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An analysis of the evolution of science-technology linkage in biomedicine
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Demonstrating the practical value of public research has been an important subject in science
policy. Here we present a detailed study on the evolution of the citation linkage between life science
related patents and biomedical research over a 37-year period. Our analysis relies on a newly-created
dataset that systematically links millions of non-patent references to biomedical papers. We find
a large disparity in the volume of science linkage among technology sectors, with biotechnology
and drug patents dominating it. The linkage has been growing exponentially over a long period of
time, doubling every 2.9 years. The U.S. has been the largest producer of cited science for years,
receiving nearly half of the citations. More than half of citations goes to universities. We use a new
paper-level indicator to quantify to what extent a paper is basic research or clinical medicine. We
find that the cited papers are likely to be basic research, yet a significant portion of papers cited in
patents that are related to FDA-approved drugs are clinical research. The U.S. National Institute
of Health continues to be an important funder of cited science. For the majority of companies, more
than half of citations in their patents are authored by public research. Taken together, these results
indicate a continuous linkage of public science to private sector inventions.
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I. INTRODUCTION

There is a longstanding policy interest in unraveling
how knowledge generated from public research is used in
the private-sector. Studies towards this goal have heavily
focused on patent data and considered citations between
patents as evidence of knowledge flow. Despite some crit-
icism [17], such notion has been widely accepted in the
literature. Consequently, substantial attention has been
paid to patents assigned to universities and other pub-
lic organizations, examining how those patents are cited
by other patents, especially by patents from companies
[26, 31].

University patents, however, only account for a small
portion of granted patents, and the main products of
public research are scholarly papers rather than patents.
Just as patents, papers can also be cited by patents,
and indeed both the cited patents and cited papers are
served as the “prior art” of a patent application, playing
a significant role for patent examiner to determine the
patentability of the application. There has been a large
literature on both the patent-to-patent and the patent-
to-paper citation linkage. Yet, systematic studies, as we
shall present in this paper, have been relatively scarce.

Our primary interest in this work is in the life science
sector. The last several decades have seen an unprece-
dented rapid progress of life science, both in basic sci-
entific discoveries and clinical medicine. Recent studies
have suggested that biotechnology and pharmaceutical
patents have been the main driver for the overall growth
of patents and exhibit a particularly prominent “science
linkage” [18]. This has prompted us to ask: How has
the patent-to-paper citation linkage of life science patents
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changed over time? In particular, we aim to answer the
following lines of research questions:

1. How has the amount of science linkage changed over
time? Does the change vary across different tech-
nology classes?

2. On the cited side of the linkage, which countries
and types of institutions produce the cited papers?
Whether basic or applied research are more likely
to be cited?

3. On the citing side, to what extent company patents
cite public science?

These questions are important due to their high relevance
to the policy community. Although the study of science
linkage of patents has a long history, initiated by Narin
and his colleagues in the 1980s [16, 20, 21], an up-to-date
“status report” of science linkage has been lacking in the
literature, partially due to the daunting task of resolv-
ing non-patent references to corresponding scholarly pa-
pers. Even in Narin’s landmark study [20], the analyzed
patents were granted in two two-year periods (1987-1988
and 1993-1994). By contrast, our analysis covers patents
from 1976 to 2012. Such a large-scale corpus allows us to
probe how the science linkage has changed over time. By
using a large sample over a 36-year period, we contribute
to the literature a systematic accounting of linkage from
technology to science. On the methodology side, we use
a novel, paper-level indicator to quantify to what extent
a paper is basic science or clinical medicine, allowing us
to distill new insights on the science-technology linkage
in biomedicine.

The rest of the paper is organized as follows. Section IT
discusses the context of our work. In Section III, we de-
scribe the data source, selection of the cohort of patents
analyzed in this work, and methods used to identify var-
ious properties of patents and cited papers. Section IV
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presents the results of our analysis. Finally, we discuss
and conclude in Section V.

II. LITERATURE REVIEW

This section briefly reviews three lines of literature that
are closely related to our work. The first two are about
knowledge flows as evidenced from patent-to-patent and
patent-to-paper citations, and the third one presents
some alternative interpretations other than knowledge
flows.

A. Knowledge flow as evidenced from
patent-to-patent citations

Many studies have compared the importance of
patents, as operationalized as the number of citations
it receives, from different sectors. Jaffe and Trajtenberg
[11] confirmed the geographic localization of citations and
found that university patents are cited more frequently
and government patents are cited less than company
patents. Henderson et al. [10] pointed out that the im-
portance of university patents has been overshadowed by
the increasing rate of university patenting. This finding
was challenged later by Sampat et al. [27] that found that
such a decline is due to the “changes in the intertemporal
distribution of citations to university patents.” Bacchioc-
chi and Montobbio [2] compared patent citations across
countries and technological fields, showing that chemi-
cal, drugs & medical, and mechanical patents from U.S.
universities are more cited than company patents, which
does not hold for Europe and Japan patents. Numerous
works have used regression frameworks to measure the
likelihood of knowledge flow between patents assigned to
different types of institutions, suggesting that university
patents are more important than corporate ones in terms
of knowledge diffusion [2, 11, 31]. Rosell and Agrawal
[26] found that for a limited scope of technological fields,
there was a more-than-half decline of both knowledge in-
flows and outflows during the 1980s.

