
articles which go unnoticed for a long time before attracting a lot of attention,
due to the relative rarity of the phenomenon in the APS dataset [Redner, 2004].

In order to group articles according to their citation histories, most of previ-
ous literature relied on heuristics. As an example, Costas et al. [2010] used the
rules originally proposed by Price in a private communication to Aversa [1985]:
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a publication is considered a flash in the pans if it received at least 50% of its
citations before the 75% of the papers in its domain still did not; a delayed-
type if it received 50% after 75% of papers in its domain already received at
least 50%, and normal if in between. Exceptions are Aversa [1985], who experi-
mented with k-means on a limited set of articles; Baumgartner and Leydesdorff
[2014], who used group-based trajectory modeling to distinguish different de-
velopmental trajectories for citation histories; Sun et al. [2016] who proposed
a two-parameter method looking at the shape and drastic fluctuations in the
citation curve in order to distinguish different patterns of obsolescence.

Considering the determinants of citation histories, Van Dalen and Henkens
[2005] investigated some predictors of citation curve typology for a set of articles
in demography using multinomial logit. The reference category were 1) not cited
or barely cited papers, vs three other categories: 2) sleeping beauties, 3) flash in
the pans and 4) so called normal science. The venue, as represented by the jour-
nal impact factor, was found to be strongly positively correlated with typologies
2, 3 and 4, the author’s reputation and the length of the paper (in number of
pages) were found to be only weakly correlated. We also elaborate on the re-
sults of Costas et al. [2010] in the comparison of flash in the pans and delayed
documents. Delayed papers were found by them to be more cited and hav-
ing higher field-specific impact, in agreement with previous literature [Aversa,
1985, Aksnes, 2003, Levitt and Thelwall, 2009]. We show how marathoners in
the APS dataset are more cited in absolute only at a relatively late stage of
their history, being less cited than sprinters at the beginning. Marathoners are
nevertheless more likely to be cited by articles from different journals from their
early stages, which from the 1970 represents a coarse field indicator with the
publication of Physical Reviews A to E. They therefore seem to be more rele-
vant to a domain than just a community, on average. Delayed papers were also
found by Costas et al. [2010] to be less collaborative on average, with several
possible explanations such as fewer discovery options compared to flash in the
pans given by having fewer authors and outbound citations. Flash in the pans
represent immediacy, are shorter and typically not archival papers, tending to
be published in higher impact journals. This immediacy might be also due to
self-citations and self-promotion effects. The authors advance the hypothesis
that a research is in fact a series of papers linked among each-other, with flash
in the pans, normal and delayed types all playing a role in the diffusion of a
research effort.

We further complement these findings by evidencing other effects as well.
First of all, the space between full marathoners (delayed recognition) and sprint-
ers (flash in the pans) is in a sense continuous, as average articles tend to be
in-between in terms of regression coefficients. The same regression coefficients
also increase or decrease according to the more or less pronounced history of
the cluster in terms of degree of marathoner/sprinter. Secondly, results seems
to be consistent over time, as they do not differ substantially for papers pub-
lished from 1970 onwards. To be sure, the exponential growth of PR journals
and therefore of produced citations, shown in Redner [2004], already makes the
signal of older articles less significant. Our results seem also to confirm what
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suggested by Bouabid and Larivière [2013], anticipated in Larivière et al. [2009]
and further expanded in Parolo et al. [2015], on the increasing average age of
articles published in recent years. They find an overall steady increase in the ex-
pected life of papers, as measured by the residual citations after 12 years from
publication. Sub-fields and journals differ considerably in this respect. The
Physical Review (1980-2000), specifically, is found to be strongly aged due to it
publishing main advances in physics which remain of interest for an indefinite
time. It goes from an over 30% of residual citations in 1980 to an over 60% of
residuals in 2000. Marathoners in the APS dataset are on average published
more recently. This was already evident from journals citation histories, as for
example the original Physical Review is a clear sprinter. This result might also
be partially determined by disciplinary differences, where for example theoreti-
cal physics articles are on average marathoners, and citing marathoners in turn
(i.e. other theoretical physics articles). Disciplinary differences could entail dif-
ferent referencing practices. This is in agreement with Glänzel and Schoepflin
[1995], who proposed that differences in the speed of ageing and reception are
more due to field than venue (journal) specific effects, and for example mathe-
matics and other theoretical-oriented disciplines have a slower reception speed.
Others nevertheless found a link between the role of a journal within a com-
munity, namely supporting the research front (fast ageing) or being an archival
or reference journal (slow ageing) [Griffith et al., 1979]. Sinatra et al. [2015]
also linked differences in the speed of ageing of articles, as mapped by length
of impact, to the more or less insular nature of the respective sub-field. In our
case journals could proxy fields to some extent (Physics Review A to E).

