
1

Predicting publication productivity for researchers: a piecewise

Poisson model

Zheng Xie1,2,]

1 College of Liberal Arts and Sciences, National University of Defense Technology,

Changsha, China.

2 Department of Mathematics, University of California, Los Angeles, USA

] xiezheng81@nudt.edu.cn

Abstract

Predicting the scientific productivity of researchers is a basic task for academic administrators and funding

agencies. This study provided a model for the publication dynamics of researchers, inspired by the

distribution feature of researchers’ publications in quantity. It is a piecewise Poisson model, analyzing

and predicting the publication productivity of researchers by regression. The principle of the model is

built on the explanation for the distribution feature as a result of an inhomogeneous Poisson process

that can be approximated as a piecewise Poisson process. The model’s principle was validated by the

high quality dblp dataset, and its effectiveness was testified in predicting the publication productivity for

majority of researchers and the evolutionary trend of their publication productivity. Tests to confirm or

disconfirm the model are also proposed. The model has the advantage of providing results in an unbiased

way; thus is useful for funding agencies that evaluate a vast number of applications with a quantitative

index on publications.

Keywords: Scientific publication, Productivity prediction, Data modelling.

Introduction

Scientific fields such as informetrics, scientometrics, and bibliometrics establish a range of models and

methods to evaluate the impacts of scientific publications, and then to predict the scientific success of

researchers [1]. Although publication productivity correlates to scientific success, much attention on

this topic has concentrated on citation-based indexes, followed by the h-index provided by Hirsch [2], a

popular measure of scientific success. It is the maximum value of h such that a researcher has produced
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h publications that have each been cited at least h times. The popularity of the h-index is attributable

to its simplicity and its addressing both the productivity and the citation impact of publications [3].

The success in the prediction of citation-based indexes and the h-index can be thought to result

from the cumulative advantage of receiving citations found by Price in the year 1965 [4], which has been

extended as a general theory for bibliometric and other cumulative advantage process [5–7]. From the

perspective of statistics, the success is due to the predictable components of these indexes that can be

extracted via autoregression. In more concrete terms, the current h-index, the number of annual citations,

and the number of five-year citations are found to be positive predictors to these indexes [8, 9].

The cumulative advantage in producing publication is weaker than that in receiving citations. Em-

pirical studies on data display it as the phenomenon that the tail of the quantitative distribution of the

publications produced by a group of researchers is much shorter than that of the citation distribution of

those researchers [10]. This study also shows the productivity of researchers in the dblp dataset does not

have a predictable component that can be extracted via autoregression. The autocorrelation coefficients

with a lag larger than 1 of the time series on an individual researcher’s cumulative publication quantity

are almost smaller than 0.5, suggesting a lack of predictability in a researcher’s productivity only by his

or her historical publication quantity. Therefore, the critical factor of the success in the prediction of

citation-based indexes and the h-index does not exist in the prediction task of publication productivity.

Is there any predictability in publication patterns? Given the factors involved in publishing, such

as the intrinsic value of research work, timing, and the publishing venue, finding regularities in the

publication history of researchers is an elusive task. Age and achievement probably constitute the most

comprehensive attempt to empirically determine the changes in researchers’ creativity, reflected by the

changes in their publication productivity [11]. In network science, these factors are called the aging

phenomenon and the cumulative advantage, dominating the evolution of coauthorship networks [12, 13].

Hence, the productivity has been theoretically expressed as a curvilinear function of age [14]. This

theoretical result is suitable for the fruitful researchers that have a long time engaging in research.

However, it cannot fit the productivity evolution of many researchers in the dblp dataset analyzed here.

Empirical datasets from several disciplines show that the number of a researcher’ publications approx-

imately follows a generalized Poisson distribution with a fat tail [15]. Can this feature be reproducible

by dynamical random models? Previous studies show this distribution can be thought as a mixture of

Poisson distributions [16]. Samples following the same Poisson distribution means that they would be
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drawn from the same population. It means researchers can be partitioned into several populations, such

that each population has certain homogeneity in publication patterns. Finding such a partition would

help to reveal the mystery of publication patterns, which inspires this study.

