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Abstract 

Lee, Walsh, and Wang (2015) – based on Uzzi, Mukherjee, Stringer, and Jones (2013) – and 

Wang, Veugelers, and Stephan (2017) proposed scores based on cited references (cited 

journals) data which can be used to measure the novelty of papers (named as novelty scores U 

and W in this study). Although previous research has used novelty scores in various empirical 

analyses, no study has been published up to now – to the best of our knowledge – which 

quantitatively tested the convergent validity of novelty scores: do these scores measure what 

they propose to measure? Using novelty assessments by faculty members (FMs) at 

F1000Prime for comparison, we tested the convergent validity of the two novelty scores (U 

and W). FMs’ assessments not only refer to the quality of biomedical papers, but also to their 

characteristics (by assigning certain tags to the papers): for example, are the presented 

findings or formulated hypotheses novel (tags “new findings” and “hypothesis”)? We used 

these and other tags to investigate the convergent validity of both novelty scores. Our study 

reveals different results for the novelty scores: the results for novelty score U are mostly in 

agreement with previously formulated expectations. We found, for instance, that for a 

standard deviation (one unit) increase in novelty score U, the expected number of assignments 

of the “new finding” tag increase by 7.47%. The results for novelty score W, however, do not 

reflect convergent validity with the FMs’ assessments: only the results for some tags are in 

agreement with the expectations. Thus, we propose – based on our results – the use of novelty 

score U for measuring novelty quantitatively, but question the use of novelty score W. 
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1 Introduction 

For many years, peer review was the only method used for research assessments 

(Bornmann, 2011). Since the 1980s, however, peer review has been increasingly 

complemented by bibliometric indicators. According to Belter (2018), “bibliometrics are now 

regularly used in national research evaluation exercises in countries around the world … and 

are incorporated in many high profile university rankings such as the Times Higher Education 

ranking [see https://www.timeshighereducation.com/world-university-rankings] and the 

Shanghai Ranking [see http://www.shanghairanking.com]. Bibliometrics are also routinely 

used at the individual level to evaluate researchers for promotion and tenure and, in some 

cases, to make funding decisions.” Today, bibliometrics is often employed in so-called 

informed peer review processes, in which peers assess scientific units (e.g., institutions) based 

on bibliometric indicators (and further metrics) (Gunashekar, Wooding, & Guthrie, 2017). 

Berger and Baker (2014) list some factors which drive the increasing use of bibliometrics in 

research evaluation: “shrinking budgets, heightened competition, increasing scientific 

research output, and longevity of the major metrics. Also important are what may seem to be 

contradictory trends; technology and globalization. Technology has spurred the enhancement 

of tools used to generate bibliometric data, but also has provided more opportunities to 

measure different data, causing some in the research community to question the importance of 

the standard metrics” (p. 83). Today, research assessments based on bibliometrics are integral 

parts of many scientific activities (Moed, 2017). 

Indicators are measurable quantities which are “substitutes for something less readily 

measurable and is presumed to associate with it without directly measuring it” (Wilsdon et al., 

2015, p. 5). Bornmann and Marewski (2019) coined the term bibliometrics-based heuristics 

for scientific performance assessments if the decisions are based on only two pieces of 

information from the available indicators space: citations and publications. Most of the 
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indicators which have been developed in bibliometrics hitherto focus on four major areas: 

“productivity, collaboration, research topics, and citation impact” (Belter, 2018). For 

example, citation counts are frequently used proxies for scientific impact, although past 

research might influence current research which is not reflected in citations (e.g., because the 

impact is induced by inspiring conference presentations). 

In recent years, another area of indicators has been added to the established areas by 

introducing indicators which might capture the novelty of research described in publications 

(Uzzi et al., 2013; Wang et al., 2017). Novel combinations of existing knowledge are seen as 

prerequisites for important research able to inspire later research. The novelty indicators are 

usually based on counting unusual combinations of cited references in papers. Since novelty 

is seen as related to unusual combinations of existing knowledge, this concept has been 

transferred to bibliometrics based on cited references (as proxies of existing knowledge in the 

archives). The new area of novelty indicators is of specific interest for the field of research 

evaluation, since this is interested in research leading to new breakthroughs (Winnink, 

Tijssen, & van Raan, 2016): “Scientific progress is driven by important, infrequent 

discoveries that cannot be readily identified and quantified, which makes research assessment 

very difficult” (Rodríguez-Navarro, 2016). 

When new indicators are introduced in scientometrics, the first task is to measure 

whether these indicators really measure what they propose to measure (Panel for Review of 

Best Practices in Assessment of Research et al., 2012). In a recent empirical study, Tahamtan 

and Bornmann (2018) interviewed authors of landmark papers in bibliometrics to investigate 

whether the great potential of their papers is reflected in the cited references. Tahamtan and 

Bornmann (2018) conclude that the ideas for the papers might not necessarily have been 

inspired by past publications. The cited literature “seems to be important for the 

contextualization of the idea in the field of scientometrics. Instead, we found that … [the] 

ideas are the result of finding solutions to practical problems, result from discussions with 
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colleagues, and profit from interdisciplinary exchange” (p. 906). Thus, the results of 

Tahamtan and Bornmann (2018) question the common use of cited references to measure 

novelty. In other words, the results of this qualitative study might be a first hint that cited 

references are not useful data for measuring the novelty of papers. 

Thus, we started to conduct this additional quantitative study in which we explore the 

concepts of measuring novelty further. We compared novelty scores with novelty assessments 

by peers (experts in the corresponding fields) to test the convergent validity of the proposed 

metrics. The convergent validity of the scores would be given, if they were in fact positively 

related to the assessment by peers. The study of convergent validity based on quantitative 

empirical data seems necessary, since Lee et al. (2015) already “encourage use of such 

metrics as a new tool for science policy indicators” (p. 694). 

2 Measuring creativity based on novelty (scores) 

In the last two decades, scholars have used various types of bibliographic information 

and methods to identify breakthrough-class papers, such as Redner (2005), Schneider and 

Costas (2017), and Ponomarev, Williams, Hackett, Schnell, and Haak (2014). Winnink et al. 

(2016) investigated the specific characteristics of breakthrough-class papers which they 

identified using various bibliographic information (e.g., cited references or number of 

authors) and methods proposed hitherto. Identifying and measuring novelty in science based 

on quantitative indicators has a long tradition (in scientometrics and beyond), since novelty is 

regarded as one of the most important conditions for excellent research. 

