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Abstract 

Usage of field-normalized citation scores is a bibliometric standard. Different methods for 

field-normalization are in use, but also the choice of field-classification system determines the 

resulting field-normalized citation scores. Using Web of Science data, we calculated field-

normalized citation scores using the same formula but different field-classification systems to 

answer the question if the resulting scores are different or similar. Six field-classification 

systems were used: three based on citation relations, one on semantic similarity scores (i.e., a 

topical relatedness measure), one on journal sets, and one on intellectual classifications. 

Systems based on journal sets and intellectual classifications agree on at least the moderate 

level. Two out of the three sets based on citation relations also agree on at least the moderate 

level. Larger differences were observed for the third data set based on citation relations and 

semantic similarity scores. The main policy implication is that normalized citation impact 

scores or rankings based on them should not be compared without deeper knowledge of the 

classification systems that were used to derive these values or rankings. 
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Introduction1 

It is one principle in the Leiden manifesto for the professional application of 

bibliometrics to use field-normalized scores instead of simple citation counts (Hicks, Wouters, 

Waltman, de Rijcke, & Rafols, 2015). These scores reflect the impact of papers against the 

backdrop of their reference sets – papers published at the same time and in the same field. An 

important topic in the calculation of these scores is the definition of fields, which are used as 

reference sets (Wilsdon et al., 2015; Wouters et al., 2015). Four different approaches of field-

categorization are currently (mainly) used for normalizing impact without a clear preference 

for one alternative: (1) journal sets, (2) intellectual assignments, (3) citation relations, and (4) 

semantic similarity scores. 

Waltman and van Eck (2019) reported Pearson correlations between field-normalized 

citation scores using Web of Science (WoS) subject categories and classifications based on 

citation relations for faculties, departments, and research groups at selected universities. They 

found correlations of 0.89 and higher as well as mean absolute score differences of 0.17 and 

lower. Scheidsteger, Haunschild, Hug, and Bornmann (2018) studied the concordance of field 

normalized scores for publications of a research institution focused on computer science using 

WoS and Microsoft Academic. Their normalization procedure used different classification 

schemes (WoS subject categories and fields of research from Microsoft Academic). They found 

a good agreement of the statistical concordance of the scores. 

In this study, we compare normalized citation scores, which have been calculated based 

on the three approaches of field-categorization to build reference sets. We are interested 

whether they lead to the same, similar, or different scores for the same papers – if the formula 

for calculating the scores is held constant. Since all approaches are in current use for field-

normalization in similar research evaluation contexts, we expect similar scores. Large 

                                                
1 This is a substantially extended version of Haunschild, Marx, French, and Bornmann (2018). 
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differences between the scores could question the use of field-normalized scores in research 

evaluation, as long as no standard approach has been established. Such a study of possible 

differences is needed because the effect of the choice of a classification scheme on the values 

of the normalized indicators is largely unknown. When comparing normalized citation impact 

values of individual publications or aggregates thereof (e.g., scientists or universities) such 

effects should be known. If the effects are large, normalized values that were calculated using 

different classification schemes should not be compared with each other. 

This study focuses on chemistry and related sciences utilizing a comprehensive dataset 

from CAS, a division of the American Chemical Society. CAS offers the largest database of the 

literature in these fields including intellectual assignments of fields to papers. 

Methods 

Approaches of field-classification 

This study compares the agreement of normalized citation scores for the same papers, 

which have been calculated based on the following three field-categorization approaches: 

(1) The most frequent approach in bibliometrics is to use subject categories that are 

defined by Clarivate Analytics for WoS or by Elsevier for Scopus to assign papers to fields. 

The subject categories pool journals to sets, which publish papers in similar research areas (e.g., 

biochemistry or economics). It is an advantage of journal sets that they define a 

multidisciplinary classification system covering all research areas (Wang & Waltman, 2016). 

