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Citations between scientific papers and related bibliometric indices, such as the h-index for authors
and the impact factor for journals, are being increasingly used – often in controversial ways – as
quantitative tools for research evaluation. Yet, a fundamental research question remains still open:
to which extent do quantitative metrics capture the significance of scientific works? We analyze the
network of citations among the 449, 935 papers published by the American Physical Society (APS)
journals between 1893 and 2009, and focus on the comparison of metrics built on the citation count
with network-based metrics. We contrast five article-level metrics with respect to the rankings that
they assign to a set of fundamental papers, called Milestone Letters, carefully selected by the APS
editors for “making long-lived contributions to physics, either by announcing significant discoveries,
or by initiating new areas of research”. A new metric, which combines PageRank centrality with
the explicit requirement that paper score is not biased by paper age, is the best-performing metric
overall in identifying the Milestone Letters. The lack of time bias in the new metric makes it also
possible to use it to compare papers of different age on the same scale. We find that network-
based metrics identify the Milestone Letters better than metrics based on the citation count, which
suggests that the structure of the citation network contains information that can be used to improve
the ranking of scientific publications. The methods and results presented here are relevant for all
evolving systems where network centrality metrics are applied, for example the World Wide Web
and online social networks. An interactive Web platform where it is possible to view the ranking of
the APS papers by rescaled PageRank is available at the address http://www.sciencenow.info.

I. INTRODUCTION

The notion of quantitative evaluation of scientific im-
pact builds on the basic idea that the scientific merits of
papers [1, 2], scholars [3, 4], journals [5–7], universities
[8, 9] and countries [10, 11] can be gauged by metrics
based on the received citations. The respective field, re-
ferred to as bibliometrics or scientometrics, is undergoing
a rapid growth [12] fueled by the increasing availability
of massive citation datasets collected by both academic
journals and online platforms, such as Google Scholar
and Web of Science. The possible benefits, drawbacks
and long-term effects of the use of bibliometric indices
are being highly debated by scholars from diverse fields
[13–17].

Although some effort has been devoted to contrast dif-
ferent metrics with respect to their ability to single out
seminal papers [18–21], differences among the adopted
benchmarking procedures and diverse conclusions of the
mentioned references leave a fundamental question still
open: which metric of scientific impact best agrees with
expert-based perception of significance? In agreement
with ref. [22], the significance of a scientific work is in-
tended here as its enduring importance within the scien-
tific community.

∗ manuel.mariani@unifr.ch

To address this question, we focus on a list of 87
physics papers of outstanding significance – called Mile-
stone Letters – recently made available by the American
Physical Society (APS) [http://journals.aps.org/
prl/50years/milestones, accessed 25-11-2015]. Ac-
cording to the APS editors’ description, the Milestone
Letters “have made long-lived contributions to physics,
either by announcing significant discoveries, or by initiat-
ing new areas of research”. These articles have been care-
fully selected by the editors of the APS, and the choices
are motivated in detail in the webpage; the fact that a
large fraction of them led to Nobel Prize for some of their
authors is an indication of the exceptional level of the se-
lected works.

In this work, we analyze the network of citations be-
tween the N = 449, 935 papers published in APS journals
from 1893 until 2009 to compare five article-level metrics
with respect to the ranking position they assign to the
Milestone Letters. A reliable expert-based evaluation of
the significance (intended as enduring importance, as in
ref. [22]) of a paper necessarily requires a time lag be-
tween the paper’s publication date and the expert’s judg-
ment. For example, there is a time interval of 14 years
between the most recent Milestone Letter (from 2001)
and the year at which the list of Milestone Letters was
released (2015). However, we show that a well-designed
quantitative metric offers us the opportunity to detect
potentially significant papers relatively short after their
publication – an aspect often neglected in the evaluation
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of bibliometric indicators. To show this, we study how
the ability of the different metrics to identify the Mile-
stone Letters changes with paper age.

A plethora of quantitative metrics exist and could be
studied in principle. Our focus here is narrowed to met-
rics that rely on a diffusion process on the underlying
network of citations between papers and their compari-
son with simple citation count. The five metrics consid-
ered in this work are thus: the citation count, PageRank
[23], CiteRank [24], rescaled citation count [25], and novel
rescaled PageRank. PageRank is a classical network cen-
trality metric which combines a random walk along net-
work links with a random teleportation process. The
metric has been applied to a broad range of real-world
problems (see refs. [26–28] for a review), including rank-
ing academic papers [19, 29], journals [7, 30] and authors
[31–33] (see ref. [34] for a review of the applications of
PageRank-related methods to bibliometric analysis).

To overcome the well-known PageRank’s bias toward
old nodes in citation data (detailedly studied in refs.
[29, 35]), the CiteRank algorithm introduces exponential
penalization of old nodes, resulting in a node score that
well captures the future citation count increase of the
papers and, for this reason, can be considered as a rea-
sonable proxy for network traffic, as shown by [24]. How-
ever, we show below that CiteRank score does not allow
one to fairly compare papers of different age. Rescaled
citation count and rescaled PageRank are derived from
citation count and PageRank score, respectively, by ex-
plicitly requiring that paper score is not biased by age –
the adopted rescaling procedure is conceptually close to
the methods recently developed in refs. [2, 25, 36–41] to
suppress biases by age and field in the evaluation of aca-
demic agents. We find that the rankings produced by the
rescaled scores are indeed consistent with the hypothesis
that the rankings are not biased by age.

We find that PageRank can compete and even outper-
form rescaled PageRank in identifying old milestone pa-
pers, but completely fails to identify recent milestone pa-
pers due to its temporal bias. CiteRank can compete and
even outperform rescaled PageRank in identifying recent
milestone papers, but markedly underperforms in identi-
fying old milestone papers due to its built-in exponential
penalization for older papers. Indicators based on simple
citation count are outperformed by rescaled PageRank
for papers of every age. This leads us to the conclu-
sion that rescaled PageRank is the best-performing met-
ric overall. With respect to previous works [18, 21, 29, 42]
that claimed the superiority of network-based metrics in
identifying important papers, our results clarify the es-
sential role of paper age in determining the metrics’ per-
formance: rescaled PageRank excels and PageRank per-
forms poorly in identifying MLs short after their publica-
tion, and the performance of the two methods becomes
comparable only 15 years after the MLs are published.
Qualitatively similar results are found for an alternative
list of APS outstanding papers which only includes works
that have led to Nobel prize for some of the authors (the

list is provided in the Table S1).
Our results indicate that network centrality and time-

balance are two essential ingredients – though neglected
by popular bibliometric indicators such as the h-index
for scholars [3] and impact factor for journals [43] – for
an effective detection of significant papers. This sets
a new benchmark for article-level metrics and quantita-
tively support the paradigm that considering the whole
network instead of simple citation count can bring sub-
stantial benefits to the ranking of academic agents. In
a broader context, our results show that a direct rescal-
ing of PageRank scores is an effective method to solve
the PageRank’s well-known bias against recent network
nodes. We emphasize that while scientific papers are
the focus of this work, the addressed research question
is general and can emerge when estimating the impor-
tance of any creative work – such as movies [22, 44] – for
which quantitative impact metrics and expert-based sig-
nificance assessments are simultaneously available. The
potential broader applications and possible limitations of
our results are discussed in the Discussion section.

