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Abstract

Science is built on scholarly consensus that shifts with time. This raises the question of how new and
revolutionary ideas are evaluated and become accepted into the canon of science. Using two recently
proposed metrics, we identify papers with high atypicality, which models how research draws upon novel
combinations of prior research, and evaluate disruption, which captures the degree to which a study
creates a new direction by eclipsing its intellectual forebears. Atypical papers are nearly two times more
likely to disrupt science than conventional papers, but this is a slow process taking ten years or longer for
disruption scores to converge. We provide the first computational model reformulating atypicality as the
distance across latent knowledge spaces learned by neural networks. The evolution of this knowledge
space characterizes how yesterday’s novelty forms today’s scientific conventions, which condition the
novelty—and surprise—of tomorrow’s breakthroughs.
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Introduction

Over the past three centuries, science has exploded in size and recognition as the dominant driver
of innovation and economic growth (Jones et al., 2020; Price, 1963). From Derek J. de Solla Price’s
mid-20th Century scholarship demonstrating extreme inequality in scientific article citations (Price, 1965)
and Eugene Garfield’s establishment of the Science Citation Index enabling identification of the most
“important” papers on a given topic, citation number or “impact” has become the dominant method for
quantitatively evaluating researchers and their work. This fixation on citation impact, however, has led to
unintended consequences (Hicks et al., 2015). The value of citation impact for careers and institutional
allocations has led scientists to make choices that inexpensively optimize the metric without its attendant
quality, driving down the value of its index of generalized research quality (Campbell, 1979; Goodhart,
1975; Lucas, 1976). For example, research demonstrates that scientists are rewarded by publishing in
fashionable areas of science where citations are abundant (Foster et al., 2015; Rzhetsky et al., 2015),
making their work relevant for citation by other contemporary researchers working on those topics. This
has contributed to log-jams in science where scientists crowd together along the scientific frontier
(Azoulay et al., 2018), driving down the relationship between short-term impact and long-term influence.

Alternative measures have been proposed to reveal the distinct character of scholarly work
beyond popularity. These include pioneering work to identify knowledge relevance through bibliographic
coupling (Kessler, 1963), co-citation (Small, 1973), or keyword overlapping (Milojević et al., 2011), and
initiatives to understand the different function of citations by analyzing their word context, so as to trace
the unfolding drama of scientific debate and advance (Biagioli, 2018; Jurgens et al., 2018; Zhang et al.,
2013). Two recent, prominent metrics have arisen that highlight work generating new combinations and
directions, contributing to the “creative destruction” of science, whereby new scientific ideas and
approaches supplant the old (McMahan et al., 2021). Novelty has been assessed in many ways (Foster et
al., 2021), but one high-profile approach, Atypicality, models how research draws upon unusual
combinations of prior research in crafting their own contributions (Uzzi et al., 2013). Disruption models
how research comes to eclipse citations to the prior work on which it builds, becoming recognized as a
new scientific direction (Funk et al., 2016; Wu et al., 2019). In this paper, we unpack the complex,
temporally evolving relationship between atypicality, citations, and disruption. We show how atypicality
increases at the expense of short-term citations, but anticipates works that will become “sleeping
beauties” (He et al., 2018; Ke et al., 2015; van Raan, 2004), accumulating surprising attention and
citation impact over the long run to disrupt science. We also reformulate atypicality as distance of co-cited
journals in knowledge embedding space inscribed by an embedding model, which offers new theoretical
insight into the dynamic frontier of science: how yesterday’s novelty forms today’s scientific conventions,
which condition the surprise of tomorrow’s breakthroughs (Fleming et al., 2001; Sorenson et al., 2006).

Atypicality: Science as a Recombinant Process

Scientific discoveries and technological inventions do not appear ex nihilo. They are built from
combinations of existing knowledge and technological components (Brian Arthur, 2009; Schumpeter,
2018; Singh et al., 2010; Uzzi et al., 2013). Recent research has explored the recombination of knowledge
entities, including keywords (Hofstra et al., 2020), chemical and biological entities (Foster et al., 2015),
and patent classes (Youn et al., 2015) to produce novel scientific advances. For example Hofstra and
colleagues identified papers connecting concepts previously viewed as separated or irrelevant in literature
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(2020), including how Lilian Bruch connected “HIV” with “monkeys” to introduce HIV’s origins in
nonhuman primates (Sarngadharan et al., 1984), or how Londa Schiebinger linked “masculinity” to
“justify” in pioneering academic studies of gender bias (1991). Milojević and coauthors analyzed
combinations of words and phrases from paper titles to elucidate the cognitive content of Library and
Information Science (LIS), documenting how its cognitive landscape has been reshaped by the emergence
of new information technologies such as the Internet, and the retirement of old ones (Milojević et al.,
2011). Much recent work constructs knowledge spaces from combinations of knowledge components,
such that the combination of distant elements within that space strongly indicates combinatorial novelty
(Gebhart et al., 2020; Shi et al., 2019).

Brian Uzzi and colleagues created a prominent score that captures how a paper deviates from the
norm of science by building on “atypical” references, where a pair of journals are determined to be
“atypical (z < 0)” if they are less likely than random to be co-cited in the existing literature (Uzzi et al.,
2013). The atypically of a paper is characterized by the distribution of z-score across all pairs of journals
in the references. The 10th percentile of the z-score distribution yields a measure that stably approximates
the maximum atypicality, or minimum typicality in combining scientific sources ( ), and its 50th𝑧

𝑚𝑖𝑛

percentile yields a measure of average typicality ( ). A paper may be highly typical (𝑧
𝑚𝑒𝑑𝑖𝑎𝑛

), mixing atypical with typical references ( ), or highly atypical (𝑧
𝑚𝑒𝑑𝑖𝑎𝑛

>  𝑧
𝑚𝑖𝑛

> 0 𝑧
𝑚𝑖𝑛

< 0 < 𝑧
𝑚𝑒𝑑𝑖𝑎𝑛

). Uzzi and his colleagues found that mixing atypical with typical references best 𝑧
𝑚𝑖𝑛

< 𝑧
𝑚𝑒𝑑𝑖𝑎𝑛

< 0

predicts the likelihood that a paper will become highly cited (Uzzi et al., 2013). We will show here,
however, that the probability for a paper to disrupt rather than consolidate science peaks when it makes
the bold move to be highly atypical.

