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Abstract 

Early in researchers’ careers, it is difficult to assess how good their work is or how important 

or influential the scholars will eventually be. Hence, funding agencies, academic departments, 

and others often use the Journal Impact Factor (JIF) of where the authors have published to 

assess their work and provide resources and rewards for future work. The use of JIFs in this 

way has been heavily criticized, however. Using a large data set with many thousands of 

publication profiles of individual researchers, this study tests the ability of the JIF (in its 

normalized variant) to identify, at the beginning of their careers, those candidates who will be 

successful in the long run. Instead of bare JIFs and citation counts, the metrics used here are 

standardized according to Web of Science subject categories and publication years. The 

results of the study indicate that the JIF (in its normalized variant) is able to discriminate 

between researchers who published papers later on with a citation impact above or below 

average in a field and publication year – not only in the short term, but also in the long term. 

However, the low to medium effect sizes of the results also indicate that the JIF (in its 

normalized variant) should not be used as the sole criterion for identifying later success: other 

criteria, such as the novelty and significance of the specific research, academic distinctions, 

and the reputation of previous institutions, should also be considered. 
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1 Introduction 

Processes for selecting researchers are prevalent in science. Promising candidates are 

selected for fellowships, post-doctoral positions, professorships, etc. As a rule, the peer 

review process is used to separate the wheat from the chaff (Bornmann, 2011). For example, 

the European Molecular Biology Organization’s (EMBO) Long-Term Fellowships support 

postdoctoral research visits to laboratories worldwide (see http://www.embo.org/funding-

awards/fellowships/long-term-fellowships). All applications are evaluated by the EMBO 

Fellowship Committee, which bases its funding decision on (1) previous scientific 

achievements, (2) novelty and significance of proposed research, and (3) appropriateness of 

the host laboratory for the proposed research (see http://www.embo.org/funding-

awards/fellowships/long-term-fellowships#selection) (Bornmann, Wallon, & Ledin, 2008). 

As is common in many other selection processes, bibliometrics is a decisive factor in the 

EMBO selection process: applicants for a fellowship “must have at least one first (or joint 

first) author research paper accepted for publication, in press or published in an international 

peer-reviewed journal at the time the EMBO Long-Term Fellowships application is 

complete” (see http://www.embo.org/documents/LTF/LTF_Guidelines_for_Applicants.pdf). 

In order to assess the importance, quality or impact of publications, many reviewers 

and administrative staff of funding organizations use the Journal Impact Factor (JIF, Clarivate 

Analytics, formerly the Intellectual Property & Science business of Thomson Reuters) of the 

journals in which the applicants have published their papers (Wouters et al., 2015). The JIF is 

available in the Journal Citation Reports (JCR) and measures the average citations in one year 

(e.g., 2014) of the journal’s papers that were published in the two preceding years (e.g., 2012 

and 2013). Since the JIF is easily accessible for many researchers (and beyond), and since 

evaluated units (e.g., scientists) have, as a rule, published more than one paper in a journal, 

the use of the JIF for impact measurement is attractive. Thus, JIFs often serve as a proxy for 
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paper-level citation statistics for evaluating professionals. The results of van Dijk, Manor, and 

Carey (2014) show that the JIF is an important factor in becoming a principle investigator in 

biomedicine. From the point of view of Elsevier (the provider of the Scopus database), the JIF 

is such an important journal metric in research evaluation that they introduced the CiteScore 

which resembles the JIF (https://journalmetrics.scopus.com/, 

https://www.cwts.nl/blog?article=n-q2y254). 

In recent years, the practice of basing funding decisions (mainly) on the JIF has been 

heavily criticized – also by the inventor of the JIF (Garfield, 2006). The most important 

reasons given are that (1) the JIF measures citation impact for a very short time period only; 

and (2) since the JIF is an average value that is based on skewed citation distributions, it 

cannot represent the citation impact of most of the journal’s papers (Seglen, 1992). Recently, 

the San Francisco Declaration on Research Assessment (see http://www.ascb.org/dora) 

appeared as a statement against the use of the JIF for the evaluation of individual papers and 

their authors (Garwood, 2013). By November 28, 2016, 12,583 individuals and 916 

institutions had signed the declaration. However, according to Hutchins, Yuan, Anderson, and 

Santangelo (2016) “a groundswell of support for the San Francisco Declaration on Research 

Assessment … has not yet been sufficient to break this cycle. Continued use of the JIF as an 

evaluation metric will fail to credit researchers for publishing highly influential work.” Reich 

(2013) reports that publishing in high-impact journals leads to bonuses or salary increases for 

researchers in some developing countries. 

Based on a large data set with many thousands of individual researchers’ publication 

profiles, this study investigates whether the practice of using the JIF in research evaluation 

processes makes sense or whether the JIF should be eliminated from these processes. To 

answer these questions, the researchers’ publication profiles are separated into a starting block 

of publication activity at the beginning of their careers (the first five years) and a subsequent 

block of about ten years as a senior researcher. The study tests whether the ability of 
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researchers to publish in high-impact journals (during the first five years) is related to the 

citation impact of the papers published after the initial period. In other words, do researchers 

who started their career by publishing in high-impact journals perform outstanding research 

later on as measured by field- and time-normalized citation scores of individual publications? 