II. METRICS

We consider five article-level metrics: citation count c,
PageRank score p, CiteRank score T , rescaled PageRank
score R(p), and rescaled citation count R(c).

A. Citation count

We denote by A the network’s adjacency matrix (Aij
is one if node j points to node i and zero otherwise).
Citation count (referred to as indegree in network science
literature [45]) is one of the simplest metrics to infer node
centrality in a network, being simply defined as ci =∑
j Aij for a node i. Citation count is the building block

of the majority of metrics for assessing the impact of
single papers, authors, journals (for a review of citation-
based impact indicators see ref. [46]).

B. PageRank

The PageRank score vector [23] can be defined as the
stationary state of a process which combines a random
walk along the network links and random teleportation.
In a directed monopartite network composed of N nodes,
the vector of PageRank scores {pi} can be found as the
stationary solution of the following set of recursive linear
equations

p
(n+1)
i = α

∑
j:kout

j >0

Aij
p
(n)
j

koutj

+ α
∑

j:kout
j =0

p
(n)
j

N
+

1− α
N

,

(1)
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where koutj :=
∑
lAlj is the outdegree of node j, α is

the teleportation parameter, and n is the iteration num-
ber. Eq. (1) represents the master equation of a diffusion
process on the network, which converges to a unique sta-
tionary state independently of the initial condition (see
ref. [47] for the mathematical details). The PageRank
score pi of node i can be interpreted as the average frac-
tion of time spent on node i by a random walker who
with probability α follows the network’s links and with
probability 1− α teleports to a random node. Through-
out this paper, we set α = 0.5 which is the usual choice
for citation data [29].

C. CiteRank

To correct the PageRank’s strong temporal bias in
citation networks, the CiteRank algorithm [24] intro-
duces ad-hoc penalization for older nodes. The CiteR-
ank score T is defined similarly as PageRank; differently
from PageRank, in CiteRank equations the teleportation
probability decays exponentially with paper age with a
certain timescale τ . According to refs. [24, 48], this
choice of the teleportation vector is intended to favor the
recent nodes and thus lead to a score that better repre-
sents papers’ relevance for the current lines of research.
Using the same notation as Eq. (1), the vector of CiteR-
ank scores {Ti} can be found as the stationary solution
of the following set of recursive linear equations

T
(n+1)
i = α

∑
j:kout

j >0

Aji
T

(n)
j

koutj

+ α
∑

j:kout
j =0

T
(n)
j

N

+ (1− α)
exp (−(t− ti)/τ)∑N
j=1 exp (−(t− tj)/τ)

,

(2)

where we denote by ti the publication date of paper i and
t the time at which the scores are computed. Through-
out this paper we set α = 0.5 and τ = 2.6 years, which
are the parameters chosen in ref. [24]. The performance
of the algorithm for other values of the parameter τ is
discussed in the caption of Fig. 10, in E. We show below
that exponential penalization of older nodes is not effec-
tive in removing PageRank’s bias, and propose instead a
rescaled PageRank score R(p) whose average value and
standard deviation do not depend on paper age.

D. Rescaled PageRank and rescaled citation count

To compute the rescaled PageRank score R(p) for a
given paper i, we evaluate the paper’s PageRank score pi
as well as the mean µi(p) and standard deviation σi(p) of
PageRank score for papers published in a similar time as
i. Time is not measured in days or years, but in number n
of published papers; after labeling the papers in order of
decreasing age, µi(p) and σi(p) are computed over papers
j ∈ [i − ∆p/2, i + ∆p/2]. The parameter ∆p represents

the number of papers in the averaging window of each
paper[49]. The rescaled score Ri(p) of paper i is then
computed as

Ri(p) =
pi − µi(p)
σi(p)

. (3)

Values of R(p) larger or smaller than zero indicate
whether the paper is out- or under-performing, respec-
tively, with respect to papers of similar age. Ri(p) repre-
sents the z-score [50] of paper i within its averaging win-
dow. For the sake of completeness, we have also tested a

simpler rescaled score in the form R
(ratio)
i (p) = pi/µi(p);

however, R(ratio)(p) fails to produce a time-balanced
ranking due to the fact that σ(p)/µ(p) strongly depends
on paper age (see C for details). In addition, we tested
a rescaled score R(year)(p) based on Eq. (3) where µi(p)
and σi(p) are computed over the papers published in the
same year as paper i. We found that while R(year)(p) is
able to suppress large part of PageRank’s temporal bias,
its ranking is much less in agreement with the hypothesis
of unbiased ranking than the ranking by R(p) (see C for
details). For this reason, we use an averaging window
based on number of publications and not on real time.
This choice is also supported by the findings of refs. [25]
and [51] which suggest that the role of time in citation
networks is better captured by the number of published
papers than by real time.

We define the rescaled citation count analogously as

Ri(c) =
ci − µi(c)
σi(c)

, (4)

where µi(c) and σi(c) represent the mean and the stan-
dard deviation of c computed over papers j ∈ [i −
∆c/2, i + ∆c/2]. Citation count rescaling was used in
refs. [25, 37] to identify papers that accrue more cita-
tions than expected for papers of similar age under the
hypothesis of pure preferential attachment.

The choice of the size of the temporal window deserves
some attention: if the size of the temporal window is too
large, one would fall again in a time-biased ranking that
is one of the issues that motivate the present paper. On
the other hand, if we choose a too small averaging win-
dow, the papers would be only compared with few other
papers and the resulting scores would be too volatile.
Throughout this paper, we set ∆c = ∆p = 1000; we
refer to D for further details on the dependence of rank-
ing properties on the averaging window size. We stress
that the rankings by R(c) and R(p) are only weakly de-
pendent on ∆c and ∆p (see Fig. 9), and the correlation
between the rankings by R(p) obtained with different val-
ues of PageRank’s teleportation parameter α is close to
one (Spearman’s rank correlation coefficient between the
rankings obtained with α = 0.5 and α = 0.85 is equal
to 0.98). These results indicate that the proposed rescal-
ing metrics are robust with respect to variations of their
parameters.
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FIG. 1. Time balance of the network-based metrics. Panels (A,C,E) show the histogram of the number of papers from each
paper age group in the top-1% of the ranking by PageRank score p, rescaled PageRank score R(p) and CiteRank score T ,
respectively (age group 1 and age group 40 contain the oldest and most recent N/40 papers, respectively). The horizontal black

line represents the unbiased value n(0)(0.01) = 0.01N/40; the gray-shaded area represents the interval [n(0)−σ0, n
(0) +σ0] with

σ0 given by Eq. (5). Panels (B,D,F) show the cumulative distributions of PageRank score p, rescaled PageRank score R(p) and
CiteRank score T , respectively, for different age groups.

