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Abstract

Page-based software DSMs experience high degrees of false sharing especially in irregular applications with fine grain sharing
granularity. The overheads due to false sharing is considered to be a dominant factor limiting the performance of software DSMs.
Several approaches have been proposed in the literature to reduce/eliminate false sharing. In this paper, we evaluate two of these
approaches, viz., the Multiple Writer approach and the emulated fine grain sharing (EmFiGS) approach. Our evaluation strategy is
two pronged. First, we use an implementation-independent analysis that uses overhead counts to compare the different approaches.
Our analysis show that the benefits gained by eliminating false sharing are far outweighed by the performance penalty incurred due
to the reduced exploitation of spatial locality in the EmFiGS approach. As a consequence, any implementation of the EmFiGS
approach is likely to perform significantly worse than the Multiple Writer approach. Second, we use experimental evaluation to
validate and complement our analysis. The experimental results match well with our analysis. Also the execution times of the
application follow the same trend as in our analysis, reinforcing our conclusions. More specifically, the performance of the EmFiGS
approach is significantly worse, by a factor of 1.5 to as much as 90 times, compared to the Multiple Writer approach. In many cases,
the EmFiGS approach performs worse than even a single writer lazy release protocol which experiences very high overheads due to
false sharing.

The performance of the EmFiGS approach remains worse than the Multiple Writer approach even after incorporating
Tapeworm—a record and replay technique that fetches pages ahead of demand in an aggregated fashion—to alleviate the spatial
locality effect. We next present the effect of asynchronous message handling on the performance of different methods. Finally, we
investigate the inter-play between spatial locality exploitation and false sharing elimination with varying sharing granularities in the
EmFiGS approach and report the tradeoffs.
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1. Introduction

“This work was partially funded by IBM’s Shared University
Research programme. A shorter version of this paper has appeared in
the Proceedings of the 8th International Conference on High
Performance Computing (HiPC-2001), Hyderabad, Dec. 2001 (http://
www.hipc.org).

Software Distributed Shared Systems [4,20,21], that
rely on the virtual memory mechanism provided by the
Operating System for detecting accesses to shared data,
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support sharing granularity of page size. The large page
size results is excessive false sharing overheads, espe-
cially in fine grain irregular applications [28]. Different
methods have been proposed in literature to reduce the
effects of false sharing in page-based software DSMs.
Two basic approaches followed in these methods are (i)
allowing concurrent write accesses to a page and (ii)



providing fine grain granularity through emulation
without additional architectural support. We refer to
these approaches as the Multiple Writer approach and
the Emulated Fine Grain Sharing (EmFiGS) approach,
respectively. We call the latter emulation because it
provides fine grain sharing over a coarse grain sharing
system and as a consequence incurs higher cost even for
a fine grain coherence miss.

Lazy Multiple Writer Protocol (LMW) [16,19] im-
plemented in most state-of-the-art software DSMs
[2,17,27] is a typical example of the Multiple Writer
approach. It allows concurrent writes to a page by
providing mechanisms to merge the modifications at
synchronization points. LMW is considered heavy-
weight because of the Twin/Diff creation overheads
incurred to maintain and update the modifications.
Writer Owns Protocol [§] improves upon LMW by
performing run time re-mapping of subpages such that
all subpages in a page are written by the same process.
The sharing is still performed at the page level, but by
remapping parts of the page, false sharing is eliminated.
Millipage/Multiview [11,12] follows the EmFiGS ap-
proach. It decreases the sharing granularity to less than
a page by allowing smaller size pages, called millipages.
However, to avoid wastage of physical memory, multi-
ple millipages are mapped to a single physical page (of
larger size). Millipage is implemented with single-writer
protocol for efficient operation. Compile-time methods
[9,14] have also been proposed, following the EmFiGS
approach, wherein data structures susceptible to false
sharing are identified at compile-time and various
transformations are applied to them to place them in
different pages, thus eliminating false sharing. While the
Multiple Writer approach tolerates false sharing, the
EmFiGS approach eliminates false sharing.