Disruption: Science Advances in Steps or Leaps

Scientific work plays distinct roles in the unfolding evolution of science. Research that aims to push the
frontier of knowledge differs from that which defends and extends existing theories or solves applied
problems (Hicks et al., 2015). As in science, technological change may either consolidate existing
knowledge and reinforce established trajectories, or destabilize past achievements and create new paths
(Brian Arthur, 2009; Dosi, 1982). This dichotomy reflects a fundamental tension identified by many
scholars under different names: “conformity vs. dissent” (Polanyi, 1962),  “succession vs. subversion”
(Bourdieu, 1975), paradigm “deepening vs. changing” (Ahuja et al., 2014; Dosi, 1982), “enhancing vs.
destroying” (Tushman et al., 1986), “exploitation vs. exploration” (March, 1991), “relevance vs.
originality” (Whitley, 2000), “conventionality vs. novelty” (Uzzi et al., 2013), “tradition vs. innovation”
(Foster et al., 2015), “destabilization vs. consolidation” (Chen et al., 2021), or path “deepening vs.
breaking” (Garud et al., 2010; Karim et al., 2017). Some scholars have argued that the two types of
science and technology are fundamentally incompatible and present an essential tension in which
scientists must trade one for the other (Bourdieu, 1975; March, 1991), producing different career
outcomes for those that undertake them and contributing distinct possibilities for scientists that follow
(Foster et al., 2015). Others have argued that these two forces take turns characterizing the history of
science, switching between “normal vs. revolutionary” periods (Kuhn, 1962). With all of the scholars
listed above, we argue that these strategies are complementary; both are critical for sustained
advancement in science.
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To this end, recent work has sought to explore how science develops vs. disrupts prior science
over time (Funk et al., 2016; Wu et al., 2019). The intuition behind the proposed disruptive D-measure is
straightforward: if subsequent papers that cite a paper also cite that paper’s references, then the focal
paper can be seen as consolidating the prior knowledge upon which it builds. If the converse is
true—future papers citing a focal paper ignore its acknowledged forebears—they are recognizing that
paper as disruptive, creating an unanticipated new direction for science. The D-score of a focal paper is
calculated as the difference between the fraction of these types of subsequent, citing papers. A paper may
largely eclipse prior work by introducing distinct ideas (0 < D < 1), develop and promote existing theories
by providing supportive evidence (-1 < D < 0), or balance both (D = 0). Through the lens of D-score, the
BTW-model paper (Bak et al., n.d.) that discovered the “self-organized criticality” property of dynamical
systems, one of the most prominent patterns in complexity science, is among the most disruptive papers
(D = 0.86, top 1%). In contrast, the article by Davis et al. (Davis et al., 1996) that first observed
Bose-Einstein condensation in the lab, a property hypothesized nearly three quarters of a century before
(Bose, 1924), is among the most developing (D = −0.58, bottom 3%). D-scores highlight the distinct
nature of knowledge created by these two papers that cannot be captured with citation counts—both
papers received over 8,000 citations, according to Google Scholar. The D-scores of 20 million Microsoft
Academic Graph papers (1830-2021) are provided for public use at
https://lingfeiwu.github.io/smallTeams/. Since publication of the disruption index, many papers have
recommended adjustments (Bornmann et al., 2020, 2019; Chen et al., 2021) or extensions (Leahey et al.,
2021; Leydesdorff et al., 2021).

The Delayed Recognition of Scientific Novelty

The delayed recognition of papers has been discovered for decades, but it was not until recently that the
importance of this phenomenon in science was recognized. Glänzel and Garfield observed that most
papers receive most of their citations within the first three to five years of publication (Glanzel et al.,
2004), except for a negligible fraction of outliers—0.01% according to their study—which experience a
burst of attention after ten years. Recent studies of large-scale citation graphs have confirmed the scarcity
of delayed recognition papers (Wang et al., 2013; Yin et al., 2017), but these outliers, named “sleeping
beauties,” may not be so rare (He et al., 2018; van Raan, 2004). (Ke et al., 2015) proposed a “sleeping
beauty index” (SBI), a non-parametric measure, and reported that papers with top 0.1% SBI demonstrated
a clear pattern of delayed recognition, ten times larger than what Glänzel and Garfield suggested. One
possibility is that Glänzel and Garfield only analyzed papers published before 1980, and thus missed the
opportunity to discover a majority of “sleeping beauties” papers “awakened” after that. But there is an
elephant in the room that Glänzel and Garfield ignored. Papers garnering belated recognition may be rare,
but this does not mean they are unimportant. On the contrary, it is likely that these papers are too novel to
be recognized immediately and their importance must unfold over time. Following this rationale, we ask
the following questions concerning the social mechanism through which novel papers are recognized:

Question 1. How often does a novel paper successfully create a new direction and disrupt
science? Stated in a different way, do novel inputs predict disruptive outcomes? We anticipate that paper
novelty should be positively correlated with future disruption rather than development, as novel
combinations are more likely to depart from existing trajectories and open new paths (Fleming et al.,
2007; Lee et al., 2015; Tushman et al., 1986). But does disruption necessarily grow from unusual
combinations? Can one create a new direction by citing interlinked sources and fighting against
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consensus? Rarely. The physicist Max Planck made the sharp observation restated as “science progresses
one funeral at a time”, an idea widely cited by Thomas Kuhn, Paul Feyerabend and other science and
technology studies (STS) scholars. Old perspectives die not from new arguments, methods and evidence,
but from the marginalization (H. M. Collins, 2000) and death (Azoulay et al., 2019) of those who hold
them. This suggests that ignoring old arguments may be more likely to generate new directions in science
than disputing them. As such, we posit that disruption grows much more from novel than conventional
combinations of prior ideas and literatures.