TABLE I. The five considered metrics and their bias by age. The difference σ/σ0 − 1 quantifies how much the histogram of
the number of top-1% papers by the metric deviates from the histogram expected under the hypothesis of ranking not biased
by age (see the main text). The values of σ/σ0 − 1 are expressed as multiples of their expected value σdev = 0.11 for a random
ranking of the papers (computed as explained in the main text). Values of σ/σ0 − 1 smaller than 2σdev = 0.22 are reported in
bold characters.
Metric Properties σ/σ0 − 1
Citation count c Local metric 54.64σdev

PageRank score p Network-based metric 117.36σdev

CiteRank T Network-based metric, time-aware 15.91σdev

Rescaled PageRank R(p) Network-based metric, time-aware 1.45σdev

Rescaled citation count R(c) Local metric, time-aware 0.91σdev

III. RESULTS

We analyzed the network composed of L = 4, 672, 812
citations among N = 449, 935 papers published in APS
journals (1893−2009). The dataset was directly provided
by the APS following our request at the webpage http:
//journals.aps.org/datasets, and was also studied in
ref. [52], among others.

A. Time balance of the rankings

Before comparing the performances of the five metrics
in recognizing the Milestone Letters (MLs), we want to
determine whether the metrics are biased by age and,
if yes, then to which extent. In agreement with refs.
[2, 36], we assume that a fair ranking of scientific papers

should be time-balanced in the sense that old and recent
papers should be equally likely to appear at the top of
the ranking by the metric. Caveats and possible weak
points of this assumption are examined in the Discussion
section.

To assess the degree of time balance of the five metrics,
we perform a statistical test similar to those proposed in
refs. [36, 38]. We divide the papers into S = 40 differ-
ent groups according to their age and, for each metric,
we compute the number nα(z) of top-z N papers by the
metric for each age group α, and quantitatively compare
the resulting histogram {nα(z)} with the expected his-

togram {n(0)α (z)} under the hypothesis that the ranking
is temporally unbiased. We set z = 0.01; results for other
small values of z are qualitatively similar.

Fig. 1A shows that the observed values of n(0.01)
for PageRank are far from their expected values un-

http://journals.aps.org/datasets
http://journals.aps.org/datasets
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FIG. 2. Time balance of the citation-based metrics. Panels (A,B) show the histogram of the number of top-1% papers for
each paper age group in the ranking by citation count c and rescaled citation count R(c), respectively. Panels (C,D) show the
cumulative distributions for different age groups of citation count c and rescaled citation count R(c), respectively.

der the hypothesis of unbiased ranking. For instance,

n1(0.01)/n
(0)
1 (0.01) = 4.62 for the age group that con-

tains the oldest N/40 papers, as opposed to n40(0.01) = 0
for the age group composed of the most recent N/40 pa-
pers. To quantify the degree of time balance of a metric,
we compare the standard deviation σ of the observed his-
togram {nα(0.01)} with the expected standard deviation
σ0 under the hypothesis of unbiased ranking. For a per-

fectly unbiased ranking, the number n
(0)
α of nodes from

age group α in the top-z by the ranking obeys the mul-
tivariate hypergeometric distribution [38]. Therefore, we
expect on average n(0)(z) = z N/S top-z N papers for
each set, with the standard deviation

σ0(z) =

√√√√z N

S

(
1− 1

S

)
(1− z) N

N − 1
, (5)

The observed standard deviation σ(z) is computed as

σ(z) =

√√√√ 1

S

S∑
α=1

(nα − n(0)α )2. (6)

The ratio σ/σ0 between observed and expected standard
deviation quantifies the degree of time balance of the
ranking – we expect this ratio to be close to or lower
than (due to fluctuations) one for an unbiased ranking,
and significantly larger than one for a ranking biased by
age. To quantify to which extent the observed values of
σ/σ0 − 1 are consistent with the hypothesis of unbiased
ranking, we run a simulation where 0.01N papers are

randomly assigned to one among 40 groups, and com-
pute the standard deviation σdev of the observed devia-
tion σrand/σ0 − 1 according to Eq. (6). With 105 real-
izations, we obtain σdev = 0.11. We always express the
observed values of σ/σ0 − 1 as multiples of σdev in the
following.

We obtain σ/σ0 − 1 = 12.91 = 117.36σdev for PageR-
ank, which indicates that the ranking is heavily biased.
The heavy bias of PageRank score is also revealed by
a comparison of its distribution for nodes from different
age groups, which shows a clear advantage for old nodes
(Fig. 1B). Fig. 1C shows that the ranking by the R(p)
score is in good agreement with the hypothesis that the
ranking is unbiased; we find σ/σ0− 1 = 0.16 = 1.45σdev.
The time balance of rescaled PageRank score manifests
itself in the collapse of the distributions of the R(p) score
for different age groups on a unique curve, which means
that the R(p) score allows us to compare papers of any
age on the same scale (Fig. 1D). In a similar way, the
rescaling procedure suppresses the temporal bias of ci-
tation count [σ/σ0 − 1 = 0.10 = 0.91σdev for R(c) as
compared to σ/σ0 − 1 = 6.01 = 54.64σdev for c, see Fig.
2]. We observe a qualitatively similar suppression of time
bias for different choices of the number S of age groups
(not shown here).

With respect to the histogram obtained with R(p), the
histogram {nα(0.01)} obtained with the CiteRank algo-
rithm (with the parameters chosen in ref. [48]) presents
much larger deviation from the histogram expected under
the hypothesis of time-balanced ranking (see Fig. 1E).
As a result, the value of σ/σ0 obtained for CiteRank
(σ/σ0 − 1 = 1.75 = 15.91σdev with the parameters cho-
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sen in ref. [24]) is larger than the value obtained for R(p).
The distributions of CiteRank score T for different age
groups do not collapse on a single curve (see Fig. 1F),
which is directly due to the built-in exponential decay
of the teleportation term. The failure of CiteRank in
producing a time-balanced ranking is well exemplified by
the behavior of the score distribution for the most recent
age group, whose minimum score (i.e., the smallest score
value such that P (> T ) deviates from one) is much larger
than for the other distributions, due to a larger telepor-
tation term. These findings show that CiteRank score
does not allow us to fairly compare papers of different
age.

The values of σ/σ0− 1 for the five metrics are summa-
rized in Table I.

B. Identification of the Milestone Letters

In the previous section, we have shown that the rank-
ings by the rescaled metrics R(p) and R(c) are consistent
with the hypothesis that the ranking is not biased by pa-
per age. While different works have recently emphasized
the importance of removing the bias by age of citation-
performance metrics for a fair ranking of scientific publi-
cations [2, 36] and researchers [53], the possible positive
effects of time-balanced rankings with respect to biased
rankings remain largely unexplored.

