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Abstract 

 

Research articles are being shared in increasing numbers on multiple online plat-

forms. Although the scholarly impact of these articles has been widely studied, the 

online interest determined by how long the research articles are shared online 

remains unclear. Being cognizant of how long a research article is mentioned on-

line could be valuable information to the researchers. In this paper, we analyzed 

multiple social media platforms on which users share and/or discuss scholarly 

articles. We built three clusters for papers, based on the number of yearly online 

mentions having publication dates ranging from the year 1920 to 2016. Using the 

online social media metrics for each of these three clusters, we built machine 

learning models to predict the long-term online interest in research articles. We 

addressed the prediction task with two different approaches: regression and 

classification. For the regression approach, the Multi-Layer Perceptron model 

performed best, and for the classification approach, the tree-based models per-

formed better than other models. We found that old articles are most evident in 

the contexts of economics and industry (i.e., patents). In contrast, recently pub-

lished articles are most evident in research platforms (i.e., Mendeley) followed by 

social media platforms (i.e., Twitter). 
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1. Introduction 

 

Scholarly articles are being mentioned and shared online in increasing num-

bers and on many platforms, including scholar-focused platforms such as Mende-

ley and general platforms such as Twitter and Facebook. Online metrics about 

these research articles could be a valuable resource not only in determining 

trends in given research domains and subdomains but also in establishing how 

long discourse about these articles continues on social media platforms. If re-

search articles have a long enough lifespan on social media platforms, the result 

may be that more and more online users get involved in discussing research 

interests, which could, in turn, lead to more research in a given domain. For 

example, at present, many people are sharing their research and opinions about 

machine learning and artificial intelligence on social media platforms. This ex-

tensive sharing has the potential to interest more researchers and students in the 

field and to increase the funding designated for that field. Further, accurate 

estimates of how long an article will have an online interest can be expected to be 

beneficial to understanding and measuring the societal impact of given research 

and the public’s understanding of and interest in science. 
 

Many research projects are executed in an ad hoc way inasmuch as they 

address a specific current problem and might have less interest in the long term. 

However, research that is sustainable over the long term has many benefits for all 

research stakeholders. It would be interesting, therefore, to determine how long 

people talk about any given research article on social media platforms. These 

social media metrics have emerged to be valuable metrics in measuring the 

impact of the research (Luc et al., 2021). It would be a worthwhile endeavor to 

determine how long discussions about given research content endure as a way to 

gauge public interest. As a lot of content related to research is shared online, 

discussions of research articles on social media could vary considerably from a 

matter of a few days to many years depending on numerous factors such as the 

domain of the research article, the online platforms on which it was shared, and 

the influence of the person or people who have shared the article. These online 
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metrics could turn out to be valuable resources in estimating the online 

lifespan of research articles. 
 

The majority of articles published may have a very limited lifespan, where 

the effort put into the research article is not rewarded, and, more importantly, 

the positive impact they could have is not realized online. It is pertinent to a 

researcher to know what social media platforms play an important role in dis-

seminating the published scholarly work. Furthermore, the social media 

metrics would instigate the inquisitiveness in researchers to know for how 

long their work would be sustaining online. The main research question in this 

study is: “How can we understand, analyze, and predict the online long-term 

interest in research articles”? 
 

Measuring the interest and impact of research through large-scale mining of 

scholarly data and altmetrics is still a largely unexplored area with many 

challenges and opportunities. There is a critical need to develop new approaches 

to confront these challenges and harness these opportunities by creating new 

metrics, building models, datasets, and software platforms that provide valuable 

insights into the use of scholarly literature and its impact within and beyond the 

scholarly community. In this paper, we propose to use this wealth of information 

about the social and media dissemination of research as an indicator of societal 

impact and to understand the online long-term interest in research, as it reflects 

not only immediate interest in a research finding but also the degree to which 

individuals find the work to be of sufficient interest to warrant online sharing after 

months or years of being published. 
 

This study has several practical and theoretical implications. Our findings 

complement the literature of the science of science (Fortunato et al., 2018), so-

ciology of science theories (Barnes et al., 1996; Merton, 1973), research policy 

(Bozeman, 2000), research impact (Penfield et al., 2014), and altmetrics (Sugi-

moto et al., 2017). Additionally, most literature on research evaluation has relied 

on citations analysis (Wouters et al., 2019). To the best of our knowledge, this is 

the first study that expands the idea of measuring the online long-term interest in 

research by introducing new features from social media platforms and measuring 
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the online long-term interest. Thus, we extend the limited measurement of 

long-term research impact, or the impact of science on science, to a societal 

impact. Further, we were able to predict the lifespan of any given article using 

the features from multiple social media platforms. In addition, most previous 

studies relied on a limited number of papers, while this study has a large and 

diverse collection. 
 