It is a disadvantage of the sets that they stretch to their limits with multi-disciplinary journals 

(e.g., Nature or Science) and journals covering many subfields (e.g. Physical Review Letters, 

or The Lancet). These journals cannot be reliably and validly assigned to one field (Haddow & 

Noyons, 2013) on the journal basis. However, the papers of multidisciplinary journals can be 

reassigned on a paper-level (Evidence, 2010). 
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(2) To overcome the limitations of journal sets, Bornmann, Mutz, Neuhaus, and Daniel 

(2008) propose to use mono-disciplinary classification systems (Waltman, 2016), e.g., CAS 

sections in chemistry and related areas (Bornmann & Daniel, 2008; Bornmann, Schier, Marx, 

& Daniel, 2011), MeSH (Medical Subject Headings) terms in biomedicine (Bornmann, et al., 

2008; Leydesdorff & Opthof, 2013; Strotmann & Zhao, 2010), or PACS (Physics and 

Astronomy Classification Scheme) codes in physics and related areas (Radicchi & Castellano, 

2011). In these systems, experts in the field or the authors themselves assign each specific paper 

to the corresponding subfield, highlighting the most important aspects of the papers. It is an 

advantage of these systems that they have been introduced to reflect the subfield patterns in 

specific fields. Their disadvantage is that they can only be used for the normalization of papers 

from one discipline (and related areas). 

(3) Waltman and van Eck (2012) introduced a multi-disciplinary classification system, 

which is based on direct citation relations between papers. The algorithm for computing the 

classification system needs three basic parameters as input in addition to the direct citation 

network: (i) the number of levels of the system, (ii) the resolution parameter, and (iii) the 

minimum number of papers per class (field). The approach is already in use in the Leiden 

ranking (see http://www.leidenranking.com/) for the calculation of normalized impact scores. 

The empirical results of Klavans and Boyack (2017) indicate that algorithmically constructed 

classifications are more accurate than classifications based on journal sets. Similar positive 

results have been published by Perianes-Rodriguez and Ruiz-Castillo (2016). Leydesdorff and 

Milojević (2015) criticize the classification system as follows: “Because these ‘fields’ are 

algorithmic artifacts, they cannot easily be named (as against numbered), and therefore cannot 

be validated. Furthermore, a paper has to be cited or contain references in order to be classified, 

since the approach is based on direct citation relations” (p. 201). It seems yet that Sjögårde, 

Ahlgren, and Waltman (2020) might have found a solution for this problem. Very recently, 
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Clarivate Analytics introduced an algorithmic classification with three levels based on WoS 

data (Szomszor, Adams, Pendlebury, & Rogers, 2021). 

(4) Boyack and Klavans (2018) provided a publication classification system that is based 

on semantic similarity scores (i.e., a topical relatedness measure). The relatedness measures 

were based on words in titles and abstracts of PubMed publications along with their MeSH 

terms. They used PubMed records from 1975 onwards for the clustering procedure according 

to the topical relatedness measures because only very few records before 1975 contained 

abstracts. 

Statistics 

The overview of Waltman (2016) demonstrates that several different approaches of 

calculating field-normalized scores have been developed. In this study, we use the so-called 

normalized citation score (NCS) to compare field-normalized scores, since it is still the most 

frequently used approach. For the calculation of the NCS, each paper’s citation count is divided 

by the average citation count in a corresponding reference set. The reference sets are defined 

by the papers, which belong to the same field (as defined by the field categorization approach) 

and publication year as the focal paper. If, for example, the paper has 3 citations and the average 

in the field is 10.67, the NCS of the paper is 3/10.67=0.28. The NCS is formally defined as 

𝑁𝐶𝑆 =
𝑐𝑖

𝑒𝑖
 

where ci is the citation count of a focal paper and ei is the corresponding citation rate in 

the field (Lundberg, 2007; Rehn, Kronman, & Wadskog, 2007; Waltman, van Eck, van 

Leeuwen, Visser, & van Raan, 2011). Since the number of citations received by a paper depends 

on the time since publication, the NCS is calculated for publications from the same year. Using 

the different approaches of field-categorization, we calculated six NCS for every paper: 

NCSWoS (based on WoS journal sets), NCSCAS (based on CAS sections), NCSL15, NCSL12_2lvl, 
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NCSL12_3lvl (all three based on citation relations), and NCSST (based on topical relatedness 

measures). Statistical analysis was done using R (R Core Team, 2018). 