Creativity – the medium in which novel directions in research emerge – has frequently 

been interpreted as an evolutionary search process within structured spaces (i.e., disciplinary 

archives) including certain elements (i.e., single knowledge proposals). The process of 

imaging novel combinations of elements from this space – crossing established (disciplinary) 

boundaries – is interpreted as creativity (Burt, 2004; Lee et al., 2015; Mednick, 1962; 



 6 

Simonton, 2003). In other words, recombination processes are seen as the main mechanisms 

for being creative which manifest in publishing breakthrough-class papers (Kaplan & Vakili, 

2015). Koestler (1964) introduced the term “bisocitation” to describe these processes which 

connect well-known, but previously unconnected entities. There is an emerging line of 

research which has operationalized this approach by measuring the novelty of journals, 

patents, and research proposals (e.g., Boudreau, Guinan, Lakhani, & Riedl, 2016; Fleming, 

2001; Packalen & Bhattacharya, 2017; Verhoeven, Bakker, & Veugelers, 2016). Basically, all 

these studies follow “the combinatorial novelty literature, which views research as a problem 

solving process involving various combinatorial aspects so that novelty comes from making 

unusual combinations of preexisting components” (Wang, Lee, & Walsh, 2018, p. 1074). 

These combinatorial processes are seen as creative acts. 

Uddin and Khan (2016) used the combination of usual and unusual keywords by 

authors to identify knowledge innovation and the introduction of new concepts. A similar 

measurement of “thematic novelty” of papers has been used by Carayol, Llopis, and Lahatte 

(2016) which is based on the rareness of keywords combinations. These authors found, for 

instance, that high thematic novelty of papers is associated with high citation impact. 

Schubert and Schubert (1997) and Schubert (2013) analyzed new combinations of terms in 

the title of papers published in chemistry. They used the method to detect emergent areas in 

chemistry. Warman, Bradford, and Moles (2013) based their study on the novelty of MeSH 

term combinations. MeSH terms thematically classify papers which are published in the field 

of biomedicine. The authors compared the MeSH term combinations related to grant 

proposals with existing combinations in the literature. They found, for instance, that 

“evaluators systematically give lower scores to research proposals that are closer to their own 

areas of expertise and to those that are highly novel. The patterns are consistent with biases 

associated with boundedly rational evaluation of new ideas” (p. 2765). Foster, Rzhetsky, and 
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Evans (2015) used combinations of chemicals reported in the literature to measure novelty 

and found that high novelty is related to high citation impact. 

In this study, combining with F1000Prime qualitative recommendations, we 

investigated two quantitative approaches which used unusual combinations of cited literature 

in papers as measures of novelty: (1) Uzzi et al. (2013) – revised by Lee et al. (2015) – and 

(2) Wang et al. (2017). Both approaches are based on the premise that creative ideas in 

science are based on novelty which is reflected in unusual combinations of cited literature 

(Uzzi et al., 2013). In other words, many unusual combinations point to creative research for 

which the chance of becoming highly-cited or breakthrough-class status is high. 

3 Methods 

3.1 Post-publication peer review at F1000Prime 

F1000Prime is a post-publication peer review system in the biomedical area. 

According to Tennant et al. (2018), it is a recommendation service which provides “post-

publication evaluation and recommendation of significant articles, often through a peer-

nominated consortium”. So-called Faculty Members (FMs) recommend, score, and classify 

papers for inclusion in the F1000Prime database. To ensure that the literature in the relevant 

topic areas has been adequately covered in the database, the tables of contents of major 

general and specialist journals in biomedicine are scanned. F1000Prime recommends on 

average more than 1,000 papers each month, corresponding to a fraction of all published 

papers in biology and the medical sciences. Thus, the majority of papers published in these 

areas are not covered in the F1000Prime database (see below). When FMs recommend a 

paper for F1000Prime, they also write a brief review explaining what makes the paper so 

important and rate it as “good”, “very good” or “exceptional” (equivalent to scores of 1, 2 or 

3 stars, respectively). F1000Prime uses the individual scores to calculate the total scores for 

each paper (FMs recommendations), which are used to rank the papers in each discipline. 
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FMs also assess the papers with the following tags, if appropriate:1 

 Confirmation: article validates previously published data or hypotheses 

 Controversial: article challenges established dogma 

 Good for teaching: key article in a field and/or is well written 

 Hypothesis: article presents an interesting hypothesis 

 Negative/null results: article has null or negative findings 

 New finding: article presents original data, models or hypotheses 

 Novel drug target: article suggests new targets for drug discovery 

 Refutation: article disproves previously published data or hypotheses 

 Technical advance: article introduces a new practical/theoretical technique, or 

novel use of an existing technique 

The classifications in bold reflect aspects of novelty in research; our expectations are 

that they are related positively to the novelty scores. For example, we expect that a paper with 

many assignments of the “new finding” tag from FMs will also have high novelty scores of 

the indicators considered in this study. The expectations for the tags which are not printed in 

bold are zero or negative correlations with the novelty scores (e.g., for the confirmation of 

previously published hypotheses). The “controversial” tag is in italics since it is not entirely 

clear whether it reflects novelty or not. The tag is basically applied to studies that in the 

opinion of a FM ‘goes against the grain’ with regard to current understanding. The finding 

reported in the paper should be interpreted as ‘circumspect’, namely one need to carefully 

think about it before being widely accepted. F1000Prime further assigns the following 

publication types to the papers: “clinical trial”, “systematic review/meta-analysis” and 

“review/commentary”. However, these further assignments are not relevant to the research 

question of the current study and have not been considered. 

                                                 
1 The definitions of the tags are adopted from https://f1000.com/prime/about/whatis/how 
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F1000Prime recommendations have been used already in several studies for the 

correlation with metrics. One such study was interested in the relationship of quantitative 

(metrics-based) and qualitative (human-based) assessments of research. Waltman and Costas 

(2014) found “a clear correlation between F1000 recommendations and citations. However, 

the correlation is relatively weak” (p. 433). A similar result was published by Mohammadi 

and Thelwall (2013). Bornmann and Leydesdorff (2013) tested the correlation between 

several bibliometric indicators and F1000Prime recommendations and found that the 

“percentile in subject area achieves the highest correlation with F1000 ratings” (p. 286). 