Question 2. If novel papers indeed disrupt science, how long does this process take? Based on
our earlier discussion, we anticipate that novel papers are more likely to be “sleeping beauties” and
accumulate citations over the long run, as new findings that contradict traditional wisdom (Cole, 1970) or
appear “before their time” (Garfield, 1980; van Raan, 2015) may face resistance from contemporary ideas
and their defenders, achieving delayed recognition from other fields only as knowledge spills over (Ke et
al., 2015). If novel papers are indeed more disruptive as theorized above, they are likely to become so by
attracting citations over the long term. This is because the D-score of a focal paper is calculated as the
difference between two types of papers: papers that only cite the focal paper but not its references and
those citing both. These two types may not appear with the same likelihood over time: short-term citations
will likely cite both, while long-term citations, further in time from the work a focal work cited, will
disproportionately cite the focal paper alone. This would explain the finding that D-score is associated
with the “sleeping beauty” index (Wu et al., 2019). In this paper, we will unfold the temporal dynamics of
disruption and answer this question.

Question 3. How does the landscape of scientific novelty evolve? We predict that landscapes of
novel opportunity in science evolve continuously, with every new finding and claimed association. While
analysis of recombinant ideas has been used to quantify the novelty of individual papers in historical
context, similar approaches have not yet explored the changing context itself. Here we seek to understand
how yesterday’s novelty forms today’s scientific conventions, which condition tomorrow’s breakthroughs.
For example, Mark Granovetter’s classic paper on social networks published in 1973, “The Strength of
Weak Ties”, cited both physical science journals (e.g., Bulletin of Mathematical Biophysics) and
sociological journals (e.g., American Sociological Review). This combination was much more novel in the
1970s than today, partly as a result of the success of this early work (Castellano et al., 2009). Recent
advances in semantic analysis such as the word2vec model (Mikolov et al., 2013) provide a powerful tool
to reformulate paper atypicality defined by (Uzzi et al., 2013) as distance across the underlying,
continuous space of knowledge in which conventional and novel combinations are continuously
redefined. Within these spaces, “structural holes” (Burt, 2004) or sparse regions that separate distinct
communities and fields, emerge and collapse like whirlpools in the ocean. We propose to model and
visualize knowledge space over time to reveal changes in novelty and facilitate understanding regarding
how the scientific frontier evolves.

Data and Method

Data. We investigate impact, novelty and disruption using the Microsoft Academic Graph (MAG), which
includes 87,860,684 journal articles published 1800-2020 and 1,042,590,902 citations created by these
articles. We calculated two variables for each of the 35,431,832 journal articles that have both citations
and references, including D-score for disruption (higher is more disruptive) and for typicality𝑧

𝑚𝑒𝑑𝑖𝑎𝑛

(higher is more conventional). Our analysis of typicality, citations, and disruption covers multiple cohorts,
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including cohorts from 1970 (87,475 papers), 1980 (176,826 papers), 1990 (318,914 papers), and 2000
(591,653 papers). These papers have 21 references on average. The average number of citations to these
papers is 32. The construction of the journal embedding space is based on the co-citation of 2,429 journals
in 1970 and 8,009 journals in 2000.

Methods.

Calculating the z-score of novelty. Uzzi et al. (2013) defined the z-score for a pair of journals co-cited in
an article as more or less typical with ,𝑧

𝑖𝑗

(1)𝑧
𝑖𝑗

 = (𝑜𝑏𝑠
𝑖𝑗

 −  𝑒𝑥𝑝
𝑖𝑗

)/σ
𝑖𝑗

where i and j are journals, is the empirical frequency that these two journals co-cited across research𝑜𝑏𝑠
𝑖𝑗

articles (Uzzi et al., 2013) and is the expected frequency of the co-citation. is calculated from𝑒𝑥𝑝
𝑖𝑗

𝑒𝑥𝑝
𝑖𝑗

citation random shuffling, in which two citations are randomly selected to exchange the papers to which
they are attached, given that the papers are published in the same year. In this way, two variables remain
unchanged, including the length of references for each paper and the temporal distribution characterizing
their references.

Calculating the D-score of disruption. The Disruption, D, of a focal paper, can be calculated as the
difference between the fractions of two types of subsequent papers,

(2)𝐷  =  𝑝
𝑖

− 𝑝
𝑗
 =  

𝑛
𝑖
 − 𝑛

𝑗

𝑛
𝑖 
+𝑛

𝑗
+𝑛

𝑘

where is the fraction of papers that only cites the focal paper but not its reference and is the fraction𝑝
𝑖

𝑝
𝑗

of papers that cites both. A paper may disrupt earlier research by introducing new ideas that come to be
recognized independent from the prior work on which it builds (0 < D < 1), develop existing research by
providing supportive evidence or extensions that come to be recognized as developments of prior work
(-1 < D < 0), or remain neutral, keeping in balance the disruptive and developmental character of its
contribution (D = 0). D-score may change over time due to the temporal evolution of the two types of
subsequent, citing papers. To calculate a stabilized disruption score, we used the longest time window
available in the MAG dataset from the year of publication for each paper to 2018. In section 1 of our
findings, we explore the temporal dynamics of , i.e., how D-score changes with time, for two𝐷

𝑡

field-definitive studies in biology, the paper on DNA by Watson and Crick (Watson et al., 1953) and the
paper on RNA by Baltimore (Baltimore, 1970) and also four cohorts of papers published in 1970, 1980,
1990, and 2000, respectively.

Reformulating z-score atypicality as distance in knowledge space. The z-score of atypicality is deeply
related to a common measure in information science, the Pointwise mutual information (PMI) between
two items. Indeed, we can rewrite PMI into a z-score-like form

(3)𝑃𝑀𝐼
𝑖𝑗 

= 𝑙𝑜𝑔
2
(

𝑃
𝑖𝑗

𝑃
𝑖
×𝑃

𝑗
) =  𝑙𝑜𝑔

2
(𝑃

𝑖𝑗
) −  𝑙𝑜𝑔

2
(𝑃

𝑖
× 𝑃

𝑗
) = 𝑙𝑜𝑔

2
(𝑜𝑏𝑠

𝑖𝑗
) −  𝑙𝑜𝑔

2
(𝑒𝑥𝑝

𝑖𝑗
)

where and are the probabilities that i and j appear independently, respectively, and is the joint𝑃
𝑖

𝑃
𝑗

𝑃
𝑖𝑗

probability. The hidden connection between PMI and z-score permits defining and measuring atypicality
as the distance on latent semantic spaces obtained through an embedding model, such as the popular
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skip-gram word2vec model, which has been demonstrated to preserve semantic compositionality within
word vectors sufficient to perform at human level on semantic analogy problems (a is to b as c is to ___?)
(Mikolov et al., 2013). Word embedding models have inspired a wide range of item-context embedding
models beyond words, ranging from images (Xian et al., 2016) and audio clips (Xie et al., 2019) to graphs
(Grover et al., 2016; Perozzi et al., 2014) and academic journals (Miao et al., 2021; Peng et al., 2020;
Tshitoyan et al., 2019).

