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Artur Niewiarowskib, Marek Stanuszekb

aComplex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of
Sciences, Kraków, Poland

bFaculty of Physics, Mathematics and Computer Science, Cracow University of
Technology, Kraków, Poland

Abstract

By mapping the most advanced elements of the contemporary social inter-
actions, the world scientific collaboration network develops an extremely in-
volved and heterogeneous organization. Selected characteristics of this het-
erogeneity are studied here and identified by focusing on the scientific col-
laboration community of H. Eugene Stanley - one of the most prolific world
scholars at the present time. Based on the Web of Science records as of
March 28, 2016, several variants of networks are constructed. It is found
that the Stanley #1 network - this in analogy to the Erdős # - develops a
largely consistent hierarchical organization and Stanley himself obeys rules
of the same hierarchy. However, this is seen exclusively in the weighted net-
work representation. When such a weighted network is evolving, an existing
relevant model indicates that the spread of weight gets stimulation to the
multiplicative bursts over the neighbouring nodes, which leads to a balanced
growth of interconnections among them. While not exclusive to Stanley, such
a behaviour is not a rule, however. Networks of other outstanding scholars
studied here more often develop a star-like form and the central hubs con-
stitute the outliers. This study is complemented by a spectral analysis of
the normalised Laplacian matrices derived from the weighted variants of the
corresponding networks and, among others, it points to the efficiency of such
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a procedure for identifying the component communities and relations among
them in the complex weighted networks.

Keywords: complex weighted networks, scientific collaboration,
communities, scientometrics, Erdős number generalised
PACS: 89.75.-k, 89.75.Da, 89.75.Hc, 02.10.Ox

Highlights

• Complexity characteristics of the scientific collaboration networks of
several world renown scholars are studied.

• Scientific collaboration community of H. Eugene Stanley self-organizes
into a scale-free hierarchy but this is seen exclusively in the weighted
network representation.

• Such a network organization indicates that during its evolution the
spread of weight gets stimulation to a balanced growth of interconnec-
tions among them.

• Collaboration networks of other world’s outstanding and prolific schol-
ars often develop a star-like form and the central hubs constitute out-
liers.

• Spectral decomposition of the normalised Laplacian matrices is shown
to be efficient in disentangling internal community ties.

1. Introduction

The accelerating process of world globalization embraces and pervades
all aspects of the human activity. Contemporary means and standards of
conducting the scientific investigations deserve a special attention in this
context as their progress at the same time constitutes both the condition
and the result of this world globalization process. Indeed, the world most
advanced scientific contemporary initiatives are based on multinational and
often even on highly multidisciplinary collaborations. Some of them, like
the ones carrying out the high energy physics experiments at CERN and at
DESY in Europe, at Fermilab and at Brookhaven in the US, at KEK in Japan
or the ones conducting the global astronomical sky-observations, are largely
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administratively arranged as far as their organization and staff involved is
concerned. Typically this predetermines the co-authorship composition, usu-
ally very numerous, of the resulting, also numerous, publications. However,
there recently emerge more spontaneous and at the same time more dynam-
ical forms of the scientific cooperation. In most cases they are driven by
the contemporary interdisciplinary trends in research, such that they involve
a group of renown scientists (or even a single one) who, by their ability to
create a scientifically stimulating environment, attract others to a produc-
tive collaboration, which proliferates further through various disciplines and
diversified co-authorship compositions (Adams, 2012).

Paul Erdős, the famous Hungarian mathematician (De Castro & Gross-
man, 1999), who has written over 1400 papers with over 500 co-authors
and who thus inspired the concept of the Erdős number, can be considered
a forerunner. At present an even more spectacular cascading of scientific
collaboration of this kind can be observed. In this regard H. Eugene Stan-
ley, professor at the Boston University, whose scientific activity comprises
a broad range of areas such as Aggregation, Viscous Fingering, Statistical
Physics, Phase Transitions, Critical Phenomena, Granular Materials, Sur-
face Physics, Econophysics, Chemistry, Water, Social Networks, Physiology,
Medicine, and Neuroscience, and his constantly increasing number of collab-
orators create a particularly interesting phenomenon to study. H.E. Stanley’s
h = 125 index due to N = 1208 published articles co-authored in total by 738
scientists, as on March 28, 2016, listed by the Web of Science (WoS), with
all these figures constantly increasing (currently h = 134 and N = 1301) pro-
vides a formal evidence of this great success and his scientific collaboration
network (SCN) deserves thus a particular attention.

