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Abstract

Predicting the number of coauthors for researchers contributes to understanding the development of

team science. However, it is an elusive task due to diversity in the collaboration patterns of researchers.

This study provides a learning model for the dynamics of this variable; the parameters are learned from

empirical data that consist of the number of publications and the number of coauthors at given time

intervals. The model is based on relationship between the annual number of new coauthors and time

given an annual number of publications, the relationship between the annual number of publications

and time given a historical number of publications, and Lotka’s law. The assumptions of the model are

validated by applying it on the high-quality dblp dataset. The effectiveness of the model is tested on the

dataset by satisfactory fittings on the evolutionary trend of the number of coauthors for researchers, the

distribution of this variable, and the occurrence probability of collaboration events. Due to its regression

nature, the model has the potential to be extended to assess the confidence level of the prediction results

and thus has applicability to other empirical research.

Keywords: Coauthorship, Publication productivity, Data modelling.

Introduction

A growing trend of collaboration has emerged in current scientific research. This trend is reflected in

increasingly active coauthorship among researchers as solitary authorship diminishes in prevalence [1].

Coauthorship has attracted much attention, with analyses of perspectives ranging from contribution

[2, 3], population [4], discipline [5–7], country [8, 9], and multination [10–13], to the connection with
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citations [14,15]. The emerging field known as team science draws on diverse disciplinary perspectives to

understand the processes and outcomes of scientific collaboration. Team work has been shown to have

a large citation impact [16, 17], transdisciplinary outcomes [18], and high publication productivity [19].

Uzzi et al indicated that publications with three or more authors showed an increased frequency of “tail

novelty” (which is a publication’s 10th-percentile z score for its journal pairings) over the solo-author

rate [20]. They used regression methods to analyze the relationship between the number of citations of

a publication and the number of its authors, and found that publications produced by larger teams were

associated with a higher citation impact. Wu et al found that the character of publications produced by

large teams differs from that of small teams in terms of development versus disruption [21]. The number

of coauthors is related to the team size. For example, more than 70% of researchers in the empirical

dataset considered here belong to one team (see Appendix A). Therefore, the prediction has the potential

to propose auxiliary measures for teams’ innovation, impact, and research character.

A previous study showed that the assembly mechanisms of a research team determine the structure of

coauthorship networks [22, 23]. Much attention has been paid to these networks, and research has been

concentrated on coauthor distribution [24–26], followed by structure [27–29], clustering [30], homophily

[31,32], and applications, e.g., name disambiguation [33]. Researchers have established a range of models,

from preference attachment to cooperative game theory [34–36], to explore possible mechanisms for the

evolution of the networks created by coauthorship. Most of these models generate a constant number of

links for each new node, which is far from the reality. To simulate coauthorship networks at full scale, we

need to know the extent to which researchers collaborate. Therefore, a method of predicting the number

of coauthors is needed.

Researchers have explored possible factors that increase or decrease the number of new coauthors, such

as the institutional prestige [37], self-organization [38], geography [39], discipline or interdiscipline [40],

and academic reputation of researchers [41]. Knowledge of the correlated factors helps to predict the

number of coauthors for a given researcher. However, factor analysis in social systems cannot exhaust all

possible factors, as the considered factors would be correlated. For example, prestigious institutions that

possess famous researchers can attract researchers to collaborate, which in part leads to multi-university

collaborations [42]. Some have of the identified correlations between the considered factors and response

variables may be caused by unconsidered factors or by the correlations between the considered factors,

which are called spurious correlations. Therefore, analyzing factors individually is not recommended in
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statistical analysis. Accordingly, a multivariate statistical model to predict the number of coauthors is

needed.

To choose suitable statistical models, we need to know the detailed features of the distributions of

response variables and the mechanisms thereof. Coauthors appear in the process of producing publica-

tions; thus, there is a need to predict publication productivity. The number of publications of a researcher

can be explained by an inhomogeneous Poisson process [43]. A model of piecewise Poisson regression

has been proposed to predict the number of publications [44]. Its limitation regarding the prediction

for highly productive researchers is solved by utilizing Lotka’s law [45]. Based on the high-quality dblp

dataset1, the effectiveness of these models has been tested by satisfactory fittings on the distribution and

the evolutionary trend of the number of publications for researchers, as well as the occurrence probability

of publication events.