In an embedding model, each item is represented as a vector in shared vector space. For example, in a
word embedding, words sharing similar contexts within the text will be positioned nearby in the space,
whereas words that appear only in distinct and disconnected contexts will be positioned farther apart. The
same holds for journals embedded as a function of their co-citation within reference lists. Consider the
structure of the descriptive problem that embeddings attempt to solve: how to represent all items from a
dataset within the k-dimensional space that best preserves distances between n items (e.g., journals) across
m contexts (e.g., article reference lists). The solution, is a n-by-k matrix of values, where . Early𝑘 ≪ 𝑚
embedding approaches used singular-value decomposition (SVD) to factorize this item-context matrix,
where contexts were large and nondiscriminating (e.g., entire documents of thousands or tens of
thousands of words), but SVD placed strict upper limits on the number of contexts they could factorize.
Neural embeddings use heuristic optimization of a neural network with at least one “hidden-layer” of k
internal, dependent variables, enabling factorization of much larger item-context matrices constructed
from vast numbers of arbitrarily local item contexts (very large m). In this way, PMI is formally
equivalent to the inner product of two vectors representing items within a latent semantic space (Levy et
al., 2014). Specifically,

(4)𝑒𝑚𝑏
𝑖𝑛−𝑖

 • 𝑒𝑚𝑏
𝑜𝑢𝑡−𝑗

 =  𝑃𝑀𝐼
𝑖𝑗 

− 𝑙𝑜𝑔
2
𝑁𝑒𝑔

where is the item embedding of i and is the context embedding of j. Neg is the number𝑒𝑚𝑏
𝑖𝑛−𝑖

𝑒𝑚𝑏
𝑜𝑢𝑡−𝑗

of negative samples per positive (actual item-context) sample. In sum, the inner product between journal
vectors in an embedding space is a computationally efficient proxy for the z-score. In section 3 of our
findings, we train journal vectors across time periods to visualize and compare the changing landscape of
novelty in science.

Findings

1. Novel papers are more likely to disrupt existing literature

We find that typicality ( ) and disruption (D-score) are negatively associated (Pearson correlation𝑧
𝑚𝑒𝑑𝑖𝑎𝑛

coefficient -0.05, p-value < 0.001). Papers integrating unusual combinations of literature come to be seen
as disruptive by a disproportionate number of subsequent papers that only cite those novel papers but not
their references. In comparison, papers drawing upon typical combinations of references are deemed as
developing prior approaches by the majority of following papers that cite those papers in context with
their references—as extensions.
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Figure 1. Novel papers disrupt, conventional papers develop. (a) Simplified illustration of disruption. Three citation networks
comprising focal papers (colored diamonds), references (grey circles) and subsequent work (grey squares). Subsequent work may
cite the focal work (green squares), both the focal work and its references (red squares) or just its references (black squares).
Disruption, D, of the focal paper is defined by the difference between the proportion of type i and j papers pi − pj, which equals
the difference between the observed number of these papers ni − nj divided by the number of all subsequent works ni + nj + nk. A
paper may be disrupting (D = 1), neutral (D = 0) or developing (D = −1). Figure recreated from (Wu et al., 2019). (b) Simplified
illustration of novelty. A paper may cite journals of weak (green, z < 0) or strong ties (red, z > 0). (c) Cumulative distributions of
z-scores for two exemplary papers: the DNA paper by Waston and Crick (D = 0.96, top 1% disruptive) and the RNA paper by
Baltimore (D = -0.47, top 1% developing). For all 87,475 papers published in 1970, we selected the most disruptive (top 5%) and
developing (top 5%) papers, then calculated their average cumulative distribution of conventionality (displayed in blue and
orange, respectively). Z-median for disruptive papers is significantly different from those of developing papers (the
Kolmogorov–Smirnov statistic D = 0.14, p < 0.001). The same conclusion holds for z-min ( D = 0.09, p < 0.001). (d) The
cumulative distributions of the z-score of high-impact (purple, top 5% citations) and low-impact (yellow, bottom 5% citations)
papers selected from all of the 87,475 papers published in 1970. Z-median for high-impact papers is significantly different from
low-impact papers (the Kolmogorov–Smirnov statistic D = 0.15, p < 0.001). Note that Panels c and d are plotted using the
“symlog” (which means symmetrical log) function from the “matplotlib” library of Python.

Fig.1 presents the association between typicality and disruption with two representative cases after
illustrating the calculation of D- and z-scores. In Fig. 1c, each paper is characterized by the distribution of
the z-score for all pairs of journals in the references. A high, positive z-score (distribution shifting to the
right end on the x-axis) is a signature of typical combinations of journals on established topics within a
field, whereas a low, negative z-score (distribution shifting to the left end on the x-axis) implies unusual
combinations of journals that span fields to create new topics. More specifically, The 10th percentile of the
z-score distribution yields a measure that stably approximates the maximum atypicality, or minimum
typicality in combining scientific sources ( ), and its 50th percentile yields a measure of average𝑧

𝑚𝑖𝑛
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typicality ( ). A paper may be highly typical ( ), mixing atypical with typical𝑧
𝑚𝑒𝑑𝑖𝑎𝑛

𝑧
𝑚𝑒𝑑𝑖𝑎𝑛

>  𝑧
𝑚𝑖𝑛
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references ( ), or highly atypical ( ). We find that only a small𝑧
𝑚𝑖𝑛
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 𝑧
𝑚𝑖𝑛

< 𝑧
𝑚𝑒𝑑𝑖𝑎𝑛

< 0

fraction of papers (2.3%) are highly atypical and there are less atypical papers over time, with a nearly
threefold decrease from 3.9% in 1970 to 1.4% in 2000.