We partitioned the researchers in the dblp dataset into several subsets, each of which consists of

the researchers with the same number of historical publications produced before the current time. This

partition eliminates the diversity in publishing experience. For each subset, we found that the number of

publications of a member follows a Poisson distribution at the following short time interval. This inspires

us to provide a piecewise Poisson model to find significant predictors for publication productivity. The

finding is that researchers’ publication productivity significantly correlates to time given a historical

publication quantity. The relationship allows us to infer researchers’ publication productivity in the

future. We provided two methods to test the prediction results of our model in terms of the evolutionary

trend of researchers’ productivity and the quantitative distribution of their publications.

This paper is organized as follows. Literature review and empirical data are described in Sections 2,

3. The model is described in Sections 4-6, where the experiments and comparisons with previous results

are also analyzed. The results are discussed and conclusions drawn in Section 7.

Literature review

There are three main aspects to the prediction of scientific success: the h-index, citation-based indexes,

and publication productivity. Although our study focuses on predicting the publication productivity

of researchers, reviewing the methods in first two aspects contributes to finding the possibility and

unavailability of applying those methods to the third aspect.

As a popular measure of scientific success, the h-index of researchers attracts considerable attention

on predicting it. Acuna et al analyzed the data of 3,085 neuroscientists, 57 Drosophila researchers, and

151 evolutionary scientists by a linear regression with elastic net regularization. They presented a formula

to predict the h-index, and indicated that the current h-index is the most significant predictor, compared

with the number of current papers, the year since publishing first paper, etc [8]. Dong et al utilized the

standard linear regression and logistic regression to analyze more features, such as the average citations

of an author’s papers and the number of coauthors [17]. Mccarty et al analyzed the coauthorship data

of 238 authors collected from the Web of Science, and showed that the number of coauthors and their
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h-index also are positive predictors [18].

The number of received citations is a widely-used measure of success for publications and researchers.

To predict highly cited publications only based on short-term citation data, Mazloumian applied a multi-

level regression model [19], Wang et al derived a mechanistic model [20], Newman defined z-scores [9],

Gao et al utilized a Gaussian mixture model [21], Pobiedina applied link prediction [22], and Abrishami

et al utilized deep learning [23]. Together with the impact factors of journals, Stern and Abramo applied

linear regression models to this prediction task respectively [24,25], and Kosteas introduced the rankings

of journals [26]. To improve prediction precision, the information of authors and contents of publications

are utilized: Bornmann et al added publications’ length [27]; Bai et al applied maximum likelihood

estimation, and introduced the aging of publications’ impact [28]; Sarigol et al used a method of random

decision forests, and introduced specific characteristics of coauthorship networks (e. g. the centrality) [29];

Yu et al provided a stepwise regression model synthesizing specific features of publications, authors, and

journals [30]; Klimek et al utilized the centrality measures of term-document networks [31].

Returning to the prediction of publication productivity, one may find that the studies on this aspect are

quite few when compared with those on h-index and citation-based indexes. Empirical studies found the

cumulative advantage in producing publications and the aging of researcher’ creativity [32,33]. Laurance

et al analyzed the publications of 182 researchers by using the Pearson correlation coefficient, and found

that Pre-PhD publication success strongly correlated to long-term success [34]. In the aspect of theoretical

research, Lehman concluded that achievement tends to be a curvilinear function of age. From the onset

of a researcher’s career, productivity tends to rapidly increase, then reaches at the peak productive age,

and thereafter slowly declines with aging [11]. Simonton provided a formula to model this process [14].

The aforementioned methods of citation-based indexes and h-index all refer to the positive correlation

between the current indexes and their history. Essentially, the mechanism underlying their success is

the cumulative advantage on those indexes. However, the effect of cumulative advantage in producing

publications is not so strong. The tail of the quantitative distribution of the publications produced by a

group of researchers is much shorter than that of the citation distribution of those researchers. Therefore,

the prediction methods of publication productivity would be different from those of citation-based indexes

and the h-index.
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The data

Due to its nature of regression, the provided model needs a training dataset containing enough productive

researchers. Therefore, the model needs a large training dataset, spanning a long time interval. Mean-

while, name ambiguities exist in bibliographic data, which manifest themselves in two ways: one person

is identified as two or more entities (splitting error); two or more persons are identified as one entity

(merging error) [35, 36]. Merging errors would generate names with a number of publications far more

than ground truth, invalidating the prediction results of the model. Therefore, a training dataset with

limited errors is required.