Bornmann (2015) used logistic regression models to examine the convergent validity of the 

F1000Prime peer review system. His results show that “the proportion of highly cited papers 

among those selected by the faculty members is significantly higher than expected. In 

addition, better recommendation scores are also associated with higher performing papers” (p. 

2415). 

Anon (2005) reports the following additional results which are based on the journal 

rather than the paper level (see also Jennings, 2006): “papers from high-profile journals 

tended to be rated more highly by the faculty; there was a tight correlation (R2 = 0.93) 

between average score and the 2003 impact factor of the journal“. Du, Tang, and Wu (2016) 

differentiated between non-primary research or evidence-based research publications on one 

side as well as translational research or transformative research publications on the other side. 

According to their results, the former are more highly cited rather than highly recommended 

by FMs, and the latter are more highly recommended than highly cited. 

3.2 Measuring convergent validity 

Validity is a key concept in psychometrics; it is the extent to which metrics, indicators, 

assessments etc. measure what they claim to measure. Different types of validity exist (e.g., 

face validity, content validity, construct validity or predictive validity). Convergent validity 
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belongs to the construct validity type and is the degree to which two metrics, indicators, 

assessments etc. of constructs (e.g., productivity, quality, novelty or creativity) which 

theoretically should be related are in fact (i.e., empirically) related (Panel for Review of Best 

Practices in Assessment of Research et al., 2012). 

Several authors in bibliometrics have argued that the validity of bibliometric indicators 

should be tested by correlating them with judgements by peers (see e.g., Adams, Loach, & 

Szomszor, 2016; Kim & Diesner, 2015). Thelwall (2017) explains the background of those 

tests as follows: “If indicators tend to give scores that agree to a large extent with human 

judgements then it would be reasonable to replace human judgements with them when a 

decision is not important enough to justify the time necessary for experts to read the articles in 

question. Indicators can be useful when the value of an assessment is not great enough to 

justify the time needed by experts to make human judgements” (p. 4). Kreiman and Maunsell 

(2011) formulated the following expectations for the test results: “In general, one would like 

to observe that the metric correlates with expert evaluations across a broad range of 

individuals with different degrees of productivity”. Rowlands (2018) justifies the analysis of 

convergent validity of indicators based on judgements of peers as follows: “the criteria for 

convergent validity would not be satisfied in a bibliometric experiment that found little or no 

correlation between, say, peer review grades and citation measures”. Harnad (2008) argues 

similarly: metrics “need to be jointly tested and validated against what it is that they purport 

to measure and predict, with each metric weighted according to its contribution to their joint 

predictive power. The natural criterion against which to validate metrics is expert evaluation 

by peers” (p. 103). 

It is the purpose of the current study to analyze the convergent validity of the 

indicators introduced to measure the novelty of papers. We generated the scores for two 

indicators based on the explanations by Uzzi et al. (2013) – revised by Lee et al. (2015) – and 

Wang et al. (2017) for papers published in the biomedical area. We matched the papers with 
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expert judgements (by FMs) from the F1000Prime database. We were especially interested in 

their tag assignments to papers which reflect the novelty of reported research (e.g., “article 

suggests new targets for drug discovery”). We tested whether papers receiving these tags have 

higher novelty scores than papers without these tags. 

3.3 Datasets and computations 

In order to test the convergent validity of the novelty scores, we calculated the scores 

for all papers in the F1000Prime dataset that were published between 2013 and 2015. We 

used three recent publication years to have a sufficiently large dataset for studying the 

convergent validity. Two novelty scores included in our analyses are based on the 

combinations of journals in the cited references of the focal papers, as well as the 

combinations of journals in the cited references of papers that are not among the focal papers. 

We retrieved these additional data from an in-house database based on the Web of Science 

(WoS) database from Clarivate Analytics. This database covers papers since 1980, i.e. only 

cited references published since 1980 are considered in our analyses. Besides the two 

aforementioned novelty scores based on the focals’ cited references, we calculated a simple 

score measuring novelty based on keyword combinations. The keywords used for this score 

were also retrieved from our in-house database. 

Novelty score U 

The first novelty indicator denoted as “novelty score U” has been proposed by Uzzi et 

al. (2013) and revised by Lee et al. (2015). First, at the journal level, they define the 

commonness of each journal pair (journal i and journal j) in year t as 

 

𝐶𝑜𝑚𝑚𝑜𝑛𝑛𝑒𝑠𝑠𝑖𝑗𝑡 =   
𝑁𝑖𝑗𝑡𝑁𝑡

𝑁𝑖𝑡𝑁𝑗𝑡
                         (1) 
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where Nijt is the number of pairs of cited references where the two references have 

been published in the journals i and j and co-cited in year t, Nit is the number of pairs of 

references where one of the references has been published in journal i and the pair has been 

co-cited in year t, and Nt is the number of all pairs of references that have been co-cited in 

year t. Second, Lee et al. (2015) choose the 10th percentile of the series of commonness values 

for the pairs of journals corresponding to the pairs of cited references of a paper as an 

indicator of commonness at the paper level. The novelty score is then defined as the negative 

natural logarithm of this commonness score at the paper level. Lee et al. (2015) provide a 

detailed explanation of the indicator. 

Novelty score W 

The second indicator denoted as “novelty score W” has been introduced by Wang et 

al. (2017). For the calculation of this score, all (distinct) pairs of referenced journals of the 

focal paper are considered, if they fulfil the following conditions: (1) the journal pair has not 

been co-cited prior to the focal paper; (2) the journal pair is co-cited at least once in the three 

years following the focal paper’s publication year. For each of these new journal pairs, it is 

measured how easy it is to make this new combination of the two journals by comparing their 

co-cited journals. If no or only a few other journals have been co-cited with both journals of 

the new journal pair, this is considered as an indicator that it is not easy to make this new 

combination (which would be an indicator for a rather novel focal paper). 