This study follows initiatives like that of Waltman and Traag (2017) who try to link 

the JIF discussion with sound theoretical and empirical analyses. Their computer simulations 

point out that the JIF “is a more accurate indicator of the value of an article than the number 

of citations the article has received”. 

2 Literature overview 

Since the current study is intended to investigate the relationship between different 

metrics for individual researchers, the literature overview refers to studies that examine the 

relationship of several metrics at the level of individual researchers. Only a small portion of 

these studies compare the metrics at different points in time (e.g., at the beginning and end of 

the academic career). Several studies investigating individual researchers’ careers deal with 

the relationship between productivity (proxy of quantity) and citation impact (proxy of 

quality). Most of these studies demonstrate that there is a strong correlation between quantity 

and quality (see an early overview in Hemlin, 1996). Researchers who publish frequently 

seem to write the best papers, and vice versa: “highly cited researchers are also highly 

productive” (Parker, Allesina, & Lortie, 2013, p. 469). Abramo, D'Angelo, and Costa (2010) 

were able to show in a large-scale study including 26,000 researchers working in the Italian 

university system, that “scientists who are more productive in terms of quantity also achieve 

higher levels of quality in their research products” (p. 139). Also, van den Besselaar and 

Sandström (2015) report a positive correlation between number of publications and number of 

highly cited papers for researchers in the Swedish science system. The positive correlation 

exists not only on the size-dependent level (number of publications and citations), but also on 
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a mix of size-dependent and size-independent levels: number of publications and citations per 

publication (Diem & Wolter, 2013). 

According to the results of Larivière and Costas (2016), the positive “quantity-quality” 

correlation can be observed especially for biomedical and health sciences, and for social 

sciences and humanities. Costas, Bordons, van Leeuwen, and van Raan (2009) concretise the 

positive “quantity-quality” correlation using the publication profiles of 1,064 researchers 

working as scientific staff at the Consejo Superior de Investigaciones Científicas (CSIC): they 

found that “researchers in low field-citation-density regions and those whose impact is below 

world class tend to benefit the most from an increase in number of publications” (p. 750). The 

positive “quantity-quality” correlation reported in several studies might confirm the 

cumulative advantage theory of Merton (1968) and the reinforcement theory of Cole and Cole 

(1973). Both theories claim that current successful researchers (in terms of publications, 

citations, funds, etc.) are likely to be more successful in the future (in terms of publications, 

citations, funds, etc.). 

Several other empirical studies on researchers’ publication profiles have investigated 

the skewed distribution of publications across the profiles (Abramo, D’Angelo, & 

Soldatenkova, 2017; Piro, Rørstad, & Aksnes, 2016; Ruiz-Castillo & Costas, 2014). Although 

it has been observed that the number of papers per researcher has increased, particularly in 

recent decades (Fanelli & Larivière, 2016), the productivity patterns of researchers are very 

different. Ioannidis, Boyack, and Klavans (2014) found 15,153,100 publishing researchers in 

the entire Scopus database. Only less than 1% have published a paper in every year of the 

period under review (between 1996 and 2011). This core set of researchers accounts for 42% 

of all papers, and for 87% of papers with more than 1,000 citations. Similar patterns of 

differences between researchers are also reported in small-scale studies: there are many 

education science professors with no publications, and only a handful of professors who 

frequently publish (Diem & Wolter, 2013). Possible reasons for different publication patterns 
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are provided by Amara, Landry, and Halilem (2015): “scholars who publish frequently and 

are frequently cited differ from those in the low performing profile in many ways: they are 

full professors, they dedicate more time to their research activities, they receive all their 

research funding from research councils, and, finally, they are located in top tier universities” 

(p. 489). The latter result is confirmed by Yang, Rousseau, Huang, and Yan (2015): most top 

scientists work at top organizations. 

In the final paragraphs of this literature overview, some studies that predict success for 

individual researchers using bibliometric data are presented. The acceptance of the recent 

study by Sinatra, Wang, Deville, Song, and Barabási (2016) on publication profiles of 

researchers from multiple disciplines in Science demonstrates the great general relevance and 

topicality of this topic. They studied the publication records of 2,887 physicists over a period 

of at least 20 years. A second data set consists of 24,630 Google Scholar career profiles from 

multiple disciplines. Sinatra et al. (2016) found that the growth of productivity is more 

pronounced for high-impact researchers and is modest for low-impact researchers. Similar 

patterns were observed for the growth of citation impact in both groups. In a follow-up study 

to the introduction of the h index by Hirsch (2005), Hirsch (2007) tested whether the h index 

has predictive power and can be used to select subsequently successful researchers. This study 

is also based on physicists’ publication profiles as divided into two parts: a beginning period 

and a follow-up period of 12 years. His results indicate that “the h index and the total number 

of citations are better than the number of papers and the mean citations per paper to predict 

future achievement, with achievement defined by either the indicator itself or the total citation 

count Nc” (p. 19196). 

