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DISCRETE POWER LAW WITH EXPONENTIAL CUTOFF AND

LOTKA’S LAW

LAWRENCE SMOLINSKY

Abstract. The first bibliometric law appeared in Alfred J. Lotka’s 1926 examination of

author productivity in chemistry and physics. The result is that the productivity distri-

bution is thought to be described by a power law. In this paper, Lotka’s original data on

author productivity in chemistry is reconsidered by comparing the fit of the data to both a

discrete power law and a discrete power law with exponential cutoff.

1. Introduction.

According to Dorothy H. Hertzel (2011 Table 2 p. 559), the first seminal papers in

bibliometrics started with statistical studies by Cole and Eales in 1917 and Hulme and

Wyndham in 1922. William Hood and Concepción Wilson (2001 p. 295) point out that the

next step, “the discovery of certain regularities, distributions or laws,” was of fundamental

importance to the development of the fields of bibliometrics, scientometrics, and informetrics.

The earliest of these laws was Lotka’s. In 1926 Alfred J. Lotka published his study on the

publication rates of authors in chemistry (Lotka 1926).1 He proposed an inverse square

relationship that has since been generalized to a power law.2 This form of Lotka’s law is that

that for some α, the percentage of senior authors who are the senior author of n works is

(1) p0(x) =
x−α

ζ(α)
for each x ∈ N,

Date: December 31, 2015.
1Lotka also included a smaller study of physics authors, which we do not address.
2In fact, Lotka used the generalize Lotka’s law of Eq. (1) with α = 1.888 and 1/ζ(1.888) = 0.5669 for his
computations in column 9 of Table 1 (Lotka 1926) and with α = 2 and 1/ζ(2) = 0.6079 in column 11 of
Table 1.
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2 L. Smolinsky

where ζ(α) is the Riemann zeta function. One might allow different α’s for different fields.

Lotka gathered data from Chemical Abstracts 1907-1916 including 6891 senior authors.

He examined the curve of the number of works (abscissa) versus the percentage of authors

having that number of works (ordinate) to give 66 data points (xi, yi) for i = 1, · · · , 66 to

approximate the (discrete) curve. A second philosophy is to consider the 6891 pieces of data

(zi for i = 1, · · · , 6891) as independent sample points from the probability distribution of a

random variable Z, where

Z(senior author) = # of papers on which he or she is the senior author.

The first viewpoint lends itself to curve fitting techniques while the second to maximum

likelihood estimates of the probability mass function of Z.

Lotka’s original approach was to truncate his data and take the logarithm of both the

number of works variable x and the percentage of authors variable y and perform a linear

least squares fit. A good summary is in Coile (1977). Since at least Paul Travis Nicholls’s

works (1987, 1989), the method of the maximum likelihood estimator with the Kolmogorov-

Smirnov test has been viewed as superior. Ronald Rousseau (2002 p. 319), in his discussion

of informetric research on power laws, adds, “most large datasets usually cannot be de-

scribed by a Lotka distribution (in a statistical sense, using these [Kolmogorov-Smirnov or

chi-squared] goodness-of-fit tests).” These viewpoints have more recently been championed

in the influential article by Clauset, Shalizi, and Newman (2009). Clauset et al. add to

the discussion a comparison of power laws with other long tailed distributions using a log

likelihood ratio test, and they included the continuous power law with exponential cutoff.

In this paper, Lotka’s original data is examined, and the discrete power law is compared

to a discrete power law with exponential cutoff via a log likelihood ratio test. The discrete

power law is a special case of the discrete power law with exponential cutoff. Lotka’s law
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has been well studied. Nicholls (1987 p. 23-24) gives a list of studies that includes 20

proposed alternative distributions to the discrete power law. We begin with a review of

various methods and results to estimate α in Eq. (1). Linear least square estimates were

computed using excel and all other computations were done using Mathematica 10.0.0.0.

2. Acknowledgements.

I am grateful to Stephen Bensman for suggesting I look at Lotka’s original paper and to

Luis Escobar for guidance to the statistics references.

3. Discrete power law estimates

We examine power law estimates on Lotka’s full data set (untruncated data) for comparison

with the power law with exponential cutoff. Lotka’s approach was to organize his data into

the number of works variable x and the percentage of authors variable y, truncate his data

points, take the logarithm of both variables, and perform a linear least squares fit. This

method allows for two variables in the line of best fit: The slope and the intercept in the

equation

(2) ln(y(x)) = −α ln(x) + b

which corresponds to the power law expression

(3) y(x) = eb/xα.

Performing linear least squares fit on Lotka’s truncated data set, the results are α = −1.8877

and b = −0.5349 or eb = 0.5857. Lotka only used least squares to determine α and then

choose the constant eb so as to arrive at a probability distribution. Lotka’s α is 1.888,

and his constant is 1/ζ(1.888) = 0.5669. There are issues both with truncating the data
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(Nicholls 1987, 1989; Bensman 2015) and with taking logarithms followed by linear least

squares (Nicholls 1987, Clauset et al. 2009).