This study proposes a learning model to utilize multiple factors to predict the number of coauthors

for researchers. Three factors are used as a beginning, namely, time, the historical number of publica-

tions, and the historical number of coauthors. The piecewise Poisson regression on the training datasets

extracted from the dblp dataset, given an annual number of publication, shows a significant correlation

between the annual number of new coauthors of a researcher and time. However, the annual number of

new coauthors does not follow a Poisson distribution. Therefore, using the piecewise Poisson regression

and the predicted annual number of publications can provide only preliminary results for the number of

coauthors. The results are modified by the formulae that address the cumulative advantage of attract-

ing coauthors in terms of the historical number of coauthors. The hyperparameters of the formulae are

determined by a genetic algorithm for a good fit to validation datasets. The effectiveness of the model is

displayed by a good fit to the test datasets in terms of the evolutionary trend of the number of coauthors,

the distribution of this variable, and the occurrence probability of collaboration events.

This paper is organized as follows. The model and its motivation are described in Sections 2, 3. The

empirical data and experiments are described in Section 4. The results are discussed and conclusions

drawn in Section 5.

1The dblp computer science bibliography proposes a high-quality dataset that consists of open bibliographic information
on the major journals and conference proceedings of computer science. It has been corrected by several methods of
name disambiguation, and there are now more than 60,000 manually confirmed external identities linked with dblp author
bibliographies. These confirmed identities guarantee the quality of the dataset. See https://www.dblp.org.
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Motivation

The relationship among time, the number of publications and coauthors

A positive correlation between the number of publications of a researcher and the number of his or her

coauthors has been found in several empirical datasets [43], and is also found in the dataset analyzed

here (see Appendix A). Correlation does not indicate causality, and arguments exist on whether scientific

collaboration has a positive effect on publishing productivity. Lee et al found that the number of coauthors

is not a significant predictor of the number of publications [46]. However, Ductor showed that after

controlling for endogenous coauthorship formation, unobservable heterogeneity, and time, the effect of

intellectual collaboration on the number of an individual’s publications becomes positive [47]. Therefore,

our model does not include the correlation.

The analysis on the dblp dataset shows that given an annual number of publications, the annual

number of a researcher’s new coauthors significantly correlates to time. Therefore, the annual number

of new coauthors can be predicted when the future annual number of publications is known. A previous

model can predict the latter variable [45], which makes it possible to predict the former variable. Note that

the analysis on the dblp dataset shows that the annual number of new coauthors does not significantly

correlate to time when considering all individuals or individuals with the same historical number of

publications. Therefore, the annual number of publications is utilized in our model as a middle variable.

The distribution of the number of coauthors

In our study, the coauthor distribution of a group of researchers refers to the distribution of the number

of a researcher’s coauthors. To choose a suitable regression model, we need to know the distribution

features of the response variables and the mechanisms that generate these features. The number of

coauthors of a researcher, as a response variable, is in part dependent on his or her number of publications.

Previous studies on several empirical datasets have shown that the distribution of the number of a

researcher’s publications is characterized by a trichotomy, comprising a generalized Poisson head, a

power-law midsection, and an exponential cutoff [43]. The trichotomy can be derived from a range of

“coin-flipping” behaviors, in which the probability of observing “heads” is dependent on events already

observed [48].

The event of producing a publication can be regarded as an analogy of observing “heads”. The
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probability of publishing is also affected by previous events, and research experiences accumulated in

the process of producing publications. This is a cumulative advantage that also exists in the analyzed

dblp dataset (see Appendix A). It is displayed as a transition from the generated Poisson head to the

power-law midsection. The aging of researchers’ creativity operates against the cumulative advantage,

and is displayed as the transition from the power-law midsection to the exponential cutoff.

Lotka’s law applies to in empirical datasets [49]; that is, many researchers have only one publication.

Meanwhile, the number of authors of a publication mainly follows a generalized Poisson distribution [50],

thus inducing the generalized Poisson parts of coauthor distributions. An increase in the number of

publications is associated with an increase in coauthors, which induces the power-law midsection and

exponential cutoff of coauthor distributions. The analysis reveals the inhomogeneous Poisson character

of coauthors appearing, which is a key point of our prediction model.