In this study, we are interested in the relationship between NCSWoS, NCSCAS, NCSL15, 

NCSL12_2lvl, NCSL12_3lvl, and NCSST to investigate the extent of agreement and disagreement 

between the different NCS values. We group the papers in our dataset according to the 

Characteristics Scores and Scales (CSS) method. This method was proposed by Glänzel, 

Debackere, and Thijs (2016) for normalizing citation counts. However, we do not use the CSS 

method here for normalizing the citation counts, only for grouping the papers according to their 

citedness as represented by their NCS value. For each NCS separately (NCSWoS, NCSCAS, 

NCSL15, NCSL12_2lvl, NCSL12_3lvl, and NCSST), the CSS classifications are obtained by (1) 

truncating the publications at their mean NCS and (2) recalculating the mean of the truncated 

part. Performing this procedure three times leads to four impact classes. Following Glänzel, et 

al. (2016), we labeled the four classes with “poorly cited”, “fairly cited”, “remarkably cited”, 

and “outstandingly cited”. The poorly cited papers are below the average impact of all papers; 

the other three classes are above this average and further differentiate the papers in the high 

impact sectors. 

We undertook 15 pairwise comparisons to investigate the differences between the three 

NCS variants. Each pair is compared in a 4 x 4 contingency table. The cells in the diagonal of 

the table reveal the papers, which have been assigned to a CSS class in agreement of both NCS, 

and the share of papers assigned in agreement are calculated. This procedure leads to a 

similarity measure referred to as “level of agreement”. We further calculated the weighted 

Kappa coefficient in this study, which is a robust alternative to the share of agreement, since 

the possibility of agreement occurring by chance is taken into consideration (Gwet, 2014). 

Table 1 shows the weights that we used in the calculation of the Kappa coefficient. The 

weighted Kappa considers that disagreements between the various categories are different. For 
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example, the difference between “Poorly cited” and “Outstandingly cited” is larger (and should 

have less weight) than the difference between “Poorly cited” and “Fairly cited” (which should 

have more weight). The weights in Table 1 are frequently used in studies measuring agreement 

with weights. The weighted Kappa coefficients were calculated using the R package ‘irr’ 

(Gamer, Lemon, & Singh, 2019). 

A further advantage of using the Kappa coefficient is that guidelines by Landis and 

Koch (1977) are available for the proper interpretation of the level of agreement: <0.00 “poor”, 

0.00-0.20 “slight”, 0.21-0.40 “fair”, 0.41-0.60 “moderate”, 0.61-0.80 “substantial”, and 0.81-

1.00 “almost perfect”. 

Table 1. Weights for the Kappa coefficient 

 
Poorly cited Fairly cited Remarkably cited Outstandingly cited 

Poorly cited 1 0.75 0.5 0.25 

Fairly cited 0.75 1 0.75 0.5 

Remarkably cited 0.5 0.75 1 0.75 

Outstandingly cited 0.25 0.5 0.75 1 

 

We additionally calculated concordance coefficients for continuous variables following 

Lin (1989, 2000) to measure the agreement between NCSWoS, NCSCAS, NCSL15, NCSL12_2lvl, 

NCSL12_3lvl, and NCSST. Lin’s concordance coefficient for sets x and y of n values each is 

calculated as follows: 

lcc =
2

𝑛⁄ ∑ (𝑦𝑖 − �̅�)(𝑥𝑖 − �̅�)𝑖

1
𝑛⁄ ∑ (𝑥𝑖 − �̅�)2

𝑖 + 1
𝑛⁄ ∑ (𝑦𝑖 − �̅�)2 + (�̅� − �̅�)2

𝑖

 

where 𝑥 ̅and �̅� are the average values of the sets x and y. For example, suppose we have 

the two sets x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and y = (11, 12, 13, 14, 15, 16, 17, 18, 19, 20). We 

obtain a perfect correlation but a concordance coefficient according to Lin of 0.142. Lin’s 

concordance coefficients were calculated using the R packages ‘DescTools’ (Signorell et al., 

2019). 
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We abstained from calculating correlation coefficients in this study, because we are 

interested in the agreement between two NCS (Lowenstein, Koziol-McLain, & Badgett, 1993). 