The dblp computer science bibliography provides a dataset satisfying above requirements, which

consists of the open bibliographic information on major journals and proceedings of computer science

(https://dblp.org). The dataset has been cleaned by several methods of name disambiguation and checked

manually. For example, the ORCID information has been utilized regularly to correct numerous cases

of homonymous and synonymous. We extracted parts of the data at certain time intervals as training

and test datasets (Table 1). These parts totally consist of 220,344 publications in 1,586 journals and

proceedings, which are produced by 328,690 researchers at the years from 1951 to 2018.

Sets 1 and 2 are used to extract the historical publication quantities of test researchers in Sets 3 and 4

respectively. Set 5 is used as a training dataset. Sets 6 and 7 are used to test the prediction results for the

researchers in Sets 3 and 4 respectively. Due to the size and the time span of the analyzed dataset, this

study would not be treated as a case study. The provided model is at least suitable for the community of

computer science. Note that the term “researcher” in this paper refers to an author of the dblp dataset.

Table 1. Certain subsets of the dblp dataset.

Dataset a b c d e f
Set 1 1951–1995 20,781 20,666 346 1.556 1.565
Set 2 1951–2000 38,149 35,643 542 1.571 1.681
Set 3 1995 3,709 2,268 160 1.137 1.859
Set 4 2000 5,741 3,600 257 1.184 1.888
Set 5 1995–2009 87,140 62,636 931 1.538 2.139
Set 6 1996–2013 116,231 80,193 1,150 1.557 2.257
Set 7 2001–2018 301,741 184,701 1,495 1.733 2.831

The index a: the time interval of data, b: the number of researchers, c: the number of publications, d:
the number of journals, e: the average number of researchers’ publications, f : the average number of
publications’ authors.
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Motivation

This study is a data-driven one, inspired by the features of the quantitative distributions of researchers’

publications. Consider the researchers in the training dataset who have publications at the year y and

no more than 10 publications at [1951, y]. Consider the quantitative distribution of their publications

produced at y+1, where y = 1995, ..., 2012. The Kolmogorov-Smirnov (KS) test rejects to regard them as

Poisson distributions because of their tail (Fig. 1). One can also find that the quantitative distributions of

publications produced by relatively large groups of researchers in the dblp dataset have a fat tail, which

also appears in other empirical datasets [16].

The number of publications
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Figure 1. The quantitative distribution of researchers’ publications. Consider the
researchers of the training dataset who have publications at y and no more than 10 publications at
[1951, y]. Index q is their proportion to the total researchers with publications at y. The KS test rejects
that the quantitative distribution of these researchers’ publications produced at y + 1 (red circles) is a
Poisson (blue lines), when p ≤ 0.05.

The emergence of their fat tail can be explained as a result of the cumulative advantage in producing

publications or the diversity of researchers’ ability [13]. In more detail, previous studies show that the

distributions are featured by a trichotomy, comprising a generalized Poisson head, a power-law middle

part, and an exponential cutoff [37]. The trichotomy can be derived from a range of “coin flipping”

behaviors, where the probability of observing “head” is dependent on observed events [38].

The event of producing a publication can be regarded as an analogy of observing “head”, where

the probability of publishing is also affected by previous events. Researchers would easily produce their

second publication compared with their first one. This is a cumulative advantage, research experiences

accumulating in the process of producing publications. It displays as the transition from the generated
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Poisson head to the power-law part. Aging of researchers’ creativity is against cumulative advantage,

which displays as the transition from the power-law part to the exponential cutoff.

The quantitative distributions of researchers’ publications can be fitted by a mixture of Poisson

distributions [16]. Therefore, we could expect to partition researchers into specific subsets, such that

the quantitative distribution of publications produced by the researchers of each subset is a Poisson.

When restricting into a short time interval, the effects of cumulative advantage and aging would be

not significant. However, the diversity of researchers in publication history cannot be eliminated only

by shrinking the observation window in the time dimension. Therefore, we provided a split scheme to

eliminate the diversity as follows.

Consider the researchers who produced publications at the two intervals [T0, T1] and [T1, T2]. Partition

the latter one into J intervals with cutpoints T1 = t0 < t1 < · · · < tJ = T2. The half-closed interval

(tj−1, tj ] is referred to as the j-th time interval, where j = 1, 2, ..., J . Partition the researchers with no

more than I publications at [T0, tj ] into I subsets according to their historical publication quantity at

[T0, tj−1]. That is, the i-th subset consists of the researchers with i publications at [T0, tj−1].