B. Knowledge flow as evidenced from
patent-to-paper citations

We now shift our attention to the studies of patent-
to-paper knowledge flow. This topic has a longer history
than that of the patent-to-patent case, dating back to the
1980s when Narin and his colleagues published a “sta-
tus report” examining the time and nation dimensions
of the science-technology linkage [21]. Follow-up studies
increased the timespan of analyzed data and pointed out
the increasingly heavy reliance of private-sector patents
on public science [20]. Particularly related to our work
is McMillan et al. [16] that concluded that the depen-
dence of biotechnology patents on public science is much

heavier than other industries.

Several studies have found that patent-to-paper cita-
tions better represent knowledge flow when comparing
to patent-to-patent citations. For example, Lemley and
Sampat [14] showed that patent examiners generate less
amount of NPRs. Later studies reinforced this claim [25].
Sorenson and Fleming [28] found that patents that cite
published non-patent literature have more citations, im-
plicating the important role of publications in technolog-
ical innovation.

Some works have examined the country dimension of
patent-to-paper citations. Tijssen [29] analyzed Dutch-
authored papers referenced in patents granted at the
USPTO and found the dominance of self-citation for do-
mestic citation links. Acosta and Coronado [1] uncovered
significant differences between scientific citations in sec-
tors and patent citations in Spanish regions. Guan and
He [8] explored the science-technology linkage in terms
of regions and sectors for Chinese patents at the USPTO
and showed the heterogeneity in cited journals.

Other studies have instead paid attention to differ-
ent technology sectors. Popp [24] analyzed three types
of knowledge flow, namely patent-to-patent, paper-to-
paper, and patent-to-paper, in the alternative energy sec-
tor and revealed that papers produced by government
research are more likely to accrue patent citations than
any other types of institutions, highlighting an important
role of government research in translating from basic to
applied research. The analysis also emphasized a less
important role for universities in wind research, when
compared to solar and biofuels research. Du et al. [5]
looked at the grant-publication-patent-drug linkage and
observed that, among others, the vast majority of papers
that are cited by drug patents are publicly funded.

NPRs have also been used to assist in the identifica-
tion of novel patents. Verhoeven et al. [32], for example,
measured novelty of patents in terms of both combina-
torial novelty of cited patents and novelty in knowledge
origin, which is based on NPRs.

C. Interpretation of patent citations

While the vast majority of literature interpreted patent
citations as knowledge flow, some studies have criticized
this interpretation and proposed alternatives. Meyer [17]
looked at nanoscale patents and suggested that citation
linkages from citing patents to cited papers hardly repre-
sent direct knowledge-transfer. Callaert et al. [4] argued
that patent-to-paper citations reveal the relatedness be-
tween science and technology. Fleming and Sorenson [6]
viewed inventions as combinatorial search and hypothe-
sized that science helps direct inventors’ search process
to more useful combinations, therefore helping increase
invention rate.



D. Indicators for “basicness” of papers

A repeatedly occurring assumption in the literature
about the role of public science is that public science
institutions conduct basic science, while private firms
perform applied research by utilizing findings from ba-
sic research. Yet, few studies have examined to some
extent papers cited in patents are basic research, pos-
sibly because of the difficulty in the operationalization
of the two notions to papers. One notable exception is
[16] that used the four-level classification scheme devel-
oped by the CHI Research in the 1970s [22]. The scheme
assigns journals to one of the four categories, which are,
from the most basic to the most applied, “basic research”,
“clinical investigation”, “clinical mix”, and “clinical ob-
servation”. Focusing on the biomedicine domain, a re-
cent proposal from Weber [33] used MeSH terms to de-
velop an indicator of whether a paper is basic research or
clinical research. The indicator is constructed based on
whether the MeSH terms of a paper contain cell-, animal-
, and human-related terms and classifies it as clinical re-
search if there are human-related terms, in accordance
with the widely adopted definition that clinical research
is the study with human subjects.

III. DATA AND METHODS
A. Sample selection

The NBER patent database [9] has been one of the ma-
jor sources for information about U.S. patents. However,
it only covers patents granted until 2006, whereas we
want to extend to later patents. We therefore used patent
data directly from the USPTO and parsed the down-
loaded XML files (https://bulkdata.uspto.gov/) to
obtain bibliographic information of patents. The NBER
dataset instead is used as an auxiliary source when we
infer various attributes of patents.

As we are interested in science-technology linkage in
the life science domain, we need to select life science
patents. In doing this, we note that there is an inherent
trade-off regarding sample coverage. On one hand, it
may not be desirable to narrow our analysis to, for exam-
ple, patents about drugs that treat certain diseases. On
the other, selecting patents from other domains, such as
the software industry, may bias our statistics about sci-
ence linkage, since those patents seldom cite biomedical
papers. Here we leverage the categorization developed
by NBER [9], which segments patents into six categories.
We define life science patents as those belonging to one
of the two NBER technological categories, namely
Chemical (Category 1) and Drugs & Medical (Category
3). Operationally, we selected not-withdrawn (https:
//www.uspto.gov/patents-application-process/
patent-search/withdrawn-patent-numbers), utility
patents granted between 1976 and 2012 whose pri-
mary, three-digit USPC (U.S. Patent Classification)

TABLE I. Top 20 countries with most patents.