Correlation is a poor substitute for agreement. For example, systematic bias might be ignored. 

Suppose NCSCAS, and NCSWoS have a perfect correlation (see the example of x and y above), 

but the NCSCAS consistently measures citation impact 0.5 levels lower than the NCSWoS. In this 

case, the NCS would measure citation impact very differently despite the high correlation 

between both NCS variants. 

Data sets used 

Database for calculating NCSWoS: The WoS journal sets are available in our in-house 

database developed and maintained by the Max Planck Digital Library (MPDL, Munich) and 

derived from the Science Citation Index Expanded (SCI-E), Social Sciences Citation Index 

(SSCI), Arts and Humanities Citation Index (AHCI) provided by Clarivate Analytics 

(Philadelphia, Pennsylvania, USA). These journal sets are grouped into 255 WoS subject 

categories. We calculated the NCSWoS values by using the journal sets and the citation counts 

from the WoS in-house database. The journal set classification of the WoS, however, assigns 

multiple fields to many publications without any priority. Therefore, we calculated for every 

paper an average of the NCSWoS values in each field to receive an overall score. 

Database for calculating NCSCAS: The CAplusSM database is an integrated source of 

journal articles and patent documents in many scientific disciplines. For the purpose of this 

study, over 12,000,000 journal publications published between 2000 and 2014 were used. CAS 

uses a hierarchical field classification scheme to assign the publications into five broad headings 

of chemical research (section headings), which are further separated into 80 scientific subject 

areas named as CAS Sections plus a separate CAS Section for unclassified documents. Most 

publications are assigned to only one section based on the main subject field; some publications 

are also assigned to a secondary section. To avoid multiple classifications of publications in 
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this study, only the primary section assignment is used following previous studies (Bornmann 

& Daniel, 2008; Bornmann, et al., 2011). The section assignments are human-curated by 

scientists at CAS with specialized knowledge that lets them accurately extract and verify data 

and insights from each publication. The classification does not seem to be affected by the 

“indexer effect”: according to Braam and Bruil (1992), the indexer classification accords with 

author preferences for 80% of the publications. We calculated the NCSCAS values using the 

CAS sections and the citation counts from the CAplus database.  

Database for calculating the NCSL variants (NCSL15, NCSL12_2lvl, and NCSL12_3lvl): The 

algorithmically constructed classifications and the algorithm itself by Waltman and van Eck 

(2012) have been made freely available. The algorithm can be run with and without hierarchical 

constraint. The classifications are uniquely assigned to papers: Each paper is assigned to only 

one classification. The hierarchical classifications are available on three different levels. We 

used the second (L12_2lvl) and third level (L12_3lvl). We refer to the non-hierarchical variant 

as L15. We downloaded the classifications of the papers and the corresponding WoS UTs for 

L12_2lvl and L12_3lvl on November 7th, 2014 from 

http://www.ludowaltman.nl/classification_system and for L15 on 28 May 2015 from 

https://www.leidenranking.com/information/fields. These three classification systems have a 

different number of clusters: (i) L12_2lvl has 672 clusters, (ii) L15 has 3822 clusters, and (iii) 

L12-3lvl has 22412 clusters. The classifications were matched via the WoS UT to the data in 

our in-house database. The NCSL15, NCSL12_2lvl, and NCSL12_3lvl values have been calculated by 

using these classifications and the citation counts from our WoS in-house database. The L12 

classification system covers WoS publications from 2001 until 2011 while the L15 system 

covers WoS publications between 2006 and 2013. 