The annual number of a researcher’s new coauthors also depends on his or her historical number of

coauthors, which is a cumulative advantage that exists in the analyzed dataset (see Appendix A). The

effect of the cumulative advantage would be nonsignificant over a short time interval, e.g., a year. At

each year y, researchers are partitioned into M×W subsets, where subset (m,w) contains the researchers

with m publications at y and w historical coauthors before y. This partition diminishes the diversity of

researchers in terms of their historical number of coauthors and annual number of publications, and can

reveal the Poisson character of coauthor distributions (see Section 4). However, some of these subsets are

too small to use regression. Therefore, this study proposed a method to deal the inhomogeneous Poisson

process of coauthors appearing for the relatively large subsets that consist of researchers with the same

annual number of publications.

The model

Model terms

Consider the researchers who produced publications at two intervals [T0, T1] and [T1, T2]. Partition the

second one into J intervals with cutpoints T1 = t0 < t1 < · · · < tJ = T2. The half-closed interval

(tj−1, tj ] is referred to as the j-th time interval, where j = 1, 2, ..., J . Consider the researchers who

produced m publications at the j-th time interval. Let ξmj be the average number of new coauthors

of these researchers at the j-th time interval. Let ζmj be the new coauthor number of each of these
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researchers at the j-th time interval.

Consider the researchers who produced i publications at the time interval [T0, tj−1]. Let ηij be the

average number of these researchers’ publications produced at the j-th time interval. Let λij be the

number of publications of each of these researchers at the j-th time interval.

A training dataset is used to fit the parameters of the regression formulae in the model. Then, the

fitted model with different hyperparameters is used to predict the response variables for the observations

in a validation dataset, with the aim of identifying the hyperparameters that can provide a better fit.

Finally, test datasets are used to provide an evaluation of a final model in the aspects of the coauthor

distribution of researchers, the evolutionary trend of their number of coauthors, and the occurrence

probability of collaboration events.

Training

The parameters of the model are obtained by two piecewise Poisson models and a log-log model based on

a training dataset. Consider a training dataset consisting of the researchers who produced publications

at the time interval [T0, tL−1] and their publications at the time interval [T0, tL].

Firstly, treating the index i of λij as a dummy index, we assumed λi1 > 0 and

λij = λi1eβi(tj−t1), (1)

where βi is the effect of time tj . Taking logs in Eq. (1) obtains

log λij = αi + βi(tj − t1), (2)

where αi = log λi1. For the majority of researchers who produced i publications at [T0, tj−1], their number

of the publications produced at a following short time interval (tj−1, tj ] follows a Poisson distribution [45].

Therefore, for each i ∈ {1, 2, ..., I}, Eq. (2) is the formula of a one-variable Poisson model [51].

Secondly, treating the index j of λij as a dummy index, we assumed λ1j > 0 and

λij = λ1ji
νj , (3)

where νj tunes the effect of i on λij . The form of Eq. (3) is based on Lotka’s law [45]. Taking logs in
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Eq. (3) obtains

log λij = µj + νj log i, (4)

where µj = log λ1j . For each j ∈ {1, 2, ..., J}, Eq. (4) is the formula of a log-log model.

Thirdly, treating the index m of ζmj as a dummy index, we assumed ζm1 > 0 and

ζmj = ζm1eεm(tj−t1), (5)

where εm tunes the effect of time tj on ζmj . Taking logs in Eq. (5) obtains

log ζmj = εm + εm(tj − t1), (6)

where εm = log ζm1.

The fraction of productive researchers and that of the researchers with many coauthors are small,

whereas regression needs enough data. Therefore, when calculating ηij , we only considered the researchers

of the training dataset whose number of publications at [T0, tj−1] is no more than a given integer K. When

calculating ξmj , we only considered the researchers of the training dataset, whose number of publications

at (tj−1, tj ] is no more than a given integer M . Algorithms 1 and 2 are provided to calculate the six

parameters in above formulae based on a training dataset.

Note that the training dataset would not contain enough productive researchers. It would cause that

the parameter K is much smaller than the largest number publications I that the model can predict. In

this case, the model will give bad prediction results to productive researchers.