One issue with least squares fit to a power function is that α and b found for Eq. (2)

or Eq. (3), does not necessarily define a probability distribution. We should remark that

those who use the method of least squares are not naive to think that is does. Rather, many

(including Lotka) employ separate methods to estimate b and α (Nicholls 1987). To fit the

best line that corresponds to a discrete probability distribution using the log-log linear least

squares method, one would restrict to lines of the form

(4) ln(y(x)) = −α ln(x)− ln ζ(α),

which is now a single variable minimization problem. This method is constrained linear least

squares in Table (1).

A second issue is that the standard notion of “best fit” by Gauss and Legendre to fit

the data (i.e, measuring best by the sum of the squares of residuals) does not apply when

logarithms are applied first. We apply non-linear least squares directly on Eq. (3) and on

the family Eq. (1), i.e., constrained non-linear least squares, in Table (1). However, either

way, an r2 calculation is not informative since normality of residuals cannot be assumed and

r2 is weakly correlated to goodness-of-fit for Lotka’s distribution (Nicholls, 1987, 1989).

Table (1) gives the results of calculations performed in Mathematica using: linear least

squares on Eq. (2); constrained linear least squares restricting to lines of the form of Eq. (4);

non-linear least squares on the two variable family Eq. (3); and constrained non-linear least

squares restricting to the one variable family Eq. (1).

We next examine the determination of α in Eq. (1) by use of the maximum likelihood

estimator. This method has its flaws too. Luong and Doray (1996) point out it is efficient,

but it is not robust, sensitive to outliers. Its score function depends on the sample mean,
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Table 1. Power law estimates on Lotka’s full data set.

Method α b

linear least squares 1.8122 - 0.8812
constrained linear least squares 1.8985 —

non-linear least squares 1.9018 -0.5466
constrained non-linear least squares 1.9185 —

maximum likelihood 1.9665 —

so its influence function is unbounded (Huber 1981). This method assumes that the 6891

pieces of data (zi for i = 1, · · · , 6891) are independent samples of the random variable Z

in the introduction, which has probability mass function Eq. (1). Performing a maximum

likelihood estimate on Lotka’s full data set and the family of discrete power laws, the result

is α = 1.9665 and the log likelihood is −11705.1 (Tables 1 and 2).

4. Discrete power law with exponential cutoff.

A more general model that includes the discrete power law family is a discrete power law

with exponential cutoff. It has two parameters α and β. The definition of the probability

mass function involves the polylogarithm also known as Jonquiére’s function.3 A short

history of the function is given in the introduction to Costin and Garoufalidis (2009) and a

short list of its properties is in Lee (1997). The polylogarithm is a function defined for all

complex s and z, and it satisfies

Lis(z) =
∞∑

n=1

zn

ns
if |z| < 1 and Lis(1) = ζ(s) if Re s > 1

3Sometimes this function is called the α-polylogarithm or fractional polylogarithm and the term polyloga-
rithm is reserved for the case α an integer.
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Define the probability mass function of a discrete power law with exponential cutoff as:

(5) pa(x) =
1

Liα(eβ)

eβx

xα
x ∈ N.

The space of parameters for this probability mass function is

{(α, β) ∈ R
2 | β < 0 or β = 0 and α > 1}

If β = 0 and α > 1, then the discrete power law with exponential cutoff specializes to the

discrete power law.

The likelihood function for Lotka’s data z = (z1, · · · , z6891) is

L(α, β|z) =

6891∏

i=1

1

Liα(eβ)

eβzi

zαi

The functions L and Liα(e
β) are infinitely differentiable when β < 0 but have problems on

part of the boundary (i.e., β = 0) where the probability mass function is the discrete power

law family. When β = 0 the probability mass function may not have finite variance either.

Finding the maximum likelihood for Lotka’s full data set and the discrete power law with

exponential cutoff distribution, Eq. (5), the result is αa = 1.81524 and βa = −0.0172868

with a log likelihood of −11646.2.

To compare the log likelihoods, we use the log likelihood ratio test. The test statistic,

which is denoted −2 ln(λ), is:

−2(log likelihood of the null hypothesis − log likelihood of the alternative hypothesis).

We apply the log likelihood ratio test on nested models (Boos and Stefanski 2013). One

model, the alternative hypothesis, is the two-parameter family of the discrete power law

with exponential cutoff. Second model, null hypothesis, will be the restriction to β = 0
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or to a particular small β, both possible null hypotheses have one parameter. The test

we will apply has a simple hypothesis (Wilks 1936) meaning the null hypothesis is just a

restriction of the parameter space. Under further suitable hypotheses, the test statistic has

an approximate chi-squared distribution with one-degree of freedom. It is one-degree of

freedom since one model has one parameter and the second model has two parameters. The

alternative hypothesis encompasses the null hypothesis and hence must fit better than null

hypothesis. However, the question is does it fit better with statistical significance.