Ref. [29] analyzed the APS dataset and found that
PageRank is able to recognize old papers that are univer-
sally important for physics. They also noted that PageR-
ank is based on a diffusion process that drifts towards old
papers (see ref. [35] for a general analysis of this aspect)
and, as a consequence, it inevitably favors old papers.
Since the rescaling procedure that we propose solves this
issue, it is thus plausible to conjecture that with respect
to the PageRank algorithm, rescaled PageRank allows us
to identify seminal papers earlier.

In this section, we use the APS dataset and the list
of Milestone Letters (MLs) chosen by editors of Physical
Review Letters (see Supplementary Table S1 for the list
of MLs. Supplementary material for this manuscript is
available at http://www.sciencedirect.com/science/
article/pii/S1751157716301729). to address the two
following research questions:

1. Is there a significant gap between the performance
of rescaled PageRank and PageRank in identifying
the MLs short after publication? If there is a sub-
stantial gap, does it close down after a certain num-
ber of years after publication?

2. Do network-based indicators outperform indicators
based on simple citation count in recognizing the
MLs?

To compare the ranking positions of the MLs by the
five different metrics, the ranking of Milestone Letter i
is computed t years after its publication. We calculate

the ratio of i’s ranking position ri(s, t) by metric s and
i’s best ranking position mins{ri(s, t)} among all con-
sidered metrics. To characterize the overall performance
of metric s in ranking the MLs, we average the rank-
ing ratio over i and obtain r(s, t) (see F for computation
details). The resulting quantity is referred to as the av-
erage ranking ratio of metric s for the Milestone Letters t
years after their publication. A good metric is expected
to have as low r(·, t) as possible – the minimum value
r(·, t) = 1 is only achieved by a metric that always out-
performs the others in ranking the milestone papers of
age t. Note that the average ranking ratio reduces to av-
erage ranking position if we do not normalize the ranking
position ri(s, t) by mins{ri(s, t)}. However, the average
ranking position of the target papers by a certain met-
ric is extremely sensitive to the ranking positions of the
least-cited target papers, as opposed to the robustness of
the average ranking ratio with respect to removal of the
least-cited papers from the set of target papers (see A
for details). This property motivates the use of ranking
ratio to compare the ranking positions of the MLs by the
different metrics.

The dependence of r(s, t) on paper age t measured in
years after publication is shown in Fig. 3A. Due to the
suppression of time bias, rescaled PageRank score R(p)
has a large advantage with respect to the original PageR-
ank score p for papers of small age. Since the PageRank
algorithm is biased towards old nodes, the performance
gap between R(p) and p gradually decreases with age
and vanishes 18 years after publication. By contrast, the
CiteRank algorithm exponentially penalizes older nodes
and, as a consequence, the performance gap between
R(p) and T is minimal for recent papers, and CiteR-
ank score T can even outperform R(p) during the first
six years after publication. When paper age becomes
sufficiently larger than CiteRank’s temporal timescale
(τ = 2.6 years here, as chosen in refs. [24, 48]), older
papers are strongly penalized by the CiteRank’s telepor-
tation term and, as a result, CiteRank is markedly out-
performed by rescaled PageRank. The same behavior is
observed also for other values of CiteRank time-decay
parameter τ (see E). The local metrics c and R(c) are
outperformed by R(p) in ranking the MLs of every age,
which indicates that network centrality brings a substan-
tial advantage in ranking highly significant papers with
respect to simple and rescaled citation count.

While the average ranking ratio r takes into account
all the MLs, it is also interesting to measure the age-
dependence of the identification rates of the metrics, de-
fined as the fraction fx(t) of MLs that were ranked among
the top xN papers by the metric when they were t years
old [54] (see Fig. 3B). Rescaled PageRank R(p) and Cit-
eRank score T markedly outperform the other metrics
in identifying the milestone papers in the first years af-
ter publication. The performance gap between R(p) and
the citation-based indicators c and R(c) remains signif-
icant during the whole observation lapse. Analogously
to what we observed for the average ranking ratio, the

http://www.sciencedirect.com/science/article/pii/S1751157716301729
http://www.sciencedirect.com/science/article/pii/S1751157716301729
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FIG. 3. Metrics’ performance in ranking the milestone letters as a function of paper age. (A) Dependence of the average
ranking ratio r on paper age. (B) Dependence of the identification rate f0.01 on paper age. (C) Dependence of the normalized

identification rate f̃0.01 on paper age.
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FIG. 4. Metrics’ performance in ranking the APS papers that led to Nobel prize for some of the authors, listed in the
Supplementary Table S1. The figure has been realized with the same procedure used for Fig. 3. (A) Dependence of the average
ranking ratio r on paper age. (B) Dependence of the identification rate f0.01 on paper age. (C) Dependence of the normalized

identification rate f̃0.01 on paper age. We observe a behavior in qualitative agreement with that observed in Fig. 3.

performance gap between R(p) and p gradually decreases
with paper age and vanishes 15 years after publication,
which is similar to the crossing point at 18 years after
publication observed for the average ranking ratio. Cit-
eRank has a small advantage with respect to rescaled
PageRank in the first years after publication, whereas
for older papers CiteRank’s identification rate drops to
the value achieved by simple citation count c.

It is worth to observe that the temporal bias of a cer-
tain metric affects the behavior of both r(t) and f0.01(t)
for that metric: as we observe in B, a metric biased
towards old (like PageRank) or recent papers naturally
performs better in identifying old or recent MLs, respec-
tively. One natural way to understand this effect is to
consider a normalized identification rate f̃0.01(t) (here-
after abbreviated as NIR), such that the contribution of
each identified ML i of age t (i.e., a ML ranked in the top

0.01N of the ranking) to f̃0.01(t) is smaller than one if the
metric favors papers that belong to the same age group as
paper i (see F for the mathematical definition). In other
words, when evaluating the performance of a given met-
ric, the normalized identification rate f̃0.01(t) takes into
account both the temporal balance and the identification
power of the metric. The behavior of f̃0.01(t) for the five

metrics is shown in Fig. 3C. After an initial increasing
trend for all the metrics, the normalized identification
rate of both p and c decline due to their temporal bias;
by contrast, the same quantity remains relatively stable
for both R(p) and R(c). According to f̃0.01(t), rescaled
PageRank outperforms CiteRank for papers of every age.
This is due to the fact that the ranking by CiteRank is
not unbiased and, as a consequence, CiteRank’s perfor-
mance is often penalized by the NIR for small age t due
to the algorithm’s bias towards recent nodes.

Our analysis assumes that a ML should be ranked as
high as possible by a good metric for scientific signifi-
cance. On the other hand, many outstanding contribu-
tions to physics are not included in the list of MLs. To
show that our results also hold for an alternative choice
of groundbreaking papers, we consider a list of 67 APS
papers that led to Nobel Prize for some of the authors
(see Supplementary Table S1 for the list of papers). The
results for this list of benchmark papers are shown in Fig.
4 and are qualitatively similar to those shown in Fig. 3,
which indicates that our findings are robust with respect
to modifications of the benchmark papers’ list.