Studying characteristics of various aspects of the scientific collaboration
potentially constitutes a significant contribution towards understanding the
structure and dynamics of the social interactions (Luukkonen, Persson, &
Sivertsen, 1992; Katz, 1994; Grossman & Ion, 1995; Jin, Girvan & Newman,
2001; Liljeros et al., 2001; Jiang et al., 2013) but, first of all, it is of great
importance for an efficient stimulation of the future science development
(Wilsdon, 2011; Ausloos, 2013; Mískiewicz, 2013; Bourgrine 2014; Ausloos,
2014a; Rotundo, 2014). Quantifying properties of the scientific collaboration
networks in an informative and transparent way becomes highly facilitated
(Barabasi et al., 2002; Li et al., 2007; Palla, Barabási & Vicsek, 2007; Lee,
Goh, Kahng & Kim, 2010; Liu, Xu, Small & Chi, 2011) thanks to the great
advances in the field of network theory (Albert & Barabási, 2002). Most of
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the existing related works study the global properties of the collaboration
networks (de Solla Price, 1965; Wagner & Leydesdorff, 2005; Wuchty, Jones
& Uzzi, 2007; Freeman, Ganguli & Murciano-Goroff, 2014), including their
evolutionary aspects (Newman, Strogatz & Watts, 2001a; Newman, 2001b;
Newman, 2001c; Newman, 2004; Tomassini & Luthi, 2007), or occasionally
point to the individual country contribution (He, 2009; Perc, 2010). Fewer
works focus on characteristics of the selected scientists (Ding, 2011) in their
creative role and of the range of their influence in the collaboration net-
work. In order to make this issue and the related characteristics even more
exposed, here, for several most outstanding scholar figures working in the
domain of exact sciences, with a particular focus on H. Eugene Stanley, we
generate their collaboration networks based exclusively on all the publica-
tions involving that particular scholar. Nodes then represent all the authors
who appeared in any of the common publications and the links among them
are assigned when their names appear together in the same publication. By
construction, a node representing the author X defining such a network con-
stitutes the central hub and all the other nodes in such a network have the
collaboration number 1 relative to X, which by analogy to the Erdős number
can be termed the X number 1 (X #1).

2. Network construction and description

All the results presented in this work have been obtained using the data
downloaded from the Web of Science. This website provides one of the
most reliable and complete scientometrics sources. It covers many scientific
disciplines belonging both to the exact sciences, to engineering as well as
to the life sciences. Still, ensuring that all scientists are clearly identifiable
and distinguishable, as needed in the present analysis, appears a highly non-
trivial task. There are several elements that demand a special care. One
particularly important is a proper distinction of different scientists. As it has
already been estimated (Newman, Strogatz & Watts, 2001a; Newman, 2001b;
Perc, 2010), about 5% of all scientists have the same initials and surnames.
What is even more troublesome is that there exist different scientists having
the same name and the same surname as well. In order to overcome such
an equivocation, an additional criterion of the scientific affiliation has been
applied. This of course helps, but does not resolve the problem entirely due
to the significant mobility of scientists. Another problem is the presence of
typos in the names and surnames. Such possible errors have been taken care
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of by using the Levenshtein measure (Levenshtein, 1966) to strings of letters,
here representing the names and surnames.

As in essentially all the network cases, the topology of SCN can be ex-
pressed by its adjacency matrix A whose elements aij assume the value 1,
thus express existence of the resulting link, if the authors i and j co-author
at least one publication. Otherwise aij equals 0. The corresponding i-th

node degree ki =
∑N

j=1 aij , where N is the total number of authors (nodes)
within the network. Complete description of SCN requires, however, taking
into account not only its topology but also the weights of the links among
the nodes (Newman, 2001c; Boccaletti et al., 2006). In SCN the weight of
a given link is determined by the number nij of publications co-authored by
the i-th and j-th authors. The so-weighted i-th node degree, denoted as kw,
can be written as kw

i =
∑N

j=1 aijnij.
A more sophisticated way of introducing strengths of the collaborative ties

is to account for the varying number ml of the co-authors of the corresponding
publication l by defining

sij =
∑
l

δliδ
l
j

ml − 1
, (1)

where δli is 1 if the author i is a co-author of the publication l and zero
otherwise and l runs over all the publications involved (Newman, 2001c).
Thus,

si =
∑
j(6=i)

sij (2)

expresses the collaborative strength of the author i since, as it can be easily
verified by substitution, si =

∑
k δ

k
i just equals the number of papers that i

has co-authored with others. Distributions of the above three variants of the
node degrees will be studied below.