Country  Patents %||Country Patents %
UsS 602695.19 55.42 TW  9905.90 0.91
JP 156946.13 14.43 SE 9244.52 0.85
DE 87173.10 8.02 BE  7976.88 0.73
FR 35592.16 3.27 IL 6849.96 0.63
GB 33518.90 3.08 AU  6410.51 0.59
CA 20636.18 1.90 DT  5365.60 0.49
CH 18003.52 1.66 DK  4885.43 0.45
KR 14994.77 1.38 JA 4850.13 0.45
IT 14563.86 1.34 FI 4075.29 0.37
NL 11000.00 1.01 AT 3522.86 0.32

technology codes are in the 92 codes corresponding to
the two NBER categories (Appendix 1 in [9]). The
final sample used in our study consists of 1,088,650
patents. Patents that are not included into our sample
are from the following NBER categories: Computers &
Communications (Category 2), Electrical & Electronic
(Category 4), Mechanical (Category 5), and Others
(Category 6).

B. Country origin of patent

To examine whether science linkage varies across
patents from different countries, we need to identify the
country origin of a patent. We do so by looking at the
residences of all inventors. For a tiny portion (0.63%)
of patents whose country of origin cannot be determined
through this way, which is due to missing data of the first
inventor’s address, we use the NBER data to locate the
country.

Table I lists the top 20 countries that have the largest
number of patents, based on fractional counting. They in
total contribute to 97.3% of all patents in our cohort. It
is clear that the US patent system has granted life science
patents from inventors originated from diverse countries,
although US accounts for more than half of the patents.
These country statistics remain very similar if we use the
residence of the first-inventor to identify country origin
(Appendix A).

C. Type of patent assignee

To study how the types of assignees may affect cita-
tions to scientific papers, we need to classify patent as-
signees. To do this, we again leverage the NBER patent
dataset that has already classified assignees of patents
in 1976-2006 into one of the following six types: cor-
poration, university, institute, government, hospital, and
individual. For later patents, we assign the type based
on the exact match of assignee names. If this fails, we
then classify by checking the role of the assignee provided
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FIG. 1. Distribution of types of assignees.

by USPTO, whether the assignee name is the same as an
applicant, and whether it contains certain keywords (e.g.,
“Ltd”, “University”). There are 9.76% patents without
any assignee listed.

Figure 1 gives a side-by-side comparison of the decom-
position of the types of assignees for both chemical and
drugs & medical (DM) patents. Not surprisingly, the
overwhelmingly majority of patents are assigned to com-
panies. A larger fraction of DM patents, however, come
from universities. Many previous works have linked this
to the Bayh—Dole Act that permits universities to own
inventions that are funded by government [19].

D. Non-patent references in patent

Each and every NPR cited in the patents has been
resolved previously to determine whether and which
MEDLINE paper it refers to, with a high accuracy ob-
tained [12]. MEDLINE is perhaps the most widely used
database for the biomedical research literature, curated
and maintained by the US National Library of Medicine
(NLM). It is publicly available and provides a variety of
meta data about papers indexed there, including com-
mon bibliographic information like authors, affiliations,
journal, publication year, funding, etc. It also provides
domain specific information like Medical Subject Head-
ings (MeSH). Moreover, many additional resources that
we rely on have been built on top of MEDLINE, and lit-
erature has been using MEDLINE for innovation study,
such as operationalization of the triple-helix model based
on MeSH terms [23].

E. Country and institution type of papers

To wunderstand how public science contributes to
knowledge cited in patents, we need to classify the types
of institutions of papers. However, an important question
before the classification is which author’s (or authors’) af-
filiation we should use, as modern science has become a
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collaboration endeavor [34]. Here we choose to look at
only the first-author’s affiliation for two reasons. First, as
stated from the NLM, “until 2014, only the affiliation of
the first author was included,” (https://www.nlm.nih.
gov/bsd/mms/medlineelements.html#ad) and the first
author’s affiliation was not included until 1988. This lim-
itation is also reflected in the data: 87% of the 218,483
papers cited in patents and without author affiliations
were published before 1988. Second, in biomedical re-
search, it is generally accepted that the first and the last
author get the most credit of a paper for performing and
supervising the research, respectively, and the two au-
thors share the same affiliations in most cases.

From the text of the first author’s affiliation, we
seek to extract the country and institution type infor-
mation. This task, fortunately, has been fulfilled by
an online tool called MAPAFFIL (http://abel.lis.
illinois.edu/cgi-bin/mapaffil/search.py; [30]). It
returns geography information and institution type of the
input MEDLINE paper and has a reported accuracy of
97.7%. MAPAFFIL classifies institutions into eight cate-
gories, namely educational, hospital, educational hospi-
tal, organization, commercial, government, military, and
unknown. For our study, we merge educational hospital
into educational, since teaching hospitals still serve the
education role for training medical students. Further-
more, we combine the organization, government, and mil-
itary categories into a single one, called public research
organization (PRO), because we primarily concern about
whether or not cited research are performed by com-
panies. Previous studies have also employed a similar
procedure [2]. Therefore, there are five types of institu-
tions of papers, namely educational (EDU), PRO, hospi-
tal (HOS), commercial (COM), and unknown (UNK).