Further, the literature on altmetrics focused on a single or a few platforms 

over a limited number of years. Our study reveals the popularity of research 

across platforms over a long period of time. This can affect how researchers 

search for or share publications online. The findings are also beneficial to re-

search stakeholders that are investigating broader research impact. Further-

more, the results would be valuable in designing new academic digital 

libraries and search engines by adding new features that would allow 

researchers to filter the literature based on the online long-term interest. 
 

Given the potential usefulness of this research direction, we explored the 

trajectories of research articles on multiple social media platforms where 

users share research content. We also inspected how these platforms affect 

the online sustainability of the research articles. For this study, we considered 

a comprehensive timeline of research articles having publication dates 

ranging from 1920 through 2018. We analyzed the social media metrics for 

these articles and built machine learning models to predict how long a 

research article would last on social media. We examined this prediction task 

through the lens of both regression and classification approaches. 
 

In summary, our contributions include: Proposing and evaluating the metric 

Online Age to measure and quantify the online interest in research articles; in-

vestigating the growth in online mentions of research articles on different online 

platforms for articles published from 1920 through 2018; developing machine 

learning models to predict the long-term online interest in research articles and 

identifying the most influential online sites that amplify this interest. 
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2. Related Work 

 

2.1. Obsolescence of Research Articles 
 

The literature includes multiple studies going back decades in which re-

searchers have considered the life and obsolescence of scholarly articles by ana-

lyzing factors relevant to measuring the impact of scholarly research that is of 

interest to the public (Siravuri et al., 2018). Larivière et al. (2008) observed that 

the age of cited material has risen continuously since the mid-1960s. They 

observed that the citation life cycle of an article starts with a sudden increase in its 

initial years, followed by a peak, and finally by obsolescence i.e., the “decline over 

time in validity or utility of information” as defined by Line and Sandison (1974). 

Based on this definition of obsolescence as a relationship between use and time, 

the researchers proposed two kinds of literature studies in relation to 

obsolescence: (1) synchronous studies “made on records of use or bibliographic 

references made at one point in time, comparing the use against the age distri-

bution of the material used or cited”, and (2) diachronous studies “that follow the 

use of particular items through successive observations at different dates.” 

Generally, obsolescence studies are synchronous because these are easier than 

diachronous studies to conduct. For functions of a continuous variable, Egghe 

(1994) defined the term rate of growth or obsolescence as an exponential func-

tion of the derivative of the log of the function. Egghe et al. (1995); Egghe (1993) 

observed that the rate of obsolescence varies and that this variation can be cal-

culated as a utilization (mathematical) function. In the synchronous case, the 

larger the increase in production of research articles, the larger the obsolescence. 

In the diachronous (prospective) case, the opposite relation holds: the larger the 

increase in production, the lower the obsolescence rate. Stinson and Lancaster 

(1987) compared the synchronous and diachronous methods by analyzing both 

with respect to the dates of the publications referred to in 13,734 citations and 

3,669 citations in diachronous and synchronous studies, respectively, over a 19-

year period. They found that with the exception of the first two years, the 

approaches yielded similar statistical measures for the obsolescence of articles. 
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The concept of obsolescence has been applied to literature in various fields 

(Boxenbaum and Barnhill, 1984; Tsay, 2006). In a study of the obsolescence 

patterns of the U.S. geoscience literature, Kohut (1974) found that traditional 

fields such as paleontology and geology have an obsolescence period of over 20 

years and that fast-changing fields such as solid earth geophysics have lower 

obsolescence rates. Using the synchronous approach, Gupta (1998) studied the 

growth and obsolescence of literature in theoretical population genetics and found 

that a high rate of growth in the literature does not mean a high rate of 

obsolescence for that literature; that there may not be any relationship between 

the growth rate and the obsolescence rate; and that there may not be any rela-

tionship between the growth rate of literature and the half-life of that literature. 

Sangam (1999) studied the obsolescence of literature in the field of psychology 

and found that compared with a slower growth rate, a higher growth rate in the 

literature is associated with greater obsolescence and a longer half-life. Cun-

ningham and Bocock (1995) studied the obsolescence rate of articles in computer 

science subfields (networks and operating systems) and found a high obsoles-

cence rate based on the median citation rate over a four-year period. Bouabid and 

Larivière (2013) found that the life expectancy of papers published in developed 

countries is on average shorter than that of papers published in emerging 

countries. 

