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Abstract

We analyze the time evolution of citations acquired by articles from journals of the American Physical Society
(PRA, PRB, PRC, PRD, PRE and PRL). The observed change over time in the number of papers published in each
journal is considered an exogenously caused variation in citability that is accounted for by a normalization. The
appropriately inflation-adjusted citation rates are found to be separable into a preferential-attachment-type growth
kernel and a purely obsolescence-related (i.e., monotonously decreasing as a function of time since publication) aging
function. Variations in the empirically extracted parameters of the growth kernels and aging functions associated with
different journals point to research-field-specific characteristics of citation intensity and knowledge flow. Compari-
son with analogous results for the citation dynamics of technology-disaggregated cohorts of patents provides deeper
insight into the basic principles of information propagation as indicated by citing behavior.
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1. Introduction

Peer-reviewed publications in scientific journals and patents issued by the national patent offices both serve to
codify and document knowledge advances. To delineate clearly the reported scientific (technological) progress that
has been achieved by the authors (inventors), citations to prior work (art) are necessary. While the detailed mechanisms
and motivations governing the use of citations to scientific articles (Garfield & Sher, 1963; Garfield, 2006; Bornmann
& Daniel, 2008) are generally different from those applying to patents (Jaffe et al., 2000; Hall et al., 2002; Cotropia
et al., 2013; Jaffe & de Rassenfosse, 2017), all citing behavior is widely believed to be indicative of, at least some
kind of, knowledge flow or information transfer. Furthermore, both for scientific articles and patents, citations are
considered to be a (more or less noisy) proxy measure of impact (Griliches, 1990; Hall et al., 2005; von Wartburg
et al., 2005; Garfield, 2006; Lane, 2010). This has motivated the quantitative study of citations, especially their
distributions across suitably defined cohorts (Price, 1965; Seglen, 1992; Redner, 1998, 2005; Valverde et al., 2007;
Radicchi et al., 2008; Stringer et al., 2010; Vieira & Gomes, 2010; Radicchi & Castellano, 2011; Waltman et al., 2012;
Golosovsky, 2017; Sheridan & Onodera, 2017), as well as the dynamics of how citations are acquired over time (Price,
1976; Avramescu, 1979; Glänzel, 2004; Redner, 2005; Simkin & Roychowdhury, 2007; Csárdi et al., 2007; Valverde
et al., 2007; Golosovsky & Solomon, 2012; Scharnhorst et al., 2012; Wang et al., 2013; Della Briotta Parolo et al.,
2015; Colavizza & Franceschet, 2016; Pan et al., 2016; Golosovsky & Solomon, 2017; Higham et al., 2017; Yin &
Wang, 2017). The ultimate goal of such investigation is the establishment of a basic generative model that captures the
fundamental mechanisms governing citation dynamics and can thus reproduce the empirically observed time evolution
and general statistical properties of citation accrual. Ideally, a properly validated model would be applicable to inform
rational science and innovation policies (Lane, 2010).
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Recent progress towards realistic, and potentially predictive, descriptions of citation dynamics (Redner, 2005;
Csárdi et al., 2007; Valverde et al., 2007; Golosovsky & Solomon, 2012; Wang et al., 2013; Pan et al., 2016;
Golosovsky & Solomon, 2017; Higham et al., 2017) has capitalized on advances in complex-network theory (Al-
bert & Barabási, 2002; Dorogovtsev & Mendes, 2002; Newman, 2003). In particular, the concept of preferential
attachment (PA) (Barabási & Albert, 1999; Dorogovtsev et al., 2000; Krapivsky & Redner, 2001) governing the rate
at which citations are distributed has been very influential almost from the beginning (Price, 1976). However, the
fruitful application of PA to understand citation behavior is predicated on the understanding of two other basic tem-
poral influences: obsolescence and overall growth of research fields. Here we understand obsolescence to be reflected
in the tendency for the citation rate to articles or patents to decay over time because of their reduced relevance for
ongoing knowledge generation. Acting in parallel to the basic trend towards obsolescence, the overall growth of re-
search fields provides another important mechanism that influences the rate at which citations are acquired. Empirical
studies have observed a steady increase over time in the production of scientific articles (Price, 1965; Sinatra et al.,
2015) and patents (Hall et al., 2002). As every article and patent will generally have to cite the knowledge stock that
is current at the time of their creation, an increase in article and patent production will likely lead to an increase in the
rate at which prior work is cited. The need for a careful disentangling of obsolescence and citation inflation due to
growth was discussed early on, both for scientific articles (Egghe & Rousseau, 2000) and patents (Hall et al., 2002).
The most widely adopted method to address growth consists of introducing normalization factors based on citation
counts (Radicchi et al., 2008; Radicchi & Castellano, 2011; Wang et al., 2013; Yin & Wang, 2017), which is partly a
result of the desire to find robust bibliometric impact measures for individual authors or institutions.