Uzzi and colleagues discovered that mixing conventional with atypical references best predicts the
likelihood that a paper will become highly cited (Uzzi et al., 2013). This finding is confirmed in Fig. 1d.
However, Fig. 1c shows that the chance of disrupting rather than consolidating science peaks when a
paper takes the bold move to be highly novel. A highly novel paper is much more likely—nearly two
times (61% vs 36%), to disrupt science than conventional papers. The average z-score distribution of the
most disruptive (top 5% D-score) versus developing (bottom 5% D-score) papers significantly deviate
from one another as evidenced by Kolmogorov-Smirnov tests (see the caption of Fig. 1). The former
shifts to the left and the latter shifts to the right, indicating the alignment between novelty and disruption;
conventionality and development. The correlation between atypicality and disruption holds for a majority
of fields, but the effect is more significant in “artificial” than “natural” sciences (Simon, 2019). In
computer science and engineering (the higher average D-score as presented in Fig. 3 in (Wu et al., 2019),
atypicality is more likely rewarded in disruption, evidenced by the larger difference between novel versus
conventional groups in the fraction of disruptive citations (Table S1). By contrast, for stable sciences such
as biology, chemistry, and physics, which remain difficult to disrupt (low average D-score), atypicality is
more weakly related to disruption.

The fundamental difference between dynamics revealed in Fig. 1c and 1d should not be underestimated.
Scientific advance is constrained by an essential tension between “tradition vs. innovation” (Foster et al.,
2015): in most cases, new ideas must be introduced in connection with relevant, old ideas to enter the
canon of scientific knowledge (Collins 2009; Chu and Evans 2021). This permits two types of strategies
for individual scientists to effectively contribute. One can prioritize tradition by selecting an established
theory and adding new, supportive evidence. This strategy, characterized by the “clockwise rotation” and
decreased slope of the z-score distribution (Fig. 1d), an operation suggested by the black, curved arrow,
maximizes the chance a paper will achieve “hit” status (Uzzi et al., 2013). Alternatively, one can prioritize
innovation by selecting an underdeveloped topic lacking consensus. In the space of z-scores, this strategy
corresponds to “left shifting” the cumulative distribution (Fig. 1c), which results in a higher likelihood of
being disruptive.

A question that remains is when atypical papers disrupt science, are they cited as sources of the new
concepts they contribute? To answer this question, we selected 887 scientific keywords identified by
MAG to create 887 groups of papers that contain them. We then separate the most cited paper from the
other papers in each group, and compare these two types of papers in atypicality and disruption. We
anticipate that by selecting the most cited paper, we can reveal the “center” of the scientific consensus.
For example, among all 22 papers containing the keyword “the market for lemons,” the paper “The
Market for 'Lemons': Quality Uncertainty and the Market Mechanism (Akerlof, 1970),” was the most
highly cited. This paper was indeed among the first discussing the consequence of information asymmetry
on markets between buyers and sellers (D = 0.99, = 14). We find the “center” papers are more𝑧

𝑚𝑒𝑑𝑖𝑎𝑛
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disruptive and atypical than other papers, supporting the assumption that atypical and disruptive papers
were recognized as the source of the new concept they contributed.

To obtain a more intuitive understanding of the complex dynamics characterizing “creative destruction” in
science, whereby new scientific ideas and approaches supplant the old (McMahan et al., 2021), we
highlight two papers, one on the double helix structure of DNA by Waton and Crick (Watson et al., 1953)
called the “DNA” paper hereafter, and another on “RNA-dependent DNA Polymerase” by David
Baltimore called the “RNA” paper hereafter. The two papers are similar in many ways: both are
highly-cited, field-definitive work by distinguished biologists later awarded the Nobel Prize in Physiology
or Medicine. However, the z-score distributions reveal their distinct approaches to integrate prior
knowledge (Fig. 1c). Baltimore’s article reviewed papers published in conventional biology venues such
as Virology and Biochemical and Biophysical Research Communications ( ) and hypothesized that𝑧 = 51
genetic information could transfer bidirectionally between DNA and RNA. At the time of this paper,
information transfer from DNA to RNA was well studied, and Baltimore was not the only scholar
proposing to test the reverse influence from RNA to DNA. Actually, Baltimore’s paper was published
back-to-back with Howard Temin’s paper (Mizutani et al., 1970) on the same topic in the same issue of
Nature. The bidirectional influence between DNA and RNA represents the “adjacent possible” described
by Kauffman (Kauffman, 1996), which articulates new ideas or discoveries that extend from prior
science, a single step from present understanding as “low hanging fruit”, easily reached, which,
unsurprisingly, triggers intense competition. Back-to-back publications by Baltimore and Temin were like
the race to the South Pole between Britain’s explorer Robert Scott and Norway’s Roald Amundsen.
Unlike the explorers’ race, which ended in victory for Amundsen and tragedy for Scott, the discovery of
DNA-RNA’s mutual influence became a shared and widely celebrated success treated as a confirmation of
the underlying claim. In 1975, only five years after the paper's publication, Baltimore and Temin shared
the Nobel Prize in Physiology or Medicine. This timely appreciation itself speaks for the adjacent,
developing nature of that discovery, evidenced by its low D-score (D = -0.47, bottom 1% disruption, or
top 1% development).

