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Abstract

Rating has become a common practice of modern science. No rat-
ing system can be considered as final, but instead several approaches can
be taken, which magnify different aspects of the fabric of science. We
introduce an approach for rating scholars which uses citations in a dy-
namic fashion, allocating ratings by considering the relative position of
two authors at the time of the citation among them. Our main goal is
to introduce the notion of citation timing as a complement to the usual
suspects of popularity and prestige. We aim to produce a rating able to
account for a variety of interesting phenomena, such as positioning rais-
ing stars on a more even footing with established researchers. We apply
our method on the bibliometrics community using data from the Web of
Science from 2000 to 2016, showing how the dynamic method is more
effective than alternatives in this respect.

1 Introduction

For better or worse, modern scientists have become accustomed with the quan-
tification of their performance and its use for recognition, such as funding allo-
cation [Wildgaard et al., 2014]. A variety of indicators exist, relying on different
systems to rate scholars and, quite consequently, rank them. Several indicators
rely on citations. In general, every rating system is an attempt at highlighting
a specific aspect which might be of interest when considering scholars. The two
most important aspects factored into citation-based indicators are popularity,
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or the number of endorsements, and prestige, or the rank of endorsers [Bollen
et al., 2006; Franceschet, 2010].

An aspect of importance has nevertheless been overlooked. Since science
is a cumulative effort where every contribution is published at a certain time,
the resulting citation network is a dynamic and open-ended process. More
specifically, citations happen at a given time, when a certain relation in terms
of relative rating exists among authors, which could be different at another point
in time. Yet the most established rating systems for scholars are static methods
that disregard the dynamic nature of the underlying process. In so doing, we
argue, they filter out meaningful information on the timing of citations.

The timing of citations allows to give a premium to scholars who are cited by
higher rated scholars against the odds, at a time when they would be unlikely
to be cited by them. Consider, for example, the case of two researchers who
both have received endorsements from the most accomplished scholars in their
field, thus have similar quality of citations, yet one is at an early career stage,
the other is an already senior scholar who received such endorsement only late
in his career. The former scholar has a timing advantage, having received early
citations against the odds, the latter has a quantitative advantage, having had
a longer career, accumulating more publications and citations. Using static,
time-insensitive, indicators it is likely that the latter scholar would score higher,
yet by considering the timing of their recognition, the resulting rating would
even out. As another example, consider two researchers receiving a citation
from the same scholar but in different periods. The first researcher is endorsed
when the citing scholar is yet an unknown author, while the second researcher
is endorsed when the citing scholar has become a popular and esteemed author.
Again, static methods do not acknowledge the difference in the timing of the
two citations, since citations come from the very same author. On the other
hand, a dynamic approach accounts for this difference.

The method we propose updates ratings with citation rewards computed
sequentially in time, by considering the relative ratings of the scholars involved
in the endorsement when a citation is given. At the end of the process, the
method outputs a time series of citations rewards for each scholar: the rating of
a scholar is defined as the sum of all his citation rewards. As a result, popularity
(number of endorsements), prestige (rank of endorser and endorsed) and timing
(time of endorsement) are all accounted for in the final rating. The analysis of
such citation time series can further help to distinguish between similarly rated
scholars with different citation reward histories, e.g. rising versus consolidated
or declining researchers. Indeed recent literature on detecting rising stars found
temporal features to be the most discriminative for this task [Zhang et al., 2016].
We think our method can be best applied in a situation when the dynamics
of a scholar’s performance should be considered alongside its quantitative and
qualitative aspects. Examples are the early identification of rising stars to help
hiring committees in their decisions, or the distinction among stable or declining
scholars at any level of seniority. The method in fact enriches the very notion
of reputation in a field by putting on a more even footing scholars of different
career stages, that have contributed substantially and have been recognised by
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their highest-ranking peers.
We start by outlining the dynamic rating method, its main properties and

variants. We then discuss its application to the bibliometrics community, by
considering a dataset from the Web of Science for the years 2000 to 2016. The
article closes with a discussion of related works and some final remarks.

2 TimeRank: a dynamic rating method

Consider a temporal citation network among scholars: nodes are scholars and
an edge (i, j, t) is a citation from scholar i to scholar j at time t. This means
that there is a paper authored by i and published at time t that cites a paper
authored by j. TimeRank, the time-sensitive method we propose in this paper,
works as follows:

1. initially, at time 0, all scholars have the same rating, say 0;

2. then, citations are processed in increasing temporal order. At any time
t > 0, the ratings of scholars cited at time t are simultaneously updated
in terms of their previous ratings at time t − 1 and the previous ratings
at time t− 1 of the citing scholars. If a scholar is not cited at time t then
his rating does not change.