Here our motivation is different. We are interested in characterizing the intrinsic dynamics of knowledge genera-
tion and propagation that can be revealed by citation behavior if purely exogenous factors such as changes in article
and patent productivity are appropriately accounted for. Our approach is inspired by its success in the context of
patent-citation dynamics (Higham et al., 2017) and also a recent study (Šubelj & Fiala, 2017) where normalization by
the number of articles published per year led to the observation of universal citation distributions for a large body of
articles from physics and computer science, respectively. Furthermore, exponential growth was used as one ingredient
in a successful network-model simulation of citations to scientific articles (Wang et al., 2013). Similar to our previous
work on patents (Higham et al., 2017), we analyze citations within different research fields/subfields of physics as
defined by the scope of individual journals published by the American Physical Society. The obtained journal-specific
characteristics for the PA mechanism and obsolescence function are indicative of special features associated with
knowledge generation and propagation in different physics-researcher communities.

2. Data, methods and results

The bibliometric and citation data set used in our work is provided by the American Physical Society (APS) and,
in its entirety, consists of article metadata and citation pairs dating back to 1893 (American Physical Society, 2017).
The subset of this data set that we focus on here are the cohorts of articles published in the year 20001 in the research-
field-specific APS journals Physical Review A, B, C, D, and E (from this point onwards abbreviated as PRA, PRB,
etc.), as well as the APS’s multidisciplinary-physics letters journal Physical Review Letters (PRL). Citation rates are
measured using all citation pairs whereby the cited article in one of these cohorts is linked to a citing article published
in the years 2000–2015 in any APS journal. Table 1 provides an overview of the journal-specific article cohorts, with
citation-number totals and other relevant citation-related statistical information. For all of the specialized journals
(i.e., PRA–E), the fraction of citations originating from articles published in the same journal is quite high, justifying
our approach to use these journals to be representative of different research fields. As expected, this is not the case for
the multi-disciplinary letters journal PRL, which we include in our study as a benchmark for useful comparison.

To be able to separate the various mechanisms that together determine the rate at which citations are gained by
scientific articles, we first devise a procedure to account for temporal variations in citeability arising from purely
exogenous driving forces. Both the number of articles produced and the average number of citations made by each

1Our choice of this particular year constitutes a compromise between us capitalising on the increase over time in publication rates to maximise
the article-cohort sizes while, at the same time, keeping a large-enough time window for articles to garner citations and facilitate the reliable
observation of citation growth and obsolescence.

2



Table 1: Summary statistics for the APS-journal-article citation data set. Article cohorts comprise all articles published in a given journal in the
year 2000. We analyse citations to these from other APS-journal articles published up until the end of the year 2015. The fraction of journal
self-citations quantifies the number of citations originating from articles in the same journal where the cited article was published. In addition to
listing the total number of citations accrued by each cohort, we also give the total of inflation-adjusted citations that is obtained by summing the
citation counts that have been scaled to control for variations in citability due to changes in the numbers of articles published at different times. For
reference, the mean and median numbers of inflation-adjusted citations per article are also provided for each APS-journal cohort.

Journal PRA PRB PRC PRD PRE PRL

Number of articles published in 2000 1,458 4,994 863 2,049 2,255 3,123

Total number of citations accrued by cohort 17,005 49,417 7,959 26,072 14,675 70,876

Fraction of journal self-citations 0.74 0.80 0.82 0.91 0.70 0.23

Total number of inflation-adjusted citations 12,927 44,401 7,389 19,776 11,423 59,083

Mean inflation-adjusted citations per article 8.87 8.89 8.56 9.65 5.07 18.92

Median inflation-adjusted citations per article 4.21 4.71 5.01 4.59 2.81 9.99

article vary over time (Radicchi & Castellano, 2011; Wang et al., 2013; Sinatra et al., 2015; Pan et al., 2016). In the
long term, the combined effect of these factors causes a citation inflation that can mask the trend of obsolescence. In
this work, we consider the changing rate at which articles are published an exogenous factor, as such changes in re-
search productivity can be expected to be largely determined by the availability of resources, general policy decisions,
or other influences that do not reflect the utility of prior knowledge. In contrast, any change in the average number
of citations made by each article is indicative of the need to cite more or less of the currently relevant knowledge
and, thus, is intrinsic to the information ecosystem. Based on this philosophy, we ‘deflate’ the value of incoming
citations to each journal-specific cohort in each 3-month period such that the value of a citation to a particular article
in a particular quarter is scaled by the ratio of the total number of articles published in the citing journal in the first
quarter of the year 2000 to the total number of articles published in the same journal in the quarter in question. That
is, if there were twice as many PRE articles published in the third quarter of the year 2010 as there were in the first
quarter of the year 2000, then citations given by articles published in the former period would be given a value of 0.5
to reflect the higher chance of attaining a citation from that journal due to extrinsic growth in article-publication rates.
Figure 1 illustrates the time evolution of the thus-defined value cJ for citations originating from different APS journals
J ∈ {PRA,PRB,PRC,PRD,PRE,PRL}, whose explicit mathematical expression is given here also for greater clarity;

cJ(T ; T0,∆T ) =
NJ(T0,∆T )
NJ(T,∆T )

, (1)

where NJ(T,∆T ) is the number of articles published in journal J in the time interval [T,T + ∆T ].
After citations have been inflation-adjusted according to the procedure described above, all citations to articles in

our cohort are assigned a time t corresponding to the time lag between the publication of the cited article and that of
the citing article. In order to model the dependence of the citation rate as a function of both time t and the number k of
accrued citations, we bin citations by time of arrival where each bin has a range (t, t + ∆t]. We therefore observe two
time series: the number of citations each article i has accrued by time t, denoted by ki(t), and the number of citations
each article gains in the next period (t, t + ∆t], denoted as ∆ki(t). Our further analysis will be based on the assumption
that the rate λ(t) at which individual articles gain citations is a function of both k and t,