Validating

The hyperparameters of the model are obtained based on a validation dataset. Eq. (6) is the formula

of a Poisson model. However, the number of coauthors at the j-th time interval of a researcher in

the considered dataset (who produced m publication at that time interval) did not follow a Poisson

distribution (see Section 4). Therefore, the value of (ζmj)M×J calculated by a Poisson model should be

modified. Consider a validation dataset consisting of the researchers who produced publications at the

time interval [tU , tU+1). Consider their annual number of publications at [T0, tV ], where tU < tV .

Consider a researcher s in the validation dataset. Consider the series of his or her number of coau-
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Algorithm 1 Calculating the matrix (λij)I×J .

Require:
the matrix (ηij)K×L.

Ensure:
the matrix (λij)I×J .
for i from 1 to K do

replace the λij in Eq. (2) by ηij for j = 1, ..., L;
calculate αi and βi by the linear regression;
let λij = eαi+βi(tj−t1) for j = 1, ..., J ;

end for
for j from 1 to L do

replace the λij in Eq. (4) by ηij for i = 1, ...,K;
calculate µj and νj by the linear regression;
let λij = eµj iνj for i = K + 1, ..., I;

end for
for i from K + 1 to I do

replace the λij in Eq. (2) by eµj iνj for j = 1, ..., L;
calculate αi and βi by the linear regression;

end for
for j from L+ 1 to J do

replace λij in Eq. (4) by eαi+βi(tj−t1) for i = 1, ...,K;
calculate µj and νj by the linear regression;

end for
let λij = (eαi+βi(tj−t1) + eµj iνj )/2 for i = K + 1, ..., I and j = L+ 1, ..., J .

Algorithm 2 Calculating the matrix (ζmj)M×J .

Require:
the matrix (ξmj)M×L.

Ensure:
the matrix (ζmj)M×J .
for m from 1 to M do

replace the ζmj in Eq. (7) by ξmj for j = 1, ..., L;
calculate τm and υm by the linear regression;
let ζmj = eυm+τm(tj−t1) for j = 1, ..., J .

end for
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thors and that of publications (ks(tU ), ..., ks(tV )) and (hs(tU ), ..., hs(tV )), where ks(tl) and hs(tl) are the

number of his or her coauthors and the number of his or her publications at [T0, tl] (tU ≤ tl ≤ tV ). The

formula of his or her ζmj is modified as

(ζ̃mj)s =


υζmj , if ks(tj−1) = 0,

υks(tj−1)τζmj , if ks(tj−1) > 0,

(7)

where υ and τ > 0. The formulae in Eq. (7) express the cumulative advantage of attracting new coauthors

on researchers’ historical number of coauthors.

In the training process, υ = 1 and τ = 0. Choosing different values of υ and τ will obtain different

prediction results; thus they can be regarded as hyperparameters. The explicit formulae of υ and τ

cannot be obtained; thus Algorithm 3 is proposed to calculate them for a good fitting to the validation

dataset, which is a genetic algorithm.

Algorithm 3 Calculating the hyperparameters in Eq. (7).

Require:
the series (ks(tU ), ..., ks(tV )) and (hs(tU ), ..., hs(tV )) of any researcher s in the validation dataset;
the matrix (ζmj)M×J ;
the parameters nk (k = 0, .., 3) and intervals Ll (l = 0, ..., 2).

Ensure: the first chromosome.
initialize a randomly generated population of n0 chromosomes: (τ, υ) ∈ L0 × L1;
repeat

//create chromosomes: crossover
repeat

select a pair of parent chromosomes (τ1, υ1) and (τ2, υ2) randomly;
generate a random number r ∈ [0, 1];
generate a chromosome (rτ1 + (1− r)τ2, rυ1 + (1− r)υ2);

until n1 times
//create chromosomes: mutation
repeat

select a chromosome (τ , υ) randomly;
generate two random numbers r1, r2 ∈ L2;
generate a chromosome (τ + r1, υ + r2);

until n2 times
let ∆hs(tl) = hs(tl)− hs(tl−1) and ∆ks(tl) = ks(tl)− ks(tl−1);
calculate fitness: f(τ, υ) =

∑
s,l

∣∣(ζ̃∆hs(tl)tl)s −∆ks(tl)
∣∣,;

select the first n0 chromosomes ∈ L0 × L1 according to the ascending order of fitness.
until n3 times
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Testing

Consider a test dataset consisting of the researchers who produced publications at the time interval

[tX , tX+1), the historical number of their publications and the number of their coauthors at the time

interval [T0, tX ], the annual number of their publications and the number of their new coauthors at the

time interval [tY , tZ ], where tX < tY < tZ ≤ tJ . Due to the data-size requirement of using regression, we

only predicted the number of coauthors for the researchers with annual number of publications no more

than M and historical number of publications no more than a given integer I1.