While Fig. 3 concerns the metrics’ performance av-
eraged over the whole set of MLs, the Supplementary
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TABLE II: Top-15 papers in the APS data as ranked by PageRank
score p (asterisks mark the Milestone Letters).

Rank (p) Rank (R(p)) p(×10−5) R(p) Title Year Journal

1 1 43.32 29.96 Self-consistent equations including exchange and correlation
effects (W. Kohn, L. Sham)

1965 Phys. Rev.

2 36 40.77 24.57 Theory of superconductivity (J. Bardeen, L. Cooper, J.
Schrieffer)

1957 Phys. Rev.

3 8 35.88 28.58 Inhomogeneous electron gas (P. Hohenberg) 1964 Phys. Rev.
4 115 24.74 18.64 Stochastic problems in physics and astronomy (S.

Chandrasekhar)
1943 Rev. Mod. Phys.

5 137 23.57 17.78 The theory of complex spectra (J. Slater) 1929 Phys. Rev.
6 21 23.46 26.53 ∗A model of leptons (S. Weinberg) 1967 Phys. Rev. Lett.
7 130 22.80 18.05 Can quantum-mechanical description of physical reality be

considered complete? (A. Einstein, B. Podolsky, N. Rosen)
1935 Phys. Rev.

8 140 22.67 17.73 Crystal statistics. i. A two-dimensional model with an
order-disorder transition (L. Onsager)

1944 Phys. Rev.

9 15 22.64 27.44 Self-interaction correction to density-functional approxima-
tions for many-electron systems (J. Perdew)

1981 Phys. Rev. B

10 335 22.39 13.17 Absence of diffusion in certain random lattices (P. Anderson) 1958 Phys. Rev.
11 16 21.25 26.88 Scaling theory of localization: absence of quantum diffusion

in two dimensions (E. Abrahams)
1979 Phys. Rev. Lett.

12 110 20.67 18.83 Effects of configuration interaction on intensities and phase
shifts (U. Fano)

1961 Phys. Rev.

13 82 19.36 20.86 On the constitution of metallic sodium (E. Wigner, F. Seitz) 1933 Phys. Rev.
14 210 18.32 15.44 On the interaction of electrons in metals (E. Wigner) 1934 Phys. Rev.
15 315 18.25 13.53 Cohesion in monovalent metals (J. Slater) 1930 Phys. Rev.

Movie available at our webpage [http://www.ddp.fmph.
uniba.sk/~medo/physics/RPR/] shows the simultane-
ous dynamics of the ranking positions by p and R(p) of all
individual MLs for the first 15 years after publication[55].
The movie shows that rescaled score R(p) has a clear ad-
vantage with respect to PageRank score p in the first
years after publication for most of the MLs. As the MLs
become sufficiently old, their position in the plane gradu-
ally tends to converge to the diagonal where the ranking
position by p is equal to the ranking position by R(p),
which is in agreement with the crossing between PageR-
ank’s and rescaled PageRank’s performance curves ob-
served in Figs. 3A-3B.

In principle, one might consider a comparison of the
final ranking positions (i.e., the ranking positions com-
puted on the whole dataset) of the target papers by a
certain metric [18, 21] instead of the age-dependent eval-
uation of the metrics introduced above. But this kind of
comparison would miss our key point – the strong depen-
dence of metrics’ performance on paper age. In addition,
the strong dependence of metrics’ performance on paper
age shown in this section makes the outcome of such eval-
uation strongly dependent on the age distribution of the
target papers we aim to identify. This issue is discussed
in B and potentially concerns any performance evalua-
tion carried out on a fixed snapshot of the network. By
contrast, the outcomes presented in this paragraph (how
well do the different metrics perform as a function of pa-
per age) are little sensitive to the exact age distribution
of the target papers.

C. Top papers by PageRank and rescaled
PageRank

To get an intuitive understanding of the properties of
PageRank and its rescaled version, it is instructive to
look at the top-15 papers according to p and R(p) com-
puted on the whole dataset, reported in Table II and
Table III, respectively. Although only one ML appears
in the top 15 by p (ranked 6th, see Table II), among
the non-MLs there are papers of exceptional significance,
such as the letter that proposed the popular Einstein-
Podolsky-Rosen experiment (ranked 7th); the paper that
introduced a fundamental tool in many-body systems,
Slater’s determinant (ranked 5th); the paper that pre-
sented the famous exact solution of the two-dimensional
Ising model (ranked 8th). This confirms that PageRank
is highly effective in finding relatively old papers of out-
standing significance – referred to as “scientific gems” in
ref. [29] – which has led to the interpretation of PageR-
ank score as a “lifetime achievement award“ for a paper
[48]. Nevertheless, the most recent paper in Table II is
from 1981 – 28 years old with respect to the dataset’s
ending point in 2009.

In the top-15 by R(p), we find both old papers (the
oldest is from 1964, 45 years old in 2009) and recent pa-
pers (the most recent is from 2002, 7 years old in 2009).
Four out of 15 top-papers are MLs, which is an addi-
tional confirmation of the quality of the ranking by R(p).
We emphasize that while both PageRank and rescaled
PageRank feature prominent papers in their top-15, the
detailed performance analysis described in the previous

http://www.ddp.fmph.uniba.sk/~medo/physics/RPR/
http://www.ddp.fmph.uniba.sk/~medo/physics/RPR/
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TABLE III: Top-15 papers in the APS data as ranked by rescaled
PageRank score R(p) (asterisks mark the Milestone Letters).

Rank (p) Rank (R(p)) p(×10−5) R(p) Title Year Journal

1 1 43.32 29.96 Self-consistent equations including exchange and correlation
effects (W. Kohn, L. Sham)

1965 Phys. Rev.

63 2 11.35 29.63 ∗Bose-einstein condensation in a gas of sodium atoms (K.
Davis et al.)

1995 Phys. Rev. Lett.

16 3 17.74 29.34 Self-organized criticality: an explanation of the 1/f noise (P.
Bak, C. Tang, K. Wiesenfeld)

1987 Phys. Rev. Lett.

115 4 8.60 29.16 ∗Large mass hierarchy from a small extra dimension (L.
Randall)

1999 Phys. Rev. Lett.

29 5 14.99 29.01 Pattern formation outside of equilibrium (M. Cross) 1993 Rev. Mod. Phys.
112 6 8.66 28.97 Statistical mechanics of complex networks (R. Albert, A.-L.

Barabási)
2002 Rev. Mod. Phys.

181 7 7.11 28.95 Review of particle properties (K. Hagiwara et al) 2002 Phys. Rev. D
3 8 35.88 28.58 Inhomogeneous electron gas (P. Hohenberg) 1964 Phys. Rev.
99 9 9.35 28.58 Evidence of Bose-Einstein condensation in an atomic gas

with attractive interactions (C. Bradley et al.)
1995 Phys. Rev. Lett.

59 10 11.65 28.11 Efficient pseudopotentials for plane-wave calculations (N.
Troullier, J. Martins)

1991 Phys. Rev. B

53 11 12.11 27.88 ∗Teleporting an unknown quantum state via dual classical
and Einstein-Podolsky-Rosen channels (C. Bennett et al.)