F. Funding support of papers

An ongoing effort in the study of the patent-to-paper
citation linkage is to understand to what extent cited
papers are supported by public funding. We retrieve
this information from the paper meta data provided in
the MEDLINE database. First, we determine whether
a paper is funded by the US government by looking at
whether the “Publication Type” field has any of the
following four terms: “Research Support, U.S. Gov’t,
Non-P.H.S.”, “Research Support, U.S. Gov't, P.H.S.”,
“Research Support, N.I.LH., Extramural”, and “Research
Support, N.LLH., Intramural”. Second, we determine
whether a paper is supported by the NIH by looking at
the “Grant List” field and further record which NIH in-
stitutes support the paper.

G. “Basicness” of papers

In this study, we do not adopt the method proposed in
Narin et al. [22] to quantify “basicness” of papers for four
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reasons. First, we are not aware the scheme is publicly
available. Second, it remains unclear whether a scheme
developed in the 1970s is still applicable nowadays, with
numerous journals established since then. Third, the
scheme only considers journals indexed in the SCI, while
many MEDLINE journals are not there. Lastly and most
importantly, the scheme operates on journals rather than
papers. One immediate implication of this is that papers
published in all the journals belonging to the same cate-
gory have the same “basicness.” This is problematic, be-
cause many biomedical journals publish qualitatively dif-
ferent types of research, which can be basic or applied. As
an example, Circulation, a prestige journal with a 2017
Impact Factor of 18.88, “publishes [...] related to cardio-
vascular health and disease, including observational stud-
ies, clinical trials, epidemiology, health services and out-
comes studies, and advances in basic and translational re-
search” (https://www.ahajournals.org/circ/about).

Here we use an innovative method that was recently
proposed to identify translational science in biomedicine
[13]. Translation science is research that “translate” ba-
sic scientific discoveries (bench-side or basic research) to
clinical applications (bed-side or applied research). The
method quantifies the basicness of papers directly. It
results in a paper-level indicator called level score (LS)
ranging from -1 to 1, with LS closer to -1 meaning
that the paper is, by construction, more basic and 1
more applied. The method learns similarities between
MeSH terms based on their co-occurrences among pa-
pers, using modern representation learning techniques.
It then identifies an axis that points from basic sci-
ence terms to applied ones. MeSH terms are organized
into a hierarchical structure, and each of them has a
location in the tree. For example, “Eukaryota” (B01)
is within branch B (“Organisms”). Given this tree, a
MeSH term is a basic science one if it is located within
the following terms: “Cells” (All), “Archaea” (B02),
“Bacteria” (B03), “Viruses” (B04), “Molecular Struc-
ture” (G02.111.570), “Chemical Processes” (G02.149),
and “Eukaryota” (B01) except “Humans”. A term is
applied if it is located within the following nodes: “Hu-
mans” (B01.050.150.900.649.801.400.112.400.400) and
“Persons” (MO01). The basicness of a MeSH term is its
projected position onto the axis, expressed as the cosine
similarity between the axis vector and the term vector.
The LS of a paper is the average basicness of its MeSH
terms. The method has been validated and is consistent
with Narin’s four-level classification and other existing
methods.

IV. RESULTS
A. Summary statistics

Table II reports the overall statistics of NPRs cited in
the 1,088,650 patents in our sample, grouped by their
NBER subcategories. The first group of statistics in

Table II concerns about the total number of patents.
Chemical patents share 62.7%, and the rest are DM
patents. Among chemical patents, resins and organic
compounds are the two largest subcategories, whereas
drug and surgery & medical instruments patents are
most presented ones in the DM category. Overall only
252,821 (23.2%) patents have at least one NPR linked
to a MEDLINE paper (hereafter MNPR). This fraction,
however, varies significantly across the two categories:
only 9.6% for chemical patents but 46.1% for DM ones.
The variability also holds at the subcategory level. 29.1%
of resins patents and 14.8% organic compounds patents
have MNPRs; by contrast, 80% of biotechnology patents
cite MEDLINE papers, while 56.1% of drugs patents and
21% of surgery & medical instruments patents do so.

The second group of statistics is the total number
of NPRs and MNPRs. A total of 6,948,178 NPRs
were emanated from our corpus of patents, among which
2,312,621 (33.3%) are from chemical ones. More than
half (3,574, 777; 51.4%) of the NPRs are MNPRs, which
are dominated by DM patents (2,857,497; 79.9%). The
rest (717,280; 20.1%) are from chemical patents. There-
fore, although there is a larger portion of chemical
patents, they generate less amount of NPRs and are
less linked to science, when comparing to DM patents.
As for the subcategories, 49.3% and 42.5% of NPRs in
resins and organic compounds patents, respectively, refer
to MEDLINE papers. Biotechnology and drug patents
account for 88.8% of all the MNPRs in the DM category,
and 70.5% and 62.7% of their NPRs are scientific.