While it is true that these approaches are successful in
reducing false sharing, they do not sufficiently address
the following questions: (i) what are the additional costs
incurred, if any, in reducing false sharing? and (ii) is the
reduction in false sharing overheads significantly higher
than the additional costs, thereby leading to overall
performance improvement of the application? Also,
while there have been performance evaluation of
individual implementations of these approaches, there
has been no complete comparative analysis of these
approaches which is required to understand the inter-
play of overheads. This motivates our performance
analysis work on methods that overcome false sharing in
software DSMs.

Our performance evaluation strategy is two pronged.
First, we present an implementation independent
analysis to obtain the counts of various overheads
incurred under different protocols. In our analysis, we
have taken into account all the overheads incurred in
most page-based DSMs, including the round trip
message overhead, synchronization overhead, and the

page fault kernel overhead incurred in entering the OS
kernel to transfer control to SEGV handler. The
overhead counts provide a basis for comparison of the
different methods. Second, we augment this comparison
with execution time results of the benchmarks under an
actual implementation of the methods. The experimen-
tal evaluation complements the manual analysis by
reporting the contributions of different overheads to
execution time. It also helps to validate the manual
analysis and to attribute costs to the overhead compo-
nents. Last, the time incurred by certain overheads such
as synchronization overheads depend on the actual
runtime conditions and the application behavior. In
these cases, the performance results obtained from our
experimental evaluation presents a better picture. The
following discussion presents a more specific account of
the performance study.

We have considered those protocols for study that
sufficiently represent the dominant approaches to over-
come false sharing, viz., the Multiple Writer approach
and the EmFiGS approach. In addition, we have
considered the Lazy Single Writer Protocol (LSW) as
the base case, since it can incur high false sharing
overheads. Our application suite consists of three
SPLASH?2 benchmarks [29], viz., Barnes, Water-Spatial
and Radix, all exhibiting high false sharing behavior.
First, our manual analysis reveals that, despite eliminat-
ing false sharing completely, the EmFiGS approach still
incurs significantly higher number of page faults and
messages compared to the Multiple Writer approach.
This is because, with a smaller sharing granularity in the
EmFiGS approach, the amount of spatial locality is
reduced, more true sharing faults occur. Our analysis
indicates that the overheads incurred by the EmFiGS
approach are significantly higher by a factor of 4 or
more as compared to LMW. As our analysis is
independent of any specific implementation and cap-
tures the overheads that are intrinsic to the protocol, we
conclude that any implementation of the EmFiGS
approach is likely to incur more true sharing overheads
than the savings in false sharing.

Second, we use experimental evaluation to validate
the manual analysis. Our experimental evaluation also
augments the analysis by attributing costs to the
overheads counts. Our experimental platform is IBM’s
Scalable Parallel (SP) architecture, running open source
CVM [17], a software DSM system. The experimental
results on overheads counts match closely with those
obtained from manual analysis and reinforces our
conclusions. The decreased exploitation of spatial
locality manifesting as increased page faults and
messages in the EmFiGS approach, results in a
degradation of 1.5 to as much as 90 times compared
to the Multiple Writer approach. Further, contrary to
the popular belief about the heavy-weightedness of
Multiple Writer protocols, the overheads of Twin/Diff



creation in LMW are insignificant and contribute to less
than 1% of the total overheads.

To alleviate the effects of spatial locality, we used
Tapeworm [18]—a record and replay scheme to fetch
pages ahead of demand in an aggregated fashion—in
conjunction with the EmFiGs approach. While Tape-
worm decreases the spatial locality effects, increased
message sizes due to aggregation limits its performance;
i.e., EmFiGs with Tapeworm performs only 20% better
than plain EmFiGs, which is still worse than LMW. We
also analyzed the tradeoffs between the reduced
exploitation of spatial locality and the elimination of
false sharing by varying the millipage size in the
EmFiGs approach. We observe that at higher millipage
sizes the effects of false sharing dominate while at lower
millipage sizes, the effects of spatial locality dominate
the overheads. A break-even between these two effects
occur at millipage sizes of 1024-2048 bytes for the
applications studied.