Let the i-th subset at the j-th time interval be the subset of the researchers with i publications at

[T0, tj−1]. Fig. 2 shows that the publication quantity of a researcher of the i-th subset (i = 1, ..., 20) at

each observed time interval (y + 1 = 1996, ..., 2013) follows a Poisson distribution. This inspires us to

provide a piecewise Poisson model.
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Figure 2. Eliminating the diversity in historical publication quantity induces Poisson
distributions. Consider the researchers who produced publications at y and i publications at
[1951, y]. The KS test cannot reject the quantitative distribution of the publications produced by these
researchers at y + 1 is a Poisson, p-value> 0.05.
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The piecewise Poisson model

Our study considers the creativity on producing publications, termed “publication creativity”. The

provided model gives a method to measure it through researchers’ publication quantity. Recall that the

i-th subset at the j-th time interval is the subset of the researchers with i publications at [T0, tj−1].

Denote its publication creativity by λij . Assume λi1 > 0 and

λij = λi1eβi(tj−t1), (1)

where βi tunes the effect of time tj . Given i, the formula in Eq. (1) is exactly the Poisson model (see

its definition in Appendix A), because the quantity of the publications produced by a researcher in the

i-th subset at (tj−1, tj ] follows a Poisson distribution (Fig. 2). Therefore, we named the provided model

piecewise Poisson model.

Now let us show the calculation of publication creativity. Consider a dataset consisting of the re-

searchers having publications at the time interval [T0, tL−1] and their publications at the time interval

[T0, tL], where 1 < L ≤ J . The publication quantity of a researcher at (tj−1, tj ] is his or her publication

quantity at that time interval. Then, we defined the publication productivity of the i-th subset in the

dataset at (tj−1, tj ] to be its average publication quantity at that time interval, and denote it by ηij . It

can be calculated as

ηij =
mij

nij
, (2)

where nij is the number of the researchers with i publications at [T0, tj−1], and mij is the number of

publications produced by those researchers at (tj−1, tj ].

Define the publication creativity λij to be the expected value of ηij . Therefore, we need a training

dataset to calculate λij by regression. Taking logs in Eq. (1) and substituting ηij into it, we obtained

log ηij = αi + βi(tj − t1), (3)

where αi = log λi1, and j = 1, ..., L. The linear regression is utilized to calculate αi and βi. Eq. (3)

describes the relationship between ηij and tj given i. The relationship is significant for the majority

researchers in the training dataset used here; thus we can let λij = eαi+βi(tj−t1). Fig. 3 shows an

illustration of the provided model.
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t0 t1 t2 tL-1 tL tL+1 tJ

Time tj (unit: year)

Mean ηij = mij/nij obtained from training data

Expected value λij= exp (αi+βixj) predicted by the piecewise Poisson regression

r = (0,1,0, …,0)

h1(t0) = 1 1
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time
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2

Figure 3. An illustration of the piecewise Poisson model. A training dataset is used to
calculate the publication productivity ηij . The publication creativity λij is calculated by our model.
Vector r records the predicted publication quantity of a researcher at each time interval (tj−1, tj ], where
j = 1, ..., J .

Algorithm 1 is provided to predict researchers’ publication quantity at the time interval [tX , tY ], where

t0 ≤ tX < tY ≤ tJ . Denote the publication quantity of researcher s at [T0, tl] by hs(tl). The algorithm

gives hs(tY ) the predicted publication quantity of researcher s at [T0, tY ]. Due to its regression nature,

the algorithm cannot exactly predict the publication quantity for an individual, but it can be suitable

for a group of researchers.

Note that the training dataset would be not enough for using linear regression given a large i. There-

fore, the model cannot be applied to productive researchers with a publication quantity more than I. Our

model can only be used to predict publication quantity for the researchers with a publication quantity

at [T0, tX ] no more than a given integer I1 < I.

Experiments

Now the model is applied to the dblp dataset. The training dataset consists of the researchers in Set 5 and

their historical publication quantity from Set 1, Its parameters are I = 40, J = 23, L = 14, T0 = 1951,

T1 = t0 = 1995, tL = 2009, and T2 = tJ = 2018. The test dataset consists of the researchers in Set 4,

their historical publication quantity from Set 2, and their annual publication quantity from Set 7. Its

parameters are tX = 2000, and tY = 2018.