1993 Phys. Rev. Lett.

281 12 5.99 27.85 ∗Negative refraction makes a perfect lens (J. Pendry) 2000 Phys. Rev. Lett.
216 13 6.59 27.59 Tev scale superstring and extra dimensions (G. Shiu, S.-H.

Tye)
1998 Phys. Rev. D

17 14 17.54 27.47 Diffusion-limited aggregation, a kinetic critical phenomenon
(T. Witten)

1981 Phys. Rev. Lett.

9 15 22.64 27.44 Self-interaction correction to density-functional approxima-
tions for many-electron systems (J. Perdew, A. Zunger)

1981 Phys. Rev. B

section is essential in order to fully understand the be-
havior of the two metrics.

IV. DISCUSSION

Motivated by the recent publication of the list of Mile-
stone Letters by the Physical Review Letters editors, we
performed an extensive cross-evaluation of different data-
driven metrics of scientific impact of research papers with
respect to their ability to identify papers of exceptional
significance. We studied the network of citations between
papers in the Physical Review corpus, which is recog-
nized to be a comprehensive proxy for scientific research
in physics [31, 36, 56]. The main assumption of our anal-
ysis is that although not all the most important papers in
the Physical Review corpus are covered by the Milestone
Letters list, a good paper-level metric is expected to rank
the Milestone Letters as high as possible due to their
outstanding significance. We find a clear performance
gap between network-based metrics (p,R(p), T ) and lo-
cal metrics based only on the number of received citations
(c,R(c)). This finding suggests that the use of citation
counts to rank scientific papers is sub-optimal; additional
research will be needed to assess whether network-based
article-level metrics can be used to construct author-level
metrics more effective than the currently used metrics –
such as the popular h-index [3] – that are only based on

citation counts and neglect network centrality.

We have shown that the proposed rescaled PageRank
R(p) suppresses PageRank’s well-known bias against re-
cent papers much better than the CiteRank algorithm
does. As a result, the proposed rescaled PageRank R(p)
provides a superior performance than PageRank and Cit-
eRank in ranking recent and old milestone papers, re-
spectively. There are still two possible ranking errors—
false positives and false negatives—that have not been
addressed in this manuscript. Young papers at the top
of the ranking by the rescaled PageRank may be false
positives because the citation spurt that they have expe-
rienced may stop which will eventually force them out of
the ranking’s top as well as out from the group of possi-
bly highly significant papers. By contrast, the so-called
”sleeping beauties“ that receive a large part of citations
long after they are published [57] are likely to be under-
evaluated by the rescaled PageRank. Assessing the ex-
tent to which false positives and false negatives affect
the ranking by rescaled PageRank, and by other rele-
vant metrics as well, goes beyond the scope of our paper
yet it constitutes a much needed step in future research.
The analysis of larger datasets which include papers from
diverse fields is another natural next step for future re-
search. As different academic disciplines adopt different
citation practices [58], the rescaling procedure proposed
in this paper may need to be extended to also remove
possible ranking biases by academic field.
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The assumptions behind our definition of time balance
and the computation of the rescaled scores deserve atten-
tion as well. In agreement with refs. [2, 36], the definition
of time balance of a ranking adopted in this article re-
quires that the likelihood that a paper is ranked at the
top by a time-balanced metric is independent of paper
age. Our definition of ranking time balance is implic-
itly based on the assumption that the number of highly
significant papers grows linearly with system size. While
this assumption seems reasonable for the Physical Review
corpus whose journals apply strict acceptance criteria for
submitted papers, it might need to be reconsidered when
analyzing larger datasets which include recently emerging
high-acceptance journals (both mega-journals [59] and
predatory journals [60]). In other words, the exponential
growth of the number of published papers [56, 61, 62]
does not necessarily correspond to an exponential growth
of the number of highly significant papers. The issue is
delicate (see ref. [63] for a recent insight) and will need
to be addressed in future research on bibliometric indi-
cators.

An important general question remains open: which
inherent properties of a network determine if PageRank-
like methods will outperform local metrics or not? We
conjecture that in citation networks, the observed success
of network-based metrics in identifying highly significant
papers might be related to the tendency of high-impact
papers to cite other high-impact papers [64]. Despite
recent efforts [35, 65–67], which network properties make
the PageRank algorithm succeed or fail remains a largely
unexplored problem which we will further investigate in
future research.

Our work constitutes a particular instance of a gen-
eral methodology – the comparison of the outcomes of
quantitative variables with a ground-truth established
by experts – which can be applied for metric evalua-
tion in several kinds of systems, such as movies [22, 44]
or the network of scientific authors [31]. In the domain
of research evaluation, this methodology is particularly
relevant since bibliometric indices are increasingly used
in practice – often uncritically and in questionable ways
[16, 68] – and scholars from diverse field have produced a
plethora of possible impact metrics [12], especially those
aimed at assessing researchers’ productivity and impact.
Motivated by the results obtained in this article, we en-
courage the creation of lists of groundbreaking papers
also for other scientific domains, which can lead to a
richer understanding and more accurate benchmarking
of quantitative metrics for scientific significance. Our
findings constitute a benchmark for article-level metrics
of scientific significance, and can be used as a baseline
to assess the performance of new indicators in future re-
search.

From a practical point of view, improving the effec-
tiveness of paper impact metrics has the potential to im-
prove not only the current bibliometric practices, but also
our ability to discover relevant papers in online platforms

that collect academic papers and use automated meth-
ods to sort them. In this respect, our findings suggest
that rescaled PageRank can be used as an operational
tool to identify the most significant papers on a given
topic. Suppose that a researcher enters a new research
field and wants to study the most important works in
that field. If we provide him/her with the top papers
as ranked by PageRank, the researcher will only know
the oldest papers and will not be informed about re-
cent lines of research. On the other hand, by provid-
ing him/her with the top papers as ranked by rescaled
PageRank, he/she will know both old significant pa-
pers and recent works that have attracted considerable
attention, leading to a more complete overview of the
field. To allow researchers to experience the benefits of
a time-balanced ranking method, we developed an inter-
active Web platform which is available at the address
http://www.sciencenow.info. In this platform, users
can browse the rankings of the APS papers by R(p) year
by year, investigate the historical evolution of each pa-
per’s ranking position by R(p), and check the ranking
positions and the scores of each researcher’s publications.

V. CONCLUSIONS

We presented a detailed analysis of the performance of
different quantitative metrics with respect to their ability
to identify the Milestone Letters selected by the Physi-
cal Review Letters editors. Our findings indicate that:
(1) a direct rescaling of citation count and PageRank
score is an effective way to suppress the temporal bias
of these two metrics; (2) rescaled PageRank R(p) is the
best-performing metric overall, as it outperforms PageR-
ank and CiteRank in identifying recent and old milestone
papers, respectively, and it outperform citation-based in-
dicators for papers of every age. The presented results
indicate that the combination of network centrality and
time holds promise for improving some of the tools cur-
rently used to rank scientific publications, which could
bring valuable benefits for quantitative research assess-
ment and design of Web academic platforms.
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FIG. 5. Values of the average ranking position rraw (panel A) and of the average ranking ratio r (panel B) of the MLs for the
five metrics computed on the whole dataset (1893-2009); the error bars represent the standard error of the mean.