The rest of this paper is organized as follows. Section
2 discusses the protocols studied and the overheads
considered in our analysis. Section 3 describes the
manual analysis in detail and also presents the results of
the analysis. Section 4 deals with the experimental
results. In Section 5, we discuss the related work and
provide concluding remarks in Section 6.

2. Protocols and overheads

This section discusses the protocols studied and the
overheads considered in our analysis.

2.1. Page-based software DSMs

Page-based software DSM systems use the Virtual
Memory (VM) hardware to detect accesses to shared
locations and to maintain consistency. They use the
mprotect () system call to set the access protection bits
appropriately for a page, depending on whether the data
in the page is currently consistent or not. Inconsistent
pages are invalidated (read/write protected) with the
mprotect() system call in a barrier or lock acquire
synchronization call. Read/write access to a shared page
that does not have the appropriate permission raises a
page fault exception. The context is then switched to the
OS kernel exception handler, which in turn raises the
segmentation violation (SIGSEGV) signal.

Software DSM systems capture this signal by provid-
ing a signal handler. The handler initiates actions to
make the faulting page consistent. This typically
involves sending messages to other processes, and
getting responses. Once the data in the faulting page is
made consistent, the mprotect () system call is used to
make the page readable or writable depending on the
shared access. The term page fault kernel overhead

refers to the involvement of OS in transferring the
execution control to the SIGSEGV handler while
accessing a protected page. Further, throughout the
discussion, the term page fault refers only to accesses to
shared memory locations that do not have the appro-
priate permission.

2.2. Sequential consistency (SC) protocol

The SC protocol implements Sequential consistency
[1], which guarantees a single sequential order among
memory operations from all processors. The SC
protocol is a single-writer, multiple-reader protocol,
i.e., it allows a shared page to have either a single writer
or one or more readers, but readers and writers never
co-exist at the same time. Before a write to a shared page
(by a process) can take place, the readable copy of the
page in other processes must be invalidated. SC incurs
high overheads if two processes access non-overlapping
data which lie within the same shared page, and one of
the processes is modifying the data. In this case, the page
shuttles back and forth between the two processes.
However, SC is a light weight protocol, requiring very
little protocol actions on a page fault or on a barrier.
Last, SC does not have to maintain large data structures
such as twins or diffs as in the case of multiple writer
protocols (to be discussed in Section 2.4).

2.3. Lazy single writer (LSW) protocol

The LSW protocol guarantees Lazy Release Consis-
tency [19] (LRC). With LRC, the modifications of
process A become visible to process B only after B
synchronizes with 4. A simple example of this is when
process B acquires a lock originally acquired by process
A, either directly from A4 or through a set of processes.
LSW allows only one writer for a page at any given
time. The processor holding the writable copy of the
page is called the owner. Each page has a version number,
which is incremented every time ownership changes. On
an acquire, the releasing process sends (i) a list of pages
(write notice) it has modified along with their version
numbers and (ii)) a list of pages modified by other
processes for which it has received write notices, to the
acquirer. The acquirer invalidates the local copies of the
pages that are in the write notice by disabling read/write
permission through mprotect() system call. On a
subsequent read access to the page, a read fault occurs
and the process looks at all the write notices for the page
and requests the page from the process that has sent the
highest version number. Once the most recent version is
received, it is copied into the appropriate location is
given read permission.

A write access to a page without write permission,
causes a write page fault. The faulting process sends
ownership request to a statically assigned manager of the



page, which forwards the request to the actual owner. In
case the page has no owner, i.e., there is no current
writer to the page, the manager sends the ownership to
the faulting process. Otherwise, the owner changes the
permission for the page to read-only and sends the page
along with the ownership to the faulting process
directly. The faulting process, upon receiving the page,
increases its version number. When two processes write
to non-overlapping parts of a shared page repeatedly
between two synchronization points, the ownership
could be transferred a number of times between the
processes. Since there is no true sharing of data between
the two processes—as the writes are to non-overlapping
parts of a shared page—this is referred to as false
sharing. The transfer of ownership back and forth
between the processes is called the ping-pong effect. The
ping-pong effect causes high overheads in applications
having a high degree of false sharing.