Note that the annual number of new coauthors depends on the annual number of publications and

the number of new coauthors in each publication, namely two random variables. This is modelled by

Algorithm 4. Due to its regression nature, this algorithm cannot predict the exact number of publications

for an individual, but can be suitable for a group of researchers.

Algorithm 4 Predicting the number of publications and that of coauthors for researchers.

Require:
the hs(tX) and ks(tX) of any researcher s in a test dataset;
the matrixes (λij)I×J and (ζmj)M×J ;
the hyperparameters υ and τ .

Ensure:
the hs(tZ) and ks(tZ) of any researcher s.
for each researcher s do

initialize h = hs(tX) and k = ks(tX);
for l from X + 1 to Z do

sample an integer r from Pois(λhl);
sample an integer u from Pois((ζ̃rl)s);
let h = h+ r and k = k + u;

end for
let hs(tZ) = h and ks(tZ) = k.

end for

Results

Empirical data

The training, validation, and test datasets of our study are extracted from the dblp dataset (Table 1), in

which the publications with more than 80 authors have been filtered. Sets 1 and 2 are used to extract

the historical number of publications for the researchers in Sets 3 and 4. Set 5 is used as a training
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dataset, Set 6 is used as a validation dataset, and Sets 7 and 8 are used to test the prediction results

for the researchers in Sets 3 and 4. These datasets consist of 220,344 publications in 1,586 journals and

conference proceedings that were produced by 328,690 researchers from 1951 to 2018. Due to the size of

the analyzed datasets, the proposed model is applicable at least to researchers in computer science.

Table 1. Considered subsets of the dblp dataset.

Dataset a b c d e f
Set 1 1951–1994 180,45 18,398 319 1.558 1.528
Set 2 1951–2000 38,149 35,643 542 1.571 1.681
Set 3 1994 2,903 1,922 146 1.137 1.718
Set 4 2000 5,741 3,600 257 1.184 1.888
Set 5 1985–2009 97,321 75,338 964 1.591 2.055
Set 6 2000–2009 73,642 48,991 874 1.480 2.224
Set 7 1995–2018 316,212 201,946 1,538 1.754 2.746
Set 8 2001–2018 301,741 184,701 1,495 1.733 2.831

The index a: the time interval of data, b: the number of researchers, c: the number of publications, d:
the number of journals, e: the average number of publications of researchers, f : the average number of
authors of publications.

The parameters of the training dataset Set 5 are I = 180, J = 33, K = 42, L = 24, M = 12,

T0 = 1951, T1 = t0 = 1985, tL = 2009, and tJ = T2 = 2018. In detail, it consists of the researchers

who have publications at [T0, tL−1] and their annual number of publications at [T0, tL]. Due to the low

bound of data size of using regression, we only consider the researchers with no more than K publications

and those with no more than M publications at (t0, tL]. Algorithms 1 and 2 are provided to calculate

(λij)I×J and (ζmj)M×J based on the matrixes (ηij)K×L and (ξmj)M×L that are calculated on the basis

of the training dataset.

The parameters of validation dataset (Set 6) and the test dataset (Set 4) used here are tU = tX = 2000,

tV = 2009, tY = 2010, and tZ = 2018. In detail, the validation dataset consists of the researchers who

have publications at the time interval (tU−1, tU ] and their annual number of publications at [T0, tV ].

It is used to calculate the hyperparameters υ and τ by Algorithm 3 with the parameters: n0 = 400,

n1 = 0.6n0, n2 = 0.3n0, n3 = 500, L0 = [0.6, 1.0], L1 = (0.0, 0.4], and L2 = [−0.01, 0.01]. The results are

υ = 0.603 and τ = 0.321.

The test dataset consists of the researchers who produced publications at [tX , tX+1) and the annual

number of their publications and the number of their new coauthors at [tY , tZ ]. We predicted the two

variables only for 99.96% of the researchers in Set 4, who have no more than I1 = 40 publications at
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[T0, tX ] and no more than M = 12 annual publications at [tX , tZ ].