In contrast, if both journals of the new pair of referenced journals have been co-cited 

with a third journal many times, this is considered as an indicator that it is easy to make this 

new combination (which would be an indicator for a less novel focal paper). The ease of 

combining the two journals of a new journal pair is defined as the cosine similarity between 

the vectors containing the numbers of co-citations of the two journals with other journals (co-

citation profiles). The co-citation profiles are determined based on journal pairs co-cited in the 

three years prior to the focal paper’s publication year. In all calculations, the 50% least cited 
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journals (based on citations over the three years prior to the focal paper’s publication year) are 

excluded. Finally, the novelty score for a focal paper is defined as  

 

,

(1 cos )ij

new pairJi Jj

W J


                        (2) 

 

where 𝑐𝑜𝑠𝐽𝑖𝑗  denotes the cosine similarity between the co-citation profiles of journals 

Ji and Jj. The sum is taken over all new pairs of referenced journal pairs as described above.  

Keyword score K 

The two aforementioned metrics to measure novelty are based on novel combinations 

of cited references. Since Tahamtan and Bornmann (2018) have questioned the use of cited 

references for measuring novelty and for tracing knowledge flow in general, we additionally 

included a relatively simple metric for measuring novelty in this study, which is not based on 

novel cited references, but on keyword combinations (see above). We compared this metric 

with the novelty scores based on cited references: do we receive other results if we use a score 

which is not based on cited references, but on keywords? 

The keyword score 𝐾𝑗 for a given paper 𝑗 is defined as 

 

𝐾𝑗 =
𝑘𝑗𝑛

𝑘𝑗
  (3) 

 

where 𝑘𝑗𝑛 is the number of new keywords in a paper j and 𝑘𝑗is the total number of 

keywords in paper j. Therefore, keyword score K is the proportion of new keywords whereby 

newness is judged against the available keywords in one subject category from the same 

publication year. If a paper belongs to more than one subject category, K has been calculated 

multiple times, and we selected the maximum score for the further statistical analysis. 
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For our final dataset, the novelty scores were matched with the recommendations by 

FMs of the F1000Prime dataset and the number of citations from our in-house database. The 

final dataset comprises the novelty scores W and U, the recommendations by FMs and the 

number of citations received for 23,206 papers. Since the keyword score K is available for a 

slightly reduced set of 23,041 papers (the missing values are due to lacking keywords), we 

could not perform all statistical analyses with the final dataset. 

3.4 Statistics 

In this study, we tested the convergent validity of metrics measuring novelty by using 

tag assignments by FMs. The variable “tag assignments” is a count variable recording how 

many times a specific tag (e.g., “new finding”) has been assigned to a paper by FMs. We used 

regression models to investigate whether (and to what extent) the assignments depend on the 

novelty of the papers – as measured by the various novelty scores (see section 2). Regression 

models for count outcomes are based on the Poisson distribution (Long & Freese, 2014). 
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Figure 1. Comparisons of the relative number of tag assignments (black line) with Poisson 

predictions (blue line) 

 

Figure 1 shows graphs which compare the observed relative frequencies of tag 

assignments with the predicted probabilities from Poisson regressions (intercept-only models, 

see below). The figures are based on the numbers of the different tags (e.g., “new finding” or 

“technical advance”) assigned to the papers. The results demonstrate the similarity of the 

observed and the predicted distributions. The Poisson distribution only underpredicts count 1 

in the comparison with the observed “new finding” assignments in Figure 1. 

The Poisson regression model (PRM) assumes that the observed count of paper i is 

drawn from a Poisson distribution with mean μi, where μi is dependent on the regressors of the 

model (i.e., the novelty score in our models). With one independent variable, the PRM is 

 

𝜇𝑖 = exp (𝛽0 + 𝛽1𝑥𝑖1)                                      (3) 

 

Given our dependent variables (e.g., “new finding” or “good for teaching” 

assignments), we cannot assume that each paper was at risk of receiving tags for the same 

amount of time. Since the papers in our dataset are from different years, the papers have 

different exposure times. The different amounts of time between publication and date of data 

compilation clearly affect the number of tags. To adjust for exposure time, we additionally 

included the publication years of the papers in the model. Since “publication year” is a factor 

variable (i.e., a variable with three categories), we included two variables as further 

independent variables in the regression models (besides the novelty and keyword scores). The 

third category of “publication year” is the reference category. The formula of the models 

changes as follows 
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PRM: 𝜇𝑖 = exp (𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3)         (4) 

 

In the interpretations of the results of the regression models, we do not focus on the 

estimates of the regression coefficients. We further calculated – based on these estimates – 

percentage change coefficients for a standard deviation increase in the independent variable 

(e.g., novelty score U). The percentage change coefficients simplify the interpretation and 

comparison of the regression models’ results. 

Since the novelty and keyword scores as well as citation counts and peers assessments 

do not follow normal distributions, we decided to calculate regression models with robust 

standard errors. The robust option in Stata is a post-estimation modification which influences 

standard error estimations after the point estimation is complete (Angeles, Cronin, Guilkey, 

Lance, & Sullivan, 2014). The option obtains unbiased standard errors of coefficients in 

regression analyses; it estimates the variance-covariance matrix of errors in such a way that 

does not assume normality (Acock, 2018). According to Hilbe (2014), “most researchers use 

regular model standard errors as the default and employ robust and profile techniques when it 

is clear that model assumptions have been violated” (p. 99). 

Citation counts and assessments by peers are usually used as proxies for the quality of 

papers (Martin & Irvine, 1983). In this study, we compare the results based on the novelty 

scores with the results based on citation counts and peers assessments. The variable “FMs 

recommendations” is the sum of the scores (1, 2 or 3 stars) which the papers receive by FMs. 

We were interested in how the results of the regression models for the novelty scores differ 

from those for the quality assessments (using citation counts and peers assessments, 

respectively, as independent variables instead of novelty and keyword scores). Whereas FM 

recommendations are quality assessments of papers, citation counts reflect one part of quality: 

the impact of research within the scholarly community (Martin & Irvine, 1983). Since all 

F1000Prime tags are used by FMs to point to various factors explaining why the tagged 
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papers are so important for the scientific community, we expect for all tags a positive 

relationship between the assignments of tags and both FM recommendations and citations, 

respectively. 

Citation counts and FMs recommendations are count variables which can be equally 

analyzed as the number of tag assignments with PRMs. 

4 Results 

In this study, we empirically investigated the convergent validity of both novelty 

scores (U and W) by using tag assignments by FMs for comparison. We also examined 

keyword score K for comparison. Table 1 presents the key figures for the novelty scores, 

keyword score K, citations, and FMs recommendations. As the results show, both novelty 

scores have very different values: for novelty score U, the minimum value is a negative value 

and the maximum is 6.96. In contrast, the minimum value of novelty score W is -152.86 and 

the maximum score is 303.46. As the mean novelty scores in Table 1 reveal, the novelty of 

the published research are similar across the publication years. 