The last group of statistics is the average number of
MNPRs per patent. Here we average by both all patents
and patents with at least one MNPR, since the major-
ity of patents have no MNPRs. On average, a chemical
patent cites one MEDLINE paper; a DM patent cites
7 papers. Such contrast, however, is much less evident
if we use the second averaging procedure. For patents
that have at least one MNPR, a chemical patent has 11
MNPRs while 15 for a DM patent. Delving into subcat-
egories, there is a large variation of the extent of linkage
to science. Organic compounds and resin patents on av-
erage cite 3.2 and 2.7 MNPRs respectively. A biotechnol-
ogy patent has on average 14 MNPRs, larger than any
other categories.

In summary, all the overall statistics suggest that there
is a huge variation of the volume of science linkage, which
is dominated by biotechnology and drug patents. This
result is consistent with a previous small-scale study [16].

B. Overall characteristics over time

Next, we investigate how overall characteristics change
over time. Figure 2A shows a steady increase of the to-
tal number of granted patents over the examined period,
reaching from 21,151 in 1976 to 52,994 in 2012. Such in-
crease is largely driven by the remarkable growth of DM
patents: a nearly ten-fold increase from only 2,827 in
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TABLE II. Summary statistics of non-patent references (NPRs) cited by U.S. life science utility patents 1976-2012, grouped

by their NBER categories. MNPR refers to an NPR that corresponds to a MEDLINE paper.

NBER Category 1: Chemical

Patents Total Mean MNPRs by
Sub-cat Name All w/ MNPRs % NPRs MNPRs % All w/ MNPRs
11 Agriculture, food, textiles 22,166 1,019 4.60 54,183 2,853 5.26| 0.129 2.800
12 Coating 58, 326 1,873 3.21| 127,440 9,402 7.38| 0.161 5.020
13 Gas 20,196 319 1.58 32,179 1,350 4.20| 0.067 4.232
14 Organic compounds 91, 301 26,538 29.07| 686,384 291,540 42.47| 3.193 10.986
15 Resins 105, 960 15,667 14.78| 585,437 288,730 49.32| 2.725 18.429
19 Miscellaneous 384,434 20,049 5.22| 827,008 123,405 14.92| 0.321 6.155
Total:|682, 383 65,465 9.59|2,312,631 717,280 31.02| 1.051 10.957

NBER Category 3: Drugs & Medical
Patents Total Mean MNPRs by
Sub-cat Name All w/ MNPRs % NPRs MNPRs % All w/ MNPRs
31 Drugs 158,665 89,008 56.10|2,225,049 1,395,016 62.70| 8.792 15.673
32 Surgery & medical instruments|137,981 28,975 21.00| 668,424 274,526 41.07| 1.990 9.474
33 Biotechnology 79,148 63,625 80.39|1,618,241 1,141,578 70.54|14.423 17.942
39 Miscellaneous 30,473 5,748 18.86| 123,833 46,377 37.45| 1.522 8.068
Total:|406, 267 187,356 46.12|4, 635,547 2,857,497 61.64| 7.034 15.252

1976 to 26,616 in 2012. The number of chemical patents,
on the other hand, has increased relatively slowly—44%.
We notice that there is a flatten period followed by a de-
creasing period from 1998 to 2005, for both chemical and
DM patents. Accompanying the increase of the raw num-
ber of patents is an increasing fraction of patents that cite
MEDLINE-indexed papers, as presented in Figure 2B.
In 1976, only 1.7% chemical and 6.8% DM patents had
MNPRs, and in 2012 the number reached to 21.3% and
58.7%, respectively. Figure 2C plots the total number
of patent-to-paper citations for patents granted in each
year, demonstrating a remarkable increase of science link-
age. We fit the growth from 1976 to 1998, obtaining
N; = 100-102:t=199.239 " where ¢ is the calendar year and
N, is total citations at ¢. This means that there is an ex-
ponential growth of the total number of MNPRs, which
doubled every log;;2/0.102 = 2.94 years. DM patents,
again, drive the increase, and generate more MNPRs
than chemical patents across years. Finally, the increase
of the total number of MNPRs is not due to the in-
crease of the number of patents, but rooted at patents
themselves, as confirmed in Figure 2D which shows that
the average number of MNPRs per patent also increases.
Yet, DM patents have a faster increase than chemical
patents.

We then add the country dimension to the analysis of
patent-to-paper citations. Figure 3A shows that the av-
erage number of MNPRs per patent has been increasing
for patents originated from the top 6 countries with the
largest number of patents. The extent, however, varies
by countries. For patents from Canada, the U.S., and the
U.K., the average increases faster than the overall case,

while for patents from France, Germany, and Japan, it in-
creases slower than the overall case. What is noteworthy
is that, starting from around 1996, Canada has surpassed
US in generating more MNPRs per patent. Figures 3B—
G further look at chemical and DM patents separately for
each of the top 6 countries. From these figures, we can
conclude that (1) across the top countries and categories,
there is an increasing citation linkage from life science
patents to biomedical research; and (2) DM patents ex-
hibit a faster increase than chemical patents across years
and countries.

C. Cited science

In this section, we explore the characteristics of pa-
pers that are cited by patents. We do so at the reference
level; that is, a paper that is cited by multiple patents is
counted multiple times, since the number of citations a
paper receives from patents displays a heavy-tailed dis-
tribution, similar to the case of citations from papers
[12].