The reasonability of the model assumptions

First, we showed the reasonability of modifying (ζmj)M×J . We partitioned the researchers of the training

dataset into subsets according to their number of publications in a given year. The Kolmogorov-Smirnov

(KS) test rejected the null hypothesis that the coauthor distributions of some large subsets (with 1

or 2 annual publications) are Poisson distributions (Fig. 1). Diminishing the diversity in researchers’

historical number of coauthors reveals the Poisson character of the coauthor distributions. The KS test

cannot reject the null hypothesis that the coauthor distributions of researchers with the same annual

number of publications and historical number of coauthors are Poisson distributions (Fig. 2). Therefore,

it is necessary to modify (ζmj)M×J to express the cumulative advantage of the historical number of

coauthors, which gives the reasonability of the formulae in Eq. (7).
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Figure 1. The p-value of the KS test with the hypothesis that a random variable follows a
Poisson distribution. The panels show the results of the KS test on the number of coauthors of a
researcher with m publications in year y, where m = 1, ..., 20. If the p-value≤ 0.05, the test rejects the
hypothesis (blue circles); otherwise, it cannot reject the hypothesis (red squares).

Secondly, we showed the significance of the regression results on the training dataset. The χ2 test

indicates that ηij significantly correlates to i given j, and to j given i [45]. The χ2 test indicates that

ξmj significantly correlates to tj given m from 1 to 9 except 6 (see the p-value in Fig. 3). The researchers

with that m account for 99.68% of the researchers in the training dataset. These significant correlations

guarantee the effectiveness of utilizing regression methods to calculate (λij)I×J and (ζmj)M×J .



13

0
10

0.5

1

5
0 0

0

5010

0.5

1

5
0 0

0
0502

0.5

5

1

10
0 0

0

020

0.5

1

10
0 0

0
0502

0.5

1

1

10 50
0 0

0

0020

0.5

100

1

10 50
0 0

0
10

0.5

1

1

5 50
0 0

0

0020

0.5

1

1

10 50
0 0

0

0010

0.5

10001

1

5 50
0 0

0

0.5

1

1

5 50
0 0

0

0020

0.5

1

10 50
0 0

0

10010

0.5

100

1

5 50
0 0

0
10

0.5

1

1

5 50
0 0

0

0020

0.5

1

10 50
0 0

0

10020

0.5

1

10 50
0 0

0

10020

0.5

1

10 50
0 0

0

10020

0.5

1

10 50
0 0

0

10020

0.5

100

1

10 50
0 0

y=1998 y=1999 y=2000 y=2001 y=2002 y=2003

y=2004 y=2005 y=2006 y=2007 y=2008 y=2009

y=2010 y=2011 y=2012 y=2013 y=2014 y=2015

Figure 2. Eliminating the diversities in the historical number of coauthors and the annual
number of publications induces Poisson distributions. Consider the researchers with m
publications (upper right direction) in year y and with l coauthors before y (upper left direction). If the
p-value≤ 0.05 (vertical direction), the KS test rejects the hypothesis that the number of coauthors of
that researcher follows a Poisson distribution (blue squares); otherwise, it cannot reject the hypothesis
(red circles).

Evolutionary trend of the number of coauthors

Consider the tested researchers who have k coauthors at the time interval [T0, tX ]. Let n(k, tj) be the

average number of these researchers’ new coauthors arriving at the time interval (tj−1, tj ], and m(k, tj)

be that predicted by the model. Fig. 4 shows the trends of n(k, tj) and m(k, tj) on k at each year tj from

2001 to 2018.

The correlation of the trends is measured by the Pearson correlation coefficient [52] on individual level

(s1: calculated based on the list of researchers’ number of coauthors and that of their predicted one)

and that on group level (s2: sort the lists, and then calculate the coefficient). The value of s1 decreases

over time, whereas that of s2 keeps high. It indicates that the model is unapplicable to the long-time

prediction for individuals, but can be applicable for a group of researchers.