Laurance, Useche, Laurance, and Bradshaw (2013) identified nearly 200 researchers 

working in the biological and environmental sciences. They were interested in the question of 

whether the academic success of these researchers – measured in terms of the number of peer-

reviewed papers following their PhD – can be predicted by factors in effect around the time 
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they completed their PhD. Their findings suggest the following conclusions: long-term 

publication success is closely related to early publication success. Furthermore, the long-term 

scientific impact of the publications can be enhanced by publishing in high-impact journals 

and by frequent collaboration with other researchers. The authors conclude that their findings 

“highlight a crucial role for early training and mentorship for aspiring academics … the best 

way to promote the long-term success of one’s graduate students is to assist them in 

publishing early and establishing this as a key performance indicator for both students and 

their graduate supervisors” (p. 821). 

This study continues the line of research which shows that long-term publication 

success is related to early publication success by focusing on the use of journal metrics for 

assessing early careers. Early in researchers’ careers, it is difficult to assess how good their 

work is or how important or influential the scholars will eventually be. Hence, funding 

agencies, academic departments, and others often use journal metrics of where the authors 

have published to assess their work and provide resources and rewards for future work. The 

use of JIFs in this way has been heavily criticized, however. JIFs (or journal metrics) alone 

can easily overlook highly influential and innovative work. In this paper, we address these 

concerns by examining how early standardized JIF scores are related to the individual citation 

impact of scholars years later. In contrast to many other studies published to date, the current 

study is based solely on field- and time-normalized impact scores and a large sample of 

researcher profiles. 

3 Methods 

3.1 Data set used 

The bibliometric data used in this study are from an in-house database developed and 

maintained by the Max Planck Digital Library (MPDL, Munich) and derived from the Science 

Citation Index Expanded (SCI-E), Social Sciences Citation Index (SSCI), and Arts and 
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Humanities Citation Index (AHCI) prepared by Clarivate Analytics. The bibliometric data 

were matched with the ResearcherID (RID, www.researcherid.com) of 272,921 researchers; 

the RIDs are available in the in-house database of the Competence Centre for Bibliometrics 

(www.bibliometrie.info). The researchers published a total of 6,495,715 articles (this study is 

restricted to the document type “article” in order to have comparable units of analysis). Thus, 

the researchers published, on average, 24 articles between 1948 (the earliest paper in the data 

set) and 2012. Papers published later than 2012 were excluded from the study in order to 

ensure a citation window of at least five years for every paper (Glänzel & Schöpflin, 1995). 

Citations were counted until 2016 in the MPDL in-house database. 

RID provides a possible solution to the author ambiguity problem within the scientific 

community. The problem of polysemy means, in this context, that multiple authors are 

merged in a single identifier; the problem of synonymy entails multiple identifiers being 

available for a single author (Boyack, Klavans, Sorensen, & Ioannidis, 2013). Each researcher 

is assigned a unique identifier in order to manage his or her publication list. The difference 

between this and similar services provided by Elsevier within the Scopus database is that 

Elsevier automatically manages the publication profiles of researchers (authors), with the 

profiles being able to be manually revised. With RID, researchers themselves take the 

initiative, create a profile, and manage their publication lists. Although it cannot be taken for 

granted that the publication lists on RID are error-free, these lists will probably be more 

reliable than the automatically generated lists (by Elsevier). 

For this study, not all available profiles in our data set of 272,921 researchers are used. 

A selected set of three cohorts with comparable researchers have been separated out: The first 

cohort consists of 3,976 researchers who published their first paper in 1998 and at least one 

paper in 2012. One can expect that these researchers published more or less continuously over 

15 years. The publication periods of the researchers have been separated into two parts, 

allowing the first five years of their careers (as junior scientists) to be compared with the 
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remaining ten years (as senior scientists). The second (n=4,517) and third (n=4,687) 

researcher cohorts published their first papers in 1999 and 2000, respectively. Since these 

researchers also published at least one paper in 2012, their careers could be divided into a first 

part of five years (as junior scientists) and a second part of nine years and eight years (as 

senior scientists), respectively. In section 4, the results for the first cohort of researchers with 

an RID are presented in detail. The results for the second (1999-2012) and third (2000-2012) 

cohorts are used to contrast the results for the first cohort. We want to make sure that there 

aren’t quirks across time or in the data that affects one cohort differently than it does others. 

What are the reasons for these criteria for the selection of the cohorts? A key problem 

is that we do not know what scholars dropped out of academia. They may not have gotten 

tenure; or, they may have gone off into the private sector where publishing was not expected 

or even allowed. To address these concerns, we require that every member of our sample has 

to have both early publications and at least one publication in 2012. This greatly increases the 

likelihood that our sample includes researchers who remained active across time, while still 

allowing for the possibility that the quality of their work may have varied. This does allow for 

potential biases in our sample (e.g. prolific scholars who didn’t have a paper in 2012 are 

excluded; while scholars who started out fast but then “burned out” by 2012 are also missed). 

But, we think it does have the advantage of letting us examine how quality of work varied for 

active scholars across time. 

Since the researchers included in this study are from different disciplines (which are, 

unfortunately, unknown), only field-normalized citation impact scores are used. The impact of 

the journals in which the researchers published within the first five years of their careers was 

measured, not with the raw JIF (which is not field- and time normalized), but with a 

percentile-based measure that goes back to Pudovkin and Garfield (2004). They proposed to 

rank the journals in each WoS subject category by their JIF and to identify the x% most 

frequently cited journals (Wouters et al., 2015). This percentile-based measure is used in the 
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SCImago Institutions Ranking (SIR, see http://www.scimagoir.com/methodology.php), and is 

known as the Q1 indicator (see also Bornmann, Stefaner, de Moya Anegón, & Mutz, 2014). 