In comparison, Watson and Crick’s paper cited prior literature published in diverse journals across fields,
including Journal of Geophysical Research and Journal of Chemical Physics ( ), Canadian𝑧 =− 26. 7
Journal of Chemistry and Quarterly Journal of the Royal Meteorological Society ( ), proposing𝑧 =− 5. 7
that double-stranded DNA of helical structure is the genetic material. This paper was ahead of time. When
published, there was not yet a consensus on the identity of genetic material—proteins seemed a better bet.
Moreover, few could foresee its influence into the future; how the double helix shed light on almost every
aspect of modern biology and medicine for decades to come, ranging from the migration of human
populations and cancer-causing mutations in tumors to the diagnosis and treatment of rare congenital
diseases. Watson and Crick received delayed recognition of the Nobel Prize in Physiology or Medicine in
1962, ten years after the paper was published—an enduring wait twice longer than Baltimore’s work
despite its greater impact in transforming the future of biology and offering the non-academic world an
icon of scientific work—the double helix (Ferry, 2019). This delayed acknowledgement footnotes the
pioneering, disruptive nature of that discovery, evidenced by its high D-score (D=0.96, top 1%
disruptive).
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2. Novel papers are more likely to become “sleeping beauties” and accumulate citation impact over
the long run

Going back to the moment of publication, can one have foreseen the accelerated acknowledgment of
Baltimore’s contribution and retarded recognition to Watson and Crick? Could we predict them from the
typicality of the former ( ) and atypicality of the latter ( ), which can be𝑧

𝑚𝑒𝑑𝑖𝑎𝑛
= 266. 3 𝑧

𝑚𝑒𝑑𝑖𝑎𝑛
= 4. 8

derived at the point of publication? In these cases, and millions of others published over the following
decades, we document that novelty results in delayed impact. Creative explorations that travel more than a
step beyond the adjacent possible (Monechi et al., 2017) are inaccessible to the majority of scientists upon
publication, but come to make up the pool of possibilities that are verified, appreciated, or reformulated
and used to advance science over the long run.

Figure 2. The disruption of novel papers increases over time. In Panels a-b, we present the temporal evolution of disruption
scores for the DNA paper by Waston and Crick (a) and RNA paper by Baltimore (b), and the total number of disruptive (green)
and developing (red) citations to the DNA paper and RNA paper over time, respectively. This analysis is extended to four
generations of papers, including the cohort of 1970 (87,475 papers), 1980 (176,826 papers), 1990 (318,914 papers), and 2000
(591,653 papers). For each cohort, we select the most novel (top 10% z-median, Panel c) and conventional papers (bottom 10%
z-median, Panel d) and plot the average total number of citations over time. Statistical tests on the asymmetry between the two
types of citations were reported as follows. The t-test of the difference between novel and conventional papers in the
disruptive-citation fraction from the last year of analysis (2018) is significant for all cohorts, including 1970 (t-statistic = 23.85, p
< 0.001), 1980 (t-statistic = 33.04, p < 0.001), 1990 (t-statistic = 52.78, p < 0.001), 2000 (t-statistic = 88.76, p < 0.001).
In Panel e, from all the 87,475 papers published in 1970, we break them into ten groups by disruption percentiles (DP) and plot
the average disruption score of papers within the group against years. The curves are colored by DP. The vertical grey line shows
that it typically takes 10 years for the D-score to stabilize (the earliest time for a paper to reach 80% of its final D-score). In Panel
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f, from all 87,475 papers published in 1970, we break them into ten groups by novelty percentiles (NP) using z-median, and plot
the median Sleeping Beauty Index (SBI) of papers within the group against years. In the original version, each paper has only one
SBI calculated over the lifecycle of citations (Ke et al., 2015). Here we calculate and track the temporal evolution of SBI for each
two-year time window. Average curves for low-novelty papers flatten within a decade, showing no delayed burst of citations to
those papers. Average curves for high-novelty papers continuously increase after a decade, showing that new, larger bursts still
happen after a long wait, i.e., long-term citations pay off the lengthy wait.

We examined the temporal evolution of disruption and citations for these two, archetypal papers (Fig.
2a-b). We find that the D-score of the DNA paper increased nearly monotonically from 0.2 in 1953 to
nearly 0.8 ten years after publication, steadily increasing to 0.96 in 2018, whereas the D-score of the
Baltimore paper has been negative since publication in 1970, and decayed rapidly to -0.45 within five
years of publication, barely changing in the subsequent four decades (D = -0.47 in 2018, bottom 1%).
This seems to be a general pattern we confirmed from many other cases: the D-score of developing papers
converges quickly within five years, but that of disruptive papers increases after a decade or longer (Fig.
2e).

For both the DNA and RNA papers, we unpacked two kinds of citations: disruptive citations from
subsequent papers that only cite the focal paper but not its references (green curves in Fig. 2a), and
developing citations from subsequent papers that cite both (the red curves in Fig. 2b). We find a “taking
off” pattern in the DNA paper—disruptive citations increase steadily following paper publication,
deviating from developing citations, which decline exponentially after a short peak and follow the
widespread pattern of citation decay (Wang et al., 2013). Disruptive citations contribute to long-term
impact more than developing citations. In comparison, citation impact of the RNA paper is increasingly
dominated by developing citations, reflecting the stabilizing consensus on its developing contribution
within biology.

Long-term impact for atypical papers is confirmed as a general pattern when we scale the data (Fig. 2c-d).
We select the most novel (top 10%) and conventional (bottom 10%) papers by z-median including the
cohort of papers published in 1970 (87,475 papers), 1980 (176,826 papers), 1990 (318,914 papers), and
2000 (591,653 papers) then compared the difference between disruptive (green data points in Fig. 2c-d)
and developing (red data points in Fig. 2c-d) citations. Atypical papers that integrate surprising
combinations of literature to create new ideas accumulate long-term impact by attracting both disruptive
and developing citations, with the relative fraction of the former over the latter amplifying over time (Fig.
2c). This pattern reverses in the citation dynamics of conventional papers, wherein the relative fraction of
developing citations increases faster than that of disruptive citations (Fig. 2d).

To verify the long-term impact of atypical papers, we calculate the Sleeping Beauty Index (SBI) (Ke et
al., 2015). A paper with a high SBI will receive few citations upon publication, followed by a later burst
tracing a convex curve. By contrast, a paper with a low SBI will receive many citations following
publication and fewer later tracing a concave cumulative distribution. Atypicality and SBI are positively
correlated (Pearson correlation coefficient equals 0.08 on the log-log scale, p-value < 0.001). We also
calculated SBI over time to examine the chance that larger bursts occur after a long wait, i.e., whether the
long-term citations compensate for lengthy waiting times and drive up SBI over time. We find that curves
of conventional papers flatten within a decade, implying no delayed burst of citation attention. In contrast,
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the citation curves of atypical papers continuously increase after a decade, revealing long-term citation
pay-off and scientific influence after lengthy waiting times (Fig. 2f).