 

2.2. Citation as Impact Indicator 
 

A standard metric used to measure scholarly impact is cited half-life, which is 

defined as “measure of citation survival measuring the number of years, going 

back from the current year, that covers 50% of the citations in the current year of 

the journal” (Garfield, 2001). As a journal is being cited by more articles, much of 

them are citing older literature. Datta et al. (2016) studied the half-life of software 

engineering research topics, taking into account over 19,000 papers from 

software engineering publication venues from 1975 to 2010. Obtained via natural 

language processing to identify the topics covered in each paper, their results 

showed that some research topics have a cited half-life of nearly 15 years. 
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Various factors have contributed to the increasing number of scholarly cita-

tions and the growing impact of scholarly articles in the recent past (Stacey, 

2020). Barnett and Fink (2008) found that the invention of the internet increased 

the average life (citation age) of academic citations by 6 to 8 months. According 

to Šember et al. (2017), in the context of evolving technologies and 

methodologies, old articles are gaining new attention as authors refer to them 

in order to describe this evolution. Martín-Martín et al. (2016) verified results 

published by Google Scholar showing an increase in the number of citations 

of old articles published during the period 1990 to 2013. They surmised that 

the recent increase in the number of citations of older articles could be 

attributed to technology. They also commented that as Google is the most 

powerful search engine and the most useful for scholarly purposes, Google 

Scholar has been a significant factor in this growth. 
 

There may be many underlying reasons for the trend whereby old papers are 

increasingly being cited in new papers, among which may be archival value. 

Oppenheim and Renn (1978) selected the most frequently cited old physics and 

physical chemistry articles (published before 1930) to determine why they 

continue to be cited many years after their publication date. They found that 40% 

of the citations of these old papers could be attributed to historical reasons, but 

that 60% could be attributed to the old papers remaining relevant to current 

research directions. As an extension of this work, Ahmed et al. (2004) explored 

the reasons why a paper by Watson and Crick (2003) continued to be cited 

frequently. Drawing on topology derived from previous research, they concluded 

that the article had been cited so many times because the authors who included it 

in their papers considered it important to the history of the research direction of 

which it is a part, had drawn on it as important to their research, and/or had 

offered criticism of it. In a study of citations of papers published between 1900 

and 2006, Wallace et al. (2009) found that the citation trends were observed 

during the wars because of changes in the number of papers published. The 

increase in the citedness of the most recently published papers is accounted for 

by the high number of references for each paper. Avramescu (1979) explained 
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the increased citation frequency with respect to the normal exponential decay of 

older articles. Huntington et al. (2006) considered the subject, search approach, 

and type of journal as possible factors in determining the age of articles cited and 

found that the age of the articles varies depending on the journal. 
 

Analyzing and predicting important publications, citations, and author co-

citations have been an active area of research (Savov et al., 2020; Bu et al., 

2020). Citation of research publications is an indicator of how scientific knowledge 

spreads (Abramo et al., 2020; Liang et al., 2020). Stegehuis et al. (2015) proposed 

quantile-based regression models to predict future citations. Their models 

performed best when two variables—impact factor and early citation counts—were 

used together instead of separately. Wang et al. (2013) built a mechanistic model 

for the citation dynamics of papers from various journals and disciplines. They 

found that all papers tend to follow the same universal temporal pattern. In a study 

about the short and long-term citation windows, Wang and Zhang (2020) stated 

that the normalized citation indicator may not be reliable when a short citation 

window is used. To overcome this, they introduced a weighting factor using a 

correlation coefficient between citation counts of papers in the short citation 

window and in the fixed long citation window. The weight reflects the degree of 

reliability of the normalized citation indicator. Stern (2014) found that an article’s 

ranking can be determined by initial citations of it, which can, in turn, determine 

the article’s future citations. Sikdar et al. (2017) developed a concept for a 

reviewer–reviewer interaction network by studying papers from the Journal of High 

Energy Physics between 1997 and 2015. In the network, they considered features 

such as degree, clustering coefficient, closeness centrality, and betweenness 

centrality, all of which turned out to be strong predictors of long-term citations. 

Singh et al. (2017) found a negative correlation between early citations by high-

impact authors and long-term citation count. Using linear regression models on 

Web of Science publications, Abramo et al. (2019) tested if the combination of a 

publication’s early citations and the impact factor of the hosting journal could yield 

better prediction results for long-term citation counts. They found that the 

importance of a Journal’s impact factor in the combination turns out to be
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insignificant after two years of publication. 

 

2.3. Online Impact of Scholarly Articles 
 

Numerous strategies for filtering scholarly work and assessing the impact of 

research have been developed (Alhoori et al., 2018). Peer review (Bornmann, 

2011), citation analysis (Moed, 2005; Azoulay et al., 2018), and article-level 

assessment (McKeown et al., 2016) can all provide useful information about the 

impact of scientific research in this area, but these established methods have 

limitations and drawbacks (MacRoberts and MacRoberts, 1989, 1996; Seglen, 

1997, 1992; Lima et al., 2013). They are time-consuming and self-limiting in that 

they exclude a large number of other channels for research attention and do not 

account for the holistic impact of scholarly outcomes (Piwowar, 2013; Priem and 

Hemminger, 2010; Bornmann, 2014). Members of the research community have 

argued that evaluating a scholarly article’s impact solely on the basis of one metric 

is unlikely to provide an accurate picture of its value in this regard (Lima et al., 

2013). Alternative measures have been proposed in recent years. For example, 

Neylon and Wu (2009) discovered that a variety of usage-based metrics, such as 

downloads, comments, and bookmarks, can be used to assess the impact of 

articles and journals, with each metric having distinct advantages and 

disadvantages. 
 

