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Abstract  

The Journal Impact Factor (JIF) is linearly sensitive to self-citations because each self-citation 

adds to the numerator, whereas the denominator is not affected. Pinski & Narin (1976) derived 

the Influence Weight (IW) as an alternative to Garfield’s JIF. Whereas the JIF is based on raw 

citation counts normalized by the number of publications, IWs are based on the eigenvectors 

in the matrix of aggregated journal-journal citations without a reference to size: the cited and 

citing sides are combined by a matrix approach. IWs emerge as a vector after recursive iteration 

of the normalized matrix. Before recursion, IW is a (vector-based) non-network indicator of 

impact, but after recursion (i.e. repeated improvement by iteration), IWs can be considered a 

network measure of prestige among the journals in the (sub)graph as a representation of a field 

of science. As a consequence (not intended by Pinski & Narin in 1976), the self-citations are 

integrated at the field level and no longer disturb the analysis as outliers. In our opinion, this is 

a very desirable property of a measure of quality or impact. As illustrations, we use data of 

journal citation matrices already studied in the literature. Routines for the computation of IWs 

are made available at http://www.leydesdorff.net/iw. 
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Introduction 

 

Cason and Lubotsky (1936) were the first authors to report that aggregated journal-to-journal 

cross-citations can be used to measure the influence of one journal on another. The objective 

of these authors was the quantitative measurement in terms of aggregated journal-journal 

citations of the extent to which each psychology journal influences and is influenced by other 

psychological journals. The journals are then considered as a proxy of fields. A similar journal-

journal citation matrix in psychology was used by Daniel and Louttit (1953) to measure the 

similarity of the citation patterns of journals. These authors furthermore developed a first 

clustering of scientific journals. Kessler (1964) formulated a journal cross-citing matrix for 

physics journals and argued that specific types of information can be deduced from this matrix. 

Xhignesse and Osgood (1967) extended network-theory concepts to portray the relationships 

between journals and to measure their referencing similarities. 

 

A problem in these matrices had remained the outlier on the main diagonal representing the 

within-journal self-citations. In two contributions, Price (1981a) and Noma (1982) proposed 

normalization procedures for these diagonal values. They noted that square matrices are 

common to the measurement of science, books, money, etc. These matrices register 

transactions between the members of a group. Price (1981b) argues that a set of five separate 

measures can be extracted from a given transaction matrix indicating size, quality, and self-

interest in the cited and citing directions. 

 

Earlier, Pinski and Narin (1976) proposed an iterative algorithm based on a matrix approach. 

From this perspective, the outlier is a characteristic organizing a subgraph of the matrix. Thus, 

these authors shifted the focus from the observable (raw) citation counts to what these counts 

mean in the context of the citation matrix under study. Different from citations as streams 

among individual journals, the subgraph among the journals can be considered as a 

representation of a scientific field. 

 

Operationally Pinski & Narin (1976) first normalized the citation matrix and then an eigenvalue 

operation is used so that instead of a raw count of citations C, a (recursively) weighted count 

is generated that operationalizes the “prestige” of the citing journal in the field represented by 

the (sub)graph. This same idea was later reinvented by Page & Brin (Page et al., 1998) as 

PageRank, the ranking algorithm of Google. The basic idea is that it matters who is citing: a 
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more highly-cited citing agent is weighted as more important than a lower-cited one. From this 

perspective, citation values in the cells of a citation matrix are no longer considered as 

independent observations, but as recursively related outcomes of underlying processes. 

 

Taking into account the “prestige” of the citing journal in a matrix from which a citation arises 

as a network measure, requires this iteratively recursive computation (Pinski and Narin 1976; 

Brin and Page 2001; Bergstrom 2007). In social network analysis, well-established tools (such 

as Pajek) allow for the computation of these recursive indicators.1 From this perspective, the 

raw count of citations is a first non-network—since vector-based—measure. The “raw” count 

of citations can, for example, be considered as a measure of the “popularity” of the journal 

among other journals along the vector; recursively “weighted” counts of citations are assumed 

to measure “prestige” at the field level (Bollen et al. 2006; Yan and Ding 2010). Thus, the 

meaning of a citation is differently contextualized. 

 

IWs were developed with the objective of providing an alternative to (and implicitly a critique 

of) the Journal Impact Factor (JIF). Garfield and Sher (1963) first measured the size of a journal 

by the count of all articles P published in the journal during a chosen window (called the 

publications window). This P is a  measure of journal performance. The output measure is the 

number of citations C received by these P articles from all articles published in the other 

journals in the network during a specified period called the citation window. From these, one 

can derive a proxy of quality called impact i = C/P. In the case of the Journal Impact Factor 

(JIF), the numerator C is number of references in the current year (citation window) to the 

articles published in the previous two years (publications window) while the denominator is 

the number of articles P published during the same period. JIF is meant to be a ratio of values 

(Garfield, 1972; cf. Prathap 2018).  