3. Reformulating atypicality as distance in knowledge space to map the moving frontier of science

We first demonstrate that atypicality can be reformulated for computational efficiency and dynamism as
the distance between journals in embedding spaces built from co-cited journals (see Methods for details).
Recent advances in natural language processing (NLP) for semantic analysis, such as the word2vec
manifold learning model (Mikolov et al., 2013), provides us the computational tools needed to reconstruct
knowledge spaces. With them, we can extend the z-score as a measure of continuous distance across
embedding space. Levy and Goldberg analytically proved that PMI, a revised z-score, equals the distance
between vectorized items embedded in latent spaces as calculated by their inner product (Levy et al.,
2014). In this way, knowledge embedding spaces learn scientific conventions, which can be used to assess
and direct exploration of the scientific frontier (Tshitoyan et al., 2019). The temporal evolution of these
knowledge embedding spaces reveal how yesterday’s novelty forms today’s scientific conventions,
disrupted by tomorrow’s breakthroughs.

Figure 3. Knowledge spaces in 1970 and 2000 obtained through journal embeddings. We constructed two journal
embeddings using the 1970 (2,429 journals) and 2000 (8,009 journals) cohort of papers (see Methods for details of the
embeddings). Each dot is a journal colored by field. We trained the embeddings using the word2vec Skip-gram algorithm. We
used the Gensim package in Python with parameters as follows: embedding dimension = 50, negative sampling size = 5 and
window size = 10. We then project the 50-D journal vectors into a 2-D space using the t-SNE algorithm.
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To test the association between z-score and embedding space distance, we constructed two embedding
spaces from journal co-citation networks in 1970 (2,429 journals) and 2000 (8,009 journals), respectively.
We also visualize these embedding spaces by projecting it onto a 2-dimension space with the t-SNE
algorithm. We find that the distance between journals in the embedding space reflects their content
relevance, as journals from the same field tend to cluster together (Fig. 3 and Fig. S1). This observation is
confirmed as we zoom-in with a focus on the regions covered by Mathematics and Computer Science
journals. While close to each other, the average distance between journals across the two fields is larger
than within a field. The z-score for journal pairs correlates strongly with the inner product between
journal embeddings (Pearson correlation coefficient = 0.74, p-value < 0.001), confirming the validity of
our z-score reformutation (Fig. S2).

The landscape of novelty is dramatically changing, as revealed in comparison between knowledge spaces
from 1970 and 2000 (Fig. 3). One of the most strikingly visible trends is the emergence of dense areas of
journals within each field, suggesting the formation of subfields supported by consensus on relevant
topics. Clustering occurs within fields, but fields also mix with one another, showcasing the increasing
importance of interdisciplinary scientific collaboration (Leahey et al., 2017; Leydesdorff et al., 2021). The
change in relative distance between fields also reveals rich trends in shifting atypicality. In the 1970s, a
study drawing together social and computer science was highly atypical due to the distance between these
two fields, but is far less so in 2000, when these two field are closer to each other after waves of
movements that link them, including “social informatics” of the 1980s (Kling, 1999) and “computational
social science” in the past decade (Lazer et al., 2009, 2020).

Discussion

Citation data should be analyzed in a way that distinguishes different scientific contributions, unlike
citation counts, which project all papers onto a single dimension of popularity. Unfortunately, over the
past several decades, citation impact and its derivatives (e.g., impact factor and H-index) have come to
determine a scholar and institution’s viability. This has unintentionally led to a fixation on short-term
scientific advances that crowd together along the scientific frontier to predictably yield citations, but
which does not propel science forward by generating novel combinations and new alternatives. With the
availability of rich data on networks of scientists, institutions, and ideas in concert with advances in
natural language processing and increased computational power, we can now represent the
high-dimensional character of science with fidelity and expand evaluation metrics about research,
researchers, and institutions. This paper has unpacked the complex, temporally evolving relationship
between citation impact alongside metrics of atypicality and disruption, which focus on path-breaking
contributions that move the scientific frontier.

A paper may choose between two types of research contribution, reflected in the intercorrelation of their
references. If references are highly clustered, consisting of frequently co-cited sources (Small, 1973) or
pairs of high “typicality”(Uzzi et al., 2013), this implies the existence of strong consensus on the topic
(Shwed et al., 2010). The paper contributing to such a topic is more likely to be viewed as a part of an
ongoing conversation, and future papers will likely judge it as developing an established direction, citing
it together with its references (D < 0, Fig. 4a). By contrast, if the referenced literature is unstructured,
only loosely linked or even disconnected (z < 0), this suggests a lack of consensus and underdevelopment
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of the topic. In this case, the focal paper may creatively and ambitiously integrate scattered ideas and, if
successful, is more likely to be recognized as creating a new direction for which future papers will cite the
paper alone, without its references (D > 0, Fig. 4b).

Figure 4. An illustration of how novelty and disruption are related. In Panel a, the focal paper draws upon and contributes to
literature on a well studied topic, characterized by “clustered” references that have high, pairwise “typicality” (z > 0) (Uzzi et al.,
2013) as they are frequently co-cited (Small, 1973) and form “strong-ties” (Granovetter, 1973). Network modularity (Newman,
2006) emerges from these strong-ties, reflecting well-established consensus (Shwed et al., 2010). In Panel b, the focal paper
identifies an unsolved problem and addresses it by integrating distant literature that is loosely linked or even disconnected (z < 0),
which implies a lack of consensus. These two kinds of intellectual activities are not only different in input, but generate very
different outcomes. The focal paper contributing to a developed topic is more likely to be viewed in future as a part of the
ongoing conversation. For this reason, future papers (red circles in Panel a) will judge this paper as developing the broader topic
or field (the larger gray circle in Panel a) and cite it together with its references (D < 0). By contrast, the focal paper identifying
unsolved problems tends to be viewed as creating a new direction for which future papers (green circles in Panel b) will cite it as
a starting point, ignoring its references (D > 0).