First, we study the distributions of countries where
cited papers are produced. Figure 4A plots the fractions
of MNPRs authored by different countries over time.
Here we display the results separately for the six indi-
vidual countries that have the largest shares at 2012 and
combine the shares of the rest countries together. The
distribution at a particular year is derived as follows. We
first get all the patents granted in that year, and then
count the number of MNPRs produced by a given coun-
try and normalize it by the total number of MNPRs cited
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by all the patents in that year.

Figure 4A shows that the U.S. has been consistently
the largest producer of cited science, accounting for al-
most half (49%) of the MNPRs cited by patents in 2012.
Other top countries contribute to significantly smaller
fractions: 6.8% for the UK and 5.5% for Japan. Note
that here one may refrain to conclude that US science
has been increasingly cited by patents over time, because
the apparent increase of the fraction of US science could
simply due to an increasing portion of cited papers with
affiliation information available. This is corroborated by
the observation that the share of US science has been
stable since around 2000.

Figure 4B presents the fractions of cited references
that are produced by different types of institutions over
time, derived using the same procedure described above.
Universities have been consistently the largest producer;
57.7% of references that are cited by patents granted in
2012 are written by them. PRO, which includes insti-
tutes and government, are the second major player, con-
tributing to 9.8%. Public science, therefore, share 67.5%
of cited science in patents. Companies account for only
10%.

We also examine what are the funding agency that
supported the science cited by patents. Figure 4C shows
the portion of references that are supported by U.S. gov-
ernment and by NIH specifically. Since 1990, more than
30% of cited science are supported by U.S. government
and 20% by NIH. Table III further shows the top NIH
institutes by the amount of citations they receive.

The last effort to characterize the cited science is to
examine to what extent they are basic or applied re-
search. We use the LS indicator described in Section ITI
to measure the basicness of each paper. First, we plot
in Figure 4D the histogram of LS for all the 14,916,511
MEDLINE papers published between 1980 and 2012, il-
lustrating how the entire biomedical literature is dis-
tributed along the basic-applied spectrum. This serves
as the baseline set, against which we compare with the
set of papers cited by patents. We observe a bimodal
distribution. Figure 4E shows the same plot, but for the
references that are cited by patents. We clearly observe
that the vast majority of these MNPRs situate at the
basic end. As a simple calibration, the bimodality in
Figure 4D allows us to empirically find a threshold th
to separate the two modes, which is 0.16. For 42.7% of
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TABLE III. Number of citations for top NIH IC.

1C Citations %
National Cancer Institute 416,642 22.3
National Institute of General Medical Sciences 251,171 13.5
National Institute of Allergy and Infectious Diseases 248,842 13.3
National Heart, Lung, and Blood Institute 239,139 12.8
National Institute of Diabetes and Digestive and Kidney Diseases 128,801 6.9
National Institute of Neurological Disorders and Stroke 89,904 4.8
National Institute of Child Health and Human Development 55,184 3.0
National Center for Research Resources 54,456 2.9
National Institute on Aging 49,538 2.7
National Institute of Diabetes and Digestive and Kidney Diseases 40,886 2.2

all papers in Figure 4D, their score is smaller than th;
By contrast, 85.2% of MNPRS in Figure 4E fall into this
category. This result is robust if we instead look at the
paper level. We further make additional measurements
to ascertain that the observation is not driven by patents
with many MNPRs. For each patent, we calculate (1)
the average value of LS of its cited papers; and (2) the
fraction of papers with LS smaller than th. The results
confirm that for the vast majority of patents, most of
their references are papers from the basic side.

As a separate case study, we examine MNPRs from
patents that are associated with drugs approved by
the U.S. Food and Drug Administration (FDA). The
Hatch—-Waxman Act mandates that drug innovators to
provide FDA with the list of patents that covers the
drug, and FDA included these patents in the Approved
Drug Products With Therapeutic FEquivalence Fuvalua-

tions (also known as the Orange Book), although it is
not FDA’s task to actually evaluate the coverage. Such
patents may possess economic value for their owner to
surpass the cost of the development of drugs, and at
the same time have the cure value for patients. We
get this list of patents from https://www.fda.gov/
drugs/informationondrugs/ucm129689.htm. We find
a much smaller number (4,380) of such patents, which
cite 28,512 MNPRs in our sample of papers. Figure 4F
shows that, although most (59.6%) of these MNPRs are
on the basic side, substantial amount are on the applied
side, yielding a bimodal distribution that is not present
in the overall case in Figure 4E. This may be related to
the underlying process of drug development where phar-
maceutical companies need to test the safety and effec-
tiveness of drugs on human—which is applied research
by definition.
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D. Private-sector patents

In this section, we analyze science linkage of patents
assigned to companies. Table IV presents the overall per-
centages of citations originated from company patents to
papers authored by different types of affiliations. We ob-
serve that about 48% of citations form company patents
go to university papers, and this varies little if we focus
on chemical or DM patents separately or US patents only.
Other public research organization ranks the second, con-
tributing to 13-15%. Companies share only 11-13% of
the science base of their patents.