λ(t) = λ̄(k(t), t) . (2)

As an empirical measure for λ̄(k, t), we use the average citation rate for the group of articles with k citations in the
interval (t, t + ∆t], i.e., λ̄(k(t), t) ≈ ∆ki(t + ∆t)/∆t. In this manner, we obtain a matrix of citation rates for each journal
with every entry corresponding to the average rate of citation to the group of articles published in that journal in the
year 2000 with k citations at time t. We therefore place each article in a particular bin based on its accrued citations,
ki, at the end of each time period. As described above, the binning in the time dimension is simply a linear scale where
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Figure 1: Variation of inflation-adjusted citation values for individual APS journals over the 15-year period starting in 2000. We calculated the
citation-value parameter cJ(T ; T0,∆T ) defined in Eq. (1) for T0 = 1 January 2000 and ∆T = 3 months. Hence, the value of a citation made in a
journal article published at time T corresponds to the ratio of the number of articles published in that journal in the first quarter of the year 2000
to the number of articles published in that same journal in the 3-month period starting at T . To smooth short-term temporal fluctuations, we plot
here the average c̄J(T ; T0) ≡

[∑2
m=−2 cJ(T + m ∆T ; T0,∆T ) Θ(T − |m|∆T − T0)

]
/
∑2

m=−2 Θ(T − |m|∆T − T0), with Θ(x) denoting the Heaviside
step function. Most journals exhibit a long-term trend of citation inflation due to the overall increasing rate at which articles are published. PRL
and PRB are notable exceptions due to recent changes in their editorial policies (Meystre, 2013; Molenkamp, 2013).

each bin has the width ∆t. In the k dimension, logarithmic binning is used. This means each ‘k-bin’ has the same
width on a logarithmic scale, which turns out to be appropriate for the observed functional form for the k dependence
of λ̄(k, t). In the implementation of this binning, we first introduce a threshold set at the 99th-percentile level of
accrued citations by the end of the year 2015 (by journal). Once an article gains more than this number of citations, it
is excluded from our measurements. This is done because there are not enough data in each bin above this threshold
to measure citation rates accurately, and the large variance introduced by these data points would negatively affect the
measurement of our model parameters.

The simultaneous influences of knowledge-diffusion-driven growth and obsolescence-related decay on the citation
rate can be captured by postulating the functional form (Dorogovtsev & Mendes, 2000; Zhu et al., 2003; Csárdi et al.,
2007; Valverde et al., 2007; Golosovsky & Solomon, 2012)

λ̄(k, t) = A(t) f (k) , (3)

where A(t) is a purely time-dependent aging function, and the growth kernel f (k) embodies the PA mechanism. That
the rate at which individual articles gain citations is indeed of the separable form (3) is nontrivial and needs to be
tested. To this end, we have fitted the observed t and k dependences of the citation rate for the article cohorts from a
given journal and find that the observations are best described by the functional forms

A(t) = A0 exp
(
−

t
τ

)
for t ≥ t0 ≈ τ/2 , (4a)

f (k) = kα + f0 . (4b)

Figure 2 shows examples of the performed fits2. A possible alternative form of f (k) is discussed in Appendix A.
If the separability of the citation rate into t and k-dependent factors according to Eq. (3) holds, then the empirically

extracted values of α and f0 should be independent of the fixed times t at which fits to Eq. (4b) have been performed.
Likewise, fitted values of τ should not depend on k. To determine whether this is the case, we fit f (k) for all possible
values of t and observe the measured values of α in order to check for any systematic changes with time3. We then

2All fitting is completed using nonlinear logarithmic regressions from which parameters and their variances are determined.
3In contrast to the previously considered case of technology-specific patent-citation data (Higham et al., 2017), the APS-journal-specific citation
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Figure 2: Determining the time (t) and citation-number (k) dependences of the citation rate λ̄(k, t), using the average number of additional citations
gained in the time interval (t, t + ∆t], denoted by ∆ki(t + ∆t), as its empirical measure. Data shown here are for articles published in PRD in the year
2000. (a) Symbols show the time dependence of ∆ki(t + ∆t), with ∆t = 6 months, for articles from bins with logarithmic-scale midpoints at k = 2
and k = 40. The curves are fits of the aging function from Eq. (4a) to the data. (b) Symbols show the dependence of ∆ki(t + ∆t), with ∆t = 1 year,
on k at fixed times t = 3 years and 12 years. Curves show fits of the PA expression from Eq. (4b) with f0 = 1 to the empirical citation rate.