We have demonstrated that novel versus conventional science yields contributions that disrupt versus
develop past science, respectively, and can be clearly distinguished from citation data. We show how the
new D-score and z-score measures are not only useful as novelty metrics for individual papers, but also
provide powerful tools to understand how science advances, driven by the essential tension of “tradition
vs innovation” (Foster et al., 2015). As illustrated in Fig. S3, if science continues to expand, continuously
searching out new topics, a majority of papers will be disruptive (D = 1), but no consensus will be
achieved and no tradition will form. Alternatively, if all new papers cite existing clusters of papers, a
majority will develop (D = -1), consensus will be established, but no new ideas will be possible as the
knowledge space collapses to a closed, crystalline system. Sustainable advance requires that science
balance tradition and innovation.

We found that nearly 67% papers develop prior science (D < 0), revealing the conservative nature of most
scientific activity. The slow path to acceptance for novel and disruptive research contributions points to
sustained resistance against radically new ideas. This underscores the history of how many significant
breakthroughs of modern science were initially rejected or ignored, sometimes for decades. Consider
Darwin’s theory of evolution introduced in 1859; the atom conception proposed by Ludwig Boltzmann in
the 1870s, the Continental Drift model formulated in 1912 by Richard Wegener; the Big Bang theory of
the the origin of the universe formalized by Georges Lemaître in the 1920s, and the gravitational wave
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theory by Albert Einstein in 1916. Resistance to more recent science includes denial of documented
hazards from tobacco and DDT, ozone depletion, and climate change (Oreskes et al., 2011). The “sleeping
beauty” model (Ke et al., 2015) captures this pattern and suggests that a scientist’s eureka moment may
take decades to be validated and appreciated. A similar pattern observed in technology is named after
“J-curve” theory, which suggests that revolutionary, general-purpose technologies (GPTs) like steam
engines, electricity, and AI always take a long time to diffuse as they demand and grow complementary
technologies, but once a supportive environment has bloomed, they dramatically extend productivity
(Brynjolfsson et al., 2018). However, neither of these theories link the character of scientific discovery or
technological innovation to their influential outcomes or confirm that novelty succeeds only over time.
Our study identifies and recovers this missing piece of puzzle in the science of innovation.

The delayed recognition of radical innovations may inspire some to wonder whether it is possible to
formulate science policies that accelerate the exploration, diffusion and application of transformative
scientific ideas. We call for additional research fixed on exploring signals derived from publication data
and metadata, at the level of individual papers, fields, and science as a whole, to empower institutional
leaders, policy makers, and researchers within the Science and Information Metrics communities for use
to direct and accelerate science (Hicks et al., 2015). The number of citations as a metric is
short-sighted—it emphasizes short-term impact and not long-term influence (Wang et al., 2013). Novelty
and disruption direct our gaze to the long-term impact of science, and our reformulation of novelty as the
pointwise mutual information (PMI) of embedded journal vectors enable us to analyze the evolution of
perceived novelty for the first time. We argue that the design, verification, and implementation of metrics
that enable us to quantify and value novel failures on the long path to transformational success, will
reduce the tyranny of short-term rewards that have unintentionally inspired narrow, incremental,
redundant research.
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Figure S1. Inner products in a journal embedding space are a proxy for z-score novelty. ​(a) A journal embedding space
constructed using the 2000 publications dataset (see methods for details), with journals (dots) colored by fields (using a different
color scheme from Fig. 1). (b) A zoomed-in view of (a) highlighting Mathematics (green dots) and Computer Science journals
(blue dots).



Figure S2. Inner products in a journal embedding space are a proxy for z-score novelty. (a) Illustration of prediction made a
word2vec skip-gram model with negative sampling after the training process. Given a center journal (green), the trained model
returns the probability p of its context over the whole vocabulary. p is modeled as the inner product between the in-embedding of
the center journal and the out-embedding of the context journal over the sigmoid activation function. (b) Relationship between
symmetric inner dot product and the revised z-score (see Eq. 3). The Pearson correlation coefficient is 0.74 and the p-value is
much smaller than 0.001.



Figure S3. Illustration of two extreme citation structures of science. Science expands if the majority of papers (red circles) are
disruptive (D = 1, Panel a) and collapses if developing (D = -1, Panel b). In the first scenario, science keeps branching out to
cover new topics, but no consensus can be achieved. In the second scenario, science keeps returning back to the same topic and
new papers are not significantly different from old papers after many generations—consensus is well established, but no new
ideas are possible.



Table S1. The asymmetry between disruptive and developing citations conditioned by paper novelty holds across
disciplines. For the 87,475 papers published in 1970, 45,677 (52%) among them are matched with fields of study provided by
Microsoft Academic Graph. We select 11 fields of 100 or more papers. For each field we select the most novel (bottom 10
z-score) and conventional papers  (top 10 z-score). For each paper in these two groups, we calculate the fraction of disruptive
citations in the last year of analysis (2018). We then apply a statistical test (t-test) on the difference between the means of the
average disruptive-citation fraction between the two groups.

Field N of
papers

N of novel
papers
(bottom 10%
z-score )

N of
conventional
papers
(top 10%
z-score )

Average of
disruptive-citati
on fraction at
the  paper level
in the novel
group

Average of
disruptive-citatio
n fraction at the
paper level in the
conventional
group

The
difference
between
novel and
conventional
papers in the
fraction of
disruptive
citations

T-test of the
difference

Biology 12587 1259 1240 0.508 0.395 0.113 10.09***

Chemistry 12052 1205 1204 0.519 0.512 0.007 0.62

Medicine 6253 624 627 0.554 0.454 0.100 5.99***

Physics 5298 529 313 0.492 0.398 0.094 4.39***

Psychology 3139 314 331 0.496 0.336 0.160 6.51***

Mathematics 2491 247 249 0.540 0.430 0.110 4.00***

Materials
Science 1435 144 142 0.549 0.469 0.080 2.29*

Geology 986 99 97 0.547 0.429 0.118 2.87**

Computer
Science 398 40 34 0.614 0.399 0.215 3.07**

Engineering 273 27 31 0.654 0.356 0.298 4.44***

Economics 270 27 26 0.722 0.373 0.349 3.95***

Sociology 267 27 26 0.750 0.541 0.209 2.66*

* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.