The matrix of publication productivity (mij/nij)I×L is calculated based on the training dataset. For
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Algorithm 1 Predicting researchers’ publication quantity.

Require:
the hs(tX) of any test researcher s;
the parameter J ;
the matrix (mij/nij)I×L.

Ensure:
the predicted productivity hs(tJ) of researcher s.
for i from 1 to I do

calculate αi and βi in Eq. (3) by the linear regression;
let λij = eαi+βi(tj−t1) for j = 1, ..., J ;

end for
for each researcher s do

initialize h = hs(tX);
for l from X + 1 to Y do

sample an integer r from Pois(λhl);
let h = h+ r;

end for
let hs(tY ) = h.

end for

example, n11 is the number of researchers with one publication at [1951, 1995], and m11 is the publication

quantity of those researchers at the year 1996. Then, αi and βi are calculated by applying the linear

regression to Eq. (3).

The χ2 test indicates that ηij significantly correlates to tj given i ≤ 12 (see the p-values in Fig. 4). That

is, the significance holds for 99.5% researchers in the training dataset. Thus, we can let λij = eαi+βi(tj−t1).

In the experiment here, we can only predict publication quantity for 98.76% researchers of the test dataset

(who have no more than I1 = 13 publications at [T0, tX ]) due to the maximum publication quantity of

our model. Two methods are provided to testify the effectiveness of the model as follows.

Firstly, we tested the model by its prediction on the evolutionary trend of researchers’ publication

quantity. Consider the test researchers who produced i publications at [T0, tX ]. Let n(i, y) be the

average publication quantity of these researchers at [1951, y], and m(i, y) be the predicted one. Fig. 6

shows their trend about i given y. The correlation between them is measured by the Pearson correlation

coefficient [40] on individual level (s1) and that on group level (s2). Index s1 decreases over time, whereas

s2 keeps high. It indicates that the model is unapplicable to the long-time prediction for an individual,

but can be applicable for a group of researchers.

Secondly, we tested the model by its prediction on the quantitative distribution of researchers’ pub-

lications. We compared the distribution for the publications produced by the test researchers at [T0, y]
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Figure 4. The relationship between publication productivity and time. Consider the
researchers who have i publications at [1951, y]. Calculate their publication productivity at y + 1 (red
squares). The solid dot lines show the predicted results by the Poisson regression, and the dashed lines
show confidence intervals. The relationship is significant when p < 0.05.

with the predicted one. Fig. 6 shows that a fat tail emerges in the evolution of the ground-truth distri-

butions, because a small fraction of researchers produced many publications. However, our model cannot

predict over-exaggerated productivity due to the maximum publication quantity that can predicted by

our model. Therefore, the KS test rejects that the compared distributions are the same with the growth

of time (see the p-values in Fig. 6), although there is a coincidence in their forepart. It indicates that the

prediction precision for productive researchers needs to be improved.

Comparisons with previous results

Firstly, we discussed the possibility of utilizing the prediction formula provided by Simonton [14]:

p(t) = c(e−at − e−bt), (4)

where a, b, c ∈ R+. Parameter a is termed the “ideation rate”, b is termed the “elaboration rate”,

c = abm/(b − a), and m represents the maximum number of publications a researcher can produce in

his lifespan. This formula theoretically expresses a researcher’s publication productivity by a function of

time t. With the parameters in Reference [14], the shape of this curvilinear function is shown in Fig. 7.

As aforementioned, the cumulative advantage and the aging of creativity have impacts on researchers’
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Figure 5. Fittings on the evolutionary trend of researchers’ publication quantity. Consider
the test researchers who have i publications at [1951, 2000]. Panels show the average number of
publications produced by these researchers at [1951, y] (n(i, y), red dots) and the predicted one (m(i, y),
blue lines). Index s1 is the Pearson correlation coefficient calculated based on the list of researchers’
publication quantity and that of their predicted one. Index s2 is that based on the sorted lists.

publication productivity. One can think that a researcher’s publication productivity is proportional to his

publication quantity in his early age of research. The more publications he has, the higher his publication

productivity. As his age increases, his creativity decreases and will dry up in his later period of research.