Database for calculating NCSST: Boyack and Klavans (2018) freely provided a 

publication classification system based on topical relatedness measures. The relatedness 

http://www.ludowaltman.nl/classification_system
https://www.leidenranking.com/information/fields
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measures were based on words in titles and abstracts of PubMed publications along with their 

MeSH terms. We downloaded the classification system on 22 October 2019 from 

https://www.scitech-strategies.com/pubmed-model-created-using-nih-sbir-funding. In this 

classification system, PubMedIDs (n=16,261,085) are assigned to 35,966 different clusters. Of 

those PubMedIDs, 6,565,130 belong to papers published between 2006 and 2011 (overlap of 

the algorithmically constructed classification systems L12 and L15, see above). The 

classifications were matched via the PubMedID to the data in our in-house database. The NCSST 

values have been calculated by using this classification system and the citation counts from our 

WoS in-house database. 

Matching of the various NCS values: The NCSCAS values for each paper were matched 

with the NCSWoS values via the DOI. The NCSST values were matched with the NCSWoS values 

via the PubMedID. The other NCS values were matched with the NCSWoS values via the WoS 

UT. Selected analyses have been performed on single matches (e.g., match of NCSWoS with 

NCSL15), too, for avoiding a bias in our results by reduction of our dataset due to the full 

matching procedure of all studied classification systems. We found only minor differences in 

the results of the single and full matches of the analyzed datasets. Matched publications with 

unique DOI and PubMedID (n=256,743) have been used in our main results. Despite the focus 

of CAplus on chemistry and ST being constructed within PubMed, most classifications are 

within our data set: 159 WoS subject categories (62.4%), 670 of the clusters in L12_2lvl 

(99.7%), 14683 of the clusters in L12_3lvl (65.5%), and 3098 (81.1%) of the clusters in L15 

remain after matching with the two field-specific classification systems. 

The WoS subject categories and the corresponding number of papers that are in our 

matched data set with at least 5000 papers are shown in Table 2. Besides chemical WoS subject 

categories, many biological and a few physical WoS subject categories can be observed in this 

list of most frequently occurring classifications in our data set. 

https://www.scitech-strategies.com/pubmed-model-created-using-nih-sbir-funding
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Table 2: WoS subject categories (28 out of 255) with at least 5000 papers within our matched 

data set 

WoS subject category Number of papers 

Biochemistry & Molecular Biology 38535 

Chemistry, Multidisciplinary 21016 

Pharmacology & Pharmacy 17433 

Chemistry, Physical 17400 

Cell Biology 16315 

Biotechnology & Applied Microbiology 14330 

Oncology 13610 

Neurosciences 12287 

Biochemical Research Methods 12225 

Environmental Sciences 11190 

Genetics & Heredity 11027 

Chemistry, Analytical 10490 

Microbiology 10431 

Immunology 9874 

Chemistry, Organic 9216 

Endocrinology & Metabolism 9054 

Biophysics 8594 

Materials Science, Multidisciplinary 7843 

Hematology 7606 

Chemistry, Medicinal 7271 
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Physics, Atomic, Molecular & Chemical 7098 

Plant Sciences 6742 

Toxicology 6636 

Multidisciplinary Sciences 6360 

Nanoscience & Nanotechnology 6151 

Medicine, Research & Experimental 5994 

Food Science & Technology 5754 

Physiology 5443 

 

Figure 1 shows the distribution of the number of papers within our matched data set 

across the classifications of the six different classification systems visualized as a boxplot. The 

black bars show the median number of papers per classification. The black dots mark the 

outliers. One can see from the figure that WoS, CAS, and L12_2lvl are rather similar in paper 

density, although L12_2lvl has a slightly smaller paper density than WoS and CAS. WoS has a 

larger variation of paper densities across the fields than CAS which can be expected when the 

overlap of a multi-disciplinary classification system with a mono-disciplinary classification 

system is analyzed. Also, L12_3lvl, L15, and ST form a group of rather similar paper densities. 



14 

 

 

Figure 1: Boxplot of the number of papers across the classification systems within the 

matched data set. 