Altmetrics have been proposed as a way to address some of the identified 

gaps (Priem et al., 2012). Altmetrics, which is gaining traction in the research 

community, refers to article-level metrics that have been proposed as a substitute 

for or supplement to traditional metrics. The critical distinction between traditional 

metrics (e.g., citations) and altmetrics is that, while the former quantify the impact 

of research within scholarly boundaries, the latter quantifies a variety of influences 

both within and beyond those boundaries. Altmetrics refers to a variety of Internet 

venues where scholarly works are referenced, stored, and/or shared (Das and 

Mishra, 2014; Melero, 2015; Chavda and Patel, 2016). Additionally, altmetrics can 

be used to quantify the impact of other scholarly products, including datasets,
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software, and presentations. As a result, a growing number of digital libraries 

and publishers are now including altmetrics on their websites. Altmetrics is 

concerned with quantifying not only societal impact but also scholarly impact. 

Recently, researchers were able to predict scholarly citations using altmetrics 

(Akella et al., 2021). 
 

The impact of research on society is increasingly being considered by re-

search communities (Samuel and Derrick, 2015; Bornmann, 2013; Shaikh and 

Alhoori, 2019). Additionally, a growing amount of scholarly content is shared 

and discussed on social media platforms on a daily basis (Ding et al., 2009; 

Fausto et al., 2012; Freeman et al., 2020, 2019). The number of research 

articles shared on these platforms is estimated to be increasing at a rate of 5–

10% per month (Adie and Roe, 2013). In general, these platforms enable 

researchers to stay current on developments in their fields, as well as share 

and discuss their research data and findings, as well as solicit early feedback 

(Shahzad and Alhoori, 2022). Researchers include links to these news stories 

on their websites as evidence of their work’s social impact. Tonia et al. (2016) 

found that exposure to social media did not have a significant effect on the 

articles’ impact metrics such as downloads and citation counts. However, 

Allen et al. (2013) found that sharing articles in the clinical pain sciences on 

social media platforms such as Facebook, Twitter, LinkedIn, and 

ResearchBlogging.org led to an increase in the number of people who viewed 

and/or downloaded the articles. Using social media data to predict future 

citation counts, Thelwall and Nevill (2018) found that Mendeley’s readership is 

an important predictive factor. Mohammadi et al. (2020) found that Facebook 

scholarly mentions are not very useful for predicting citations. 
 

In summary, researchers have studied factors that contribute to the obso-

lescence, aging, and citation age of scholarly research. The invention of the 

internet and the development of scholarly digital libraries, search engines, and 

academic social platforms have increased the average lifespan of academic cita-

tions. As a result, old articles with archival value and/or that are important to 

current research have started to receive more citations. The citation life cycle of 
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an article usually starts with a sudden increase in its initial years, followed by 

a peak, and finally by obsolescence. Studies of obsolescence have been 

conducted in relation to many research fields, and researchers have provided 

metrics to measure obsolescence. The study of citations reveals that articles 

reach their peak in relation to the number of citations accrued within two 

years of publication and then a gradual decrease in the number of citations 

accrued takes place thereafter. Many researchers have built models to predict 

the long-term citations of scholarly research. However, our study is the first to 

predict how long a given article is likely to be mentioned online. We predict 

the online lifespan of any given article using multiple social media platforms. 

 

3. Data 

 

We used a dataset from altmetric.com released in June 2018 and consisting of 

online mentions of about 19 million publications. The initial data were in JSON 

format, which we converted into a CSV file in order to perform model-building 

tasks. Of the data, which comprised 19,406,418 records, we considered only 

research articles published between 1920 and 2018, which reduced the dataset to 

12,657,619 records (dataset A). The principal features included in our research 

are provided in Table 1. The features in Table 2 relate to the time of publication 

and the locations and positions (earliest or latest) of the online mentions. 
 

All the temporal features described in Table 2 were used to generate two 

new features called First Online Mention and Last Online Mention, which 

provide information about the first and last online mention dates across all the 

platforms. We created a new feature, Online Age, which is the difference 

(number of months) between the date of the First Online Mention and the 

date of the Last Online Mention. This feature provides the number of months 

the article remains of interest to the online social media community. 
 

We analyzed the articles in dataset A for three main reasons: 

 

1. To observe the growth in the number of papers published from 1920 to 

2018. The middle line (red color) in Figure 1 shows this growth on a log 
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Table 1:  Descriptions of main features in the dataset.  