More specifically, let i1, . . . , in be the (possibly not unique) scholars citing j
at time t > 0. The rating rj of scholar j is updated using the following update
rule:

rj ← rj +

n∑
k=1

ρi,j (1)

where

ρi,j =
10(ri−rj)/ζ

1 + 10(ri−rj)/ζ
(2)

is the citation reward that scholar j gains because he has been cited by scholar
i and ζ > 0 is a constant. The reward is expressed using the logistic curve
depicted in Figure 1. Notice that:

• the reward 0 < ρi,j < 1. In particular, it is always positive, hence all
citations, even from bottom-ranked scholars, give a contribution to the
rating of the cited scholar;

• the reward is high, close to 1, if the rating of the citing scholar i is signif-
icantly higher than that of the cited scholar j;

• the reward is low, close to 0, if the rating of the citing scholar i is signifi-
cantly lower than that of the cited scholar j;

• the reward is intermediate, close to 0.5, if citing and cited scholars have
similar ratings.
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Figure 1: The citation reward in terms of the rating difference between citing
and cited scholars (ζ = 16).

2.1 Interpretation

The citation reward of Equation 2 can be rephrased as follows:

ρi,j =
10ri/ζ

10ri/ζ + 10rj/ζ
.

It follows that:
ρi,j + ρj,i = 1

For instance, suppose ri − rj = ζ > 0, so that there are ζ rating points of
advantage of scholar i over scholar j. Then ρi,j = 10/11 > ρj,i = 1/11. Hence,
the reward for j by receiving a citation from the higher rated scholar i is much
larger (ten times larger) than the reward for i by receiving a citation from the
lower rated scholar j. This leads to an interpretation of the role of the parameter
ζ. We have that

ρi,j
ρj,i

=
10ri/ζ

10rj/ζ

and thus
ρi,j = ρj,i10(ri−rj)/ζ

This means that for every ζ rating points of advantage that scholar i has over
scholar j, the reward for scholar j, when cited by scholar i, is expected to be 10
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Figure 2: The distribution of rewards at increasing values of the parameter ζ.
Rewards have been generated using the logistic function of Equation 2 on a
uniform random sample of rating differences in the interval (−100, 100).

times the reward scholar i would get, when cited by scholar j. It follows that,
if two scholars have significantly different ratings, they have at least ζ rating
points of difference.

The reward for a citation from an equal rated scholar is always 0.5. As
ζ grows to ∞, it is more and more difficult to obtain rewards far from the
intermediate value of 0.5 and, in the limit, all rewards are equal to 0.5. In this
case the TimeRank ratings correspond to half the number of received citations,
and hence there is perfect correlation with the number of citations. On the
other hand, as ζ goes to 0, it is increasingly easier to gain rewards far from the
intermediate value of 0.5. In the limit, all rewards assume three values: 0 for
citations from lower rated scholars, 0.5 for citations from equal rated scholars,
and 1 for citations from higher rated scholars. In this case the TimeRank ratings
correspond to the number of citations received from higher rated scholars plus
half of the number of citations received from equal rated scholars. See Figure
2 for a simulation of this effect varying the parameter ζ. Both these extremes
are not interesting, because they simply count the number of rewards, without
weighting them. An intermediate value for the parameter ζ – not too large, not
too small – is hence reasonable.
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2.2 Comparison with static methods

To better understand the dynamics of TimeRank, it is useful to analytically
compare it with the total number of received citations (TotCit for short) and
PageRank, which are the closest siblings in the context of bibliometric indica-
tors. First, notice that the TimeRank rating of a scholar can be expressed as
the sum of the citation rewards received by the scholar. Indeed, using Equation
1, we have that:

rj =
∑
i

ρi,j (3)

where the sum is defined on all citations from some scholar i to scholar j and
the reward ρi,j is defined with respect to the ratings of scholars i and j at the
time of citation. It follows that there is a correlation between TimeRank and
TotCit: all else equal, if scholar i receives more citations than scholar j, then
the rating of i is higher than the rating of j with both methods. Nevertheless,
while TotCit simply counts citations, TimeRank weights them with a function
of the spread of the ratings of the citing and cited scholars. In fact, TotCit is a
special case of TimeRank, given by doubling the rewards in the limit when ζ goes
to infinity (when rewards are all equal to 0.5). As for the PageRank method,
recall that it considers three factors: (1) the number of citations received; (2) the
ratings of the citing scholars; and (3) the citation propensity of citing scholars.
TimeRank differs with respect to PageRank in two ways:

1. PageRank considers the absolute rating of the citing scholar, while TimeR-
ank considers the relative rating of the citing scholar with respect to the
cited scholar;

2. PageRank uses the ratings of citing scholars at the end of the temporal
citation process (the same time for all citations), while TimeRank incor-
porates the timing of citations by using the ratings of citing and cited
scholars at the actual time of citation (different times for different cita-
tions).