 

Within-journal self-citations can affect a JIF dramatically. Fassoulaki et al. (2000), for 

example, studied self-citations in the 1995 and 1996 issues of six anaesthesia journals by 

calculating the self-citing and self-cited rates for each journal. Among these six journals, the 

journal Anesthesiology had the highest self-citing rate (57%), and also the highest self-cited 

rate (35%). Self-citations thus increased the count of citations by 35% (the numerator in the 

 
1 Prathap et al. (2016), for example, used a “tournament” metaphor that was introduced by Ramanujacharyulu 

(1964) for defining a new dimensionless  network property. 
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formula for the JIF) while the denominator, which is the count of publications remained 

unchanged. Consequently, the JIF of Anaesthesiology is driven for 35% by self-citations.  A 

correction for self-organization changes the ranking of journals in most fields. 

 

In the following sections of this paper we focus on the Pinski-Narin Influence Weights as 

dimensionless metrics for journal evaluation that arise naturally from a network approach 

without a reference to size as operationalized by the number of papers P. To illustrate the 

behavior of the indicator, we develop the argument using the journal citation matrix among 

eight leading biochemistry journals published by Price (1981b, at p. 59).  

 

 

Price’s example of a subfield of biochemistry journals 

 

Frandsen (2007: 48) illustrated the basic concepts using the simplified citation matrix in Table 

1. One can depict an ecosystem or sub-graph built around the cluster of other journals O closest 

to a Journal J under study. Row-wise, one lists the citations that are made to each entity from 

the others (“cited”) and column-wise the references each entity makes (“citing”) are counted. 

Thus, the within-journal citations (and within-journal references) are the diagonal terms S and 

X, and the cross-terms are the journal-to-journal citations and references respectively. That is, 

Journal J cites itself S times, is cited d times by the other journals and is citing the other journals 

g times. The cited-citing ratio of Journal J with self-citations is then (S+d)/(S+g), and that 

without self-citations is d/g.  

 

 

Table 2 provides the matrix of citation relations among eight biochemistry journals (Price 

1981b): Z = [Zij].  Many properties of such matrices are known. Among other things, the matrix 

can be multiplied by itself. This can recursively be repeated indefinitely so that the kth power 

of the matrix is Zk. This matrix multiplication can be done, for example, in Excel using the 

function MMult(). However, this function is limited in Excel to 73 * 73 arrays. Larger matrices 

can be handled, for example, in Pajek, or by the routine “power.exe” available at 

http://www.leydesdorff.iw (limited to matrices of 1024*1024 rows and columns).  

 

 

http://www.leydesdorff.iw/
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Whereas matrix multiplication (by itself) is symmetrical along the row and column dimensions, 

multiplication by the probability vector p(k) can be expected to converge and result in a vector 

containing the effectively weighted values of total citations, but asymmetrically for “cited” and 

“citing.” Differently from Ramanujacharyulu (1964), Pinski & Narin (1976) did not depart 

from the eigenvectors of the two matrices, namely the cited and citing forms (where the latter 

is the transpose of the former). Whereas the computation of the JIF proceeds by normalizing 

citations by the number of publications, Pinski & Narin (1976) proposed to normalize first the 

citations of a journal by dividing by the aggregated total number of (“citing”) references along 

the column vector; and vice versa for the normalization in the citing dimension. The advantage 

of this normalization is that one divides among units with the same dimension and the result is 

therefore dimensionless. Table 3 shows the normalized reconstruction of the original matrix in 

Table 2; Table 4 shows the convergence of the vector p(k) in the case of the biochemistry 

journal ecosystem (subgraph in the graph theoretical sense) for the IW indicator after recursion 

(i.e. 7 iterations) for the cases with and without self-citations. Note that with sufficiently large 

iteration, it will go asymptotically to zero. 

 

 

A formal elaboration of this procedure was provided by Todeschini, Grisoni, and Nembri 

(2015, p. 330). The recursive procedure for formalizing the computation of pi(k) is given in 

graph-theoretical terms by Ramanujacharyulu (1964). An algorithmic implementation using 

the so-called Stodola method of iteration is provided by Dong (1977). In the appendix, we 

provide an Excel procedure for calculating IW from a citation matrix. The corresponding Excel 

file is available for download at http://www.leydesdorff.net/iw/price.xlsx . A disadvantage of 

Excel is the limitation to 73 rows and columns. A general purpose program for the computation 

of influence weights on the basis of square matrices “vector.exe” is therefore provided at 

http://www.leydesdorff.net/iw/index.htm . Vector.exe is limited to 1024*1024 rows and 

columns.  