The formula in Eq. (5) expresses this evolution of publication productivity.

Consider the test researchers with i publications at [T0, tX ], where i = 1, .., 18. Fig. 8 shows the

average publication quantity of these researchers at each year from 2001 to 2018, which cannot be fitted

by the formula in Eq. (5). One possible explanation of this inconformity is the variation of the personnel

structure on the researchers who produce publications. Note that the formula is provided at the year

1984. In recent thirty years, the number of academic masters and doctors dramatically increases. They

contribute a large fraction of publications during their study periods. Many of them will not do research

after graduation, and thus will not continue to produce publications. Therefore, the formula in Eq. (5) is

unsuitable for describing the evolutionary process of their productivity. Meanwhile, it can be suitable for

the fruitful scientists who have a long research career. However, in the dblp dataset, the number of these

researchers is quite small, because more than 99.5% researchers produced no more than 40 publications.

Secondly, we discussed the practicability of utilizing a researcher’s historical publication productivity

to predict his or her future productivity. Therefore, we should know that is there any predictable

components of the productivity that can be extracted via autoregression. Previous studies found that
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Figure 7. The publication productivity predicted by the formula in Eq. (5). Panel show the
curve of this formula with the parameters provided by Simonton: a = 0.04, b = 0.05, and c = 61.

those components are significantly positive predictors to citation-based indexes and h-index, constituting

the principle terms of the prediction formulae of those indexes.

The mechanism of generating these autoregressive components is the cumulative advantage in receiving

citations and in the evolution of h-index. Previous empirical studies show that the number of citations

received in the future depends on the number of citations already received [5]. However, the effect of

cumulative advantage in producing publications is much weaker than that in receiving citations. It is

reflected by the short tail of the quantitative distribution of a group of researchers’ publications, compared

with that of the citation distribution of the same researchers [10].

In statistics, autoregressive models specify that the response variable depends linearly on its previous
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these researchers at each year from 2001 to 2018.

values with a stochastic term. The advantage of those model is that not much information is required, only

the self-variable series. If the autocorrelation coefficients of the response variable series are smaller than

0.5, autoregressive models are not suitable for prediction task. That is, the coefficients of autoregressive

components are not large enough to be significant predictors.

The autocorrelation coefficient of y = (y1, ..., yT ) with lag l (where l < T ) is defined as

rl =

∑T−l
t=1 (yt − ȳ)(yt+l − ȳ)∑T−l
t=1 (yt − ȳ)(yt+l − ȳ)

, (5)

where ȳ is the mean of y’s elements [41]. We constructed a time series ys = (ys(t0), ..., ys(tJ)) to record the

quantitative information of publications for a researcher s, where ys(tj) is the number of his publications

produced at [T0, tj ] for j = 0, ..., J .

We calculated the autocorrelation coefficients of ys for any researcher s in the test dataset. We found

that these coefficients are almost smaller than 0.5 given a lag> 1 . Therefore, the historical publication

productivity of an individual is not sufficient to predict his or her future productivity. It indicates that

the autoregressive models may not be suitable for the prediction of publication productivity; thus the

schemes of those successful prediction methods about citation-based indexes and the h-index may also

be unfeasible.
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of the test researchers.

Discussion and conclusions

We provided a model to predict the publication productivity of researchers. The model needs a large

training dataset, but there is not much information about researchers required, only their publications’

production time. The model’s practicability is testified by the dblp dataset, which exhibits its ability in

the prediction of publication productivity by the fine fittings on the evolutionary trend of researchers’

productivity and the quantitative distribution of their publications. Due to its nature of regression, our

model has the potential to be extended to assess the confidence level of prediction results, and thus

has clear applicability to empirical research. With its prediction results unbiased, the model may be

useful for funding agencies to evaluate the possibility of applicants to complete the quantitative index of

publications in their applications.