We caution the reader that Wilks’s theorem does not justify a chi-squared statistic in-

terpretation using null hypothesis p0. Hence, we consider a comparison with second null

hypothesis, p1, obtained by moving β slightly into the interior of region in which Wilks’s

theorem applies. Consider the model with β = −0.000001. This one parameter model has

probability mass function

p1(x) =
1

Liα(e−0.000001)

e−0.000001x

xα
x ∈ N.

Performing a maximum likelihood estimate to obtain parameters for the p1 model yields

α1 = 1.96643 and β = −0.000001. This probability mass function is virtually indistinguish-

able from p0 on the range where there is data (from 1 to 346). The difference between

the curves |p0 − p1| is less than 0.000023 and the ratio p0/p1 varies between 0.9997598 and

1.0000389. Models are imperfect by their statistical nature and the region on which data

exists determines them. These two models, p0 and p1, are identical within reasonable round-

ing. We may compare pa and p1 in order to avoid issues with the hypotheses of Wilks’s

theorem and allow a chi-squared statistic interpretation.

Results are given in Table (2). The test yields −2 ln(λ) = 117.8. The critical significance

level for χ2 with one degree of freedom is P (χ2 ≤ 0.99) = 6.64. We can conclude that the fit
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Table 2. Log likelihood comparisons

hypothesis parameters
using max likelihood

log likelihood −2 ln(λ) KS D-statistic

alternate
general exponential cutoff (pa)

αa = 1.8152375
βa = −0.0172869

-11646.153 0.007589

β = 0
discrete power law (p0)

α0 = 1.9665088
β = 0

-11705.124 117.832 0.016968

β = −0.000001
virtual discrete power law (p1)

α1 = 1.9664271
β = −0.0000010

-11705.068 117.941 0.016945

is significantly worse under the null hypothesis. We also include a two-sided Kolmogorov-

Smirnov goodness of fit test. The test statistic is the supremum (here just the maximum) of

the distance between the cumulative distribution function of the data from the theoretical

cumulative distribution function, i.e., the distance in the l-infinity norm. The significance

level for 95% in the continuous approximation is 1.36√
6891

≈ 0.01638. This value is conservative

according to Conover (1999).4 The test seems to indicate acceptance for pa and rejection of

p0, however, p0 may actually be within acceptance if the actual p-value could be computed.

5. Conclusion.

The log likelihood ratio statistic −2 ln(λ) = 117.8 is large and the statistical preference is

for the power law with exponential cutoff (as is the preference from the Kolmogorov-Smirnov

test). One should be cautious and note that with large data samples (here more than 6000

data points) small differences in probability distributions can make a large difference in a

statistic. Such statistics are more convincing when samples are truly drawn as repeated

trials from an ideal distribution, but Lotka’s law is more likely a result of some compound

Poisson process (e.g., Huber 2002) whose details we would still like to understand. Replacing

4Conover gives recursive formulas to compute the exact p-value for discrete distributions, but it is beyond
the author’s computing power.
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assumptions in a Poisson process such as career longevity and production rates with on

average assumptions or with approximate distributions drawn from statistics on authors will

change the ultimate resultant distribution.

The Kolmogorov-Smirnov statistic measures the distance between the data cumulative

distribution function and the theoretical cumulative distribution functions. The statistic is

much less for pa than p0. One might think the difference is a reflection of the difference in

the tail of the two distributions, but it is worth noting that the maximum vertical distance

between the theoretical distributions and the data distribution actually occurs at x = 1 for

the three probability mass functions. This is typical since the vertical height of tail is small

whether it is a “fat tail” or a “thin tail.”

We close with an observation about Lotka’s method of using logarithms, truncation, and

linear least squares. In an initial reading of Lotka’s paper, it appears that Lotka was very

careful not to destroy the information that there is a long tail even though he truncated his

data. This appearance comes from the fact that Lotka

(1) computed the data probability distribution and then truncated the tail, rather than

(2) truncate the data first and then compute a finite range probability distribution.

Lotka’s probabilities do not sum to one in his table, because he truncated the distribution

(1) rather than the data (2).

If one was to test the data distribution using a something like a Kolmogorov-Smirnov test,

this care might make a difference since (1) and (2) are different distributions. However, when

one takes logarithms of (1) and (2), one obtains parallel curves. The lines of best fit after

taking logarithms of (1) and (2) will have the same slope and only differ in the intercepts!

It is simply the rules of logarithms as (1) and (2) differ from the raw data only by having

different multiplicative normalization constants. Since Lotka only uses the slope of the line

of best fit, his caution does not make a difference.
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