Appendix A: Average ranking position vs. average ranking ratio

We show here that the average ranking position of the MLs is extremely sensitive to the ranking position of the
least-cited MLs, whereas the average ranking ratio is stable with respect to removal of the least-cited MLs. For
simplicity, in this Appendix we consider the rankings computed on the whole dataset. In formulas, the average
ranking position rraw(s) of the MLs by metric s is defined as

rraw(s) =
1

M

∑
i∈M

ri(s), (A1)

where ri(s) denotes the ranking position of paper i by metric s normalized by the total number of papers: ri = 1/N
and ri = 1 correspond to the best and the worst paper in the ranking, respectively.

In section III B, we mention that little-cited papers can bias the average ranking position of the target papers by a
certain metric. To illustrate this point, consider first the following ideal example. Consider two target papers A and
B. Paper A is ranked 10th by metric M1 and 1, 000th by metric M2, whereas paper B is ranked 20, 000 by metric M1

and 15, 000 by metric M2. The average ranking position for the set of papers {A,B} is equal to 10, 005 and to 8, 000
for metric M1 and M2, respectively. This means that according to average ranking position, metric M2 outperforms
metric M1, despite having not been able to place any of the two papers in the top-100.

A qualitatively similar situation occurs also in the APS dataset, as the following example shows. The milestone
letter ”Element No. 102“ [Phys. Rev. Lett. 1.1 (1958): 18] is cited only five times within the APS data. Its ranking
position by R(p) (r(R(p)) = 0.22) is thus much larger than the MLs’ average ranking position rraw(R(p)) = 0.016
by R(p). Only few MLs are little cited – for instance, only four out of 87 MLs are not among the top-10% papers
by citation count. To which extent do these little-cited papers affect rraw for the different metrics? By denoting
with r′raw(R(p)) the average computed on the subset of 83 MLs which does not include the four least-cited MLs, we
obtain r′raw(R(p)) = 0.009, which is smaller than rraw(R(p)) = 0.016 by a factor around 1.8. The effect is even larger
for citation count: we have r′raw(c) = 0.009 against the original value rraw(c) = 0.020 – the ratio between the two
averages is larger than two.

By using the average ranking ratio, we only compare the ranking within the chosen set of metrics for each individual
paper and, as a consequence, the average is stable with respect to removal of the least-cited MLs. This can be illustrated
by again excluding the four least-cited MLs from the computation of r(R(p)), and by comparing the corresponding
values r′(R(p)) of the average ranking ratio with the values computed over all the MLs. Among the five metrics, the
largest variation is observed for PageRank, for which r′(p)/r(p) = 1.03 – i.e., the removal of the least-cited MLs has
only a small effect on the average ranking ratios for the five metrics.

Appendix B: Assessing the metrics’ performance on the whole dataset

Fig. 5A shows the values of the average ranking position rraw(s) for the five metrics computed on the whole dataset:
according to rraw(s), PageRank and rescaled PageRank outperform the other metrics.

While the average ranking position of the MLs is a simple quantity to evaluate the metrics, some MLs are relatively
little cited and, as a result, their low ranking position can strongly bias the average ranking position. We refer to A for
a detailed discussion of this issue. To solve this problem, we defined the ranking ratio in the main text. Fig. 5B shows
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FIG. 7. Number of papers whose averaging window contains less than five papers that received at least cmin citations as a
function of ∆. For ∆ ≥ 1000, each paper is compared with at least five papers cited at least five times.

the measured values of the average ranking ratio r based on the rankings computed on the whole dataset. This simple
measure would suggest that R(p) and, to a lesser extent, p and c outperform R(c) and CiteRank. Given the small gap
between p and R(p), one might be tempted to conclude that the rescaling procedure does not bring substantial benefits
in the identification of significant papers. However, the rank analysis presented in Fig. 5 includes the contribution of
both old and recent MLs, whereas a close inspection reveals that the metrics perform in a drastically different way
depending on the age of the target papers, as shown in Figure 3 and discussed in Section III B.

This point can be also illustrated by using the rankings computed on the whole dataset. To show this, we divide
the 87 MLs into three equally-sized groups of MLs according to their age. By considering only the oldest M/3 = 29
MLs as target papers, we obtain r(p) = 1.1 whereas r(R(p)) = 5.5. By contrast, by considering only the M/3 most
recent MLs as target papers, we obtain r(p) = 7.3 whereas r(R(p)) = 1.7. While this result shows a clear advantage of
PageRank and rescaled PageRank for the oldest and for the most recent MLs, respectively, there exists a fundamental
difference between the performance gaps observed for the oldest and the most recent MLs. The bias of PageRank
towards old nodes (Fig. 1A) makes it indeed easier for the metric to find old significant papers. On the other hand,
rescaled PageRank does not benefit from any bias in ranking the most recent MLs as the ranking by the metric is
not biased by paper age (Fig. 1C). It is thus crucial to realize that when we compute the rankings on the whole
dataset, the value of the average ranking ratio by the metrics depends on the age distribution of the important papers
that we aim to identify. Were we using the rankings computed on the whole dataset for evaluation and were we only
considering the oldest (most recent) 29 MLs as target papers, we would have concluded that PageRank (rescaled
PageRank) is by far the best-performing metric. These observations demonstrate that an evaluation of the metrics
based on the whole dataset is strongly biased by the age distribution of the target items and, for this reason, unreliable
as a tool to assess metrics’ performance.
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Appendix C: Alternative rescaling equations

Eq. (3) forces the rescaled score Ri(p) of a paper i to have mean value equal to zero and standard deviation equal
to one, independently of its age (i.e., independently of i). Fig. 2C shows that this rescaling is sufficient to achieve a

time-balanced ranking of the papers. We consider now a simple rescaling in the form R
(ratio)
i (p) := pi/µi(p). While

the mean value of this score is equal to one, one can show that its standard deviation is given by

σ
[
R

(ratio)
i (p)

]
=

√
Ei
[
(R

(ratio)
i (p))2

]
−Ei

[
R

(ratio)
i (p)

]2
=

√
Ei[p2i ]

µi(p)2
− 1 =

σi(p)

µi(p)
, (C1)

where Ei[·] denotes the expectation value within the averaging window of paper i. Fig. B.6 shows that σ(p)/µ(p)
strongly depends on node age in the APS dataset. As a result, the ranking by R(ratio)(p) is strong biased towards old
nodes (σ/σ0 − 1 = 79.81σdev).