2.4. Lazy multiple writer (LMW ) protocol

Lazy Multiple Writer (LMW) protocol also guaran-
tees Lazy Release Consistency [15]. However, LMW
allows concurrent write accesses to a page and merges
the modifications at synchronization points. These
modifications made by a process are maintained by
twinning and diffing [6]. On the first write to a shared
page by a process, a write fault occurs and a SIGSEGV
is raised. In the SIGSEGV handler, which is a part of
the software DSM layer, an identical copy of the page
(called a trwin) is created. At the next synchronization
point, the twin is compared with the modified copy of
the page to generate a diff, a record of modifications to
the page. The LMW protocol is homeless in the sense
that there is no home node assigned for a page where
modifications could be flushed at every synchronization.
In the homeless LMW protocol, a page fault causes page
requests to be sent to all processes that modified the
page before synchronization. The diffs are returned in
response to the page request. The requesting process
applies all the diffs in the order specified by their
timestamps to reconstruct the consistent copy of the
page. As LMW allows concurrent write accesses, once a
process has a writable copy of a page, future accesses
(read/write) to the page by other processes will not cause
additional page faults until the next synchronization
point. This way, LMW tolerates false sharing. We chose
LMW protocol to represent the Multiple Writer
approach in our analysis.

2.5. Millipage

Multiview/Millipage [11] is a software DSM system
which overcomes false sharing effects following the
EmFiGS approach. It is capable of manipulating the
shared memory in variable sized blocks called millipages,
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Fig. 1. Illustration of millipage.

whose sizes could be smaller than the operating system
page size. The basic idea behind Millipage is illustrated
in Fig. 1. Consider an array of 1024 integer elements
spanning one 4 kilobytes page. Suppose the application
program is such that Process 1 writes to the first 512
elements and Process 2 writes to the last 512 elements.
When the array is allocated in a single shared virtual
page, writes by the two processes, under a single writer
protocol, cause the page to be transferred back and
forth between them. Millipage provides two views of the
array by allocating the two halves of the array in two
non-overlapping virtual address regions that fall in two
different virtual pages as shown in Fig. 1. Since access
permission is controlled through the virtual memory
mechanism, protection and fault handling can be done
independently for the two pages. Access to the different
halves of the array will cause page faults for different
virtual pages and consistency can be maintained for
these pages individually. The two virtual pages are
however mapped to the same physical page, so that no
physical space is wasted. The non-contiguous virtual
address regions are mapped to data structures by the use
of indirection. Thus Millipage effectively reduces the
sharing granularity to less than a page size and
eliminates false sharing. Millipage uses light weight SC
protocol for efficient operation.

2.6. Array bloating

Array bloating is our alternative method for imple-
menting the EmFiGS approach. In this method, we pad
and align the elements of shared arrays so that a virtual
page holds fewer elements (possibly only one) than it
can accommodate, and non-overlapping regions of the
array accessed by two different processes do not lie on
the same virtual page. Virtual to physical page mapping
is done in a manner similar to Millipage technique as
shown in Fig. 1. The example is same as the one
described in Section 2.5. The array is bloated twice so
that accesses to the first 512 elements (2 kilobytes) lie in
virtual page k and those to the next 512 elements lie in
virtual page k + 1 as shown in Fig. 1. Thus we achieve



an effective sharing granularity of 2 kilobytes. We use
the term bloat factor to refer to the number times the
data structure is bloated. To be precise, bloat factor
refers to the number of virtual pages that are mapped to
the same physical page (refer to Fig. 1). The bloat factor
in this case is 2. The bloat factor also indicates the
amount of data allocated per page. Higher the bloat
factor, lesser the data allocated per page and hence lesser
the false sharing. Access to appropriate elements of the
array is accomplished by modifying the sh_malloc
statements and instrumenting the array indices in the
application program. Thus by reducing the sharing
granularity to less than a page size, array bloating
eliminates false sharing. Array bloating is less general-
ized than Millipage because it cannot be applied to
irregular data structures with pointer references. How-
ever, the indirection overhead incurred by millipage is
avoided in array bloating; but array bloating incurs
overhead of array index calculation which is typically
less costlier. In our analysis, we have considered array
bloating implemented with LSW (ABLSW) and Se-
quential consistency protocol (ABSC) as methods
following the EmFiGS approach.