Q1 is the proportion of an institution’s papers that have been published in the 25% most 

frequently cited journals of the corresponding subject categories (Miguel, Chinchilla-

Rodriguez, & de Moya-Anegón, 2011). According to Liu, Hu, and Gu (2016), one can expect 

that approximately 45% of the publications are published in first-quartile journals. Bornmann 

and Marx (2014) propose to use the Q1 indicator for individual researchers, too. It can be 

applied for the comparison of researchers from different fields (which is not possible with the 

JIF, see Leydesdorff, Wouters, & Bornmann, 2016) and shows whether researchers are able to 

publish in reputable journals (measured in terms of citation impact). 

The number of papers is used as a second indicator of academic success at the 

beginning of the career to contrast the Q1 results. It is common practice in academia to assess 

(young) researchers by the number of their (peer reviewed) papers. The results of the studies 

presented in section 2 reveal that high citation impact can be expected for researchers who 

publish frequently. Although the publication numbers of researchers are not field-normalized, 

they are used for comparison with the normalized Q1 indicator. It is still not usual in 

bibliometrics to normalize publication counts. The results of D’Angelo and Abramo (2015) 

show that the average intensity of publication is extremely variable also within the same 

discipline. So, it is not clear on which field-level the normalization should be undertaken. 

Furthermore, the results of Koski, Sandström, and Sandström (2016) point out that it is 

necessary to create advanced productivity indicators. For example, they recommend 

estimating the zero-class of a truncated paper frequency distribution. Thus, there are still so 

many open questions in normalizing productivity metrics that we abstain from normalization 

in this study. 

In order to measure the field- and time-normalized impact of individual publications in 

the later careers of the researchers, we use the standard approach in bibliometrics: the 
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normalized citation score (NCS). Here, the citation counts of a focal paper are divided by an 

expected value. The expected value is the mean citation rate of those papers that have been 

published in the same WoS subject category and publication year as the focal paper. Although 

improved field- and time-normalized indicators have been introduced in recent years (e.g., 

percentiles or citing side indicators) (Bornmann & Marx, 2015), the MNCS is widely used in 

databases (e.g., Scopus) and university rankings (e.g., the Times Higher Education Ranking). 

To go from the individual publication level to the researcher level, NCS values were 

aggregated into the size-independent mean normalized citation score (MNCS, Waltman, van 

Eck, van Leeuwen, Visser, & van Raan, 2011) and the size-dependent total normalized 

citation score (TNCS, Abramo & D’Angelo, 2016a, 2016b; Waltman, 2016). The MNCS was 

calculated as the mean NCS value of the publications of a researcher; the TNCS was 

calculated as the sum of the NCS values. Although the two measures tend to be highly 

correlated, some scientometricians prefer size-independent indicators while others prefer size-

dependent. Including both will show how robust the findings are using different popular and 

widely-used approaches. 

3.2 Statistical methods 

This study uses inferential statistics for comparing the citation performance of several 

groups of researchers (Williams & Bornmann, 2016). According to Claveau (2016) the 

general argument for using inferential statistics in citation analysis is “that these observations 

are realizations of an underlying data generating process constitutive of the research unit. The 

goal is to learn properties of the data generating process. The set of observations to which we 

have access, although they are all the actual realizations of the process, do not constitute the 

set of all possible realizations. In consequence, we face the standard situation of having to 

infer from an accessible set of observations – what is normally called the sample – to a larger, 

inaccessible one – the population. Inferential statistics are thus pertinent“ (p. 1233). 
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In this study, the Q1 indicator is basically the independent variable (JIF-type measure 

for the first five years) and the NCS is the dependent variable – the measure of the 

researchers’ paper level citation scores. The Q1 indicator is used to assign the researchers to k 

groups. This study explores whether the NCS from k groups (where k > 2) are the same or not. 

The analysis of variance (ANOVA) can be used to detect any overall difference between the k 

groups that is statistically significant. The ANOVA is a method for the variance analysis 

because it separates the variance components into those due to mean differences and those 

due to random influences (Riffenburgh, 2012). There are three assumptions required for 

calculating the ANOVA in this study: (1) The publication data are independent of each other. 

(2) The citation impact distribution of papers for each researcher group is normal. (3) The 

standard deviation of the citation impact data is the same for all groups. Although the 

assumptions are violated in this study, the ANOVA is still used: according to Riffenburgh 

(2012), the ANOVA “is fairly robust against these assumptions” (p. 265), especially in those 

cases where the sample size of the study is high. In order to confirm the results of the 

ANOVA, the Kruskal-Wallis rank test (KW test) has been additionally calculated as the non-

parametric alternative (Acock, 2016). 