 

Figure 1 shows two ways in which the IW indicators for the eight bio-chemistry journals (Price 

1981b) can be displayed: before and after recursion and with or without self-citations. The IW 

indicator after recursion, is virtually insensitive to self-citation. The intercept of the trendline 

(in Excel) is 0.00, the slope is 1.00, and the correlation is 1.00. This indicates that the linear 

trend line through the data points passes through the origin, has a unit slope, and a goodness of 

fit very close to 1.0. For example, the JIF of the Journal of Biological Chemistry in the matrix 

http://www.leydesdorff.net/iw/price.xlsx
http://www.leydesdorff.net/iw/index.htm
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of eight biochemistry journals changes by 34% when the 9,384 within-journal self-citations in 

Table 3 are subtracted from the margin total of 27,596 citations. However, the change in IW 

after recursion is only 0.14% after 7 iterations, and diminishes exponentially with iteration 

number!   

 

 

Concluding remarks 

 

IW is a  dimensionless indicator that emerges from the graph-theoretic properties of the citation 

network. When IW converges, it can be considered as a proxy for the quality of the journal’s 

performance in the relevant network (Price 1981b; Pinski & Narin 1976). In this study, we have 

seen that after recursion (i.e. repeated improvement by iteration of the matrix multiplication), 

the IW is remarkably insensitive to surplus self-citations. This is a very desirable property of a 

measure of quality.  

 

Self-citations highly exaggerate the Journal Impact Factor, the inflation being linear with self-

citation. Price’s (1981a) normalization improved the indicator of how journals perform within 

a journal ecosystem. Pinski & Narin’s (1981) IWs are insensitive to self-citation. It can be 

formally proved that the recursive iteration lets IWs to converge to the dominant eigenvector 

and that the converged IWs are insensitive to self-citations (i.e. the diagonal terms) and this is 

being communicated separately (Mukherjee & Prathap 2019).  

 

Furthermore, one can specify the differences between IWs and Ramanujacharyulu’s (1964) 

Power-Weakness Ratio (PWR). In the PWR approach, the eigencomputation is performed 

separately on the cited and citing dimensions of the matrices and then the ratio is taken of the 

resulting vectors (Prathap 2019). In the IW approach, the matrix is first normalized and the 

eigencomputation is performed on this matrix. However, both PWR and IW should be used 

only with homogeneous sets (Leydesdorff et al., 2016).  
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Appendix 1: The computation of Influence Weights  

 

A. Excel 

 

1) A file is provided at http://www.leydesdorff.net/iw/price.xlsx.  containing Price’s 

(1981b) 8 × 8 cited-citing matrix and the normalized matrix in the first two sheets 

respectively and repeated in array (C3:J10) of the third sheet labelled ‘w sc’ (that is, 

“with self-citations”). The matrix for the case of zero within-journal self-citations is 

found in the fourth sheet labelled ‘wo sc’ (“without self-citations”) in this  same sheet.  

2) In sheet 3 labelled ‘w sc’ the first matrix multiplication (using the mmult() function in 

Excel) multiplies each row of this matrix with the start vector (J3:J10), taken as a vector 

with each element having the value 1.This actually gives the raw count of citations, and 

is kept at (L3:L10). The new eigenvector is obtained at column M by normalizing this 

so that it becomes a stochastic vector. The multiplication is then done repeatedly. At 

the end of the kth cycle one obtains the vector p(k). 

3) The iteration can be repeated with the transposed matrix. One obtains the vector q(k) at 

the end of the kth cycle. 

4) Ramanujacharyulu’s (1964) power-weakness ratio r is then given by r(k) = p(k)/q(k) at 

the end of the k cycles. 

5) The recursion is repeated with the normalized Z matrix in order to obtain the IW vector. 

Note that at k=1, the PWR and IW values are exactly the same, as expected. 

6) The MMULT function returns #VALUE! if the output exceeds 5460 cells (n ≤ 73); see 

at https://support.microsoft.com/kb/166342?wa=wsignin1.0. In that case, use option B 

below.  

 

B. Using Vectors.exe and Power.exe at http://www.leydesdorff.net/iw   

 

1) Export the transaction matrix as comma-separated variables file to text.csv. The file 

should be “pure ASCII”; that is, MS-DOS with Carriage Return and Line Feed (CR + 

LF) at the end of each line. (Use WordPad or Edit++.) The file should not contain a 

first line with headings; the file name “text.csv” is obligatory. 

2) “text.csv” can be read by vector.exe to be downloaded first and stored in the same 

folder. 