Another topologically informative network measure is the clustering co-
efficient, which for a node i with ki links (edges) is defined as

Ci = 2qi/ki(ki − 1), (3)

where qi is the number of edges between the ki neighbours of i. In the case of a
hierarchical network, the clustering coefficient of a node with k links follows
the scaling law C(k) ∼ k−1 (Ravasz & Barabási, 2003). Extension of the
clustering coefficient concept to incorporate weights is not unique, however.
In the literature there exist several equally acceptable definitions, but all
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among themselves they result in the different distributions and therefore will
not be considered here.

3. Stanley’s scientific collaboration network

A sketch of the network central to the present study is shown in Fig. 1.
This is the H. Eugene Stanley’s (HES) scientific collaboration network where
738 nodes represent the scientists co-authoring publications with HES up to
March 28, 2016. By analogy to the Erdős number, these are thus all scien-
tists whose Stanley number equals 1. Links are drawn between the nodes if
there exists a publication co-authored by the corresponding scientists. By
construction the node representing HES is linked with all the other nodes and
thus constitutes a central hub in this network. There are also direct links
between other nodes and this reflects the presence of multiple-author publi-
cations. As some of the scientists co-authored many publications with HES
in various author compositions, they give rise to several sub-hubs whose ini-
tials are explicitly indicated in Fig. 1. The numbers of common publications
with HES (denoted as LHES), together with their full names, are listed in the
Table 1. This Table lists also some other selected names from the Stanley
#1 network, their number of publications LHES co-authored by HES, their
entire number LTOT of publications and, for those whose networks are ex-
plicitly drawn in Figs. 4-6, the numbers (in parentheses) of publications with
no co-authors (L1).

Explicitly indicated are also those lower-rank nodes in this particular
network that represent other renown scientists whose own scientific collabo-
ration networks have an interesting organization. Depending on the number
of common publications, the links have different weights. This is taken into
account in the lines thickness in Fig. 1.

The structure of the network in Fig. 1 already visually indicates its hi-
erarchical organization. This organization appears, however, subtle, what
finds quantitative evidence in terms of the relations between the three node-
degree-related measures introduced above, i.e., k, kw and s. Their cumulative
distributions, defined as

P (X ≥ x) ≡

∫ ∞

x

P (x′)dx′, (4)

where x denotes either k, kw or s, are shown in the log-log scale in the
first and the second lower panels of this Fig. 1. The scaling exponents are
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Figure 1: H. Eugene Stanley’s (HES) scientific collaboration network (Stanley #1) de-
termined by all his 1208 publications listed by the Web of Science as of March 28, 2016.
Nodes denote all co-authors of these publications and links are drawn between those au-
thors whose names appear in the same publication. The three lower panels include (i) the
cumulative degree distributions, both unweighted P (k) (gray dots) and weighted P (kw)
(black dots), (ii) cumulative strength distributions P (s) and (iii) the clustering coefficient
C(k) distribution, all characteristics for this network. Fits are indicated by the dashed
lines, while the slope indicated by the dotted line serves guiding the eye.

evaluated by linear regression in the log-log scale using the Maximum Likeli-
hood Estimation (MLE) and the R2 coefficient, as an error of this regression,
reflects the goodness-of-fit statistics (Clauset, Shalizi & Newman, 2009).
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Author LHES/LTOT (L1)

Stanley, H.E. (HES) 1208/1208 (47)

Havlin, S. (SH) 307/697 (9)

Buldyrev, S.V. (SB) 267/319 (4)

Amaral, L.A.N. (LA) 81/165

Sciortino, F. (FS) 69/153

Ivanov, P.C. (PI) 65/117

Peng, C.-K. (CP) 62/158

Goldberger, A.L. (AG) 62/376

Plerou, V. (VP) 55/59

Podobnik, B. (BP) 49/118

Barabási, A.-L. (AB) 22/263 (26)

Kertész, J. (JK) 11/243

Vicsek, T. (TV) 6/235 (25)

Ausloos, M. (MA) 2/555 (41)

Tsallis, C. (CT) 1/367 (60)

Table 1: Statistics of H.E. Stanley (HES) and some of his collaborators: the number of
all publications of a given author (LTOT), the number of publications coauthored by HES
(LHES), and the number of considered monographs (L1).