Following the ANOVA, the effect size eta squared (2
) is calculated as a measure of 

the practical significance of the results (Acock, 2016). Eta squared is the sum of squares for a 

factor (here: members of different groups) divided by the total sum of squares. The effect size 

shows how much of the citation impact variation in the sample of researchers is explained by 

the factor. According to Cohen (1988), a value of 2
 = 0.01 is a small effect, 2

 = 0.06 a 

medium effect, and 2
 = 0.14 a large effect. Measures of effect sizes are especially important 

in situations where the case numbers in a study are very high (Kline, 2004) – as is the case in 

this study. In these situations, the results of statistical tests may be significant although the 

effects (e.g., mean citation impact differences between two groups) are small. 
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4 Results 

Table 1 shows the MNCS and TNCS for researchers who published (1) a different 

proportion of papers in first-quartile journals (Q1 indicator) and (2) a different number of 

papers (NP) between 1998 and 2002. The MNCS and TNCS is based on papers published 

between 2003 and 2012. In other words, the success of the publication activities in terms of 

field- and time-normalized citations is shown for researchers who publish with different levels 

of success at the beginning of their careers (measured in terms of Q1 and NP). 

The results of the ANOVA in Table 1 show that the MNCS differences between the 

groups of researchers publishing different numbers of papers in first-quartile journals is 

statistically significant, F(3,3,972) = 63.31, p = .000.
 1

 The KW test confirms the statistically 

significant results of the ANOVA, χ
2
(3) = 355.64, p = .000. With 2

 = .05, the effect size for 

the difference between the groups of researchers is small to medium (Cohen, 1988). The 

results for the TNCS are similar. Both indicators separate clearly between the four groups. For 

example, the results indicate that the MNCS and TNCS are higher for researchers who 

published between 75% and 100% in first-quartile journals than those for researchers who 

published (1) between 50% and 75%, (2) between 25% and 50%, and (3) up to 25% of their 

papers in first-quartile journals. 

 

                                                 
1
 We used the style of the American Psychological Association (2010) for the reporting of statistics (e.g., M is 

the abbreviation of the Mean). 
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Table 1. Mean normalized citation scores (MNCS) and total normalized citation scores 

(TNCS) for researchers who published (1) a different proportion of papers in first-quartile 

journals (Q1 indicator) and (2) a different number of papers (NP) between 1998 and 2002. 

The MNCS is based on papers published between 2003 and 2012. The correlation coefficients 

show the spearman rank correlation between the MNCS and TNCS, respectively, and the 

proportion of papers in first-quartile journals and the number of papers, respectively. 

Q1 indicator MNCS TNCS Number of 

researchers Mean Standard 

deviation 

Mean Standard 

deviation 

First quartile (up to 25%) 1.02 0.79 23.06 34.15 1,082 

Second quartile (between 

25% and 50%) 
1.24 0.83 36.99 49.19 568 

Third quartile (between 50% 

and 75%) 
1.42 1.07 43.67 56.09 948 

Fourth quartile (between 75% 

and 100%) 
1.72 1.78 50.31 79.36 1,378 

Total 1.39 1.31 39.41 60.93 3,976 

NP 
  

  
 

First quartile (lowest number) 1.24 1.19 23.24 39.01 1,474 

Second quartile 1.44 1.73 32.16 40.70 918 

Third quartile 1.44 1.01 43.26 60.84 617 

Fourth quartile (highest 

number) 
1.53 1.17 68.49 87.86 967 

Total 1.39 1.31 39.41 60.93 3,976 

 

Notes. MNCS, Q1 indicator: F(3, 3,972) = 63.31, p = .000, 2
 = .05 [.03, .06], χ

2
(3) = 355.64, 

p = .000, rs=.30 

 MNCS, NP: F(3, 3,972) = 11.29, p = .000, 2
 = .008 [.003, .014] , χ

2
(3) = 97.13, p = 

.000, rs=.16 

TNCS, Q1 indicator: F(3, 3,972) = 43.89, p = .000, 2
 = .03 [.02, .04], χ

2
(3) = 315.60, 

p = .000, rs=.27 

 TNCS, NP: F(3, 3,972) = 123.62, p = .000, 2
 = .09 [.07, .10] , χ

2
(3) = 667.80, p = 

.000, rs=.41 

 

For the purpose of contrasting the results based on the proportion of papers published 

in first-quartile journals, Table 1 shows the results for four groups of researchers that have 

been categorized using their different proportions of papers. The expectation in this study is 

that the use of the Q1 indicator in selecting candidates has greater predictive power than the 

number of papers, since the later citation impact of papers is also dependent on the ability of 

researchers to publish high-quality papers. The probability of publishing in high-impact 

journals is greater for high-quality papers than for low-quality ones. In this study, the number 

of articles within the first five years of their careers is computed for every researcher. Then, 
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the researchers are categorized into quartiles based on their publication counts: The 

researchers in the first quartile (n = 1,474) have the lowest number of articles (M = 2.03). The 

researchers in the further quartiles with higher numbers have published the following mean 

and maximum number of papers: second quartile (n = 918): M = 4.45; third quartile (n = 617): 

M = 6.38; and fourth quartile (n = 967): M = 11.91. 

As the results of the comparison between the four researcher groups that published 

different numbers of papers show, the MNCS difference is also statistically significant, F(3, 

3,972) = 11.29, p = .000, 2
 = .008 [.003, .014], χ

2
(3) = 97.13, p = .000. This result is in 

agreement with the results based on the group assignment using Q1. However, the 2
 as a 

measure of practical significance reveals that the relationship is very small. For the TNCS, the 

results are different from that for the MNCS. Since the TNCS is a size-dependent variable, it 

(rs=.41) correlates significantly higher with NP than the MNCS (rs=.16). 