Hence, relative rating and timing are two original ingredients of TimeRank.
We illustrate the importance of these factors in the example depicted in Figure
3 and in Table 1. We compared TimeRank with TotCit and PageRank. We
used ζ = 16 in TimeRank and a damping factor of 0.85 in PageRank. Consider
the ratings of scholars C and D. Both scholars C and D receive a unique citation
from A and B, respectively, but with different timing. In particular, C is cited
by A when A is important (he received many citations), while D is cited by
B when B is unknown (he received no citations). Both TotCit and PageRank
methods have a static approach – they do not consider the temporal evolution
of citations – and cannot distinguish between the positions of C and D. On the
other hand, TimeRank has a temporal perspective and more reasonably favours
C over D.
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Figure 3: A simple temporal scholar citation network. The edges are stamped
with the time of the corresponding citation.

2.3 Consistency

We discuss in this section the consistency of the proposed method. In gen-
eral, by consistency [Waltman and Van Eck, 2009] or independence [Marchant,
2009a,b] it is meant a stability in the relative inequality of ratings between two
scholars receiving identical change in conditions. For example, a consistent rat-
ing between scholars x and y, where rx < ry, would maintain the inequality of
ratings after an identical change in both authors’ conditions with respect to the
rating method. In TimeRank, the setting is as follows. Suppose three authors
are given, x, y and z, and rx < ry at time t− 1. Then, at time t, author z cites
once both x and y. The method is consistent if, after updates, the inequality
rx < ry still holds.

We denote with r̂x and r̂y the ratings of x and y after the citation from z.
Hence:

r̂x = rx + 10rz/ζ

10rz/ζ+10rx/ζ

r̂y = ry + 10rz/ζ

10rz/ζ+10ry/ζ

We define a consistency function:

c(rx, ry, rz, ζ) = r̂y − r̂x = ry − rx +
10rz/ζ

10rz/ζ + 10ry/ζ
− 10rz/ζ

10rz/ζ + 10rx/ζ
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Scholar TimeRank TotCit PageRank
A 2.00 4 16.89
B 2.00 4 16.89
C 0.57 1 20.61
D 0.50 1 20.61
E 0.00 0 6.25
F 0.00 0 6.25
G 0.00 0 6.25
H 0.00 0 6.25

Table 1: Comparing TimeRank, TotCit and PageRank for the citation network
depicted in Figure 3.

Assuming rx, ry, rz ≥ 0, rx < ry, and ζ > 0, consistency holds when
c(rx, ry, rz, ζ) > 0. Figure 4 shows that there are some extreme cases in which
consistency of the TimeRank method is violated. This happens when the rat-
ings rx and ry of scholars x and y are very close and the parameter ζ is very
small (close to 0). The rating rz can be either smaller than rx, or in between rx
and ry, or larger than ry. Recall that, as shown in Section 2.1, when ζ is small,
rewards are close to 0 (if the citing author is lower in the ranking) or close to 1
(if the citing author is higher in the ranking).

In order to investigate the sign of the consistency function c(rx, ry, rz, ζ) in
a more analytical way we fix some of its parameters. Without losing generality,
we assume rx = 0, and set ry = α > 0. Moreover, we set rz = α/2, so that
rz is equidistant from rx and ry. As shown in Figure 4, this is the point of
maximum violation of consistency (the minimum of the curve). Hence, the
consistency function c(rx, ry, rz, ζ) in four variables boils down to a simplified
version d(α, ζ) in only two variables:

d(α, ζ) = α+
1− 10α/2ζ

1 + 10α/2ζ

Notice that −1 < (1 − 10α/2ζ)/(1 + 10α/2ζ) < 1 and hence consistency is
achieved, that is d(α, ζ) > 0, for all α ≥ 1. As for α < 1, with some elementary
algebra it holds that d(α, ζ) > 0 if and only if

ζ > f(α) =
α

2 log 1+α
1−α

For instance, if α = 0.5, then f(0.5) = 1/ log 81 ∼ 0.52. Hence, for all
ζ > 1/ log 81, the consistency holds. Notice that f(α) is a decreasing func-
tion between 0 and 1 and:

limα→0 f(α) = ln 10
4 ∼ 0.58

limα→1 f(α) = 0
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Figure 4: The violation of consistency. The ratings rx = 0.95 and ry = 1.05
(vertical lines), while rz varies between 0 and 2 (x axis) and ζ = 0.1. The part
of the curve below zero corresponds to the ratings rz that violate consistency.