 

Table 1. Key figures for both novelty scores, keyword score K, citations, and FMs 

recommendations (by publication year) 

Statistic Novelty 

score U 

Novelty 

score W 

Keyword 

score K 
Citations 

FMs 

recommendations 

2013      

Mean 0.69 0.37 0.17 72.59 2.23 

Median 0.69 0 0.13 37 2 

Standard 

deviation 
0.98 4.72 0.16 159.22 1.9 

Minimum -5.47 -152.86 0 0 1 

Maximum 5 303.46 1 8562 35 

Number of 

papers 
9246 9246 9167 9246 9246 

2014      

Mean 0.68 0.34 0.17 59.63 1.96 

Median 0.73 0 0.13 31 2 
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Standard 

deviation 
0.94 1.62 0.16 100.6 1.45 

Minimum -6.27 -17.14 0 0 1 

Maximum 4.75 46.26 1 2173 28 

Number of 

papers 
7395 7395 7355 7395 7395 

2015      

Mean 0.71 0.4 0.17 47.68 1.86 

Median 0.71 0 0.13 24 2 

Standard 

deviation 
0.9 2.74 0.16 106.34 1.36 

Minimum -5.74 -0.43 0 0 1 

Maximum 6.96 106.13 1 5419 30 

Number of 

papers 
6565 6565 6519 6565 6565 

All years      

Mean 0.69 0.37 0.17 61.41 2.04 

Median 0.71 0 0.13 31 2 

Standard 

deviation 
0.95 3.44 0.16 128.95 1.63 

Minimum -6.27 -152.86 0 0 1 

Maximum 6.96 303.46 1 8562 35 

Number of 

papers 
23,206 23,206 23,041 23,206 23,206 

 

For investigating convergent validity, we performed regression models with novelty or 

keyword scores as independent, and the number of tag assignments by the FMs as dependent 

variables. Our expectations for the regression analyses were that the number of assignments 

for the tags “hypothesis” (article presents an interesting hypothesis), “new finding” (article 

presents original data, models or hypotheses), “novel drug target” (article suggests new 

targets for drug discovery), and “technical advance” (article introduces a new practical/ 

theoretical technique) are positively related to novelty and keyword scores. More assignments 

of these tags which are associated with newness in different forms should appear alongside 

higher novelty scores. For “confirmation”, “good for teaching”, “negative/ null results”, and 

“refutation”, we expect small or negative correlations with the novelty and keyword scores. 

We do not have clear expectations for “controversial”. 

Table 1 additionally includes two variables which we used as independent variables in 

the regression models besides the novelty and keyword scores: the number of citations and 
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FMs recommendations (both measured since publication until the end of 2018). The FMs 

recommendations does not refer to the number of recommendations received, but the sum of 

the scores given by the FMs (see above). The results of the additional regression models are 

used to compare findings based on novelty and keyword scores with findings based on 

indicators reflecting quality. 

 

Table 2. Key figures for the dependent and independent variables included in the PRM (which 

is presented in detail, n=23,206) 

Variable 
Mean or 

percent 

Standard 

deviation 
Minimum Maximum 

Dependent variable    

Number of “new finding” 

assignments 

0.85 0.77 0 11 

Independent variable    

Novelty score U 0.69 0.95 -6.28 6.96 

Publication year     

2013 40%    

2014 32%  0 1 

2015 28%  0 1 

 

We calculated several regression models for the different dependent (F1000 FMs’ tag 

assignments) and independent (novelty and keyword scores, FMs recommendations, and 

citations) variables. Since the number of models is too large to present all of them in detail, 

we show the results of one model in detail and below focus on the most important (and 

comparable) results from all models. The model for the detailed analysis refers to “new 

finding” as dependent and “novelty score U” as independent variables. Table 2 shows the key 

figures for the dependent and independent variables. The mean value for the “new finding” 

tag is 0.85 (i.e., the papers received about one “new finding” tag on average); 40% of the 

papers were published in 2013 and 28% in 2015 (see the variable “publication year”). 
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Table 3. Results of the PRM with the number of “new finding” assignments as dependent 

variable (which is presented in detail, n=23,206, Pseudo R2=0.33%) 

Independent variable Coefficient Robust standard error Percentage change in 

expected count for a 

standard deviation 

increase in novelty 

score U (with standard 

deviation, SD) 

Novelty score U 0.08*** 0.01 7.5 [SD=0.95] 

Publication year    

2014 -0.08*** 0.01  

2015 -0.15*** 0.01  

Constant -0.15*** 0.01  

Note. *** p<0.001 

 

The results of the PRM are presented in Table 3. The estimated coefficient from the 

PRM for novelty score U is statistically significant and positive. The percentage change data 

in the table reveals the size of the effect: for a standard deviation increase in novelty score U 

(i.e., an increase with the value 1), the expected number of assignments of the “new finding” 

tag increase by 7.5%, holding publication years constant. The standard deviation for novelty 

score U is approximately one. Thus, the effect of the independent variable is as expected and 

substantial. It is an advantage of the percentage change data that it is comparable not only 

across different F1000Prime tags (the result is standardized by using the standard deviation), 

but also across the models, which are based on keyword scores, FMs recommendations and 

citations. The standard deviation has the same meaning in the independent variables. 

Table 4 shows the results of all regression models which have been performed in this 

study. The models are based on different tags as dependent variables and novelty and 

keyword scores, citations, and FMs recommendations as independent variables (besides the 

publication years). The table also includes explanations of the F1000Prime tags as well as our 

expectations for the novelty scores’ results. These expectations refer to the direction of the 

relationship between the novelty scores and tag assignments (see section 3.1). 
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Table 4. Results of PRMs (percentage change data) with the number of assignments of different tags as dependent variables and novelty and keyword scores, 

citation counts, or FMs recommendations as independent variables (in addition to publication years). 