Our model offers convincing evidence that the publication patterns of many researchers are charac-

terized by a piecewise Poisson process. Even where our model does not provide an exact productivity

prediction for an individual, it may still be of use in its ability to provide a satisfactory prediction for

a group of researchers on average. The prediction results of our model offer some comfort by showing

that the future of a group of researchers is not so random. The occasional rejection of a paper may feel

unjust and indiscriminate, but for a group, such factors seem to average out, rendering the trajectories

of researchers’ publication productivity relatively predictable.
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Analyzing massive data to track scientific careers would help to advance our understanding of how

researchers’ productivity evolves. The prediction precision of the model would be improved by utilizing

more features of researchers, such as the network features of their coauthorship (degree, betweenness,

centrality, etc.), because previous studies showed that research collaboration contributes to scientific pro-

ductivity [44–46]. However, little is known about the mechanisms governing the evolution of researchers’

publication productivity. Predicting the productivity of an individual would not be done only by regres-

sion as this study did for a group of researchers, due to the randomness of an individual’s research. The

randomness is displayed in this study by the relatively small autocorrelation coefficients of the time series

on a researcher’s cumulative publication productivity. Therefore, advanced algorithms are needed to

synthetically analyze more features of researchers, such as journals’ annual issue volume, impact factors,

and language.
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Appendix A: The Poisson model

The Poisson model is a generalized linear model of regression analysis [39]. It is used to model count

data and contingency tables, thus has potential to predict publication productivity. The Poisson model

assumes the response variable y follows a Poisson distribution, and assumes the logarithm of its expected

value can be expressed by a linear combination of covariates. Let x ∈ Rn be a vector of covariates, and

Φ ∈ Rn be a vector of the covariates’ effect. The Poisson model takes the form

log(E(y|x)) = α+ Φ · x, (6)

where α ∈ R, and E(y|x) is the conditional expected value of y given x. Note that Eq. (1) can be

generalized to deal several characteristics varying with i, namely a vector xij . This study only considered

the simplest case: one characteristic tj .

Appendix B: The piecewise exponential model

The formula of the provided model is similar to that of the piecewise exponential model in survival anal-

ysis, which is defined as follows [42]. Assume that the duration t of an event is a continuous random

variable with probability density function f(t). Let F (t) =
∫
τ<t

f(τ)dτ , which is the cumulative distri-

bution function. It is the probability that the event has occurred at duration t. The survival function is

defined as S(t) = 1− F (t), and the hazard function λ(t) = f(t)/S(t).

Let xi be a vector of covariates for individual i, and Φ be the vector of covariates’ effect. The hazard

function at t for individual i is assumed to be

λi(t,xi) = λ0(t)exi·Φ, (7)

where t ∈ [0, T ], and λ0(t) is a baseline hazard function that describes the risk for individual i with

xi = 0, and exi·Φ is the relative risk.

Subdivide time into reasonably small intervals and assume that the baseline hazard is constant at

each interval, leading to a piecewise exponential model

λij = λje
xi·Φ, (8)
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where λij is the hazard corresponding to individual i at time j, λj is the baseline hazard at j. Write Φ

as Φj and xi as xij to allow for a time-dependent effect of the predictor vector. Then, we would write

λij = λje
xij ·Φj , (9)

where is the formula of the piecewise exponential model.

Although Eq. (1) and Eq. (9) are similar in formula, they are essentially different. The index j in

Eq. (1) is the time, and index i is about researcher subset. The regression is used to calculate λi1 and

βi, which vary with researcher subset i and are free of the index of time j. But in Eq. (9), the baseline

λj and the effect Φj are free of i but depend on j.

Appendix C: An other example

The training dataset is the same as that in Section 6. The test dataset consists of the researchers in

Set 3, their historical publication quantity from Set 1, and their annual publication quantity from Set 6.

Its parameters are tX = 1995, and tY = 2013. We only predicted the publication productivity for the

researchers with no more than 13 publications at [T0, tX ], who account for 98.8% of the researchers in

the test dataset here. Figs. 10 and 11 show the results of applying the test methods in Section 6 to the

researchers’ productivity predicted by our model.
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Figure 10. Fittings on the evolutionary trend of researchers’ publication quantity. Consider
the test researchers who have i publications at [1951, 1995]. Panels show the average number of
publications produced by these researchers at [1951, y] (n(i, y), red dots) and the predicted one (m(i, y),
blue lines). Index s1 is the Pearson correlation coefficient calculated based on the list of researchers’
publication quantity and that of their predicted one. Index s2 is that based on the sorted lists.
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Figure 11. Fittings on the quantitative distribution of researchers’ publications. Panels
show this distribution for the publications produced by the test researchers at [1951, y] (red circles) and
the predicted one (blue squares). When p > 0.05, the KS test cannot reject the null hypothesis that the
compared distributions are the same.