Hence, for ζ > (ln 10)/4, consistency always holds (independently of α). In
summary, the only inconsistent cases happen when the ratings rx and ry are
very close and ζ is very small. As soon as ζ is sufficiently large, for instance
ζ > 1, the TimeRank ratings are consistent.

2.4 Variants of TimeRank

TimeRank is quite flexible. In this section we briefly describe some variations of
the main theme. The interested reader can profitably refer to [Waltman, 2016]
for a broader discussion of variants of citation impact indicators.

• Self-citations. In a self-citation, the citing and cited authors correspond,
and hence the citation reward is always 0.5. A similar reward is earned if
a scholar receives a citation from a similarly rated one. Assuming a long
tail distribution of the ratings1, the event of receiving a citation from a
similarly rated scholar is more likely for low rated scholars than for high
rated scholars. It follows that self-citations in this rating system implicitly
reward high rated scholars more than low rated scholars. Furthermore,
self-citations do not fit well with the approach taken, which rests on the
difference in ratings of two scholars at the time of a citation between them.
These might be good reasons to exclude self-citations in this rating system.

1The hypotheses is confirmed by our experiments.
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• Co-authorship. Every citation from a paper with k authors to a paper
with h authors, generates k citation rewards for every cited scholar. We
can normalize this effect by dividing each citation reward by the number
of authors of the cited paper, the citing paper, or both depending on the
application.

• Length of reference lists. The method considers a citation to be one action,
establishing a link between all combinations of citing and cited authors of
two papers, for every reference in the reference list of the citing paper. It
might be argued that the action should be the publication of the citing
paper, as to filter out the fact that papers can have reference lists of
variable length. We can normalize this effect by dividing the citation
reward by the number of references made by the citing paper, following the
fractional counting method [Leydesdorff et al., 2013; Perianes-Rodriguez
et al., 2016].

• Initial conditions. Initially, all scholars are assigned an equal rating. This
might be not realistic since, in general, authors have different potential or
relative position at the beginning. One might use some exogenous factor
to determine an initial rating of scholars and provide TimeRank with a
hot instead of a cold start. The exogenous factor can be of any kind,
qualitative or quantitative, provided it is internally consistent.

3 Case study

We propose an application of TimeRank on a subset of the bibliometrics commu-
nity. We stress that the goal of this study is to better understand the details and
nuances of TimeRank we propose, as well as to compare it with more traditional
bibliometrics indicators.

We consider all articles published from (Jan) 2000 to (March) 2016 in the
following journals: Scientometrics, the Journal of the Association for Informa-
tion Science and Technology (including its previous relevant versions) and the
Journal of Informetrics. We further consider only article typologies ‘article’ and
‘review’, for a total of 5952 individual publications (2831 Scientometrics, 579
Journal of Informetrics, 2542 Journal of the Association for Information Science
and Technology). Citations indexed by the Web of Science are considered, as
matched by the CWTS matching algorithms [Olensky et al., 2016]. We only
keep citations to other articles within the dataset, in order to consider cita-
tions between authors that have published in these journals, thus that could be
considered as part of the bibliometrics community.

Since we want to consider author to author citations, we use the CWTS au-
thor disambiguation method [Caron and van Eck, 2014], finding 7259 individual
authors and 173509 citations among them (138507 excluding self-citations), by
adding a citation among two authors if one cited an article authored by the
other. This procedure naturally creates connections among all combinations
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of authors in multi-author publications. In our experiments we excluded self-
citations, but did not apply any other normalisation procedure discussed in
Section 2.4. Our dataset is timestamped by month. The rare forward citations
were discarded, and ratings are updated synchronously (therefore synchronous
citations are kept).

We implemented the TimeRank method in R [R Development Core Team,
2008], setting parameter ζ = 16. The choice for ζ follows from the original
proposal of the Elo’s method, which inspired TimeRank (see Section 4). In
Elo’s method, by default parameters are κ = 25 and ζ = 400 [Langville and
Meyer, 2012], with κ commonly assuming values in between 10 and 32 in chess
rating systems. Setting κ = 1 and ζ = 16 removes one parameter (κ), without
modifying the default ratio ζ/κ. We used the available implementations of
PageRank from the igraph R package [Csardi and Nepusz, 2006], setting the
damping factor to 0.85 (as in the original proposal of the method [Brin and
Page, 1998]).