We also considered a variant of our method where the rescaled scores are still computed with Eq. (3), but µi(p)
and σi(p) are computed over the papers published in the same year as paper i. The resulting rescaled score R(year)(p)
produces a ranking that is much less in agreement with the hypothesis of unbiased ranking (σ/σ0 − 1 = 15.55σdev)
than the ranking by R(p). For this reason, the definition of papers’ averaging window adopted in the main text is
based on number of publications and not on real time. However, R(year)(p) is still preferable to the original scores
when the aim is to compare papers of different age. Also note that R(year)(p) might be preferable if one is interested
in a ranking of the papers where each publication year is represented by the same number of papers, apart from
statistical fluctuations.
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Appendix D: Dependence of the properties of the rankings by R(c) and R(p) on the temporal window size ∆

As described in the main text, the rescaled scores Ri(c) and Ri(p) of a certain paper i are obtained by comparing
its score with the scores of the nodes that belong to its “averaging windows“ j ∈ [i − ∆c/2, i + ∆c/2] and j ∈
[i − ∆p/2, i + ∆p/2], respectively. To motivate the choice ∆p = ∆c = 1000 adopted in the main text, we start by
observing that the size of the averaging window should be neither too large nor too small. A large window would
include papers of significantly different age, which would turn out to be ineffective in removing the temporal biases
of the metrics – note that the ranking by R(p) is perfectly correlated with the ranking by p for ∆p = N . On the
other hand, we want ∆c and ∆p to be sufficiently large to avoid that some papers are only compared with little-cited
papers, which is likely to happen for a small window due to the skewed shape of the citation count distribution [52].

To understand the possible drawbacks of a too small averaging window, we compute the number N(cmin) of papers
whose averaging windows contain less than five papers that received at least cmin citations. The results are shown in
Fig. 7. For ∆ ≤ 800, the averaging windows of a nonzero number of papers have less than five papers with at least
five received citations. We restrict our choice to the range ∆ ≥ 1000, for which no paper’s average window has less
than five papers cited at least five times.

To evaluate the ability of the rescaling procedure to suppress the bias of the metrics, we estimate the deviation
σ/σ0 − 1 of the standard deviation ratio σ/σ0 from the expected value (one) for an unbiased ranking (see the main
text for details). Fig. 8 reports the behavior of the deviation σ/σ0 − 1 as a function of ∆p and ∆c for different
selectivity values z. The upward trends of Fig. 8 suggest that in order to reduce the ratio σ/σ0, it is convenient to
choose ∆p and ∆c as small as possible. Hence, the choice ∆c = ∆p = 1000 allows us to obtain an histogram close to
the expected unbiased histogram – σ/σ0 values are close to one for all the values of z represented in the figure – and,
at the same time, to avoid that some nodes are only compared with little cited nodes, as discussed above for 7.

An important observation is that the correlations between the rankings obtained with different values of ∆ and the
ranking obtained with ∆ = 1000 are close to one (Fig. 9), which means that the rescaling procedure is robust against
variation of the averaging window sizes ∆c and ∆p.

Appendix E: Dependence of CiteRank performance on its parameter τ

Fig. 10 shows the dependence of the average ranking ratio r on paper age, for five different values of CiteRank
parameter τ . The figure shows that the behavior of CiteRank’s performance strongly depends on the choice of its
parameter. When the parameter is small (panel A, τ = 1 year), CiteRank performance is optimal (lowest average
ranking ratio) for very recent papers, and gradually worsens with paper age. As τ increases (moving from panel A to
E), the minimum point of CiteRank’s average ranking ratio gradually shifts toward older nodes. When τ is sufficiently
large (panel E, τ = 16 years), CiteRank behavior is qualitatively similar to that of PageRank, and its performance
gradually improves with paper age – this is indeed consistent with the fact that T → p in the limit τ →∞.

Appendix F: Dependence of ranking ratio and identification rate on paper age

To assess the ranking of each Milestone Letter t years after its publication, we compute the rankings each ∆t = 183
days (results for different choices of ∆t are qualitatively similar). At each computation time t(c), only the N(t(c))
papers (with their links) published before time t(c) are considered for the scores’ and rankings’ computation, and each
ML contributes to the ranking ratio r(s, t) corresponding to its age t at time t(c). This procedure allows us to save
computational time with respect to computing the rankings of each ML exactly t years after its publication, because
it requires fewer ranking computations.

In formulas, the average ranking ratio r(s, t = k∆t) for t-years old papers is defined as

r(s, t = k∆t) =
1

M(t)

∑
t(c)

∑
i∈M

δ
(
b(t(c) − ti)/∆tc, k

)
× r(s, i; t(c))

mins′{r(s′, i; t(c))}
, (F1)

where we used k = 0.5, 1, 1.5, 2, . . . for Fig. 3B; in the equation above, r(s, i; t(c)) denotes the ranking position of ML
i at time t(c) according to metric s, M(t) denotes the number of MLs that are at least t years old at the end of the
dataset, bxc denotes the largest integer smaller than or equal to x, δ(x, y) denotes the Kronecker delta function of x
and y. Hence, at each computation time t(c), each ML i published before time t(c) gives a contribution r̂(s, i; t(c)) to
the average ranking ratio r(s, t = k∆t) for papers of age t(c) − ti. Similarly, the identification rate fx(t) is computed
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FIG. 10. Dependence of the average ranking ratio r on paper age, for five different values of CiteRank parameter τ .

as

fx(s, k∆t) =
1

M(t)

∑
t(c)

∑
i∈M

δ
(
b(t(c) − ti)/∆tc, k

)
× χ(r(s, i; t(c)) ≤ x), (F2)

where χ(r(s, i; t(c)) ≤ x) is equal to one if paper i is among the top xN(t(c)) papers in the ranking by metric s at
time t(c), equal to zero otherwise.

To define the normalized identification rate (NIR) of a metric, at each computation time t(c) we divide the N(t(c))
papers into 40 groups according to their age, analogously to what we did in section III A to evaluate the temporal
balance of the metrics. The NIR of metric s is then defined as

f̃x(s, k∆t) =
1

M(t)

∑
t(c)

∑
i∈M

δ
(
b(t(c) − ti)/∆tc, k

)
× χ(r(s, i; t(c)) ≤ x) y(n(s, i; t(c))), (F3)

where y(n(s, i; t(c))) is a decreasing function of the fraction n(s, i; t(c)) of nodes that belong to the same age group
of node i and are ranked among the top xN(t(c)) by metric s. Denoting by n0(i; t(c)) = 1/40 the expected value of
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n(·, i; t(c)) for an unbiased ranking, we set y(n(s, i; t(c))) = (n(s, i; t(c))/n0(i; t(c)))−1 if n(s, i; t(c)) > n0(i; t(c)) (i.e.,
if the metric tends to favor papers that belong to the same age group as paper i), whereas y(n(s, i; t(c))) = 1 if
n(s, i; t(c)) ≤ n0(i; t(c)). According to Eq. (F3), if the identified ML belongs to an age group which is over-represented
in top xN(t(c)) by the factor of four, it only counts as 1/4 in the normalized identification rate.
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