2.7. Overheads

The overheads considered in our analysis are listed
below. Each of these overheads would be incurred a
number of times (overheads counts) and hence con-
tribute certain time (overheads time) to the execution
time. Our manual analysis deals with overheads counts,
while the experimental evaluation reports overheads
time.

Page fault kernel overhead: This is the overhead due to
OS kernel involvement in page fault exception as
discussed in Section 2.1.

Mprotect: This refers to the number of mprotect()
system calls invoked.

Buffer copy: This is the overhead incurred in copying
data from message data structures to the page and vice
versa. This is over and above the various levels of
copying that might be required by the underlying
messaging layer which is implementation dependent.

Twin creation, Diff creation, and Diff apply: These
overheads are specific to LMW and are incurred in
maintaining modifications to a shared page.

Message overhead: A process sends messages to other
processes on various events like a page fault, a lock
acquire, or a barrier synchronization. A message
arriving at the process causes consistency protocol
actions to be performed and subsequently a reply to
be sent to the requesting processor. Further, since
messages arrive asynchronously at the receiver, some
overheads are incurred at the messaging layer due to
polling/interrupt handling. We refer to the time elapsed
between the sending of the request and receiving the

reply as message time, which includes the round trip
message latency, the message processing time at receiver
and other messaging layer overheads.

Synchronization/barrier overhead: This includes the
calls to lock acquire/release and barrier synchronization
and the associated overheads involved in performing the
consistency protocol actions.

The above overheads represent all overheads that
occur in page-based DSM systems. That the list is
exhaustive can be inferred from our experimental results
(described in Section 4) where the fraction of execution
time of the benchmarks contributed by these overheads
accounts for rest of the execution time other than
application time.

3. Manual analysis

In this section we describe our manual analysis of the
overheads incurred in Multiple Writer and EmFiGS
approaches.

3.1. The method

We illustrate our analysis with a simple example. We
are interested in those statements of the application
program that can possibly cause any of the overheads
listed in Section 2.7. These are the statements containing
shared memory references and synchronization points.
In software DSM programs, synchronization is achieved
by an explicit function call to the underlying software
layer. We inspect the benchmark source code to separate
these two kinds of statements, viz., shared memory
accesses and synchronization points, and also the
control structures of the program using an approach
similar to program slicing.

Fig. 2(a) shows such a sliced program. Assume we
have two processes. In this program, we have a read
followed by two writes to a shared array by both
processes. After a Barrier, process 0 reads the entire
shared array and finally, there is a Barrier synchroniza-
tion. These accesses and Barriers are executed repeatedly
in a loop. Assume that the array spans one shared page,
and that process 0 accesses the first half of the page and
process 1 accesses the next half. The portions of the
array accessed by the two processes are specified by
begin and end (local) variables in the program. Since
both processes write to non-overlapping parts of the
same page, there is a write—write false sharing in this
case. By analyzing the source code, we arrive at a
sequence of accesses to actual shared pages in different
processes. Fig. 2(b) shows such a sequence on 2
processors. For this step, the mapping of shared data
structures to shared pages is to be known. This can be
easily obtained from the source code, by knowing the
order of sh_malloc function calls. We assume that the



/ [begin and end mark the rows
//each process is responsible

/[ for computing

while (cond) do

for i := begin to end do
.. = shared_arrayli]
shared_arrayli] = ..
shared_arrayli] = ..

Proc 0

while (cond) do

for i := begin to end dd
Read Page 0
Write Page 0
Write Page 0

Proc 1

while (cond) do

for i := begin to end dd
Read Page 0
Write Page 0
Write Page 0

od od ed
Barrier 0 Barrier() Barrier()
* for i := 0 o 1024 do fori:=0to 1024do
.. = shared_arrayli] Read Page 0
od od
g™ f f
Barrier 0 Barrier() Barrier()
end end end
(a) Sliced program (b) Page access sequence

Fig. 2. Sliced program and page access sequence.

sh_malloc for the array is aligned to a page boundary,
and sh_mallocs are contiguous in the virtual address
space. We describe the analyses for LSW and ABLSW
in the following subsections. The analyses for LMW and
ABSC are similar and can be found in [22].