 

Results 

Figure 2 visualizes the change of CSS assignment of the analyzed papers as an alluvial 

diagram. The alluvial diagram was produced using the R package ‘alluvial’ (Bojanowski & 

Edwards, 2016). The most changes can be observed between CSS classes 1 and 2. The color is 

assigned to the CSS classes: 1 in gray, 2 in red, 3 in green, and 4 in blue. Papers that stay in the 
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same CSS class are represented by a band of the color of the class. If papers change the CSS 

class from one classification system to another, they are represented by a multi-color band (e.g., 

gray and red if the papers change from CSS class 1 to CSS class 2). The broader the band, the 

more papers are represented. In the following analysis, we observed that there was a reduction 

in similarity measures due to many changes of CSS classes. 

 

Figure 2: Alluvial diagram for the six different classification  

 

Figure 3 shows the levels of agreement between the NCS scores of the six classification 

systems. The level of agreement is measured by the percentage of papers within the same class. 

The highest levels of agreement can be observed between L12, L15, WoS, and CAS: L15-
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L12_2lvl > WoS-L12_2lvl > L15-L12_3lvl > CAS-WoS > L12_2lvl-L12_3lvl > CAS-

L12_2lvl > WoS-L15 > CAS-L15 > WoS-12_3lvl > CAS-L12_3lvl. The SciTech classification 

system shows a lower level of agreement with the other classification systems than the other 

classification systems among each other: L15-ST > L12_3lvl-ST > L12_2lvl-ST > WoS-ST > 

CAS-ST. 

 

Figure 3: Levels of agreement between the six different classification systems that lead to 15 

different combinations 

Our results do not seem to be affected by the data reduction due to the multiple matches 

with the partly overlapping publication sets of the multiple classification systems. We 
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calculated the level of agreement for selected combinations with dual matches only, for 

example: The multiple match shows a level of agreement of 81.53% for the pair WoS-L15 

based on 256,743 publications, and the single match (WoS subject categories with L15 clusters) 

shows a level of agreement of 81.36% for the same pair based on 7,953,992 publications. Such 

comparisons indicate that our results are not biased towards the fields covered by the mono-

disciplinary databases CAplus and PubMed. 

Figure 4 shows the weighted Kappa coefficients for the combinations of the six different 

classification systems. The large circle is centered on the point estimate, and the lines inside the 

circles indicate the size of the 95% confidence interval. The circles and the lines are color-

coded according to the interpretation guidelines by Landis and Koch (1977): Red indicates a 

low level of agreement, yellow a moderate level, and green a substantial level of agreement. 

The weighted Kappa coefficients show similar results like the levels of agreement. The 

interpretation guidelines by Landis and Koch (1977) provide the following grouping: (i) 

substantial agreement of L15-L12_2lvl > L15-L12_3lvl > WoS-L12_2lvl > L12_2lvl-L12_3lvl 

> WoS-L15 > CAS-WoS > CAS-L12_2lvl > CAS-L15, (ii) moderate agreement of WoS-

12_3lvl > CAS-L12_3lvl > L12_3lvl-ST > L15-ST > L12_2lvl-ST > WoS-ST, and (iii) low 

agreement of CAS-ST. Only the 95% confidence intervals of WoS-L15 and CAS-WoS slightly 

overlap. 

Our results do not seem to be affected by the data reduction due to the multiple matches 

with the partly overlapping publication sets of the different classification systems. We 

calculated the Kappa coefficients for selected combinations with single matches only, for 

example: The multiple match shows a Kappa coefficient of 0.66 for the pair WoS-L15 based 

on 256,743 publications, and the single match (WoS subject categories with L15 clusters) 

shows a Kappa coefficient of 0.68 for the same pair based on 7,953,992 publications. Such 



18 

 

comparisons indicate that our results are not biased towards the fields covered by the mono-

disciplinary databases CAplus and PubMed. 