Clearly, in all the three distributions there are segments where the straight
line fits can be applied, pointing to some underlying scale-free effects that
this network develops. At the same time, there are several essential quan-
titative differences in the corresponding characteristics, however, especially
between the unweighted (P (k)) and the weighted (P (kw), P (s)) cases. For
P (k) a straight line fit P (X ≥ k) ∼ k−γ applies in the k-interval of about
10−100 with γ ≈ 2 that in differential representation corresponds to 3. This
thus indicates that the intermediate k-degree nodes develop links that not
only make them belonging to the preferential attachment universality class of
networks, but even correspond exactly to the Barabási-Albert model (Albert
& Barabási, 2002). The central hub, HES, possesses, however, dispropor-
tionately more k-degrees and forms a clear outlier. Very interestingly, this
effect disappears almost completely when the link weights, either expressed
through kw or s, are taken into account. Within these two measures, the node
degree distributions, including HES, tend to align along the same straight
line. The corresponding best fit for P (kw) results in γw ≈ 1.01 and for P (s)
in γs ≈ 1.14. In fact, in P (s) such a fit applies to all the scales and even the

8



initial flattening of the Zipf-Mandelbrot type for the low-degree nodes seen
in P (k) and in P (kw), present also in other scientometrics analyses (Aus-
loos, 2014b), disappears. This resembles observations made in the linguistic
context (Kulig, Kwapień, Stanisz & Drożdż, 2017). There, by including the
punctuation marks in the Zipfian analysis, in addition to words, corrects an
analogous flattening such that the Mandelbrot’s amendment appears largely
redundant and thus our language emerges as a more consistent composition
on all the scales. The present result may thus be taken as an additional
indication that the strength of the collaborative ties, as defined by Eq.(1),
offers the most consistent way of weighting the author’s contributions.

Overall hierarchical organization of the HES network is also confirmed by
the coefficient C(k) of a node with k degrees whose scaling law C(k) ∼ k−1

(Ravasz & Barabási, 2003) asymptotically appears to be convincingly obeyed
as it can be seen in the lower rightmost panel of Fig. 1.

4. Networks of Erdős and Witten

In order to confront organization of the HES network with other possi-
ble organizations in this kind of networks, in Fig. 2 we show two analogous
scientific collaboration networks: one for Paul Erdős and another for the
influential mathematical physicist Edward Witten, whose h-index of 131 in
March 2016 (currently h = 134) can be identified as the highest among active
researchers representing or originating from the exact sciences. The scien-
tometrics characteristics, including the numbers of articles published, the
total numbers of co-authors in these published articles and the correspond-
ing h-indices of these two scientists and of HES, correspondingly, are listed
in Table 2.

* Based on Web of Science P. Erdős E. Witten H.E. Stanley

Number of articles 1246 319 1208
Number of collaborators 391 140 738

h–index 60 131 125

The Web of Science (WoS) (http://www.webofknowledge.com) does not
list all commonly recognized Erdős’ publications. A much more extended list
of Erdős’ works, including all those listed by WoS, is provided by the Erdős
Number Project, which studies research collaborations among mathemati-
cians and is maintained at the Oakland University (http://oakland.edu/enp/).

9

http://www.webofknowledge.com


Exceptionally, it is thus this list, instead of WoS, which is used here to con-
struct the Erdős collaboration network. This source qualifies 1246 Erdős’
works as scientific publications, with 391 co-authors. At the same time this
site notes that the total number of Erdős publications equals 1525 with 511
co-authors; apparently not all fulfilling the criteria imposed. As far as Wit-
ten is concerned, all his recognized publications are listed by WoS including
even three multi-author conference contributions.

Clearly, topology of the two networks in Fig. 2 is not as extended in terms
of the number of internal links as the one of HES. They both have a visibly
dominant star-like component and scaling of the pure topology related P (k)
(gray dots in Fig. 2) can hardly be claimed. When the weights are taken
into account, some partial scaling appears, however. In the Erdős’ network
the weighted degree distribution P (kw) resulting from links among the other
nodes displays an approximate scaling over almost two decades in kw, with
γw ≈ 1.55. It has thus a lower intensity of weighted links than in the HES
case. As a result the Erdős’ node still constitutes an outlier whose kw is by
another one order of magnitude separated from all the others. Similarly, the
clustering coefficient C(k) is much compressed towards smaller k as compared
to HES and only one point representing Erdős himself remains an outlier.
Interestingly, however, it is placed not much below the slope of γ = 1.

The Witten’s node in his collaboration network is also an outlier, but
essentially the links among other nodes give rise to any scaling neither in
their weighted degree distribution P (kw) (open circles) nor in the cluster-
ing coefficient C(k). This non-homogeneity in the Witten’s network appears
to be caused predominantly by the three multi-author publications men-
tioned above. Removing these three publications results in the distributions
sketched by the black dots. Then the two characteristics become qualitatively
similar to those of Erdős with an even lower intensity of links as expressed by
the corresponding γw = 1.47 in the distribution of weighted degrees. As far
as the range and quality of scaling is concerned, similar tendency is displayed
by the strength P (s) distribution shown in the lower panels of Fig. 2. It is
thus evident that, contrary to the HES network, the two hubs, Erdős’ and
Witten’s, in their SCNs stay by far out of the distributions resulting from
the node degrees of the other members of the corresponding networks.