We performed the following three analyses:

1. an exploratory analysis, in which we describe the dataset with some basic
statistics as well as compare TimeRank with traditional static bibliometric
indicators;

2. a cluster analysis, with the aim of assigning scholars to performance classes
based on their ratings;

3. a sensitivity analysis, with the goal of exploring the sensitivity of the
TimeRank ratings to the timing of citations and to the variation of the
parameter ζ.

3.1 Exploratory analysis

In this part we provide some descriptive statistics with the aim of exploring our
dataset, including a comparison with traditional bibliometric indicators. The
TimeRank ratings show the typical long-tail distribution with many low rated
and few high rated scholars: 20% of the top-rated scholars accrue 70% of the
total cumulative rating. The mean rating is 5.7, well above the median of 2.4;
the maximum rating is 107.4. Two histograms of the distribution of the ratings
are shown in Figure 5.

We compared the TimeRank method with TotCit, PageRank and the Hirsch
index. There exists a positive correlation between TimeRank and these other
bibliometric measures, as evident from Figure 6. However, this correlation is
quite weak for highly rated scholars, see Table 2 and Figure 7 for a comparison
of the ratings of top rated scholars.

To better illustrate the difference between TimeRank, TotCit and PageRank
let us focus on the case of two scholars: LW and WG. Scholar WG leads both
TotCit and PageRank rankings: he received 3240 citations and, according to the
stochastic interpretation of PageRank, a random scholar would spend 2.139%
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Figure 5: Histograms of TimeRank ratings. The left plot runs from the mini-
mum value 0 to value 20, the right plot runs from values 10 to the maximum
value 107.4.

Scholar TimeRank TotCit PageRank Hirsch
LW 107.45 1242 0.459 15
NJE 106.32 1141 0.438 14
AFJR 103.52 1757 1.335 16
WG 103.36 3240 2.139 21
TNL 102.61 1288 0.800 14
LL 100.72 2687 1.411 24
MSV 99.91 750 0.377 9
MZ 97.76 637 0.563 9
KWB 97.41 967 0.571 11
LB 94.91 1396 0.757 16

Table 2: The table shows the top-10 scholars ranked with respect to TimeR-
ank, as well as the corresponding ratings for traditional bibliometric measures:
TotCit, PageRank, Hirsch index.
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Figure 6: Scatterplots of TimeRank versus TotCit, PageRank and Hirsch index

of his time reading papers authored by him (out of 7126 other authors). Nev-
ertheless, he is in 4th position in TimeRank ranking, with a rating of 103.36.
The leader of TimeRank ranking is instead LW, with a rating of 107.45. He is,
however, ranked 9th in the TotCit compilation, with 1242 citations (38% of the
citations accrued by WG) and only 18th in the PageRank listing, with a score
of 0.459 (22% of WG’s score).

How can we explain these figures? Recall that the TimeRank of a scholar
can be decomposed in the sum of rewards for citations he received from other
scholars. With this in mind, notice that the mean reward of LW is 0.09 (with
a standard deviation of 0.22), while the mean reward of WG is 0.03 (standard
deviation is 0.09). The frequency of large rewards (greater than 0.5) is 7.2%
for LW, corresponding to a share of 65.3% of his final rating. The frequency
of large rewards is 0.5% for WG, corresponding to a share of 9.8% of his final
rating. These numbers are given in Figure 8. All in all, despite the fact that
WG received more citations, his rewards are smaller. On the other hand, LW
obtained fewer but larger citation rewards. This leads to a TimeRank for the
two scholars that is similar, with a little advantage for LW.2

3.2 Clustering scholars

While the TimeRank ratings provide a total order over scholars, it might happen
that two or more scholars lie on different ranks but have similar ratings. The
goal is then to group scholars in performance classes (or clusters), where a
performance class is informally defined as a set of scholars with low intra-class
rating distances and high inter-class rating distances.

2One might argue that these results are influenced by the fact that the dataset covers the
period from 2000 to 2016, with WG publishing from 2001 and LW only from 2007. In fact, this
is not the case. We repeated all experiments from 2007 and the outcomes do not significantly
change.
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Figure 7: A visualization of top-10 rankings using TimeRank, TotCit, PageRank
and Hirsch index. Lines connect the same scholar in the two rankings and line
width is proportional to the rank displacement of the scholar.
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We used average-linkage hierarchical clustering to assign scholars to perfor-
mance classes. The natural choice for the distance between two scholars is the
absolute difference of the ratings of the scholars (the Euclidean distance). Since
the clustering space has one dimension (all ratings can be arranged on a line),
the resulting clusters of scholars are in fact contiguous intervals.