3) Output of vector.exe with the possibly converging vector for 15 iterations. 

https://support.microsoft.com/kb/166342?wa=wsignin1.0
http://www.leydesdorff.net/iw
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4) The file narin1.dbf contains the normalized data file before iteration; both in the 

transposed direction and before this in the non-transposed one. Files are overwritten in 

subsequent runs. 

5) One can replace “text.csv” by a file of this name but containing the transposed for the 

“citing” analysis.  

6) “Narin1.dbf” can be used for making another (normalized) version of text.csv. This file 

can be exported from Excel, SPSS, etc. The normalized file can also be input into 

power.exe in order to make higher-order power matrices. 
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Table 1. Citation matrix of an ecosystem or sub-graph built around the cluster of journals 

O closest to Journal J. 

 

 

Citation matrix 

Citing 

Citations 

Journal J Others  

Cited 

Journal J S d S+d 

Others  g X  g+X 

             References S+g d+X S+d+g+X 
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Table 2. The Z matrix of the cross citing terms among the eight bio-chemistry journals as a 

subgraph of the main graph of all the journals listed in the 1977 Journal Citation Index (source: 

Price 1981b).  

 

 

 

Bio-
chemistry 
journals 

Citing CITATIONS 

Cited 

J. Biol. Chem 9384 6181 2107 3750 609 2335 719 2511 27596 

Bio. Bio. Aeta 2406 7550 865 1757 365 1478 408 1120 15949 

Proc. N.A.S. 2770 2184 3995 1946 1470 488 1239 1329 15421 

Biochem. U.S. 2553 2591 1057 3827 299 653 601 887 12468 

Nature 1007 1230 1407 837 2963 379 603 630 9056 

Biochem. J. 1183 1812 326 632 201 2464 150 528 7296 

J. Mol. Bio. 1109 1136 1251 1347 504 216 2545 367 8475 

Bio. Bio. R.C. 1624 1719 695 1040 263 564 241 1313 7459 

REFERENCES 22036 24403 11703 15136 6674 8577 6506 8685 103720 

 

 

  



 

 

14 

 

Table 3. The normalized Z matrix of the cross citing among the the eight bio-chemistry journals 

as a subgraph of the main graph of all the journals listed in the 1977 Journal Citation Index 

(Price 1981b) after Pinski-Narin recursion (1976).  

 

Normalized 
Matrix   

Bio-
chemistry 
journals 

Citing CITATIONS 

Cited 

J. Biol. Chem 0.426 0.280 0.096 0.170 0.028 0.106 0.033 0.114 1.252 

Bio. Bio. Aeta 0.099 0.309 0.035 0.072 0.015 0.061 0.017 0.046 0.654 

Proc. N.A.S. 0.237 0.187 0.341 0.166 0.126 0.042 0.106 0.114 1.318 

Biochem. U.S. 0.169 0.171 0.070 0.253 0.020 0.043 0.040 0.059 0.824 

Nature 0.151 0.184 0.211 0.125 0.444 0.057 0.090 0.094 1.357 

Biochem. J. 0.138 0.211 0.038 0.074 0.023 0.287 0.017 0.062 0.851 

J. Mol. Bio. 0.170 0.175 0.192 0.207 0.077 0.033 0.391 0.056 1.303 

Bio. Bio. R.C. 0.187 0.198 0.080 0.120 0.030 0.065 0.028 0.151 0.859 

REFERENCES 1.576 1.716 1.063 1.187 0.763 0.694 0.722 0.696 8.416 
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Table 4. Summary of the biochemistry journal ecosystem (subgraph in the graph theoretical 

sense) and the IW indicator after recursion (i.e. 7 iterations) for the cases with and without self-

citations. 

 

 

Subgraph Journal name With 
self-

citations 

Without 
self-

citations 

%  
Change 

Biochemistry 
journals    

(Price 
1981b) 

The Journal of Biological Chemistry 0.1363 0.1361 -0.14 

Biochimica et Biophysica Acta 0.0592 0.0591 -0.17 

Proceedings of the National Academy of Sciences of the United 
States 0.1739 0.1740 0.04 

Biochemistry 0.0870 0.0869 -0.12 

Nature 0.1942 0.1947 0.21 

Biochemical Journal 0.0809 0.0807 -0.20 

Journal of Molecular Biology 0.1770 0.1772 0.11 

Biochemical and Biophysical Research Communications 0.0914 0.0913 -0.12 

 

 

  



 

 

16 

 

 

 

 

 

Figure 1. The IW indicators for the eight bio-chemistry (Price 1981b) before and after 

recursion, and with and without self-citations. 

 

 

 

 

 

 

 