For completeness one may here mention the two obvious extremes of the
collaboration networks. On the one side, there is a case of no co-authors at all
through the entire scientific activity (like, for instance, the Paul A.M. Dirac’s
one). The collaboration network then reduces itself to a trivial single node.
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Figure 2: Paul Erdős’ (left) and Edward Witten’s (right) scientific collaboration networks,
thus Erdős #1 and Witten #1. Open dots in Witten’s case indicate cumulative degree
distribution P (k) when the three clusters of nodes seen in this network are included.
Otherwise the same convention as in Fig. 1 is used.

On the opposite side, there are large collaborations of nearly fixed number
of participants publishing papers always in the same author compositions.
In the corresponding collaboration network any node is connected to all the
remaining nodes and thus all of them have the same number of connections,
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thus the same degree. This kind of a network approximately represents large,
predominantly administratively established collaborations.

Figure 3: Time evolution of H. Eugene Stanley’s (HES) scientific collaboration network
(Stanley #1) between 1975 and 2015 with the snapshots taken every 10 years, with the cor-
responding clustering coefficient and degree, both unweighted and weighted, distributions
in the lower panels. The same convention as in Fig. 1 is used.

All the above possibilities indicate that the HES network, with its hier-
archical organization through all levels, is an exception rather than a rule
and that it therefore deserves a special attention, indeed. Such a collabo-
ration network is of course a dynamical phenomenon and, definitely, some
time is needed to attain not only this kind of richness but also a proper bal-
ance of links between all the participating nodes. The way the HES network
has been evolving since the beginning of his scientific activity is illustrated
in Fig. 3 with the five snapshots taken every 10 years between 1975 and
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2015 with the corresponding degree, both unweighted and weighted, and the
clustering coefficients distributions in the lower panels. Judging from these
degree distributions a fully developed hierarchical organization had already
been attained in around 1995.

5. Networks of Ausloos, Barabási, Buldyrev, Havlin, Tsallis, and

Vicsek

As it can be seen in Fig. 1, the two dominant sub-hubs in the HES
network are those representing Shlomo Havlin (SH) and Sergey V. Buldyrev
(SB), the long-term principal collaborators of H. Eugene Stanley. Their own
collaboration networks, respectively Havlin #1 and Buldyrev #1, are thus
sizeably overlapping with the one of HES. It is therefore natural to expect
that they share some characteristics of its hierarchical organization. These
two networks are shown in Fig. 4 together with the corresponding degree,
both k and kw, strength s, and the clustering coefficient C(k) distributions.
Some parallels can easily be seen like, for instance, the fact that in both
networks their central hubs, SH and SB, essentially align with the overall
trend of the weighted degree distributions in these networks and, thus, they
are not outliers. The quality of scaling of the weighted degree distributions
is somewhat poorer, especially for SB, as compared to HES, but if one insists
on fitting a single straight line, then the result for both P (kw) and P (s) is
consistent with γ ≈ 1 in both networks, similarly as for HES.

Among the nodes that appear in the HES scientific collaboration network,
one can identify many extremely renown scholars. Several of them are explic-
itly indicated in Fig. 1 and among those some constitute further significant
hubs in addition to the two shown in Fig. 4. The other nodes, rather periph-
eral in this network, are explicitly indicated for the reason that their own
scientific collaboration networks also display a diverse organization. Four
such cases, including Marcel Ausloos (MA), Albert-László Barabási (AB),
Constantino Tsallis (CT), and Tamás Vicsek (TV), are shown in Figs. 5 and
6.

Clearly, out of these four, the most homogeneous hierarchical organiza-
tion is revealed by the scientific collaboration network of Marcel Ausloos
(Ausloos #1), whose weighted degree distributions, in both kw and s, scale
over more than two decades with the scaling exponents, γw and γs, very
close to unity. In this respect, it resembles most the HES case over the pe-
riod 1995-2005. The three dominant sub-hubs in the MA network are due to
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Figure 4: Shlomo Havlin’s (SH, left) and Sergei V. Buldyrev’s (SB, right) scientific col-
laboration networks, thus Havlin #1 and Buldrev #1, with the corresponding cumulative
unweighted and weighted degree distributions and the clustering coefficient distributions.
The same convention as in Fig. 1 is used.