We further look at the science linkage of individual
companies. By way of example, Medtronic, a global med-
ical device company, owns the largest number (3,565) of
DM patents in our sample. We find 11,242 MNPRs in
those patents, among which 5,824 are from universities,

TABLE IV. Percentage of MNPRs originated from companies
to different types of institutions.
All Chemical| DM

All US| Al US|AlIl US

EDU |48.1 47.6|47.7 47.7|48.2 47.6

PRO|13.4 13.0|14.8 14.5(13.1 12.6

COM|11.5 11.613.1 13.2|11.1 11.2

HOS |71 74|54 56|75 79

UNK|19.9 20.4|19.0 19.0{20.1 20.8

579 from PRO, and only 297 from companies. The frac-
tion of MNPRs authored by the public science section
(universities and PRO), therefore, is 0.57. Table V ex-
tends this calculation to the top 10 companies that have
the largest number of chemical and DM patents, indicat-
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ing a significant linkage to public science. We make one
more step and repeat this calculation to all the companies
whose patents have at least one MNPR. Figure 5 shows
the cumulative distributions of fraction of public science
MNPRs for all those companies, across the chemical and
DM categories. For more than 60% of companies, more
than half of MNPRs cited in their patents are from public
science.

V. DISCUSSION

We have uncovered several empirical findings regard-
ing how science linkage of US life science patents has
changed over a 37-year period. From the prevalent per-
spective of viewing citation linkage as knowledge flow,
this study is particularly important, because our results
suggest a continuous linkage of public science to private
sector inventions. First, the overall growth of life sci-
ence patents are largely driven by the increase of drug
and medical patents. The volume of science linkage are
increasing exponentially, doubling every 2.9 years. The
increase happens in both chemical and drugs & medi-
cal patents, as well as patents originated from different
countries.

Second, almost half of the MNPRs are produced in
the US; the majority of them are from the public science
sector. Public science—research performed by academics
and government institutions—is widely acknowledged to
have a strong influence on technology development. Our
work provides empirical, quantitative, and longitudinal
evidence of the magnitude of the dependence of tech-
nologies on public science.

Third, the overwhelming of cited science are basic re-
search; yet, the nuance is for patents associated with
drugs, with a non-negligible portion of them are applied
research. The premise that basic science lays foundations
for applied science is extensively discussed and widely
embedded in many theoretical models about science-
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technology interaction (e.g., the “linear model” of inno-
vation running from basic science to applied science to
technologies and economic growth [3]). Our work pushes
forward this line of inquiry, by moving from a dichoto-
mous question of whether basic science fuels applied re-
search towards a quantitative understanding of the ex-
tent of the reliance. Such a complication is important,
because our findings in general corroborate the pivotal
role of basic science, but at the same time point to a pre-
viously ignored contribution of applied research. On this
regard, our work supports Gittelman [7], which argues
that understanding diseases requires embedding applied
science into basic research.

Fourth, the US government and NIH in particular con-
tinue to be found as funders of research cited in patents.
Last, for the majority of companies, most of their patents
cite public science. However, to what extent the linkage
represents a direct knowledge flow is a line of challenging
future work.

Many previous works about the role of public science
in private sector innovation assumed that public research
organizations conduct basic research, while private firms
perform applied research by utilizing results generated
from basic research. However, few studies have exam-
ined whether papers that are cited in patents are basic
research. We bridge this gap by using a novel indicator
proposed in our previous work that quantifies the extent
to which a paper is basic research or applied research,
by leveraging recent advances in machine learning liter-
ature. Using this indicator, we quantitatively show that
cited papers are more likely to be basic research, resonat-
ing with earlier results [16, 20]. Yet, we also find that a
significant portion of papers cited in patents that are re-
lated to FDA-approved drugs are clinical research. These
findings appears to be in a sharp contrast with a recent
finding that declares no relationship about whether basic
or applied research are more likely to be cited by patents
[15]. The inconsistency may be due to the difference in
entities analyzed. While we focused on papers, they fo-
cused on grants and made the basic/applied dichotomy
based on grant abstracts. Furthermore, it remains to be
seen to what extent one short grant abstract can rep-
resent the actual research performed and how different
the level scores are for papers produced under the same
grant.

Throughout the work, we have grouped patents
based on NBER categories, which rely on the USPC

codes. USPTO, however, scheduled to replace USPC
codes with the Cooperative Patent Classification
(CPC) schema in 2013 (https://www.uspto.gov/

patents-application-process/patent-search/
classification-standards-and-development), rais-
ing the question of whether our analysis can be extended
to later patents without USPC codes. In Appendix B,
we demonstrate that it is still feasible to assign USPC
classes and NBER categories to those patents, through
their IPC classes.

Some of our analysis may be limited by the quality of
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TABLE V. The top 10 companies that own the largest number of chemical (top) and DM (bottom) patents. The Fraction
columns refer to the fraction of MNPRs that are authored by the public science section (universities and PRO).