 

Feature Description 
  

Mendeley Total number of mentions of a research article on Mendeley 

CiteULike Total number of mentions of a research article on CiteULike 

Connotea Total number of mentions of a research article on Connotea 

Twitter Total number of mentions of a research article on Twitter 

Patent Total number of mentions of a research article in patents 

Facebook Total number of mentions of a research article on Facebook 

Blogs Total number of mentions of a research article in blogs 

Wikipedia Total number of mentions of a research article on Wikipedia 

Stack Overflow Total number of mentions of a research article on Stack 

 Overflow 

Syllabi Total number of mentions of a research article in syllabi 

Policy Total number of mentions of a research article in policy 

 documents 

News Total number of mentions of a research article in news items 

Google+ Total number of mentions of a research article on Google+ 

F1000 Total number of mentions of a research article on F1000 

Reddit Total number of mentions of a research article on Reddit 

Video Total number of mentions of a research article in online 

 videos 

Pinterest Total number of mentions of a research article on Pinterest 

Peer Review Total number of mentions of a research article in peer re- 

 views 

Weibo Total number of mentions of a research article on Weibo 

LinkedIn Total number of mentions of a research article on LinkedIn 

Miscellaneous Total number of miscellaneous online mentions 
  

 
 

scale. 
 

2. To determine which articles to use in building our models. Of the articles 
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 Table 2: Temporal features. 

  

Feature Description 
  

Publication date Publication date of a research article 

Twitter dates First and last mention of a research article on Twitter 

Patent dates First and last mention of a research article in a patent 

Facebook dates First and last mention of a research article on Face- 

 book 

Blog dates First and last mention of a research article in blogs 

Wikipedia dates First and last mention of a research article on 

 Wikipedia 

Stack Overflow dates First and last mention of a research article on Stack 

 Overflow 

Syllabi dates First and last mention of a research article in course 

 syllabi (online courses with references to research) 

Policy dates First and last mention of a research article in policy 

 documents 

News dates First and last mention of a research article on news 

 outlets 

First Online Mention First online mention date of a research article across 

 all the platforms 

Last Online Mention Last online mention date of a research article across 

 all the platforms 
  

 

 

in dataset A, 8,520,926 articles (dataset B) have online mention dates, 

as shown on the log scale with the lower line (orange color) in Figure 1. 

The remaining articles had no information about online mention dates in 

the altmetric dataset. 
 

3. To observe the number of online mentions of articles across the years. One 

research article can have multiple online mentions. Therefore, we plotted 

the number of online mentions of articles across the years, represented by 
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the upper line (blue color) in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Growth of papers published and online mentions. 

 

 

In Figure 1, the orange line below the red line shows that the dataset has 

some missing online dates. We observed a yearly increase in the number of 

articles mentioned online. We also observed that there is a plummet for the year 

2018, as the altmetrics dataset used for the study had online mentions up until 

June 2018. Figure 2 shows the number of online mentions of research articles on 

various online platforms normalized using min-max scaling for all the platforms in 

each publication year. We observed that in comparison to all the other platforms, 

Mendeley accounts for the largest number of mentions in all years. Syllabi 

account for a larger proportion of the mentions in the years 1920 to 1970 than in 

the other years. Patent mentions have the second largest portion of mentions 

from 1970 to 2010 after Mendeley, and Twitter mentions account for an 

increasing proportion from 2010 to 2018. 
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Figure 2: Online mentions on multiple platforms across publication years. 

 

 

4. Methods 

 

An active article on social media could be an article that has been consis-

tently mentioned for an extended period of time. We tried several combinations for 

the number of platforms (e.g., at least one, two, or three platforms) and the 

frequency of online mention (e.g., every year or once every two years). We found 

that the Online Age for some of the previous combinations was very low or even 

zero in some cases. Therefore, we decided to define an active article as an 

article that was mentioned every year on at least three platforms since its first 

online mention up to 2018. On dataset B, we found that 242,164 articles satisfied 

the previous criteria for being considered as active articles. Most of the altmetrics 

for a research article are generally accrued around the time of the research article 

publication. For the articles published in the latest years in our dataset such as 

2017 or 2018, the altmetrics may still be accumulating. Therefore, for the current 

dataset, we considered the articles with publication years up to 2016. For this 

curtailed dataset, we have 83,067 active articles. 
 

Figure 3 summarizes our approach to measure the long-term online interest in 

research articles. At first, for understanding the long-term online interest in 

research articles, the natural inclination would be towards a time-series ap-

proach. However, the data that we have is not time-series data. In other words, 
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we just have the altmetrics of research articles at one point in time (June 

2018). Therefore, we eliminated the possibility of a time-series approach here. 

Next, we performed regression on the dataset (section 4.1). Based on the 

performance of the regression models, we observed that it is difficult for a 

model to learn from a dataset having a large variance in the publication years 

ranging from 1920 through 2016. As an alternative approach, we grouped the 

data into multiple clusters based on the publication years (section 4.2) and 

then applied regression on each cluster (section 4.2.1). We also considered 

the prediction of the long-term interest as a classification problem and built 

classifiers on all clusters (section 4.2.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Our approach for measuring the long-term online interest in research articles. 