Rudi Cloots (143 common publications with MA), Nicolas Vandewalle (75
common publications), Phillipe Vanderbemden (62 common publications),
and André Rulmont (54 common publications). Similarly, the clustering co-
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efficient of a node with k links for the Ausloos network follows the scaling
law C(k) ∼ k−1 with quality comparable to the HES case.

The Barabási’s network (Barabási #1), on the other hand, develops no
homogeneous hierarchical organization as both the lack of scaling in all three
variants of the node degree and in the clustering coefficient distributions
indicate. This, actually, can be inferred directly from the structure of this
network as its concentrations of nodes originate from the sparsely connected
clusters, some of them mediated exclusively by the central hub, here Barabási
himself.

The other two networks, Tsallis #1 and Viscek #1, qualitatively resem-
ble the Erdős’ star-like network with a sparser connectivity of the nodes in
the Tsallis’ network than in the Vicsek’s one as schematically (since scaling
is approximate here) indicated by the straight lines with the slopes γw ≈ 1.4
(Tsallis’) and γw ≈ 1.3 (Vicsek’s). The central hubs constitute outliers sep-
arated from all other nodes in both cases. Consistently, the clustering coef-
ficients develop similar distributions as in the Erdős’ case.

6. Relation to weighted network model

Comparison of the above results clearly shows that it is the weighted
network representation, which allows more complete and informative disen-
tangling of local differences in the scientific collaboration networks and, thus,
offers scientifically more advanced framework. Modelling the observed char-
acteristics of such networks is, however, much more difficult as compared to
the unweighted cases. The main reason for this difficulty is that their growth
involves mutual influence of the dynamics of links and weights and also some
possible elements of the accelerated growth (Dorogovtsev & Mendes, 2002)
allowing appearance of the new links between the already existing nodes. Ap-
parently, it is for these reasons that no sufficient progress has been attained
so far in the rigorous modeling of complex weighted networks.

The most closely related existing model of weight driven growing networks
(Barrat, Berthelemy & Vespignani, 2004), even though still definitely much
simplified in relation to the dynamics underlying evolution of the networks
considered here, offers some preliminary unified view and quantifies ranges for
the exponents of the degree distributions. In this model the usual preferential
attachment (Barabási & Albert, 1999) is extended to the rule ”busy get
busier” (Barthelemy, Barrat, Pastor-Satorras & Vespignani, 2005), in which
new nodes connect more likely to the nodes carrying larger weights and being
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Figure 5: Marcel Ausloos’ (MA, left) and Albert-László Barabási’s (AB, right) scien-
tific collaboration networks, thus Ausloos #1 and Barabási #1, with the corresponding
cumulative unweighted and weighted degree distributions and the clustering coefficient
distributions. The same convention as in Fig. 1 is used.

more central in terms of the interaction strength. Accordingly, the local
rearrangements of weights between i and its neighbours j obeys the simple
rule

wij → wij + ∆wij, where ∆wij = δ
wij

si
, (5)
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Figure 6: Constantino Tsallis’ (CT, left) and Tamás Vicsek’s (TV, right) scientific col-
laboration networks, thus Tsallis #1 and Vicsek #1, with the corresponding cumulative
unweighted and weighted degree distributions and the clustering coefficient distributions.
The same convention as in Fig. 1 is used.

which means that a new link with the node i induces a total increase of
activity δ that is proportionally distributed among the links departing from
this node.

The model thus involves only one parameter δ that reflects the fraction
of weight transmitted by the new link onto the others. δ < 1 corresponds
to such a situation that a new connection does not lead to a more intense
activity on existing links. In particular, for δ = 0 the arrival of a new link
does not affect the existing weights and this model becomes topologically
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equivalent to the Barabási-Albert model (Barabási, 1999). On the other
hand, for δ > 1 a new link multiplicatively bursts the weight on neighbours.
Within this model, in the large time limit, one obtains a power law scaling of
the weighted degree distribution with the scaling exponent for the cumulative
distribution

γs = 1 +
1

2δ + 1
, (6)

with its values γs ∈ [1, 2].
In the networks considered above, by their construction, all the new links

involve the central hubs. From the perspective of this model, a value of
the corresponding empirically determined γs can be viewed as an indication
of how such ’centers of condensation’ stimulate mutual interactions of their
nearest neighbours. HES with his γs ≈ 1.1 and, thus, δ of about 5 appears
very stimulative. Interestingly, the same applies to Marcel Ausloos though
his (Ausloos #1) network is not as large. However, it weekly overlaps with
the HES network (unlike Havlin’s and Buldyrev’s) and can thus be considered
independently.