We first ran the clustering method on all the 7259 scholars, asking for k
clusters, with k ranging from 1 to 12. The number 12 is the optimal number of
clusters according to 4 indices of the NbClust R package [Charrad et al., 2014],
assessed on a range from 2 to 15. Table 3 describes the resulting cluster intervals
for all scholars. Notice that a couple of clusters are particularly robust: the top
ranked scholars (those ranked up to position 21), and the bottom ranked scholars
(in particular those ranked from position 774). Clusters tend to be smaller and
more abundant in the top part of the ranking, meaning that this is the part of
the ranking to which most of the rating variability can be traced. For instance,
when we divide the ranking in 12 clusters, we have that 7 of them cover the top
120 scholars, and only 5 clusters cover the remaining 7139 authors.

In order to focus only on the top part of the ranking, we selected the top-
84 rated scholars and repeated the clustering on them. Table 4 describes the
resulting cluster intervals for top scholars, and Figure 9 depicts the cluster
dendrogram. The optimal number of clusters suggested by the NbClust package
is 3. The top cluster [1, 21] is still present, but it soon splits into smaller
intervals, and when 10 clusters are found, it is decomposed into the following 5
clusters: [1,2], [3,5], [6,9], [10,16], and [17,21].

An alternative method to identify performance classes based on a ranking
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1 – – – – – – – – – – – 7259
1 – – 22 – – – – – – – – 7259
1 – – 22 – – – – 183 – – – 7259
1 – – 22 – – 85 – 183 – – – 7259
1 – – 22 – – 85 – 183 – 774 – 7259
1 – – 22 – 53 85 – 183 – 774 – 7259
1 10 – 22 – 53 85 – 183 – 774 – 7259
1 10 – 22 – 53 85 121 183 – 774 – 7259
1 10 – 22 – 53 85 121 183 449 774 – 7259
1 10 17 22 – 53 85 121 183 449 774 – 7259
1 10 17 22 37 53 85 121 183 449 774 – 7259
1 10 17 22 37 53 85 121 183 449 774 2404 7259

Table 3: Clusters (intervals) of all scholars. The table reads as follows. Scholars
are sorted in decreasing order of rating and numbered from 1 to 7259, where 1
is the highest rated scholar and 7259 is the lowest rated scholar. Each line k,
from 1 to 12, corresponds to a clustering of scholars into k contiguous intervals.
Each value in a line is the index of the scholar that starts a new group. For
instance, line 4 identifies the following 4 intervals of scholars: [1, 21], [22, 84],
[85, 182], [183, 7259].

1 – – – – – – – – – 84
1 – – – – 22 – – – – 84
1 – – – – 22 – – 53 – 84
1 – – 10 – 22 – – 53 – 84
1 – – 10 17 22 – – 53 – 84
1 – – 10 17 22 – 37 53 – 84
1 – – 10 17 22 – 37 53 64 84
1 – 6 10 17 22 – 37 53 64 84
1 – 6 10 17 22 26 37 53 64 84
1 3 6 10 17 22 26 37 53 64 84

Table 4: Clusters (intervals) of top-84 scholars. See caption of Table 3 for
details.
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Figure 9: Cluster dendrogram for top-84 scholars.

is to use percentiles. The percentile-based method groups scholars by counting
them. For instance, if we want to cluster the top-100 scholars into 10 clusters,
the percentile-based method first sorts scholars in decreasing order of rating and
then assigns the first 10 scholars to the 1st cluster, the second 10 scholars to the
2nd cluster, and so on. The resulting classes therefore all have the same number
of members and, if scholar ratings are not homogeneously distributed on the
rating line, they might contain scholars with significantly different ratings. On
the other hand, the cluster-based method we have used takes into consideration
the actual distance between scholar ratings. Hence, the resulting clusters might
reflect substantively different performance classes.

3.3 Sensitivity

The most important original ingredient of TimeRank is its sensitivity to timing:
the citing reward for j when he is cited by i is defined with respect to the ratings
of both i and j at the citation time. On the other hand, static bibliometric
indicators are not sensitive to the timing of citations. In this section we explore
and quantify the sensitivity of TimeRank to timing.