 
 

 

4.1. Regression on Complete Data 
 

To predict the long-term online interest in research articles, we need to predict 

how long a research paper remains on social media platforms. This could vary for 

different articles, from a few months to many years. To have uniformity for all of 

the research articles’ online spans, we have considered the number of months a 

research article is mentioned on social media platforms, starting from its first 

online mention date. Using the features mentioned in Table 1, we build regression 

models on active articles to predict the Online Age. We split the dataset to 80/20 

train-test ratio and used regression models from the scikit-learn implementation 

(Pedregosa et al., 2011). Table 3 shows the regression results for various models. 

After building some regression models, we observed that the models had low 
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error measures but were poor in explaining the variance in the dependent 

variable. One possible reason for such results could be to account for the 

nature of the wider range of data with publication years from 1920 to 2016. 

 
Table 3:  Evaluation of Regression models. 

 
 

Model Mean Root Mean R- Squared 

 Absolute Squared Error  

 Error (MAE) (RMSE)  
    

Multiple Linear 18.30 25.01 0.29 

Regression    
    

Decision Tree 14.49 21.78 0.46 

Regression    
    

Random Forest 11.08 16.20 0.70 

Regression    
    

 
 
 
 

4.2. Clustering the data 
 

As the regression models on the entire dataset were not able to yield 

satisfactory results in predicting the long-term online interest, we decided to 

treat the data points in the form of multiple clusters and then applied machine 

learning models to achieve better results. Clustering the data could be a 

better approach as it is unlikely for a single model to learn accurately from the 

data that spreads over almost a hundred years. 
 

For clustering on dataset B, we used the elbow method (Thorndike, 1953) on 

the number of online mentions for each publication year. With this method, the k-

means clustering algorithm performs clustering on various k-values to yield a plot 

for the variation of distances between the center of the cluster and each point for 

the different values of k. For a particular k, there would not be many variations in 

distance, and the plot is an elbow-like curve shape, which suggests the optimal 
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number of clusters. In Figure 4, the optimal number of clusters is shown to be 

three. We, therefore, built three clusters using k-means on our data, as 

shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Elbow method to determine the optimal k-value.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Three clusters using k-means. 

 

 

Table 4 shows each cluster along with its details, such as the range of pub-

lication years, the total number of research articles in the cluster, and the total 
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online mentions of all articles in that cluster. An increase in the number of 

records is evident from cluster 1 to cluster 3, which indicates that the number 

of mentions of newer research articles online increases over time. 

 
Table 4: Details of the clusters formed.  

 

Cluster Range of Number Number Number 

number publication of articles of online of active 

 years  mentions articles 
     

Cluster 1 1920–1999 1,538,350 6,588,889 4,641 

Cluster 2 2000–2012 2,699,017 12,272,590 27,077 

Cluster 3 2013–2016 2,998,724 25,552,821 51,349 
     

 
 
 

4.2.1. Regression on the Clustered Data 
 

In this approach, we treated the long-term interest as a regression 

problem and built machine learning models that predicted for how long a 

research paper remains on social media platforms. For the features 

mentioned in Table 1, we applied the scaling technique using scikit-learn’s 

StandardScaler to normalize the data. We then split the data into 80/20 train-

test ratio, built various regression models on all the clusters and predicted the 

Online Age. Additionally, we used Multi-layer Perceptron regressor to check if 

the results improve with Neural Networks. For the tree-based models, we 

applied 5-fold cross-validation with hyperparameter tuning to get the best 

parameters. We also present the feature importance for the Random Forest 

regression model to indicate the top 10 features in each cluster. 

 

4.2.2. Classification on the Clustered Data 
 

In this approach, we considered the long-term interest as a classification 

problem. We calculated the median of the Online Age feature for each cluster in 

terms of the number of months as shown in Table 5. We used the median as the 

main criterion, as it represents the center of the data and is not susceptible to 

outliers. We then built classification models with the features listed in Table1 for 
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each of the three clusters in order to determine whether an article would 

receive an online mention that is equal to or greater than the median of the 

Online Age. 
 

For classification, we trained and tested four algorithms using the scikit-

learn implementation on our data: Random Forest, Decision Tree, Logistic 

Regression, and Gaussian Naive Bayes. For all the models, we performed 5-

fold cross-validation with hyperparameter tuning to obtain better results. We 

also used the feature importance attribute (also known as Gini importance) of 

the Random Forest model and included the ten most important features in 

each cluster. We observed the performance of all clusters in terms of 

accuracy and weighted average scores for precision, recall, and F1. 

 
Table 5: The median Online Age of the clusters.  

 

Cluster Range of Median 

number publication years Online Age (months) 
   

Cluster 1 1920–1999 16 

Cluster 2 2000–2012 34 

Cluster 3 2013–2016 25 
   

 
 

 

5. Results 

 

5.1. Regression Results 
 

We built Multiple Linear Regression, Decision Tree Regression, Random 

Forest Regression, and Multi-layer Perceptron Regression models for each of 

the clusters. The performance of these regression models is shown in Table 

6. We obtained the best parameters for tree-based models using hypermeter 

tuning. 