The opposite can be inferred for the networks from Figs. 2 and 6. Their
central hubs with γs < 1 appear largely neutral in influencing interactions
among the nearest neighbours. As far as this kind of neutrality is concerned,
an extreme case is the Erdős’ SCN, whose δ consistent with γs observed
would be close to zero.

7. Spectral decomposition of Laplacian matrices

The adjacency matrix A records all the information about nodes and
how they are interconnected. The most mathematically consistent way of
formulating this information is in terms of the Laplacian matrix (Bapat,
2014)

L = D−A, (7)

where D is a diagonal matrix composed of the nodes’ weighted degrees.
Equivalently, a normalized Laplacian matrix

L̂ = D−1/2LD−1/2 = I−D−1/2AD−1/2 (8)

is more appropriate for comparative purposes (Chung, 1997).
Thus, studying spectral properties of the Laplacian matrix offers an alter-

native way of getting insight into organization of the corresponding network
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(Merris, 1994). This implies solving the equation

L̂xi = λixi, (9)

which determines the eigenvectors xi and the corresponding eigenvalues λi.
Since L̂ can be expressed as a product

L̂ = BBT , (10)

where B is the incidence matrix, whose rows are indexed by the vertices and
whose columns are indexed by the edges of the network, all the eigenvalues
of the normalized Laplacian are real and non-negative. Furthermore, by
construction the sum of entries in all the rows (or columns) of L̂ is zero
which reduces dimensionality of this matrix (making it singular) and, thus,
results in one zero eigenvalue representing the most collective mode (Drożdż,
Kwapień, Speth & Wójcik, 2002). A null hypothesis of purely random links in
such networks thus corresponds to the Wishart ensemble of random matrices
with the reduced rank (Janik & Nowak, 2003).

In Fig. 7 the eigenvalue distributions for the normalized Laplacian ma-
trices constructed from the strength s for all the nine networks considered
above and for the additional one composed of 2220 nodes including all papers
by HES and also all papers by each of the six authors (MA, AB, SB, SH,
CT, TV), whose own networks overlap with the one of HES and in separa-
tion are shown in Figs. 4-6. This extended network thus already involves
many Stanley #2 nodes and is denoted as All(Stanley). Consistent with the
structure of the normalized Laplacian matrix, Eq.( 8), the eigenvalues are
centered on both sides of unity and one zero eigenvalue is of course always
present. Some correlation between the relative locations of these eigenval-
ues and the weighted degree distributions of the corresponding networks in
Figs. 1-6 can also be seen. When the central node constitutes an outlier in
the degree distribution, the other eigenvalues of L̂, while developing a gap
with respect to the zero mode, are spread more uniformly as compared to
the case of no outlier. In the latter case, connectivity of the nodes in the
corresponding network is larger, which drives a larger fraction of eigenvalues
to be concentrated closer to unity as it is consistent with the Wishart-type
product structure (Eq.(10)) of the matrix L̂.

A very valuable insight into organization of networks is offered by the
eigenvectors xi with components {xj

i} (
∑

j |x
j
i |
2 = 1) as they reflect composi-

tion of the orthogonal ’modes’ in the network (Kwapień & Drożdż, 2012) and
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Figure 7: Eigenvalue spectra of the normalized Laplacian matrices generated from the
strength sij of links as in Eq.(1) for the scientific collaboration networks determined by all
the publications involving the authors listed along the horizontal axis. The additional All
(Stanley) network results from all publications by Stanley and by other six authors (Aus-
loos, Barabási, Buldyrev, Havlin, Tsallis, and Vicsek) whose own collaboration networks,
overlapping with Stanley’s, in separation are shown in Figs. 4-6.

may thus project out communities within the corresponding network (Lan-
cichinetti, Fortunato & Kertész, 2009). The potential of such a procedure
for the most involved case considered here of All (Stanley) is demonstrated
in Fig. 8, which shows the distributions of the eigenvector components xi

j for
the six eigenvectors corresponding to the eigenvalues starting from the lowest
(i = 1) and going upwards to i = 6. The i = 1 eigenvector is seen to repre-
sent the most collective structure as essentially all its components contribute
visibly. The arrows indicate to whom the largest contributions belong. In
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i = 1 they are seen to belong to the dominant hubs and the largest contri-
bution here is due to HES. The other eigenvectors are already much more
selective (and involve the negative sign as well). i = 2 is dominated by Aus-
loos, while i = 3 by Tsallis and by their collaborators, respectively. i = 4
again represents a mixture of the names from i = 1, but here the Buldyrev’s
sector somewhat overtakes. i = 5 and i = 6 on the other hand project
out the Barabasi and Vicsek sectors and their own collaborative relations.
Such a composition of the consecutive eigenvectors is quite understandable
when mutual overlaps and convolutions of the sub-communities inside the
All (Stanley)) network are explicitly inspected. Thus it indicates potential
utility of the procedure sketched here for the community detection in com-
plex networks of larger size, where a visual identification of such effects is
the most likely prohibitively impractical.