Coauthor distributions

We compared the coauthor distribution of the tested researchers at [T0, y] with the predicted distribution,

where y = 2001, ..., 2018. Fig. 5 shows that a fat tail emerges in the evolution of the ground-truth

distribution and in that of the predicted distribution. This shows that our model can capture the fat-tail
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Figure 3. The relationship between ξmj and tj given m. Consider the researchers with m
publications at (tj−1, tj ]. The panels show the average number of new coauthors of these researchers at
(tj−1, tj ] (ξmj , red squares), the predicted results by the Poisson regression (ζmj , blue dots), and the
confidence intervals of the regression (dashed lines). When p < 0.05, the χ2 test rejects the null
hypothesis that the regression coefficient of time is equal to zero.

phenomenon. The KS test rejects that some of the compared distributions are the same (see the p-value

in Fig. 5), although there is a coincidence in their heads. This indicates that the prediction precision for

researchers with many coauthors needs to be improved.

Collaboration events

The above two experiments focus on the prediction precision of our model over a long time interval. The

following experiment is designed to test the precision over a short time interval, namely, the next year.

The model can provide the probability of the researcher s having new coauthors in the next time interval

(tl−1, tl]:

ps(tl) = 1− e−λhs(tl−1)tl −
M∑
x=1

xλhs(tl−1)tl

x!
e−λhs(tl−1)tl e−(ζ̃xtl

)s . (8)

The area under the curve (AUC) of the receiver operating characteristic is used to measure the

prediction precision. Count the times that a researcher did (did not) collaborate with new coauthors in

the next time interval, the probability is larger (smaller) than 0.5. Denote the counts by m1 and m2

respectively. Count the times that the probability is 0.5, and denote the count by m3. Denote the number

of tested researchers by m. Then,

AUC =
m1 +m2 + 0.5m3

m
. (9)

Fig. 6 shows that the AUC value is high for researchers with a small historical number of publica-

tions. This indicates that the model can provide a satisfactory prediction for the collaboration events of
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Figure 4. Fittings on the evolution of the number of researchers’ coauthors. Consider the
tested researchers who have k coauthors at [1951, 2000], where k = 1, ..., 200. The panels show the
average number of coauthors of these researchers at [1951, y] (n(k, y), red dots) and the predicted
number (m(k, y), blue lines). Index s1 is the Pearson correlation coefficient calculated based on the list
of researchers’ number of coauthors and their predicted number. Index s2 is this coefficient based on
the sorted lists.

researchers with low productivity. It also indicates that there is no regularity of collaborations that can

be revealed by our model for highly productive researchers, which indicates a direction for improving of

the model. Due to the vast number of low productivity researchers, the AUC value is high for all of the

tested researchers.

Discussion and conclusions

A learning model is proposed to predict the number of coauthors for researchers. Its practicability is

tested on the dblp dataset, and its effectiveness is exhibited by the satisfactory fittings on the evolutionary

trend of the number of coauthors for researchers, the distribution of this variable, and the occurrence

probability of collaboration events. Note that our model cannot provide an exact prediction for an

individual. However, due to its nature of regression, it can still be of use in its ability to provide a

satisfactory prediction for a group of randomly selected researchers on average.

The parameters of our model are learned from a training dataset, the methods of which can be

generalized to determine the parameters for models of coauthorship networks or other network models.

The hyperparameters of our model are used to modify the intermediate results given by regression.

The formulae of modification express the cumulative advantage of attracting coauthors on the historical
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Figure 5. Fittings on coauthor distributions. The panels show the coauthor distribution of the
tested researchers at time interval [1951, y] (red circles) and the predicted distribution (blue squares).
When p > 0.05, the KS test cannot reject the null hypothesis that the two distributions are the same.

number of coauthors, which enables our model to directly predict the number of coauthors generated by

an inhomogeneous Poisson process.

The model provides a platform to utilize multiple factors by substituting them in the right side of

Eqs. (2,4,6). A limitation of the results is that only three factors are used, namely, time, the historical

number of publications, and the historical number of coauthors. Analyzing massive data to track the

scientific careers of researchers would help to advance our understanding of how collaboration patterns

evolve. The career stage of a researcher is worth considering as an influencing factor. It would be

interesting to input the rank of the institutions to which researchers belong, the number of affiliations of

past coauthors, the academic age, and reputation of researchers.
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Appendix A: Evidence to support the motivation

Fig. 7 shows the proportion of researchers who produced only one publication in the considered dataset.