To this end, we devised the following experiment. The dataset we use
in our experiments can be represented as a table with three columns: citing
scholar, cited scholar, and timestamp. By permuting the order of citations
(first two columns), while the timestamp column is maintained fixed, we sim-
ulate a dataset with the same citations but with different timing of citations.
Since all citations are exactly the same, static bibliometric indicators do not
change their output on the simulated dataset. On the other hand, we expect
TimeRank to be sensitive to timing and hence to compute a different output
on a simulated dataset. We generated 1000 simulated datasets and computed
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Figure 10: Histogram of simulated ratings for the top rated scholar. The red
curve is the kernel density estimation of the simulated ratings while the green
vertical line corresponds to the real rating.

the TimeRank ratings on each dataset. Hence, for each of the 7259 scholars,
we have 1000 simulated ratings computed on the simulated datasets plus one
rating computed on the real dataset.

Figure 10 depicts the histogram of the simulated ratings for one scholar (the
leader of the ranking) as well as the real rating of the scholar. The distribution
of the ratings follows a bell-shaped curve and is not centered around the real
rating. If TimeRank were not sensitive to timing, then all simulated ratings
would be equal to the real rating. Figure 11 shows the minimum, median and
maximum of the simulated ratings for all scholars ranked from 1 to 100 (the top
100 scholars). Once again, if TimeRank were not sensitive to timing, then the
three lines would coincide. On the contrary, the width of the band determined
by the maximum and minimum values is on average 17% of the median, with a
peak of 24% for the median. On the set of all scholars, the mean coefficient of
variation of the simulated ratings is 4% with a peak of 17%. The mean distance
between a typical simulated rating and the real rating is 10% of the real rating.
We can conclude that, in general, TimeRank is significantly sensitive to timing,
as intended.

Finally, we explore the sensitivity of TimeRank ratings to the parameter ζ.
We have seen in Section 2 that extreme values of this parameter, that is values
very close or very far from 0, are not meaningful. In our experiments, we used
the intermediate value of 16. How sensitive are the ratings to values of ζ close
to the chosen one? We computed the ratings for the following values of ζ: 2,
4, 8, 16, 32, 64, 128, and 256. It turns out that the sensitivity to changing the
parameter is very low: the ratings with different values of the parameter are
highly correlated; see Figure 12. Hence, any intermediate value of the parameter
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Figure 11: Minimum, median and maximum simulated ratings for the top-100
scholars.

ζ is suitable.

4 Related work

Author-level indicators have found widespread adoption in modern science [Wildgaard
et al., 2014]. A set of simple output indicators are among the most used: the
number of publications, the number of received citations or the mean number
of received citations. Several indicators qualify outputs globally, for example
using variants of the PageRank [Page et al., 1999]. Yet other indicators have
been extensively adopted amidst some controversy, such as the Hirsch index
[Hirsch, 2005; Waltman and van Eck, 2012]. In recent years, the great variety
of proposed indicators has led the bibliometrics community to focus on their
critical appreciation and practical use [Hicks et al., 2015].

PageRank and its variants are perhaps the indicators best suited to accom-
modate time dynamics [Fiala et al., 2008; Waltman and Yan, 2014; Radicchi
et al., 2009; Yan and Ding, 2011; West et al., 2013]). The basic intuition of
PageRank and its variants, that is to account for both the quantity of en-
dorsements and the prestige of endorsers, has also been implemented by other
methods (e.g. the AP-Rank [Zhou et al., 2012] or the P-Rank [Yan et al., 2011]).

Many real-world networks are in fact time-resolved: the date of each interac-
tion between pairs of vertices, which forms an edge of the network, is recorded.
Temporal networks, also called time-varying or dynamic networks, are graphs
in which edges are labelled with temporal information about the relationship
between the edge nodes. The static network analysis toolkit, including central-
ity measures, has been extended to dynamic networks [Holme and Saramäki,
2012; Nicosia et al., 2013; Holme, 2015]. Our work naturally embeds into this
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2 0.999 0.994 0.987 0.980 0.972 0.955 0.927

4 0.998 0.993 0.986 0.976 0.957 0.926

8 0.998 0.992 0.981 0.960 0.928

16 0.998 0.988 0.967 0.933

32 0.996 0.979 0.949

64 0.993 0.973

128 0.992

256

Figure 12: Scatterplot matrix of TimeRank ratings varying the parameter ζ.
The matrix reads as follows. Each cell (i, j), with i > j (lower part of the
matrix) contains a scatterplot with regression line and the mirror entry (j, i)
(upper part of the matrix) contains the corresponding Pearson correlation co-
efficient. The diagonal entries (i, i) and (j, j) contain the ζ parameters used for
the computation.
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context, since the scholar citation network we use is an instance of a temporal
network in which citation links are timestamped with the time of publication
of the citing paper. Static ranking methods applied to dynamic and evolving
networks have been found to exhibit important shortcomings [Liao et al., 2017],
consequently a variety of dedicated methods have been put forward.