8. Summary

As the above explicit inspection of the scientific collaboration networks by
several renown scholars shows, their structure reveals a rich diversity of the
quantifiable characteristics. This points to the utility of such a representa-
tion for the scientometric and bibliometric studies, to quantify characteristics
of communities, and offers an interesting perspective to inspect mechanisms
that stay behind the development and the spreading tendencies of the con-
temporary scientific collaboration.

From the complex networks point of view, the most interesting network
is the one of H. Eugene Stanley (Stanley #1), which is of a large size and
develops a visibly hierarchical organization through all its scales. However,
this is seen in the weighted network representation and confirmed by the
resulting degree and by the clustering coefficient distributions. A particularly
significant fact in this context is that the central node defining this network,
HES, obeys the same functional form in these two distributions as all the
other nodes belonging to this network. Interestingly, as Fig. 3 shows, this
network attained such an organization already in around 1995 and largely
preserved through the next 20 years even though it more than doubled in size
until present. Similar characteristics are observed in the Ausloos #1 and, to
some extent, also in the Havlin #1 networks, though these two are about a
factor of two smaller and the latter in addition strongly overlaps with the
HES network.
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Figure 8: Components xi
j of the six consecutive eigenvectors i = 1, ..., 6, starting with

the ’zero mode’ upwards, of the normalised Laplacian matrix L̂ defined by Eq. (8), whose
entries are constructed from the collaborative strength sij (Eq. (1)) for the scientific col-
laboration network denoted as All (Stanley).

Self-organizing growth of such networks demands of course a special bal-
ance between the number of incoming new nodes in time (with new publi-
cations) and appearance of the new links (co-authorships) among the nodes
already belonging to this network, with some elements of the preferential at-
tachment in distributing the links so that the hierarchical organization builds
up and the weighted degree distribution assumes the scale-free form. An ex-
isting relevant model, in which the usual preferential attachment (Barabási &
Albert, 1999) is extended to the rule ”busy get busier” (Barthelemy, Barrat,
Pastor-Satorras & Vespignani, 2005), where the new nodes connect more
likely to the nodes carrying larger weights and which are more central in
terms of the strength of interactions, offers some quantitative insight into
the underlying mechanism. In particular, it indicates that, in networks with

22



such characteristics as the one of HES, the spread of weight gets stimulation
to multiplicative bursts over the neighbouring nodes and this leads to a bal-
anced distribution of interconnections among them such that the scale-free
Stanley #1 hierarchy develops.

The unquestionably interdisciplinary and diversified character of the cor-
responding HES (and largely also Ausloos) scientific activity may constitute
a significant factor that facilitates and is even likely to favour a spontaneous
generation of such interconnections as it is needed for their balanced growth.
In the cases of more specialized activity, the growth of the corresponding
networks may progress through a smaller number of the mutual interconnec-
tions. In the latter case, this is thus expected to result in a deficit of such
interconnections relative to the number of links acquired by the central hub
and, therefore, such a hub is more likely to maintain an outlier position in the
degree distribution. Relating Stanley #1 and Ausloos #1 networks to those
of Erdős or Witten, whose scientific activities are more specialized, indicates
that this may be a relevant element that boosts a potential in this kind of
networks to become hierarchical, indeed.

Of course, development of such a hierarchy involves and is embedded
in many overlapping communities (Palla, Derényi, Farkas & Vicsek, 2005).
A sample spectral analysis in Section 6 of the normalised Laplacian matrix
corresponding to the extended scientific collaboration network, including also
a number of Stanley #2 nodes, points to the usefulness of such a procedure
for identifying and for characterising the related component communities in
the weighted networks.
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Y. (2001). The web of human sexual contacts. Nature, 411, 907-908.

[34] Liu, X. F., Xu, X. K., Small, M., & Chi, K. T. (2011). Attack resilience
of the evolving scientific collaboration network. PloS one, 6(10), e26271.

[35] Luukkonen, T., Persson, O., & Sivertsen, G. (1992). Understanding pat-
terns of international scientific collaboration. Science, Technology & Hu-
man Values, 17(1), 101-126.

[36] Merris R. (1994). Laplacian Matrices of Graphs: A Survey. Linear alge-
bra and its applications, 198, 143-176.
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