Figure 3: Demonstrating separability of the citation rate into a purely t-dependent aging function and a k-dependent PA growth kernel, as expressed
in Eq. (3). Data shown pertain to articles published in PRD in the year 2000. (a) Values of the obsolescence time τ extracted from fits of the
empirical citation rate to the functional form A(t) from Eq. (4a) for different fixed k. (b) Values for the exponent α derived from fits of the empirical
citation rate to the form (4b) for the PA growth kernel f (k), assuming f0 = 1. Circles are the fitted parameter values, solid lines indicate their
weighted averages, and the black dashed (red dotted) curves show the 95% confidence intervals for fit-parameter values (their weighted averages).

perform the same procedure with A(t) across all k-value bins to check for any systematic changes in τ. As illustrated
in Fig. 3, we indeed find that fitted values simply fluctuate around a stable mean, thus verifying empirically the
separability of the citation rate λ̄(k, t) in accordance with Eq. (3) and with the functional forms for the aging function
and PA kernel given in (4a) and (4b), respectively. Table 2 lists the parameter values and their uncertainties that
have been extracted for each individual APS-journal cohort as weighted arithmetic averages and their 95% confidence
intervals from fitted values such as those shown in Fig. 3 for PRD, where weights are the inverses of the variance for
each fitted value. The average for α does not include measurements for times less than t = 2 years, as there is not
enough spread in k for accurate measurement of this parameter at small times. Results for A0 are calculated from the
fitted values for the product A0 f (k) at fixed k using the previously measured value of α.

To maximise the accuracy of fit-determined parameters, it turns out to be useful to adjust the logarithmic bin size
in the k dimension and the time interval ∆t in order to optimize the measurement resolution in the variable we are
fitting. For example, when fitting A(t) for the groups of articles in particular fixed-k bins, we can more accurately
represent the data by slightly increasing the size of the k bins such that more articles are included in each individual
fitting procedure for λ̄(k, t) at fixed k, while at the same time decreasing ∆t for greater time resolution. Due to the
finite range of empirically available k values, this means there are fewer fixed-k fitting procedures and thus fewer

data are not large enough to enable an accurate measurement of f0. Motivated by our observation that f0 is approximately unity for all journals, we
henceforth fix f0 ≡ 1. This allows for the accurate measurement of α, whose exact value is much more relevant than that of f0 in determining the
structure and evolution of the citation network.
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Table 2: Measured values for the parameters characterising preferential attachment (α) and obsolescence (τ and A0), extracted from analysing
citations to articles published in APS journals in the year 2000. For comparison, results obtained from performing the same analysis on citations to
articles published in these journals during the three-year period 1989–1991 are also given. Uncertainties represent 95% confidence intervals. For α
(τ) values labeled with an ∗ (∗∗), the set of averaged values exhibited a weak residual dependence on time (number of accrued citations).

Year Journal PRA PRB PRC PRD PRE PRL

2000

α 1.19 ± 0.08 1.17 ± 0.12∗ 1.13 ± 0.16 1.08 ± 0.10 1.20 ± 0.16 1.13 ± 0.08∗

τ [yrs] 4.86 ± 0.60 4.37 ± 0.80∗∗ 5.47 ± 1.55 5.00 ± 0.80 4.86 ± 1.18 4.76 ± 0.87

A0 [yrs−1] 0.23 ± 0.03 0.40 ± 0.15 0.27 ± 0.09 0.22 ± 0.04 0.25 ± 0.05 0.36 ± 0.16

1989-91

α 1.18 ± 0.09 1.18 ± 0.08∗ 1.16 ± 0.11 1.26 ± 0.18 — 1.14 ± 0.09∗

τ [yrs] 6.33 ± 0.60 6.73 ± 0.81∗∗ 7.38 ± 1.44 7.95 ± 1.60∗∗ — 6.72 ± 0.85

A0 [yrs−1] 0.15 ± 0.03 0.13 ± 0.01 0.09 ± 0.04 0.08 ± 0.02 — 0.14 ± 0.05

measurements of τ and A0; however, we do not require a large number of measurements to detect any systematic
change in these parameters with k. The opposite is true when fitting f (k). Based on such considerations, we have
chosen ∆t = 6 months when fitting A(t) and ∆t = 1 year when fitting f (k).

As is apparent from Fig. 2(a), the exponential form for A(t) given in Eq. (4a) turns out to provide a good fit to the
data only for t & 3 years. We have therefore limited our fitting of parameters for the aging function to this range. While
other, generally more complicated, functional forms such as shifted power laws or stretched-exponential functions
are able to be fitted over the whole range of time for our data, the validation of separability becomes extremely
ambiguous with these three-parameter aging models, because the variances in the measured parameter values turn out
to be very large relative to the magnitude of the parameters themselves. The full-range fit thus comes at the expense
of meaningful parameter estimations. In contrast, the two-parameter model of exponential aging enables reliable
parameter determination and accurately represents the data except for a short period after publication.

It would be very interesting to investigate systematically the quality of separability and determine the values for
parameters in the aging function and the PA-growth kernel characterizing the citation dynamics of articles published
in different years. However, cohorts of articles published much earlier than the year 2000 are generally smaller and
have accrued fewer total citations, leading to larger statistical uncertainties. To improve the statistics and facilitate at
least a glimpse of a basic comparison, we aggregated and analyzed the citation data for articles published in individual
APS journals in the three-year period 1989–1991. Also for these earlier-published articles, citations obtained up until
2015 were included in our analysis. Thus the time range over which aging was observable for these articles is about
ten years longer than for the year-2000 article cohorts, therefore some caution needs to be exercised in any direct
comparison between the extracted obsolescence times for articles from the two time periods. The results obtained
from fits to the PA growth kernel from Eq. (4b) with f0 = 1 and aging function from Eq. (4a) with t0 = 4 years are also
given in Table 2. Short-time deviations from exponential aging were found to persist over a longer initial time period
for the article cohorts published during 1989–1990 than for the year-2000 cohorts, necessitating the larger value of
t0. Because of this, and the systematically larger obsolescence time scale found for the earlier-published articles, the
reliable extraction of τ required including all available data for citations acquired up until 2015, i.e., for ∼25 years
after publication. Note that the observed longer period for deviations from exponential aging at short times for the
earlier published articles is consistent with their larger τ values, as we have generally found these two time scales to
be linked (Higham et al., 2017).