We nevertheless elucidate another possible motivation for the speed of age-
ing, which could be the typology of articles. Previous research has found article
typology to be correlated to the amount of received citations, but not to dif-
ferent ageing patterns [Baumgartner and Leydesdorff, 2014]. We instead show
how a standard research article is more likely to be a marathoner than a rapid,
brief or letter communication, which is indeed meant to have a rapid diffusion
and equally rapidly be superseded by further results. This effect applies from
the early stages of the history of APS articles, and grows in time.

5 Conclusions and future work

We proposed a methodology that uses spectral clustering to group citation his-
tories of publications into communities and then applies multinomial logistic
regression to provide the detected communities with semantics in terms of pub-
lication attributes. We applied the methodology to the full Physical Review
archive.

Not surprisingly, the typical publication in physics has a citation history with
a fast but moderately peaking curve and a gradual decay over time. Neverthe-
less, we found that two opposite archetypes of publication neatly deviate from
this pattern: marathoners, that are publications that after the initial moderate
success keep improving the share of received endorsements, or at least manifest
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a plateau or a slow decline, and sprinters, that are publications with fast and
impetuous initial success and equally rapid decrease. Notably, these behaviors
are typical in information diffusion processes, where an information item can be
totally unnoticed, or intensely considered for a short amount of time and then
suddenly neglected, or remain relevant for a longer amount of time, even indef-
initely. Marathoners, compared to sprinters, are determined by receiving less
early-citations (particularly from the same journal), but increasing late-citations
over time. They receive more citations from journals different than the publica-
tion venue, signaling a comparatively higher relevance beyond the community
of interest. Marathoners also tend to have older bibliographies, fewer authors,
and be longer and younger articles. The outlined methodology can be directly
applied to journals, scholars or other bibliometric units in order to verify where
different bibliometric units stand with respect to the sprinter and marathoner
metaphors.

We plan to apply a the methodology to more disciplines and domains, in
particular comparing the differences between humanities and sciences. Another
direction of future work entails considering the macrohistory of publications
cited by a given publication, and the relation to the macrohistory of the cluster
of the citing publication.
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Appendix

Multinomial logit marginal effects. Results for 3 clusters over the 12 years
dataset.

Dep. Variable: y
Method: dydx

y=1 dy/dx std err z P> |z| [95.0% Conf. Int.]

cits -0.0587 0.001 -51.873 0.000 -0.061 -0.057
citsNSL 0.0186 0.002 9.704 0.000 0.015 0.022
numAuthors -0.0007 9.31e-05 -7.236 0.000 -0.001 -0.000
numPages 0.0083 0.000 19.057 0.000 0.007 0.009
pubYear 0.0046 0.000 35.138 0.000 0.004 0.005
refs -0.0017 0.000 -6.848 0.000 -0.002 -0.001
refsAge3P -0.0011 0.001 -1.206 0.228 -0.003 0.001
refsAgeMean 0.0138 0.001 9.665 0.000 0.011 0.017
isArticle 0.0357 0.007 5.061 0.000 0.022 0.050

y=2 dy/dx std err z P> |z| [95.0% Conf. Int.]