 

Figure 4: Weighted Kappa coefficients for the combinations of the six different classification 

systems that lead to 15 different combinations 

 

Figure 5 shows Lin’s concordance coefficient for the combinations of the six different 

classification systems. The large circle is centered on the point estimate, and the lines inside the 

circles indicate the size of the 95% confidence interval. Although the same broad interpretation 

can be reached for Lin’s concordance coefficient as for the levels of agreement and kappa 
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coefficients, the order is slightly different: L15-L12_2lvl > L15-L12_3lvl > CAS-WoS > 

L12_2lvl-L12_3lvl > WoS-L12_2lvl > WoS-L15 > CAS-L12_2lvl > CAS-L15 > WoS-12_3lvl 

> L12_3lvl-ST > CAS-L12_3lvl > L15-ST > L12_2lvl-ST > WoS-ST > CAS-ST. None of the 

95% confidence intervals are overlapping. 

 

Figure 5: Lin’s concordance coefficients for the combinations of the six different 

classification systems that lead to 15 different combinations 

Our results do not seem to be affected by the data reduction due to the multiple matches 

with the partly overlapping publication sets of the different classification systems. We 

calculated Lin’s concordance coefficients for selected combinations with single matches only, 
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for example: The multiple match shows a concordance coefficient of 0.67 for the pair WoS-

L15 based on 256,743 publications, and the single match (WoS subject categories and L15 

clusters) shows a concordance coefficient of 0.65 for the same pair based on 7,953,992 

publications. Such comparisons indicate that the agreement of WoS and L15 is slightly higher 

in the fields covered by the mono-disciplinary databases CAplus and PubMed than in the single 

match of the multidisciplinary classification systems. 

Discussion 

According to Ioannidis, Boyack, and Wouters (2016) “the basic premise of 

normalization is that not all citations are equal. Therefore, normalization can be seen as a 

process of benchmarking”. Although it is standard in bibliometrics to use field-normalized 

citation scores for cross-field comparisons (of universities, for example), different approaches 

exist for calculating these scores. The differences refer either to the method of calculating the 

scores (percentiles have been proposed as an alternative to scores based on average citations, 

Bornmann & Marx, 2015) or to the approach of field categorization which are used to build 

the reference set for each paper. In this study, we addressed the second aspect by comparing 

the normalized scores, which have been calculated based on three different approaches. 

The analysis of the scores basically reveals an agreement which is at least at the 

moderate level except for the comparison of SciTech with CAS. Since we used the same 

method for calculating the scores based on the different approaches, the moderate level is 

lower than the level that we expected. The parallel use of the different approaches in the 

current research evaluation practice should have led to a generally higher level of agreement. 

The main policy implication is that normalized citation impact scores or rankings based on 

them should not be compared without deeper knowledge of the classification systems that 

were used to derive these values or rankings. However, our results also show that normalized 

scores based on intellectual field assignments are more in agreement with scores based on 
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journal sets than with scores based on citation relations or semantic similarity scores. Thus, 

one can expect more similar scores based on intellectual assignments and journal sets than on 

algorithmically constructed classification systems. The reason for the similarity might be that 

intellectual assignments and journals are better rooted in the disciplines than virtual constructs 

based on algorithmically constructed classification systems. Another possible explanation is 

that classification systems of similar granularity are more likely to produce similar results. 

The WoS journal sets and the intellectual assignments by CAS have overall a similar 

granularity and show a substantial agreement. However, the classification systems L12_3lvl, 

and ST show only a moderate agreement although they have a similar granularity. CAS 

Sections were developed by CAS scientists with specialized knowledge in scientific 

disciplines and used to accurately index data and insights from each publication. According to 

Sugimoto and Weingart (2015), the establishment of new journals is a sign of emerging new 

disciplines. This might help to explain the similar results for WoS journal sets and CAS 

sections. 

The results of this study should be interpreted against the backdrop that the main 

results of this study focus on one discipline only: chemistry and related areas. However, 

selected comparisons without the focus on chemistry and related areas showed very similar 

results. Furthermore, other statistical analyses could be performed. It is not clear whether our 

results can be generalized. Thus, we encourage similar studies with data from other 

disciplines using different statistical methods and as many classification schemes as possible. 
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