 

5.1.1. Regression - cluster 1 
 

The articles in cluster 1 have publication years of 1920 to 1999. The re-

gression models built predicted the Online Age for this cluster. From Table 6, 
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Table 6: The regression results of each cluster. 

 
 

 Model MAE RMSE R2 

Cluster 1 
Multiple Linear Regression 34.33 53.14 0.35 

Decision Tree 16.93 31.61 0.77  

 Random Forest 14.24 23.98 0.86 

 Multi-layer Perceptron 15.20 24.98 0.85 
     

Cluster 2 
Multiple Linear Regression 28.83 33.63 0.26 

Decision Tree 13.29 21.72 0.69  

 Random Forest 10.12 15.99 0.83 

 Multi-layer Perceptron 10.11 15.55 0.84 
     

Cluster 3 
Multiple Linear Regression 10.29 13.71 0.11 

Decision Tree 9.70 12.72 0.24  

 Random Forest 8.66 11.22 0.40 

 Multi-layer Perceptron 8.18 10.62 0.47 
     

 
 

 

cluster 1, we can observe that tree-based models and Multi-Layer Perceptron 

gave lower error rates than the Multiple Linear Regression model. Random 

Forest and Multi-Layer Perceptron have higher R2 values than other models 

indicating that these models better explain the variance of the dependent 

variable (Online Age). Figure 6 shows the ten most important features for the 

Random Forest model. We can notice that the Patent counts is the single 

most important feature with more than 80% of the feature importance share. 

 

5.1.2. Regression - cluster 2 
 

The articles in cluster 2 have publication years of 2000 to 2012. We built 

regression models that predicted the Online Age for this cluster. From Table 6, 

cluster 2, we can see that Random Forest and Multi-Layer Perceptron models 

performed better with lower errors measures than Decision Tree and Multiple 

Linear Regression. Random Forest and Multi-Layer Perceptron model better 

 

 
21 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Regression - The ten most important features for cluster 1 (1920-1999). 

 

 

explain the variance in the dependent variable by having an R2 value of 0.83 

and 0.84 respectively. Figure 7 shows the ten most important features for the 

Random Forest model. We can notice that the most important feature for the 

prediction is the Tweet counts followed by Patent counts. These two features 

constitute approximately 80% of the feature importance share. 

 

5.1.3. Regression - cluster 3 
 

Cluster 3 has articles that were published in the years 2013 through 2016. 

Table 6 shows the performance of the regression models to predict the Online 

Age. We observed that Random Forest and Multi-Layer Perceptron models have 

lower error rates and are better able to explain the variance of the dependent 

variable. Figure 8 shows the ten most important features for the Random Forest 

model. We found that Tweet count and Mendeley’s readership are the most 

important features for the Random Forest model with approximately 40% of the 

feature importance share. On comparing the results of regression models in 

cluster 3 with clusters 1 and 2, we notice that cluster 3 has lower error measures 

but poorly explains the variance in the dependent variable. 

 
 
 

22 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Regression - The ten most important features for cluster 2 (2000-2012).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8: Regression - The ten most important features for cluster 3 (2013-2016). 

 

 

5.2. Classification Results 
 

5.2.1. Classification - cluster 1 
 

Cluster 1 comprises articles published in the period of 1920 to 1999. The 

median Online Age for this cluster is 16 months. We built classification models 
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to predict whether the Online Age would be greater than or equal to the median. 

Figure 9 shows the performance of the models. Achieving accuracy of 91%, the 

Random Forest model performed the best. Figure 10 shows the ten most 

important features for the Random Forest model. We observed that for cluster 1, 

the Patent count is the most important feature, followed by the Tweet count. 

These two features accounted for approximately 55% of the feature importance 

share. From Figure 2, we also noticed that for the years 1920–1970, the Syllabi 

count accounted for a large proportion of online share whereas for the years 

1971–2000 Patent count accounted for a large proportion. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9: Classification - Performance of models in cluster 1 (1920-1999).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Classification - The ten most important features for cluster 1 (1920-1999). 
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5.2.2. Classification - cluster 2 
 

The articles published in the period 2000 to 2012 fall under cluster 2. As 

shown in Table 5, the median Online Age for this cluster is 34 months. The 

Decision Tree and Random Forest classifiers performed better than the other 

classifiers, with all the performance metrics having a score of 92% and 94%, 

respectively for these two models, as shown in Figure 11. The ten most 

important features for the Random Forest model of this cluster are shown in 

Figure 12. We observed that the Patent count was the most important feature, 

accounting for about 35% of the feature importance share, followed by Twitter 

and Facebook counts. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Classification - Performance of models in cluster 2 (2000-2012). 