cits 0.0544 0.001 48.467 0.000 0.052 0.057
citsNSL -0.0163 0.002 -8.653 0.000 -0.020 -0.013
numAuthors 0.0007 9.34e-05 7.048 0.000 0.000 0.001
numPages -0.0068 0.000 -15.310 0.000 -0.008 -0.006
pubYear -0.0040 0.000 -30.354 0.000 -0.004 -0.004
refs 0.0017 0.000 6.469 0.000 0.001 0.002
refsAge3P 0.0016 0.001 1.655 0.098 -0.000 0.003
refsAgeMean -0.0132 0.001 -8.982 0.000 -0.016 -0.010
isArticle -0.0341 0.007 -4.813 0.000 -0.048 -0.020

y=3 dy/dx std err z P> |z| [95.0% Conf. Int.]

cits 0.0043 0.000 25.467 0.000 0.004 0.005
citsNSL -0.0023 0.000 -11.858 0.000 -0.003 -0.002
numAuthors 1.577e-05 2.63e-05 0.600 0.549 -3.58e-05 6.73e-05
numPages -0.0015 0.000 -9.324 0.000 -0.002 -0.001
pubYear -0.0006 3.41e-05 -16.552 0.000 -0.001 -0.000
refs 6.805e-05 8.62e-05 0.789 0.430 -0.000 0.000
refsAge3P -0.0005 0.000 -1.297 0.195 -0.001 0.000
refsAgeMean -0.0007 0.001 -1.271 0.204 -0.002 0.000
isArticle -0.0016 0.001 -1.130 0.258 -0.004 0.001
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Multinomial logit regression. Results for 3 clusters over the 12 years dataset.
The reference cluster is the first one in Figure 3a.

Dep. Variable: y No. Observations: 47321
Model: MNLogit Df Residuals: 47301
Method: MLE Df Model: 18
Date: Tue, 21 Jun 2016 Pseudo R-squ.: 0.1458
Time: 21:51:26 Log-Likelihood: -28402.
converged: True LL-Null: -33249.

y=2 coef std err z P> |z| [95.0% Conf. Int.]

cits 0.3098 0.007 46.416 0.000 0.297 0.323
citsNSL -0.0964 0.010 -9.335 0.000 -0.117 -0.076
numAuthors 0.0036 0.001 7.223 0.000 0.003 0.005
numPages -0.0424 0.002 -17.842 0.000 -0.047 -0.038
pubYear -0.0236 0.001 -32.200 0.000 -0.025 -0.022
refs 0.0093 0.001 6.796 0.000 0.007 0.012
refsAge3P 0.0069 0.005 1.379 0.168 -0.003 0.017
refsAgeMean -0.0737 0.008 -9.542 0.000 -0.089 -0.059
isArticle -0.1902 0.038 -4.996 0.000 -0.265 -0.116
const 46.1689 1.451 31.820 0.000 43.325 49.013

y=3 coef std err z P> |z| [95.0% Conf. Int.]

cits 0.5671 0.012 45.576 0.000 0.543 0.592
citsNSL -0.2533 0.018 -14.107 0.000 -0.289 -0.218
numAuthors 0.0037 0.002 1.679 0.093 -0.001 0.008
numPages -0.1533 0.013 -11.706 0.000 -0.179 -0.128
pubYear -0.0626 0.003 -24.479 0.000 -0.068 -0.058
refs 0.0119 0.007 1.643 0.100 -0.002 0.026
refsAge3P -0.0335 0.030 -1.135 0.256 -0.091 0.024
refsAgeMean -0.1035 0.043 -2.415 0.016 -0.187 -0.019
isArticle -0.2612 0.122 -2.148 0.032 -0.499 -0.023
const 119.7593 4.990 23.999 0.000 109.979 129.540
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Multinomial logit marginal effects. Results for 3 clusters over the 48 years
dataset.