A citation rate of the separable form Eq. (3), with an aging function A(t; Ti) that can, in principle, depend also
on the publication time Ti, gives rise to a distribution function n(k, t; Ti) for citations to articles published at the same
time that can be expressed most generally as (Higham et al., 2017)

n(k, t; Ti) = n0(k)
[
γ(t; Ti)

] f (k)
+

k−1∑
l=0

n0(l)

 k−1∏
m=l

f (m)

 k∑
q=l

[
γ(t; Ti)

] f (q)∏k
m=l
m,q

[
f (m) − f (q)

] . (5)
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Figure 4: Distribution function n(k, t; Ti) for citations to articles published in PRD in the year 2000, plotted as a function of the number k of
citations for fixed times t = 3 years and t = 12 years after publication. Symbols show the empirical data. Curves were calculated from the general
expression Eq. (5) with parameters given in Table 2 for the cohort of articles published in PRD in the year 2000 and the empirically observed
citation distribution at t = 1 year taken as n0(k). The form (7) was used with Γ0 = 0.62. The disagreement between theory and data seen for large k
at small t is due to the systematic deviation from exponential aging occuring at short times [see Fig. 2(a)].

Here

γ(t; Ti) = exp
{
−

∫ t

0
dt′ A(t′; Ti)

}
, (6)

and n0(k) ≡ n(k, 0; Ti) encodes a fully general initial condition for the distribution. Figure 4 shows a comparison
between empirical data for n(k, t; Ti) for the cohort of articles published in PRD in the year 2000 and the theoretical
prediction obtained from Eq. (5) with the parameter values for aging and PA-driven growth given in Table 2 for this
cohort. We used the expression

γ(t; Ti) = Γ0 exp
{
τA0

[
exp

(
−

t
τ

)
− 1

]}
, (7)

which is the result obtained from Eq. (6) with Eq. (4a) as the aging function, rescaled by the cohort-specific factor
Γ0 = 0.62 to account for the observed short-term deviations from exponential aging (Higham et al., 2017). To
minimize the impact of having arbitrarily fixed f0 = 1 in our fitting procedure, we took the empirically observed
distribution of citations at t = 1 year as n0(k). The agreement between theory and data is excellent, except for large
k at small t where the influence of deviations from exponential aging at short times cannot be properly quantified by
our model based on the parameter Γ0 (Higham et al., 2017).

Knowledge of n(k, t; Ti) in principle allows to also derive the distribution function P(k|T<,T>) for citations in the
aggregated article network comprising cohorts with Ti ∈ [T<,T>];

P(k; T<,T>) =
1

T> − T<

∫ T>

T<
dT n(k,T> − T ; T ) . (8)

Citation distributions for large collections of articles whose publication times span long time intervals have been the
subject of intense recent interest (Redner, 2005; Stringer et al., 2010; Radicchi & Castellano, 2011; Waltman et al.,
2012; Šubelj & Fiala, 2017; Yin & Wang, 2017; Sheridan & Onodera, 2017). One particular question such studies
have aimed to answer is how the empirical distributions compare with the form of stationary citation distributions
P(k) = limT>→∞ P(k; T<,T>) arising within the framework of relevant network models. Analyzing this issue for
articles within separate research fields could be an interesting direction for future research (Stringer et al., 2010).
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3. Discussion

Gaining a full understanding of the dynamics of citation accrual by scientific articles and patents has been ham-
pered by the need to account for various closely entangled, and sometimes mutually counteracting, influences. On a
basic qualitative level, it can be surmised that diffusion of knowledge drives the accumulation of citations by articles
or patents that report useful new information (Jaffe & Trajtenberg, 1999; Bornmann & Daniel, 2008). The ability to
accurately model, and potentially optimise, the dynamics of knowledge diffusion should be facilitated by the increased
availability of high-quality citation data, if only the additional mechanisms affecting real-world citing behaviour could
be reliably identified and accounted for. The results of our present study constitute a step in this direction.

One factor that is as intrinsic to the scientific (or invention) ecosystem as knowledge diffusion is the process of
obsolescence, i.e., the tendency for previously codified information and methods to become less relevant over time
for continued progress of knowledge generation. Conceptually, obsolescence can be understood as an aging process.
However, both in the real world and in idealised network-model descriptions, any existing intrinsic aging dynamics
can be masked by exogenous influences that effectively contribute to aging or counterbalance it. For example, in
the generic network model applied to citing behaviour (Price, 1976; Barabási & Albert, 1999) where a new node is
added at each time step T and distributes a number of citations to existing nodes according to a PA mechanism, the
linear-in-time growth of the overall network induces a purely structural aging process. The associated aging function
is given by (Albert & Barabási, 2002) A(t; Ti) = 1/[2(Ti + t)], where Ti is the time at which the node has been added
(corresponding to the publication time for an article or patent). In the real world, the rapid increase over time in the
overall number of published articles has similarly been perceived as a structural cause of aging (Della Briotta Parolo
et al., 2015). On the other hand, an increase in the rate of production for articles (patents) that cite relevant prior
knowledge can boost the citation rate for older articles (patents). In fact, the combination of increased publication
activity and an on-average increased number of citations made per article (patent) has been seen to cause a citation
inflation that partially compensates aging effects (Hall et al., 2002; Wang et al., 2013; Pan et al., 2016).