Company Patents Fraction
Chemical
BASF AG 8,523 0.57
Bayer AG 8,450 0.42
E. I. du Pont de Nemours and Company 7,462 0.58
General Electric Company 7,276 0.73
Eastman Kodak Company 7,028 0.46
Fuji Photo Film Co., Ltd. 6,463 0.56
The Dow Chemical Company 5,545 0.47
Ciba-Geigy Corporation 5,059 0.31
Hoechst AG 4,468 0.36
Shell Oil Company 4,076 0.73
Drug & Medical
Medtronic Inc. 3,565 0.57
Merck & Co., Inc. 3,000 0.47
The Procter & Gamble Company 2,349 0.52
Eli Lilly and Company 2,314 0.42
Bayer AG 2,258 0.54
Pioneer Hi-Bred International, Inc. 2,064 0.81
Cardiac Pacemakers, Inc. 1,955 0.61
Pfizer Inc. 1,816 0.55
Abbott Laboratories 1,736 0.58
Monsanto Technology LLC 1,696 0.80

bibliographic data of papers. To be specific, we have re-
lied on the first author’s affiliation to infer the country
and institution type of a paper, due to the unavailability
of the affiliation information for other authors. As sci-
entific collaboration has become the dominant mode in
knowledge production, future work is needed to collect
missing affiliation data and examine how the results may
change. Second, we have used the funding information
provided in the MEDLINE database to analyze the role
of NIH. Although it remains unclear about the complete-
ness of the data, our results nevertheless provide a lower
bound on the fraction of cited papers that are funded
by NIH. Future studies could also use other data sources
such as Web of Science to get the funding information.

Future work is needed to model patent-to-paper knowl-
edge flow among different types of institutions and com-
pare how it is different from patent-to-patent knowledge
flow. That the science linkage is dominated by biotech-
nology and drug patents may suggest a finer level cat-
egorization of these patents that goes beyond existing
schemes is needed. Future work can base the linkage
to science to cluster these patents and compare how
the data-driven derived clusters align with traditional
schemes.

Appendix A: Country origin of patents based on
first inventor residence

Table A.1 presents the number of patents by
country based on the residence of first inven-
tor, a standard practice adopted by organizations
like WIPO  (https://www.wipo.int/ipstats/en/
statistics/patents/wipo_pub_931.html), patent
offices such as USPTO (https://www.uspto.
gov/web/offices/ac/ido/oeip/taf/appl_yr.htm)
and EPO (https://wuw.epo.org/about-us/
annual-reports-statistics/annual-report/2018/
statistics/granted-patents.html#tabl), and the
literature [2, 9].

Appendix B: Assigning USPC classes and NBER
categories to patents without USPC codes

To assign NBER categories to patents without TPC
classes, we first establish the mapping from IPC to USPC
classes, using the US-to-IPC8 Concordance provided
by USPTO. For example, the table that maps USPC
subclasses of class 424 to IPC subclass and group can
be found at https://www.uspto.gov/web/patents/
classification/uspc424/us424toipc8.htm. We
scraped all these tables and created the IPC-to-USPC
mapping using fractional counting. As examples, IPC
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TABLE A.1. Top 20 countries (territories) with most patents.

Country Patents  %||Country Patents %
UsS 605,875 55.7|| TW 9,849 0.9
JP 156,491 14.4 SE 9,192 0.8
DE 87,127 8.0|| BE 7,883 0.7
FR 35,505 3.3 1L 6,825 0.6
GB 33,274 3.1|| AU 6,388 0.6
CA 20,691 1.9|| DT 5,361 0.5
CH 17,865 1.6 JA 4,847 0.4
KR 14,901 1.4|| DK 4,816 0.4
1T 14,376 1.3 FI 4,051 0.4
NL 10,794 1.0 AT 3,476 0.3

“A61K 51/00” is uniquely mapped to USPC 424. IPC
“A61M 36/14” can be mapped to 22 unique USPC
subclasses, 21 of which corresponds to USPC class 424
and the remaining 1 to class 427. Therefore, “A61M
36/14” is mapped to USPC 424 with weight %, and
to USPC 427 with weight % Table A.2 provides the

mapping for the 3 exemplar IPC codes.

TABLE A.2. Mapping from IPC code to USPC class, with
weight in parentheses.

IPC code USPC class and weight

A61K 5100 424 (1)

AG61M 3614 424 (21); 427 (55)
A61K 5104 534 (1)
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For a particular patent without USPC codes, we can
then assign USPC classes based on its IPC codes. For ex-
ample, patent 9,044,520 has 3 IPC codes: “A61K 51007,
“A61M 3614”7, and “A61K 5104”. The weight for USPC
424 is § x 1+ % x 21/22 = 0.652, similarly the weight for
USPC 534 is 0.333, and for USPC 427 is 0.015. Therefore,
we assign USPC 424, and accordingly NBER subcategory
“31” (Drugs) and category “3” (Drugs & Medical) to this
patent.

To validate this method, we first note that although
USPC was scheduled to be replaced by CPC starting
from 2013, patents granted until mid 2015 still have as-
sociated USPC classes. We therefore additionally down-
loaded and parsed bibliographic data for patents granted
between 2013 and 2016. We then leverage the fact that
patents granted before 2015 have USPC (hence NBER
categories) information, which serve as our ground-truth
data, and apply the method to patents between 1976 and
2014. We find that for the vast majority (86%) of these
patents, their NBER categories assigned by our method
are identical to those based on their USPC. To apply this
method in scale, we perform the NBER category assign-
ment for patents granted between mid 2015 and 2016.
Fig. A.1 displays the number of patents between 1976
and 2016, demonstrating the feasibility of extending our
analysis to later patents.
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