 

Tag Explanation 

 Tag 
Novelty 

score U 
Novelty score W Citations 

FMs 

recommendations 
Keyword score K 

Expected 

results for 

the novelty 

score 

Percent 

assigned 

Percentage 

change 

Percentage 

change 

Percentage 

change 

(W as categorical 

variable) 

Percentage 

change 

Percentage 

change 

Percent 

assigned 

Percentage 

change 

Confirmation 

Validates 

previously 

published data 

or hypotheses 

Negative 17.61 
-13.45*** 

[0.58%] 

-0.71 

[0.14%] 

-1.25 

[0.14%] 

1.19 

[0.14%] 

14.92*** 

[0.77%] 
17.61 

-3.39* 

[0.16%] 

Good for 

teaching 

Key article in 

field and/or well 

written 
Negative 22.39 

-2.06 

[0.02%] 

3.26*** 

[0.09%] 

10.00*** 

[0.23%] 

5.66*** 

[0.28%] 

27.10*** 

[3.92%] 
22.33 

3.71*** 

[0.04%] 

Negative/Null 

results 

Article has null 

or negative 

findings 
Negative 0.97 

-19.86*** 

[1.06%] 

-4.84** 

[0.53%] 

-6.66 

[0.55%] 

-20.17 

[0.66%] 

11.08* 

[0.65%] 
0.97 

-9.14 

[0.59%] 

Refutation 

Disproves 

previously 

published data 

or hypotheses 

Negative 1.33 
-1.14 

[0.14%] 

1.81 

[0.15%] 

-1.09 

[0.14%] 

4.84*** 

[0.21%] 

28.55*** 

[2.39%] 
1.34 

5.73 

[0.17%] 

Controversial 
Challenges 

established 

dogmas 

Negative/ 

Positive 
7.13 

-10.35*** 

[0.38%] 

2.36* 

[0.22%] 

5.25* 

[0.24%] 

4.65*** 

[0.29%] 

27.28*** 

[3.01%] 
7.08 

-0.91 

[0.21%] 

Hypothesis 
Article presents 

an interesting 

hypothesis 
Positive 24.09 

17.71*** 

[0.58%] 

1.6*** 

[0.09%] 

2.91* 

[0.09%] 

4.67*** 

[0.21%] 

28.45*** 

[4.95%] 
24.13 

-1.32 

[0.08%] 

New finding 
Presents original 

data, models or 

hypotheses 
Positive 70.21 

7.47*** 

[0.33%] 

-3.91*** 

[0.20%] 

-8.47*** 

[0.40%] 

5.51*** 

[0.61%] 

26.66*** 

[7.27%] 
70.38 

-6.55*** 

[0.31%] 

Novel drug 

Target 

Suggests new 

targets for drug 

discovery 
Positive 7.55 

58.78*** 

[2.84%] 

-4.10*** 

[0.20%] 

-6.27* 

[0.23%] 

6.81*** 

[0.62%] 

32.84*** 

[5.95%] 
7.59 

-12.15*** 

[0.39%] 

Technical 

advance 

Introduces a new 

practical/ 

theoretical 

technique 

Positive 14.82 
28.78*** 

[1.02%] 

-0.13 

[0.03%] 

-2.61 

[0.04%] 

7.38*** 

[0.83%] 

30.78*** 

[5.48%] 
14.80 

-7.83*** 

[0.14%] 

Number of 

papers 
  23,206 23,206 23,206 23,206 23,206 23,206 23,041 23,041 

Notes. *** p<0.001, ** p<0.01, * p<0.05. Pseudo R2 is reported in each cell in square brackets. 
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Let us start the interpretation of the results in Table 4 with the findings for citations 

and FMs recommendations. Both variables are expected to reflect the “quality” dimension of 

published research and we predicted a positive relationship with all tag assignments. As the 

results in the table reveal, the expectations are met for all tags, but with one exception: papers 

with negative or null results are expected to have fewer citations than papers with positive 

results. However, this is something which has been reported on citations previously. For 

example, Jannot, Agoritsas, Gayet-Ageron, and Perneger (2013) found a citation bias favoring 

significant results in medical research. 

The percentage change data in Table 4 is larger for FMs recommendations than for 

citations. Since the tags are from the same experts as the recommendations, higher percentage 

change values can be expected for the experts than for the citations. 

The results in Table 4 for novelty score U completely match the expectations: all signs 

of the percentage change data are in the expected directions. Thus, the indicator “novelty 

score U” seems to have convergent validity with the assessments by peers. As the results 

further reveal, the indicator seems to be especially suitable for identifying novelty in targets 

for drug discovery. The percentage change value is very high (58.78%). However, larger 

percentage change values are also visible for other tags reflecting newness: “hypothesis” 

(17.71%) – although statistically not significant – and “technical advance” (28.78%). The 

percentage change value for “new finding” is comparatively low (7.47%). This might be the 

case because the tag has been very frequently assigned to papers by the experts: 70.21% of the 

papers received the tag “new finding”. 

The findings for novelty score W are not as favorable as those for novelty score U. 

Only the results for three tags are as expected: “confirmation”, “negative/null results”, and 

“hypothesis”. Furthermore, the percentage change data for novelty score W turned out to be 

generally lower than those for novelty score U. It seems that novelty score W is not as 

convergently valid as novelty score U. We calculated additional regression models for novelty 
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score W for comparison, since Wang et al. (2017) generated and used a categorical novelty 

variable in their study as follows: 

(1) non-novel papers (if a paper has no new journal combinations), 

(2) moderately novel papers (if a paper makes at least one new combination but has a 

novelty score lower than the top 1% in our dataset), and 

(3) highly novel paper (if a paper has a novelty score among the top 1% in our 

dataset). 

Wang et al. (2017) calculated this variable in a slightly other way, since they used all 

papers of the corresponding subject categories to identify the top 1%. We did not deem it as 

necessary to use all papers from corresponding subject categories for determining the top 1%, 

since all papers in our dataset are from the biomedical area. 

As the findings in Table 4 for the categorical novelty variable W reveal, they also do 

not agree with the expectations for many tags. The results only change slightly in comparison 

to the novelty score W variable. 

For comparison with the novelty scores based on cited references, we calculated 

keyword scores K. As the results in Table 4 reveal, keyword scores K perform similar 

unsatisfactorily as novelty score W: the results for only two tags are in the expected direction. 