Dep. Variable: y
Method: dydx

y=1 dy/dx std err z P> |z| [95.0% Conf. Int.]

cits -0.0059 0.000 -14.067 0.000 -0.007 -0.005
citsNSL 0.0019 0.001 2.802 0.005 0.001 0.003
numAuthors 0.0191 0.003 5.634 0.000 0.012 0.026
numPages 0.0031 0.001 3.483 0.000 0.001 0.005
pubYear -0.0011 0.000 -2.277 0.023 -0.002 -0.000
refs 0.0015 0.000 3.616 0.000 0.001 0.002
refsAge3P -0.0003 0.003 -0.097 0.923 -0.006 0.006
refsAgeMean 0.0061 0.004 1.446 0.148 -0.002 0.014
isArticle -0.0370 0.019 -1.934 0.053 -0.075 0.000

y=2 dy/dx std err z P> |z| [95.0% Conf. Int.]

cits 0.0028 0.000 10.180 0.000 0.002 0.003
citsNSL -0.0020 0.000 -4.240 0.000 -0.003 -0.001
numAuthors -0.0285 0.003 -8.722 0.000 -0.035 -0.022
numPages 0.0035 0.000 10.400 0.000 0.003 0.004
pubYear 0.0044 0.000 11.521 0.000 0.004 0.005
refs -0.0019 0.000 -5.375 0.000 -0.003 -0.001
refsAge3P -0.0025 0.001 -1.660 0.097 -0.005 0.000
refsAgeMean 0.0073 0.002 3.620 0.000 0.003 0.011
isArticle 0.0764 0.019 4.119 0.000 0.040 0.113

y=3 dy/dx std err z P> |z| [95.0% Conf. Int.]

cits 0.0032 0.000 11.783 0.000 0.003 0.004
citsNSL 0.0001 0.000 0.257 0.798 -0.001 0.001
numAuthors 0.0093 0.001 7.031 0.000 0.007 0.012
numPages -0.0066 0.001 -7.736 0.000 -0.008 -0.005
pubYear -0.0033 0.000 -11.467 0.000 -0.004 -0.003
refs 0.0004 0.000 1.699 0.089 -6.25e-05 0.001
refsAge3P 0.0028 0.003 1.023 0.306 -0.003 0.008
refsAgeMean -0.0134 0.004 -3.436 0.001 -0.021 -0.006
isArticle -0.0394 0.007 -5.636 0.000 -0.053 -0.026
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Multinomial logit regression. Results for 3 clusters over the 48 years dataset.
The reference cluster is the first one in Figure 4a.

Dep. Variable: y No. Observations: 8483
Model: MNLogit Df Residuals: 8463
Method: MLE Df Model: 18
Date: Tue, 21 Jun 2016 Pseudo R-squ.: 0.1495
Time: 22:08:30 Log-Likelihood: -3645.7
converged: True LL-Null: -4286.6

y=2 coef std err z P> |z| [95.0% Conf. Int.]

cits 0.0476 0.004 10.651 0.000 0.039 0.056
citsNSL -0.0331 0.008 -4.208 0.000 -0.048 -0.018
numAuthors -0.4552 0.052 -8.747 0.000 -0.557 -0.353
numPages 0.0514 0.005 9.456 0.000 0.041 0.062
pubYear 0.0688 0.006 11.397 0.000 0.057 0.081
refs -0.0304 0.006 -5.344 0.000 -0.042 -0.019
refsAge3P -0.0380 0.024 -1.565 0.117 -0.086 0.010
refsAgeMean 0.1069 0.033 3.279 0.001 0.043 0.171
isArticle 1.2100 0.300 4.037 0.000 0.623 1.797
const -138.0097 11.755 -11.741 0.000 -161.049 -114.971

y=3 coef std err z P> |z| [95.0% Conf. Int.]

cits 0.0595 0.005 12.244 0.000 0.050 0.069
citsNSL 0.0002 0.008 0.026 0.979 -0.015 0.016
numAuthors 0.1424 0.024 5.971 0.000 0.096 0.189
numPages -0.1145 0.015 -7.655 0.000 -0.144 -0.085
pubYear -0.0558 0.005 -10.910 0.000 -0.066 -0.046
refs 0.0056 0.004 1.316 0.188 -0.003 0.014
refsAge3P 0.0476 0.049 0.980 0.327 -0.048 0.143
refsAgeMean -0.2336 0.069 -3.362 0.001 -0.370 -0.097
isArticle -0.6391 0.125 -5.124 0.000 -0.884 -0.395
const 106.8124 9.928 10.759 0.000 87.354 126.271
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