Our present approach is designed to carefully disentangle the mechanism of PA-driven citation accumulation
from the effects of aging and inflation. The litmus test for having achieved this goal is provided by the absence
of residual time dependences in PA-related parameters, especially the exponent α, that have been extracted from
fits of the empirical citation rate. See Fig. 3(b). Furthermore, the parameters governing obsolescence-related aging
should be found to be independent of the number k of citations, as is indeed the case [Fig. 3(a)]. To be able to
demonstrate this clear separation, we needed to focus our analysis on specific research fields in physics, as defined
by the scope of individual APS journals, and account for citation inflation by the journal-specific scaling factor cJ . In
contrast, previous studies that did not separate articles by research fields and did not account for citation inflation found
significant monotonous increases over time in the extracted values of α (Golosovsky & Solomon, 2012). We observe
some deviations from full separability of the empirical citation rate into independent aging and PA parts [Eq. (3)] for
the cases of PRB (see results presented in Appendix B) and PRL, which are both journals that publish articles from
a much broader and more heterogeneous range of physics subfields, and even from neighboring disciplines such as
chemistry and mathematics, than the other four journals. Our results suggest that the dynamics of knowledge diffusion
and intrinsic obsolescence of knowledge is research-field-specific.

We identify the obsolescence-related aging function to be an exponential function of time since publication in
the long term, as expressed in Eq. (4a). This observation broadly agrees with recent studies of larger scientific-
article cohorts (Della Briotta Parolo et al., 2015; Pan et al., 2016), although we find a slightly shorter value for the
obsolescence time scale τ in our research-field-specific analysis and also observe some variation of this parameter
between the different fields. In particular, the subfields associated with PRC and PRD appear to be more slowly
changing than those covered by the other three specialised journals that turn out to have a similarly short obsolescence
time as the multidisciplinary journal PRL. While not fully conclusive because of the overall scale of uncertainties in
the extracted τ values, this observation is consistent with expectations based on known characteristics of the research
fields covered by PRC and PRD, especially a dependence on the long-term development of large-scale equipment run
by very large consortia of researchers.

Deviations from exponential-in-time aging occur at short times t . 3 years [see Fig. 2(a)], with more citations
getting accumulated per unit time than expected from an extrapolation of the long-term exponential-aging trend. A
similar excess of citations arriving in a short time period after publications was also observed for patents (Higham
et al., 2017). The apparent universality of this short-term enhancement suggests the existence of a common origin
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related to knowledge-flow dynamics, which should be clarified by systematic further studies of the citation-number
dependence of the excess number of citations (generally deviations from exponential aging are found to be smaller
in cohorts of more highly cited articles or patents), as well as possible systematic variations across different research
fields or technology categories. Interestingly, the relative magnitude of the short-term deviation from exponential
aging exhibited by low to medium-cited scientific-article cohorts is consistently observed to be larger, by at least a
factor of two, than for the comparable cohorts of patents.

The fits of the PA-mechanism growth kernel given in Eq. (4b) with fixed f0 ≡ 1 to the data yield values of
the exponent α that vary moderately across the different APS-journal cohorts and are generally consistent with a
superlinear dependence on k (1.0 < α . 1.2). Due to the relatively small data set as compared, e.g., with our previous
patent-citation study (Higham et al., 2017), the functional form of Eq. (4b) yields only marginally better fits than the
alternative form given in Eq. (A.1) that has also been applied previously to scientific-article citation data (Golosovsky
& Solomon, 2012) but was ruled out for patents (Higham et al., 2017). See the more detailed discussion in Appendix A
and results presented in Fig. 5 and Table 3. The values for α obtained using the two alternative PA-kernel forms are
essentially the same.

The aggregation of citation data for articles published in individual APS journals over the three-year period 1989–
1991 made them amenable to the same type of analysis performed on the year-2000 article cohorts. Interestingly, we
found the same qualitative features and even some of the same quantitative results for the citation dynamics of the
earlier-published articles as for those from the year 2000. In particular, PA-driven growth of citations is clearly and
robustly exhibited, with values for the exponent α essentially the same as for the respective year-2000 APS-journal
cohorts. Detailed results are given in Table 2. Aging was again found to be described by an exponential function of
time in the long run also for the cohorts of articles published during 1989–1991, but with prominent deviations from
exponential aging at short times that persist over a longer initial time period (∼4 years) than for the cohorts of articles
from 2000. As a result, reliable extraction of the obsolescence time τ associated with the long-term exponential-aging
behavior required to fit all the available data upto the end of the ∼25-year citation history of the 1989–1991 articles.
Their thus-obtained values for τ are consistently larger, by about 2 years, than the τ values we found for the articles
published in the same journal in 2000 using the data from their shorter (only ∼15-year-long) citation history. At the
same time, the obsolescence times of the older articles show the same trends for variation across journals (i.e., PRC
and PRD again appearing to be associated with more slowly changing subfields). The juxtaposition of parameters
describing PA and aging of citations to articles published ten years apart already provides an interesting snapshot of
temporal variations in journal-article citation dynamics. There is scope to perform similarly suitable aggregations over
multi-year periods to analyze even older APS-journal-article cohorts. Alternatively, larger-scale studies of potential
time variations of citation-dynamics parameters within different physics subfields would require going beyond the
APS-journal data set, thus creating the need to define association with a subfield either based on a broadly adopted
classification scheme such as PACS or via a more fine-grained version of a previously employed topic-specific analysis
of citation patters (Sinatra et al., 2015).