Taken as a whole, the results indicate that Q1 is better able than the number of articles 

to predict the ability of researchers to publish their papers with a relatively high mean citation 

impact in their later careers. However, if the later success of the researchers is measured in 

terms of the sum of the normalized scores (TNCS), the NP outperforms Q1. 
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Table 2. Mean normalized citation scores (MNCS) and total normalized citation scores 

(TNCS) for researchers who published (1) a different proportion of papers in first-quartile 

journals (Q1 indicator) and (2) a different number of papers (NP) between 1999 and 2003. 

The MNCS is based on papers published between 2004 and 2012. The correlation coefficients 

show the spearman rank correlation between the MNCS and TNCS, respectively, and the 

proportion of papers in first-quartile journals and the number of papers, respectively. 

Q1 indicator MNCS TNCS Number of 

researchers Mean Standard 

deviation 

Mean Standard 

deviation 

First quartile (up to 25%) 1.01 0.78 20.31 41.62 1,175 

Second quartile (between 

25% and 50%) 
1.20 0.82 33.87 52.70 684 

Third quartile (between 

50% and 75%) 
1.43 1.01 39.52 69.43 1,105 

Fourth quartile (between 

75% and 100%) 
1.83 1.80 53.33 103.68 1,553 

Total 1.42 1.32 38.41 76.87 4,517 

NP 
  

  
 

First quartile (lowest 

number) 
1.26 1.30 21.01 42.43 1,698 

Second quartile 1.37 1.02 28.06 48.90 566 

Third quartile 1.52 1.60 37.27 56.67 1,138 

Fourth quartile (highest 

number) 
1.59 1.12 71.35 122.94 1,115 

Total 1.42 1.32 38.41 76.87 4,517 

 

Notes. MNCS, Q1 indicator: F(3, 4,513) = 101.31, p = .000, 2
 = .06 [.05, .08], χ

2
(3) = 

539.47, p = .000, rs=.35 

 MNCS, NP: F(3, 4,513) = 16.78, p = .000, 2
 = .01 [.005, .017] , χ

2
(3) = 137.55, p = 

.000, rs=.17 

TNCS, Q1 indicator: F(3, 4,513) = 43.26, p = .000, 2
 = .03 [.02, .04], χ

2
(3) = 469.68, 

p = .000, rs=.31 

 TNCS, NP: F(3, 4,513) = 107.94, p = .000, 2
 = .07 [.05, .08] , χ

2
(3) = 786.75, p = 

.000, rs=.42 
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Table 3. Mean normalized citation scores (MNCS) and total normalized citation scores 

(TNCS) for researchers who published (1) a different proportion of papers in first-quartile 

journals (Q1 indicator) and (2) a different number of papers (NP) between 2000 and 2004. 

The MNCS is based on papers published between 2005 and 2012. The correlation coefficients 

show the spearman rank correlation between the MNCS and TNCS, respectively, and the 

proportion of papers in first-quartile journals and the number of papers, respectively. 

Q1 indicator MNCS TNCS Number of 

researchers Mean Standard 

deviation 

Mean Standard 

deviation 

First quartile (up to 25%) 1.00 0.77 16.89 21.55 1,175 

Second quartile (between 

25% and 50%) 
1.27 0.87 28.86 35.80 737 

Third quartile (between 

50% and 75%) 
1.44 1.15 36.19 56.81 1,150 

Fourth quartile (between 

75% and 100%) 
1.73 1.71 41.82 80.28 1,625 

Total 1.40 1.30 32.15 58.64 4,687 

NP 
  

  
 

First quartile (lowest 

number) 
1.31 1.54 19.73 38.98 1,652 

Second quartile 1.38 1.04 25.57 37.20 1,053 

Third quartile 1.46 1.27 33.21 42.93 1,009 

Fourth quartile (highest 

number) 
1.53 1.12 59.26 97.69 973 

Total 1.40 1.30 32.15 58.64 4,687 

 

Notes. MNCS, Q1 indicator: F(3, 4,683) = 76.78, p = .000, 2
 = .05 [.04, .06], χ

2
(3) = 461.55, 

p = .000, rs=.31 

 MNCS, NP: F(3, 4,683) = 7.01, p = .000, 2
 = .01 [.001, .009] , χ

2
(3) = 94.09, p = 

.000, rs=.14 

TNCS, Q1 indicator: F(3, 4,683) = 45.08, p = .000, 2
 = .03 [.02, .04], χ

2
(3) = 397.39, 

p = .000, rs=.27 

 TNCS, NP: F(3, 4,683) = 105.11, p = .000, 2
 = .06 [.05, .08] , χ

2
(3) = 753.70, p = 

.000, rs=.40 

 

Table 2 and Table 3 show the MNCS and TNCS for researchers who published (1) a 

different proportion of papers in first-quartile journals (Q1 indicator) and (2) a different 

number of papers (NP) between 1999 and 2003 (see Table 2) and between 2000 and 2004 (see 

Table 3), respectively. The NCS is based on papers published between 2004 and 2012 (see 

Table 2) and between 2005 and 2012 (see Table 3). These additional analyses using two 

further cohorts of researchers were undertaken in order to see whether the results in Table 1 

(which is based on the periods 1998-2002 and 2003-2012) are stable or not. As the results in 
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both tables show, the initial results were confirmed. The more frequently researchers 

published in high-impact journals in the corresponding subject categories at the beginning of 

their careers, the higher the MNCS of their papers in subsequent years. The comparison of the 

groupings based on Q1 and NP reveals that the (time- and field-normalized) JIF is better able 

than the NP to identify promising candidates (see especially Cohen’s d values). Although the 

TNCS is also different between the four researcher groups which have been formed on the 

base of the Q1 indicator, the TNCS differs especially for researchers with varying numbers of 

papers. 