 
 

 

5.2.3. Classification - cluster 3 
 

Cluster 3 consists of research articles published from 2013 to 2016. These 

articles have a median Online Age of 25 months. Figure 13 shows that with 

an accuracy of 73%, the Random Forest model performed better than the 

other models. Figure 14 shows the ten most important features for the 

Random Forest classifier: Mendeley’s readership and Tweet count constitute 

about 40% of the feature importance share. 
 

In addition to the performance metrics and feature importance, we plotted the 

Receiver Operating Characteristic (ROC) curve for all three clusters, as shown in 

Figure 15. We observed that for all 3 clusters the area under the curves is slightly 

more for tree-based classifiers and Logistic Regression in comparison with the 
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Figure 12: Classification - The ten most important features for cluster 2 (2000-2012).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Classification - Performance of models in cluster 3 (2013-2016). 

 

 

Naïve Bayes classifier. 
 

 

6. Discussion 

 

In this experiment designed to predict the long-term interest in research ar-

ticles in terms of the number of months they last on online platforms after their 

first online mention, we used the counts of online mentions for research articles 

on multiple online platforms as the features for building machine learning models. 

We split the data pertaining to research papers published in the years 1920 to 

2016 into 3 clusters based on the elbow methodology for k-means clustering.
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Figure 14: Classification - The ten most important features for cluster 3 (2013-2016). 

 

 

For each cluster, we calculated the median Online Age, which served as a 

criterion for long-term interest. We built machine learning models with 5-fold 

cross-validation. For all three clusters, the Naive Bayes model performed 

worse than the other models for classification. We observed that the relative 

importance of the online platforms for prediction differs across the clusters. 

Table 7 shows a summary of the most important features in each cluster. 
 

When investigating references to articles, the use of course syllabi is not a 

popular approach to evaluating research. However, we included this aspect in our 

investigation. In our dataset, older articles have more influence on education than 

do recently published articles. However, it is limited by our dataset, which in terms 

of syllabi includes only those available on the internet. Various studies have found 

that course syllabi could be useful to measure the teaching impact of publications, 

especially in the humanities and social sciences (Thelwall and Kousha, 2015; 

Kousha and Thelwall, 2016, 2008). Our dataset does not include the subjects of 

articles that are mentioned in syllabi derived from the Open Syllabus Project 

(OSP). Through a manual check on 20 random articles in the OSP, we found that 

several are related to humanities and social sciences. We found that older 
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(a) ROC for cluster 1(1920-1999) (b) ROC for cluster 2(2000-2012)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(c) ROC for cluster 3(2013-2016) 

 
Figure 15: Receiver Operating Characteristic (ROC) curves for all clusters. 
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articles have more impact on patents, as is evident in cluster 2. 
 

Table 7:  Summary of important platforms for prediction in each cluster.  

 

Cluster Publication years Most  important Most  important 

 of research arti- for  prediction  - for  prediction  - 

 cles Regression Classification 
    

1 1920–1999 Patent Patent and Twitter 

2 2000–2012 Twitter and Patent Patent and Twitter 

3 2013–2016 Twitter and Mendeley and 

  Mendeley Twitter 
    

 

 

In relation to cluster 3, we observed that Mendeley’s readership and 

Twitter are important in predicting the online interest in research articles. For 

the regression models, we also noticed that the Multi-Layer Perceptron did 

perform better than the Random Forest model for cluster 2 and 3. We also 

observed that having a smaller cluster (in terms of the range of publication 

years) achieved lower errors in regression models, as can be seen in Table 6 
 

In the current study, in order to measure the online long-term interest in 

research articles, we used the latest online mentions of articles on online 

platforms regardless of how many times those articles had been mentioned 

online during the focal period. Yet a high number of mentions for a new article 

could imply that it is popular, which could lead, in turn, to long-term interest 

even though our current study would not recognize this fact since such a 

paper would be too new to have a large half-life. This is a limitation of the 

current study, which we plan to address in future work by collecting a new 

dataset. Another limitation of this study is that the data that we have used is 

not time-series data. In the future, we plan to collect altmetrics data at several 

time intervals to predict the online long-term interest at any point in time. 
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7.  Conclusion and Future Work 

 

In this study, we created models to predict the online long-term interest in 

research articles on social media. We found that the number of mentions in 

Patents documents, Mendeley and Twitter are the main factors in determining 

the long-term online interest for an article. We observed that research articles 

used in patents are usually old published articles that have been studied ex-

tensively and proven to be valid and trustworthy. Further, articles published 

before a few years are more seen in online reference systems such as 

Mendeley. In addition, mentions of articles were more numerous on social 

media platforms such as Twitter within days to months of publication. We also 

observed that of all the models tested, the Decision Tree and Random Forest 

performed best in the classification approach, and Multi-Layer Perceptron 

performed best in the Regression approach. In future work, we plan to use a 

range of prediction categories such as short-, mid-, and long-term interest. 

Additionally, we intend to include more features such as the textual features 

in research articles, citation count, and the h-index of the authors and venues. 

Further, we will study the differences between journals, disciplines, and 

countries in regard to a research article’s lifespan. 
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