4. Conclusions

We have analyzed the time evolution of citation data for articles published in six different APS journals in 2000 to
gain insight into research-field-specific characteristics of knowledge-flow dynamics. Unlike previous studies, we have
accounted for citation inflation arising from temporal variations in the rate of publication of articles in the individual
journals by a normalization factor. We demonstrate separability of the empirical citation rate for most journal-article
cohorts into a purely citation-number-dependent part that reflects a preferential-attachment-driven growth mechanism
and a purely time-dependent aging part that is an exponential function of time in the long term. Deviations from full
separability that are observed for PRB and, to a lesser extent, PRL are smaller in magnitude than in previous studies
where articles were not separated by research fields (Golosovsky & Solomon, 2012), suggesting that such deviations
are likely caused by the underlying heterogeneity of scientific communities publishing in these two journals.

As exogenously caused variations in citability (‘inflation’) are accounted for within our approach, the observed
characteristics of the aging function should be dominated by the dynamics of obsolescence for knowledge within the
specific research fields. This provides a window into the dynamics of scientific progress within these fields, as the time
scale for obsolescence is commonly associated with the rate at which the knowledge frontier advances. In particular,
we were able to identify more slowly changing research fields (those associated with PRC and PRD) compared to
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the rest that have a similar obsolescence time as the multidisciplinary journal PRL. Furthermore, application of our
analysis to cohorts of APS-journal articles published in the period 1989-1991 revealed their obsolescence times to
be about 2 years longer compared to the year-2000 cohorts from the same journal, while following the same basic
trend in the variation across different journal cohorts. However, the fact that deviations from the well-understood
exponential obsolescence behavior occur over a longer initial time period for the articles published during 1989-
1991 — requiring us to include the data from the period ∼15-25 years after their publication to reliably extract τ
— makes a direct comparison with the articles published in 2000 somewhat difficult, as no citation data beyond
∼15 years after publication are available for the latter. More detailed analysis is needed to exclude potential other
systematic influences that affect the obsolescence of articles 15-25 years after their publication. If the observation of
faster obsolescence for the younger article cohorts were to be robustly substantiated, then it could signify an overall
accelerating pace at which science advances in all subfields of physics. Such an acceleration might, for example, be
rooted in changing patterns of exploration (focus on broad and general versus deep and specific), but evolving citation
practices or reading habits can also affect the obsolescence time scale (Egghe & Rousseau, 2000).

Although the obsolescence-induced aging is accurately described by an exponential function for intermediate to
long times after publication, an excess of citations above the extrapolated exponential behavior occurs within the first
2-3 (4-5) years after publication for the articles from 2000 (1989–1991), with stronger deviations occurring for the
article cohorts with smaller number of accrued citations. More systematic study is needed to determine the origin of
these deviations, but their particular features point to the existence of a special knowledge-propagation mechanism
that is effective at short times.

Even though the mechanisms and motivations determining citing behavior of academics and inventors have been
identified to be quite different (Bornmann & Daniel, 2008; Cotropia et al., 2013; Jaffe & de Rassenfosse, 2017), the
results of our present study turn out to be strikingly similar, both qualitatively and quantitatively, to those found previ-
ously in an analysis of the inflation-adjusted citation dynamics for patents granted in 1998 within specific technology
categories (Higham et al., 2017). In particular, the values of the exponent α characterizing preferential-attachment-
type growth vary over the same basic range of magnitude between the different article and patent cohorts. The
obsolescence time is observed to be just slightly longer for the patents compared to that of the APS-journal articles,
whereas the magnitude of the citation-rate enhancement over the extrapolated exponential-aging behavior in the short
term is systematically larger for the cohorts of articles than for the comparable patent cohorts. Our ability to provide
a more detailed comparison between the citations dynamics of patents and scientific articles is hampered by the fact
that the accuracy of parameter values extracted in the present study was more limited due to the smaller size (by
roughly an order of magnitude both in total numbers of accrued citations and in total numbers of citable items) of
the article cohorts in comparison with the patent cohorts. Further studies of research-field specific trends in article-
citation dynamics will need to utilize larger data sets that have reliably tagged outputs from different research fields.
Demonstrating the separability of the appropriately inflation-adjusted empirical citation rate for these larger cohorts
into a purely citation-number-dependent growth part and an obsolescence-induced aging part will be a crucial first
step to obtain, and meaningfully compare, relevant parameters.