In the second part of the statistical analysis, it was investigated whether the citation 

impact of the papers published by the different groups decreases or increases across the 

publication years after the initial five-year period. An increase in citation impact would 

accord with the cumulative advantage theory (see above). The results of the second part of the 

statistical analyses are presented in Figure 1, Figure 2, and Figure 3. The results in Figure 1 

are based on two periods (in accordance with the results in Table 1): the initial five-year 

period between 1998 and 2002, and the subsequent years between 2003 and 2012. These 

results are contrasted with the results for two further cohorts in Figure 2 and Figure 3 (in 

accordance with the results in Table 2 and Table 3). The figures show dot plots for the annual 

normalized citation impact scores (MNCS and TNCS) of the papers published by the four 

groups (which were built on the base of the Q1 indicator and the NP, respectively). To 

calculate the mean impact per year in the figures, first the annual mean impact (MNCS) and 

annual total impact (TNCS), respectively, across the papers of a researcher in one year was 

calculated. Then these impact scores were arithmetically averaged for the annual dot plots in 

the figures. 
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Figure 1. Mean normalized citation scores (MNCS) and total normalized citation scores 

(TNCS) for researchers who published (1) a different proportion of papers in first-quartile 

journals (Q1 indicator) and (2) a different number of papers (NP) between 1998 and 2002. 

The mean MNCS and TNCS values are shown for the papers published between 2003 and 

2012. 
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Figure 2. Mean normalized citation scores (MNCS) and total normalized citation scores 

(TNCS) for researchers who published (1) a different proportion of papers in first-quartile 

journals (Q1 indicator) and (2) a different number of papers (NP) between 1999 and 2003. 

The mean MNCS and TNCS values are shown for the papers published between 2004 and 

2012. 

 



 22 

 
 

Figure 3. Mean normalized citation scores (MNCS) and total normalized citation scores 

(TNCS) for researchers who published (1) a different proportion of papers in first-quartile 

journals (Q1 indicator) and (2) a different number of papers (NP) between 2000 and 2004. 

The mean MNCS and TNCS values are shown for the papers published between 2005 and 

2012. 

 

The results in Figure 1, Figure 2, and Figure 3 look very similar. They confirm the 

results from Table 1, Table 2, and Table 3. It can be expected, especially from people who 

publish frequently in high-impact journals at the beginning of their careers, that they will 

publish papers with an above-average citation impact later on. Furthermore, the JIF – in its 

normalized variant – seems to differentiate more or less successfully between promising and 

uninteresting candidates not only in the short term, but also in the long term. However, there 

are differences visible between the results based on the Q1 indicator and NP. The researcher 

groups which have been formed on the base of NP differ significantly in terms of the TNCS, 

but not in terms of the MNCS. 
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If we take a look at the annual impact scores in the figures in the long term, we see 

different distributions for the MNCS and TNCS. For the MNCS, there is no increase of 

citation impact visible in the figures of the top-group. Thus, the results do not seem to accord 

with the cumulative advantage theory. Instead, the results seem to suggest a tendency towards 

the center across the years. This tendency could have performance-based reasons: The 

initially weak researchers (in terms of Q1) become stronger and the initially strong 

researchers become weaker. Another explanation for the results, however, is related to the 

technique of impact measurement. The citation window for the impact measurements in 

Figure 1, Figure 2, and Figure 3 is not fixed, but variable from publication year until 2016. 

Suppose that the publications from the initially strong researchers (in terms of Q1) need a 

long time period in general to show their high value for other researchers. Then, one can 

expect a decreasing annual average impact for their publications, because the citation window 

becomes smaller. We cannot test this possible explanation with our data, because we do not 

have the normalized impact values for fixed time periods. However, the alternative 

explanation would better accord to the results which are based on the TNCS: there is an 

increase visible for the distributions. Here, the results definitely agree to the cumulative 

advantage theory. 