 

Table 5. Results of probit regressions models (fully standardized coefficients) with the 

assignments of different tags as dependent variables and novelty scores as independent 

variables (besides publication years) 

Tag Explanation 

Expected 

results for the 

novelty score 

Fully standardized coefficients 

Novelty 

score U 

Novelty 

score W 

(W as 

categorical 

variable) 

Keyword 

score K 

Confirmation 
Validates previously 

published data or 

hypotheses 
Negative 

-0.10*** 

[0.70%] 

-0.01 

[0.17%] 

-0.02 

[0.17%] 

Good for Teaching 
Key article in field 

and/or well written 
Negative 

-0.03** 

[0.05%] 

0.07*** 

[0.27%] 

0.04*** 

[0.09%] 
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Negative/Null results 
Article has null or 

negative findings 
Negative 

-0.09*** 

[1.13%] 

-0.02 

[0.59%] 

-0.04 

[0.63%] 

Refutation 
Disproves previously 

published data or 

hypotheses 
Negative 

-0.01 

[0.14%] 

-0.01 

[0.15%] 

0.01 

[0.15%] 

Controversial 
Challenges established 

dogma 

Negative/ 

Positive 

-0.06*** 

[0.47%] 

0.02 

[0.25%] 

-0.01 

[0.23%] 

Hypothesis 
Article presents an 

interesting hypothesis 
Positive 

0.12*** 

[0.73%] 

0.03*** 

[0.08%] 

0.01 

[0.05%] 

New Finding 
Presents original data, 

models or hypotheses 
Positive 

0.12*** 

[0.79%] 

-0.12*** 

[0.76%] 

-0.04*** 

[0.16%] 

Novel Drug Target 
Suggests new targets 

for drug discovery 
Positive 

0.27*** 

[3.26%] 

-0.03* 

[0.15%] 

-0.06*** 

[0.29%] 

Technical advance 
Introduces a new 

practical/ theoretical 

technique 
Positive 

0.16*** 

[1.22%] 

0.00 

[0.01%] 

-0.03** 

[0.04%] 

Number of papers   23,206 23,206 23,041 

Note. *** p<0.001, ** p<0.01, * p<0.05. Pseudo R2 is reported in each cell in square brackets. 

 

In a further step of the empirical analyses, we investigated the robustness of our 

results. We additionally performed probit regression models which can be used to model 

binary outcome variables. In these models, the inverse standard normal distribution of 

probability is modeled as a linear combination of the independent variables (Long & Freese, 

2014). In the previous PRMs, we used the sum of the FMs scores as dependent variables. For 

the robustness checks, the data have been dichotomized showing whether a paper received a 

certain tag or not. These binary variables can be analyzed with probit regression models. In 

the regression models based on novelty score W, we included W as categorical variable, since 

some models based on W did not converge. 

The results of the models for novelty scores U and W as well as keyword score K are 

reported in Table 5. The fully standardized coefficients can be interpreted as follows (here for 

the novelty score U and “new finding” variables): for every standard deviation increase in 

novelty score U, a paper’s propensity to receive the “new finding” tag is expected to increase 

by 0.12% standard deviations, holding the publication year constant. As the results of all 

regression models in the table reveal, the conclusions which we formulated previously based 
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on the PRMs do not change substantially with the new results. The further results mainly 

confirm the robustness of the PRMs. 

In the final step of the empirical analyses, we compared novelty and keyword scores 

for two further groups of papers to test the robustness of our main findings reported 

previously. The results in Table 4 reveal that 70.21% of the F1000Prime papers have the “new 

finding” tag. We can infer from this result that “newness” is a typical sign of papers included 

in the F1000Prime database. We compared therefore the novelty and keywords scores of two 

groups: (1) included in F1000Prime and (2) not included in F1000Prime. The group of papers 

included in F1000Prime consist of all papers in the F1000Prime database of document type 

article or review that have been published between 2013 and 2015. This comprises 22,832 

papers. The group of papers not included in F1000Prime was retrieved by drawing a random 

sample of the same size, stratified by publication years and document types (considering the 

distribution in the group of papers included in F1000Prime). For drawing the sample, we 

could not consider all papers published in these years, since the FMs only select papers from 

biomedicine and related areas. Waltman and Costas (2014) solved this problem by using the 

following procedure in their study on F1000Prime: they identified all subject categories of the 

papers included in F1000Prime and selected all papers which are in at least one subject 

category previously identified. We followed this procedure in our study. 

 

Table 6. Key figures for the dependent (included in F1000Prime) and independent variables 

(novelty and keyword scores) included in three logistic regression models 

Variables Mean or 

percent 

Standard 

deviation 

Minimum Maximum 

2013 (n=17,887)  
   

Included in F1000Prime 0.51% 0.50 0 1 

U 0.25 1.38 -5.71 11.41 

W 0.42 3.81 -152.86 303.46 

K 0.21 0.19 0 1 

2014 (n=14,345)  
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Included in F1000Prime 0.51% 0.50 0 1 

U 0.35 0.74 -6.28 4.75 

W 0.39 1.97 -33.62 107.18 

K 0.21 0.18 0 1 

2015 (n=12,697)  
   

Included in F1000Prime 0.51% 0.50 0 1 

U 0.37 0.73 -5.74 6.96 

W 0.46 2.63 -0.43 106.13 

K 0.21 0.18 0 1 

 

We performed logistic regression models (with robust standard errors) to determine 

the relationship between novelty and keyword scores and the inclusion of papers in 

F1000Prime. We performed logistic instead of probit regression models (see above), since the 

probit regression models did not converge in all cases. In the logistic regression models, we 

used the binary variably “included in F1000Prime” as dependent (see above) and the novelty 

and keyword scores as independent variables. We included all novelty and keyword scores in 

one model (and calculated three models for the publication years 2013, 2014, and 2015). The 

consideration of the variables in separate models show that the results are very similar to 

those of the full model (the spearman rank-order correlations between the novelty and 

keyword scores are between -0.05 and 0.1). The key figures for the variables included in the 

models are shown in Table 6. 