Questions to be addressed by future studies include the relevance of memory effects in the citation dynamics
that can cause deviations from preferential-attachment-type growth. This aim will also require use of larger data
sets as, e.g., autocorrelations were previously observed to be significant only for the very highly cited ones among
scientific articles (Golosovsky & Solomon, 2012). We do not expect such effects to be relevant for our present analysis
where articles were excluded once their citation count reached the 99th percentile for their respective journal-article
cohort. Another interesting issue that could be explored concerns the functional form of the steady-state distribution of
citations to articles within a given specialized research field (Stringer et al., 2010). Whether and how citation inflation
is accounted for may crucially influence the observed properties of such distributions (Radicchi & Castellano, 2011;
Waltman et al., 2012; Yin & Wang, 2017; Šubelj & Fiala, 2017). Further systematic investigation of this question
could inform ongoing discussions about the consistency of PA-driven growth models with empirically observed static
properties of citation networks (Golosovsky, 2017; Sheridan & Onodera, 2017).

Appendix A. Results from fitting an alternative functional form for the preferential-attachment kernel

A number of functional forms have been utilised to characterise superlinear preferential attachment, most of which
converge to kα in the large-k limit. We have adopted one such form, given in Eq. (4b), to model preferential attachment
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Table 3: Measured values for α, and those derived for A0, obtained from fitting the functional form f (k) = (k + 1)α for the PA kernel to the citation
data for articles published in APS journals in the year 2000. For the α values labeled with an ∗, the set of averaged values exhibited a weak residual
dependence on time. Note the only slightly larger uncertainties for the α values in comparison with results given in Table 2.

Journal PRA PRB PRC PRD PRE PRL

α 1.21 ± 0.09 1.19 ± 0.13∗ 1.15 ± 0.19 1.09 ± 0.11 1.22 ± 0.19 1.14 ± 0.10∗

A0 [years−1] 0.22 ± 0.04 0.38 ± 0.18 0.26 ± 0.09 0.22 ± 0.03 0.23 ± 0.07 0.34 ± 0.17

1.00

1.15

1.30

2 7 12
t [years]

a

Figure 5: Exponent α extracted from fitting a PA growth kernel of the form f (k) = (k + 1)α to the empirical citation rate for articles published
in PRD in 2000. Circles are the fit values, the solid line is their weighted average, and black dashed (red dotted) curves indicate 95% confidence
intervals for the fit values (the weighted average). Note the extremely small differences with the results shown in Fig. 2(b).

in this work. An alternate form of preferential attachment incorporates a constant shift into the argument,

f (k) = (k + k0)α . (A.1)

We have fitted also this functional form to the empirical citation rates in order to test whether this provides a better
fit, using fixed k0 = 1 in analogy to our methodology in the main body of this work. The results obtained from the
alternative-fit analysis are summarised in Table 3 and Fig. 5. While uncertainties in the measured values of α for the
various journals turn out to be slightly larger than the values obtained by fitting to Eq. (4b) (see results presented in
Table 2), there is little quantitative difference between the measurements of α from the two models.

Appendix B. Observed deviations from full separability of the empirical citation rate: Case of PRB

The separation of the empirical citation rate into independent factors describing long-term exponential aging and
PA-driven citation accumulation, as expressed in Eq. (3), was demonstrated for (most of) the APS-journal-article
cohorts by observing relevant fit parameters for the aging function (the PA growth kernel) to be independent of the
variable k (t). The general quality of the demonstrated separation is illustrated in Fig. 3 using the data for articles
published in PRD. A deviation from separability was observed for PRL where the extracted values for the exponent
α exhibited a trend to increase as a function of t, varying between 1.07 and 1.17 over our study’s 15-year period.
However, the most drastic violation of separability occurred for PRB where both α and τ showed residual dependences
on t and k, respectively.

Figure 6 shows the results for PRB. The observed trend of increasing α as a function of t is slower than, but
still of roughly the same order of magnitude as, in studies where articles were not disaggregated by research field
and inflation was not accounted for (Golosovsky & Solomon, 2012). The increasing advantage of more highly cited
articles to attract further citations at a higher rate could reflect the greater importance of autocorrelations in the citation
dynamics of PRB and PRL articles. Alternatively, a greater heterogeneity in terms of research field and stronger
multidisciplinary influences from fields outside physics that characterize both PRB and PRL could be the cause.
Support for this conclusion is also provided by the results of a related patent-citation study (Higham et al., 2017)
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Figure 6: Illustration of how deviations from separability of the empirical citation rate are manifested. Data shown pertain to articles published in
PRB in the year 2000. Circles are the fitted parameter values, solid lines indicate their weighted averages, and the black dashed (red dotted) curves
show the 95% confidence intervals for fit-parameter values (their weighted averages). (a) Values of the obsolescence time τ extracted from fits of
the empirical citation rate to the functional form A(t) from Eq. (4a) for different fixed k. In contrast to the case shown in Fig. 3(a), a systematic
trend for τ values to increase as a function of k is exhibited here. (b) Values for the exponent α derived from fits of the empirical citation rate to the
form (4b) for the PA growth kernel f (k), assuming f0 = 1. In comparison with Fig. 3(b), α shows a systematic dependence on t.

where deviations from separability of the empirical citation rate also occurred for the more heterogeneous technology
categories.
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Šubelj, L., & Fiala, D. (2017). Publication boost in web of science journals and its effect on citation distributions. Journal of the Association for
Information Science and Technology, 68, 1018–1023.
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