The sample size influences the p-value of the KS test [54]: it can be larger than 0.05 in a large sample

and smaller than 0.05 in a small sample. Fig. 8 shows that the sample sizes of the tests shown in Fig. 2

are not very large. Fig. 9 shows the cumulative advantage of attracting new coauthors on researchers’

historical number of coauthors. Fig. 10 shows the cumulative advantage of producing new publications

on researchers’ historical number of coauthors. Fig. 11 shows the positive correlation between the number

of publications of a researcher and his or her number of coauthors.
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Figure 7. The proportion of researchers who produced only one publication in the
considered dataset. The panels show that the proportion r is more than 70% in each year.

Appendix B: The inapplicability of autoregressive models

In statistics, autoregressive models specify that the response variable depends linearly on its previous val-

ues with a stochastic term. The advantage of those models is that they do not require much information;

only the self-variable series is needed. If the autocorrelation coefficients of the response variable series are

smaller than 0.5, then autoregressive models are not suitable for the prediction task. The autocorrelation

coefficient of y = (y1, ..., yT ) with lag l is defined as

rl =

∑T−l
t=1 (yt − ȳ)(yt+l − ȳ)∑T

t=1(yt − ȳ)2
, (10)

where l < T , and ȳ is the mean of y’s elements [53].

Consider a researcher s in test dataset Set 4. Consider his or her series of the number of coauthors

ks = (ks(tU ), ..., ks(tV )), where ks(tl) is his or her number of coauthors at [T0, tl] for tU ≤ tl ≤ tV .

Substitute the series into Eq. (10), and calculate the autocorrelation coefficients. Fig. 12 shows that these

coefficients with a lag > 1 are almost all smaller than 0.5. Therefore, an individual’s historical number of

coauthors is not sufficient to predict his or her future number of coauthors. This finding indicates that

the autoregressive models may not be suitable for the prediction of the number of coauthors.
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Appendix C: An other example

The training and validation datasets here are Sets 5 and 6. The parameters of the test dataset (Set 3) are

tX = 1994, tY = 2010, and tZ = 2018. We only predicted the publications for 99.98% of the researchers

in Set 3 who have no more than 60 publications at the time interval [T0, tX ] and no more than 12 annual

publications at [tX , tZ ]. Figs. 13-15 show the prediction results of our model.
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Figure 9. The cumulative advantage of attracting new coauthors. The panels show the
average number of new coauthors appearing in year y of researchers whose number of coauthors at
[1951, y − 1] are the same.
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Figure 10. The cumulative advantage of producing publications. The panels show the
average number of publications in year y of researchers whose number of publications at [1951, y − 1]
are the same.
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Figure 11. The correlation between the number of publications and the number of
coauthors. Consider the researchers who produced publications at [1951, y], where y = 1992, ..., 2005.
The panels show the average number of coauthors at [1951, y] of researchers who have the same number
of publications at [1951, y]. The Spearman correlation coefficient r is significantly larger than 0,
p-value< 0.05.
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Figure 12. Autocorrelation coefficients of the time series on the cumulative number of
coauthors. Let ks(tj) be the number of coauthors of researcher s at time interval [1951, tj ]. Consider
the time series ks = (ks(tX), ..., ks(tZ)), where tX = 2000, and tZ = 2018. The panels show the average
autocorrelation coefficients of this time series over the group of researchers in Set 4 who have i
coauthors at [1951, 2000]. Index q is group proportion.
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Figure 13. Fittings on the evolution of the number of coauthors for researchers. Consider
the tested researchers who have k coauthors at [1951, 1994], where k = 1, ..., 60. The panels show the
average number of coauthors for these researchers at [1951, y] (n(k, y), red dots) and the predicted
number (m(k, y), blue lines). Index s1 is the Pearson correlation coefficient calculated based on the list
of researchers’ number of coauthors and the list of their predicted number. Index s2 is this coefficient
based on the sorted lists.
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Figure 14. Fittings on coauthor distributions. The panels show the coauthor distribution of the
tested researchers at time interval [1951, y] (red circles) and the predicted one (blue squares). When
p > 0.05, the KS test cannot reject the hypothesis that the compared distributions are the same.
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Figure 15. The precision of predicting collaboration events. The red dots show the AUC of
predicting the collaboration events at year y for the tested researchers who produced i publications at
[1951, y − 1], where i = 1, ..., 50. Index AUC is calculated based on all of the tested researchers.