5 Discussion 

This study is part of research efforts in scientometrics which analyze the correlation 

between metrics for single researchers. Whereas most of the studies in this area focus on the 

relationship between quality (measured by citations) and quantity (measured by paper 

numbers) (see the overview in section 2), this study was intended to investigate the 

relationship between the JIF of journals in which researchers have published in their early 

careers and the citation impact of the papers which have been published later on. 
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Using three cohorts of researchers who have published across a long period of time, 

we tested the ability of the JIF (in its normalized variant) to identify, at the beginning of their 

careers, those candidates who are successful in the long run. Compared with previous studies, 

this study is based on a broad data set and uses field- and time-normalized data. Instead of 

bare JIFs and citation counts, the metrics used here are standardized according to WoS subject 

categories and publication years. The results of the study indicate that the JIF (in its 

normalized variant as Q1) is able to discriminate between researchers who published papers 

later on with a citation impact above or below average in a field and publication year – not 

only in the short term, but also in the long term. Our study shows that early success in 

publishing in high-impact journals is related to later success with individual-level citations. At 

the same time, the relationship is far from deterministic. Further, there are styles of 

scholarship, e.g. book-writing, where JIFs are probably not a good measure of quality or 

potential. Just like university admissions committees should not rely solely on standardized 

test scores, university departments and granting agencies should not rely solely on early JIFs 

(in their normalized variants) when rewarding work and allocating resources. 

If we discuss the results against the backdrop of theoretical approaches that deal with 

academic success in the long run (see section 2), the results seem to confirm the “sacred 

spark” theory: “there are substantial, predetermined differences among scientists in their 

ability and motivation to do creative scientific research” (Allison & Stewart, 1974, p. 596). 

Researchers who can publish several papers in high-impact journals at the beginning of their 

careers seem to be essentially able to do creative research. This ability seems to persist in 

subsequent careers, which finds expression in high citation scores for the papers. The 

researchers are probably “motivated by an inner drive to do science and by a sheer love of the 

work” (Cole & Cole, 1973, p. 62). They seem to have the capacity “to work hard and persist 

in the pursuit of long-range goals” (Fox, 1983, p. 287). 
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However, the results of this study can also be interpreted otherwise. It is possible that 

researchers do well later on because they benefited from early publications in reputable 

journals. In other words, the findings could also be explained by the fact that reputable 

journals are part of the selection mechanisms in science (e.g., for hiring and funding at top 

universities). If this is the case, then the results do not suggest that junior researchers “should” 

be selected on the basis of journal metrics, but that they “have been” selected on their base. 

This reasoning is part of the cumulative advantage theory of Merton (1968), 

In the discussion of the JIF for the use of research evaluation purposes, one should 

bear in mind that metrics might serve as incentives that influence the motivational forces of 

researchers (see here Bornmann, 2012; Rijcke, Wouters, Rushforth, Franssen, & Hammarfelt, 

2015): “The JIF has the potential to deeply change the motivational forces of scientists. In a 

world where the JIF determines the value of a publication, successful goal-directed behavior 

requires knowledge about the JIF and the ability to make use of this knowledge when 

potential publications are within reach. However, it remains unknown how scientists have 

incorporated the JIF into their reward circuitry and adapted their behavior in order to match 

the affordances for ‘survival’ in academia” (Paulus, Rademacher, Schäfer, Müller-Pinzler, & 

Krach, 2015). The results of the project “The impact of indicators: How evaluation shapes 

biomedical knowledge production” (de Rijcke & Rushforth, 2015; Rushforth & de Rijcke, 

2015) by Alex Rushforth and Sarah de Rijcke from the Center for Science and Technology 

Studies (CWTS) at the Leiden University show that this indicator should not be dismissed “as 

mere idle ‘publication talk,’ or as floating in some external ‘cultural’ realm separated from the 

‘serious business’ of knowledge making. Likewise statements of discontent tend to implicate 

the entire field of biomedicine as captured by the JIF” (Rushforth & de Rijcke, 2015, p. 136). 

We need more scientometric research on the effects of the use of the JIF (and similar 

metrics) on knowledge production in different fields. Does knowledge production suffer from 

the use of journal metrics for research evaluation purposes? Are promising candidates 
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neglected in peer review processes if these processes rely mainly on journal metrics? Future 

studies should also consider the possibility that knowledge production in the fields profits 

from the focus of peers and decision makers on the JIF (and similar metrics). The focus of 

researchers on high-impact journals that, as a rule, use the peer review process could lead to 

an increase in publications reporting reliable and important results. Thus, knowledge 

production in the fields might profit from evaluation practices that focus on journal metrics. If 

NP is included in these future studies (as we did it here for comparison with Q1), researchers 

should try to consider (additionally) field-normalized productivity measures. Koski et al. 

(2016) published ways to calculate these measures. 

In this study, we included only researchers staying in science (in all likelihood). The 

bias of exclusively dealing with researchers that have had a longer career affects the results of 

this study. Perhaps researchers that quit science (or stopped publishing) did not continue in 

science exactly because they published in low-impact journals. But since we do not know 

what their later performance would have been (in terms of bibliometrics), we do not know 

whether they have been “rightly” not stayed in science. Perhaps, they would have had some 

brilliant publications, but we will never know. Of course it may also be that researchers with 

excellence performance went on to work in industry because they are the most appealing to 

the R&D departments. The point is that this bias can obfuscate the results. Therefore, future 

studies should not only consider researchers staying in science, but also those leaving science. 

A somewhat related point is the use of the RID in this study to identify the 

publications of single researchers. Researchers that actively maintain their publication list 

could perhaps have a higher performance overall – in terms of productivity and citation 

impact. On the other hand, it could also be that researchers only maintain their RID because 

they still need it: those who already have tenure no longer maintain it. The exact effect on the 

results is not clear, but future studies should (additionally) use other databases (besides RID) 

to identify publications of single researchers. 
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