 

Table 7. Results of the logistic regression models with the binary variable “included in 

F1000Prime” as dependent variable 

Variable Coefficient Robust 

standard error 

Percentage change in 

odds for a standard 

deviation increase in 

the score 

2013 (n=17,887 Pseudo 

R2=11.65%) 

   

Novelty score U 0.59*** 0.02 124.2 

Novelty score W 0.00 0.00 0.7 

Keyword score K -2.47*** 0.10 -37.2 

Constant 0.38*** 0.02  
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2014 (n=14,345, Pseudo 

R2=24.54%) 

   

Novelty score U 2.39*** 0.11 489.5 

Novelty score W -0.10 0.02 -18.3 

Keyword score K -2.54*** 0.11 -37.3 

Constant -0.12** 0.04  

2015 (n=12,697, Pseudo 

R2=28.51%) 

   

Novelty score U 2.84*** 0.14 689.3 

Novelty score W -0.06*** 0.02 -15.1 

Keyword score K -2.51*** 0.12 -37.1 

Constant -0.23*** 0.04  

Notes. ** p<0.01, *** p<0.001 

 

The results of the three regression models (for 2013, 2014, and 2015) are shown in 

Table 7. Besides the coefficients, percentage changes in expected counts for being included in 

F1000Prime are shown. The results for the novelty scores reinforce the previous results. A 

standard deviation increase in the novelty scores increases the odds of being included in 

F1000Prime by more than 100% in case of novelty score U. All coefficients and percent 

change values for keyword score K and two of three coefficients and percent change values 

for novelty score W in Table 7 are negative (2014 and 2015): a standard deviation increase in 

the scores decreases the odds of being included in F1000Prime. Only the 2013 coefficient and 

percent change value for keyword score W are positive. 

5 Discussion 

Creativity is the essence in which breakthrough-class research emerges. Research 

without creative inspiration might become “normal science” – according to the notation 

introduced by Kuhn (1962) – but will not be exceptionally enough to be “revolutionary”. The 

novel and unusual combination of existing knowledge from the archives has been suggested 

as act of creativity. Citation data are especially suited to measuring the use of novel (or 

typical) combinations for certain pieces of research, since it is usual in science to cite the 
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shoulders on which research stands (Merton, 1965): according to the ethos of science, all 

publications which have influenced the reported research should be cited in a manuscript 

(Merton, 1973). Thus, the novelty of research might be reflected in the typical – as many 

others do – or novel – as only a few others do – use of cited references. Lee et al. (2015) – 

based on Uzzi et al. (2013) – and Wang et al. (2017) proposed scores based on cited 

references (cited journal) data which can be used to measure the novelty of papers. Whereas 

Uzzi et al. (2013) identifies atypical combinations of cited journal pairs, Wang et al. (2017) 

focus on novel combinations. According to Lee et al. (2015), “it is important to find indicators 

that allow us to unpack the concepts of novelty and impact, in order to better understand the 

drivers of creativity” (p. 685). 

In previous studies, the success of the scores to measure novelty has been investigated 

by citation analyses (see the overview of Zeng et al., 2017). The results of Uzzi et al. (2013) 

including “17.9 million papers across all scientific fields suggest […] that the highest-impact 

science draws on primarily highly conventional combinations of prior work, with an intrusion 

of combinations unlikely to have been joined together before. These patterns suggest that 

novelty and conventionality are not factors in opposition; rather, papers that mix high tail 

novelty with high median conventionality have nearly twice the propensity to be unusually 

highly cited” (p. 471). The results by Wang et al. (2017) reveal that papers with high novelty 

scores tend to be less cited after their appearance, but are more highly cited after several years 

than papers with low scores. Furthermore, novel research is “not only more likely to become a 

big hit itself but also more likely to stimulate follow-on research which generates major 

impact” (Wang et al., 2017, p. 1420). Mairesse and Pezzoni (2018) used a novelty score based 

on cited references data to study the impact of “standard” and “novel” papers published by 

French scientists. They also found – in agreement with Wang et al. (2017) – that novelty is 

reflected in citations only in the long run. 
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Although previous research has used novelty scores in various empirical analyses, 

only one study has been published up to now – to the best of our knowledge – which 

investigated whether novelty (or creativity) is really rooted in cited references (see section 1). 

However, the authors – Tahamtan and Bornmann (2018) – undertook a qualitative study 

based on interview data. The current study tested empirically (quantitatively) the convergent 

validity of novelty scores: do these scores measure what they propose to measure? The 

investigation of validity is an important step in the development of new indicators (Thelwall, 

2017); only validated indicators should be used in the practical application. Using novelty 

assessments by FMs of F1000Prime for comparison, we tested in this study the convergent 

validity of three novelty scores (U, W, and K). Peers’ assessments at F1000Prime do not only 

refer to the quality of biomedical papers, but also their characteristics (by assigning certain 

tags to the papers): for example, are the presented findings or formulated hypotheses novel? 

Does the paper present a good overview of research on a certain topic explaining why it can 

be used for teaching activities? We used these tags to investigate the convergent validity of 

the novelty scores. 

Our study reveals different results for the novelty scores: the results for novelty score 

U are (mostly) in agreement with our expectations concerning the results for the different 

tags. We found, for instance, that for a standard deviation increase in novelty score U, the 

expected number of assignments of the “new finding” tag increases by 7.47% (the result is 

statistically significant). The results further show that this indicator seems to be especially 

suited to identifying papers suggesting new targets for drug discovery. The corresponding 

percentage change information from the regression model turned out to be very high 

(58.78%). The results for novelty score W, however, do not reflect convergent validity with 

the assessments by FMs: only the results for some tags are in agreement with the 

expectations. Thus, we propose – based on our results – the use of novelty score U for 

measuring novelty quantitatively, but question the use of novelty score W. 
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Measuring the convergent validity of newly proposed novelty scores is very much 

necessary, but the approach used in this study is not without its limitations. (1) Since 

F1000Prime data focuses on the biomedical field, our results are only valid for this area. 

Although it would be interesting to also have results for other areas, similar datasets with peer 

assessments for many papers are not available (to the best of our knowledge). (2) Since our 

results refer to only two novelty scores based on cited references (U and W), it would be 

interesting to have similar investigations of the other scores which have been proposed 

previously. Although most of the other scores are not based on cited references data (but on 

keywords, MeSh terms etc.), their convergent validity can be tested also with F1000Prime 

data. With keyword score K, we considered one of these metrics in this study for comparison; 

however, it is a very basic metric, and more advanced metrics based on keywords, MeSh 

terms etc. might be considered in future studies. (3) The results of Bornmann, Tekles, and 

Leydesdorff (2019) suggest that FMs might be influenced by the citations to the paper when 

they make their judgements. Hence, to the extent that citations influence the assignment of 

F1000 tags reflecting aspects of novelty in research, there would be measurement errors in 

these assignments as measures purely of novelty (rather it would be measuring some 

combination of novelty and impact). 
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