Several PageRank variants have been proposed which address the problem
of the method’s bias towards older nodes (see e.g. Nykl et al. [2014]; Fiala
et al. [2015a]). Usually a decaying weighting scheme is introduced, in order to
increasingly penalise older edges/nodes and favour recent ones (see inter alia
Xing and Ghorbani [2004]; Ding [2011]; Yan and Ding [2011]; Fiala et al. [2015b];
Kong et al. [2015], for a review [Liao et al., 2017, 4.2]). Some other approaches
exist. For example, Fiala [2012] used publication date information to weight
the edges in author citation networks, weighted by considering co-authorship
relations, while Jiang et al. [2016] proposed a cognitive interpretable ranking
for articles in evolving networks, based on four steps: knowledge production,
diffusion, accumulation and decay. The method also outputs time series which
can be further analysed.

The dynamic method proposed in this paper borrows in part from methods
developed in the context of the quantitative analysis of sport competitions. In
particular, it is related to the Elo system [Elo, 1978; Langville and Meyer, 2012],
a method coined by Arpad Elo to rank chess players and adopted by the World
Chess Federation as the official rating system in chess. The method updates
the rating of a player proportionally to the difference between the actual and
expected performances of the player during a match. The expected performance
is computed using a logistic function of the rating difference between the players
of the match, similar to the one we used to define the citation rewards. Similar
time-varying rating methods are typical in sport competitions, where season
matches are distributed in time and there is the necessity of obtaining partial
ratings for players or teams during the season; see for instance Motegi and
Masuda [2012]; Cattelan et al. [2013]; Bozzo et al. [2017]. There are, however,
some important differences between the dynamics of sport competitions and
bibliometrics:

1. bibliometrics introduces an important asymmetry in the model: a citation,
is, in most cases, a reward for the cited scholar, but it is not a penalty for
the citing scholar;

2. bibliometrics is more flexible in the timing of the citations: while it is not
possible for the same player to play twice at the same time, it is normal
for a scholar to cite or be cited many times with the same timestamp;

3. the distribution of citations among scholars is typically very skewed, with
few scholars collecting the majority of citations. On the other hand, in
sport competitions, the number of played games among players is quite
stable. For instance, in round-robin competitions (like soccer national
leagues), all teams play the same number of games;
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4. finally, a player cannot play against himself. On the other hand, self-
citation is an established practice in bibliometrics.

Recent work applies the Elo method to the ranking of journals [Lehmann and
Wohlrabe, 2017], and compare with established solutions such as the Source Nor-
malized Impact per Publication (SNIP). The authors simulate a yearly round-
robin ‘competition’ between each pair of different journals and consider the
outcome of a match between journals a win for whoever has the higher SNIP
score at that year, or a tie if the two journals have equal SNIP score. The journal
ratings are updated every year using the Elo system. The authors suggest that
the time line of competitions brings new information in the ranking of journals,
which was not previously accounted for, and claim that the Elo ranking seems
a promising alternative to already existing ranking approaches.

5 Conclusions

We presented TimeRank: a method for rating scholars which accounts for the
dynamic nature of the scientific process. Our method updates the rating of a
scholar when a citation is received, by considering the relative rating of the citing
and cited scholars at the time of the citation. The method is demonstrably sensi-
ble to citation timing and consistent provided an appropriate parameter choice.
With this system, the quantity, quality and timing of citations all contribute
to the final rating. Interestingly, the rating for a scholar can be decomposed
into a time series of citation rewards. The analysis of the temporal evolution
of rewards can discriminate between similarly rated scholars that in fact have
quite different citation reward histories.

We applied our method on the bibliomerics community finding that it be-
haves differently from alternatives such as total number of citations, PageRank
and the Hirsch index, especially for the top rated scholars. The method specifi-
cally levels-out the distance between established researchers who were gradually
recognized in their community, and rapidly rising stars who were able to accrue
citations from highly rated scholars early on in their careers. Our proposed
method can be best applied in situations when all quantity, quality and timing
are relevant, for example by committees involved in the decision to hire early-
stage researches, who might be interested in detecting rising stars (i.e. young
scholars who received early recognition from higher-rated scholars).
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