3.1.1. Analysis for LSW

Fig. 3 illustrates the overheads calculation for LSW
for a single iteration of the while loop shown in Fig. 2.
Different temporal interleavings of the sequences of
shared accesses will cause different amounts of over-
heads. In our analysis, we calculate the minimum and
maximum overheads that would be incurred due to
these interleavings. Let us start with the case where both
the processes have readable copy of the shared page and
Proc 1 be the current owner of the page. (The reasons
for this initial condition will be explained towards the
end of this discussion.) The minimum overhead occur
when only the first access to an invalidated shared page
causes a page fault and the process finishes all its
accesses to the shared page before it gets invalidated due
to another process’s access. Such a case is shown in Fig.
3(a). Let us assume Proc 0 completes all its accesses
before Proc 1.7

The first read access to page 0 by Proc 0 does not
cause a page fault because it has a readable copy.
However, the first write access by Proc 0 causes a write
page fault. In the general case, a write page fault causes
a message to be sent to the manager of the page which
will forward ownership request to the current owner of
the page. Let us assume that Proc 0 is the manager of the
page 0, and hence it knows Proc 1 is the current owner.
Proc 0 sends ownership request to Proc 1 and on reply

31f the accesses of Proc 1 take place before that of Proc 0, then Proc
1 will have the ownership and overheads incurred in this case are
symmetric.

from Proc 1, Proc 0 becomes the owner for page 0. This
incurs a page fault kernel overhead and a message as
shown in Fig. 3(a). On receiving the ownership, page 0 is
mprotected with write permission and Proc 0 proceeds
to write to it. Hence, the next write access by Proc 0 does
not cause a page fault. Note that there are no
intervening accesses to page 0 from Proc 1 until this
point in the best case situation.

Next the read access by Proc 1 takes place without a
page fault as Proc 1 still it has a readable copy of the
page. However, the next write access causes a page fault.
Since Proc 1 is not the current owner of the page, it sends
a page request to the manager, which is Proc 0. Since
Proc 0 is the current owner also, it transfers the page
along with the ownership to Proc 1, and removes the
write permission from its own copy of page 0, making it
read-only. The page is mprotected with write permis-
sion at Proc 1. The subsequent writes take place without
any page fault at Proc 1.

At a barrier synchronization, a process assigned as the
barrier manager has to collect the write notices from
other processes. Let us assume that Proc 0 is the barrier
manager. At the first barrier in the code, Proc 1 sends a
write notice for page 0 to Proc 0. Consequently, the page
is invalidated at Proc 0 and made read-only at Proc 1.
The next read access at Proc 0 causes a page fault,
resulting in a page request being sent to the current
owner, viz., Proc 1. Upon receiving the page, Proc 0 first
makes the page writable, just in order to copy the page
data from the message. This write does not require
ownership as it is only for making the shared page
consistent. Then the page is made read-only at Proc 0.
All the other reads to the page in the loop proceed
without a page fault. At the next barrier, there are no
write notices sent because there were no writes in the
previous interval. All overheads incurred during each of
the above steps are shown in Fig. 3(c). Note that Proc 1



Proc 0 Proc 1
Read page 0
Write page 0
// Page fault for page 0
Message to Proc 1
Qunership to Proc 0
Mprotect(urite) page 0
Write page 0
// Read/Writes to page 0
// without any pagefault
// in the neat 511 iterations

Read Page 0
Write page 0
// Page fault for page 0
Message to Proc 0
Mprotect(read) page 0
Buffer copy
Ownership o Proc 1
Mprotect (urite) page 0
Buffer copy
Write page 0
// Read/Writes to page 0
// with no pagefault in
// the next 511 iterations

Barrier

Message to Proc 0

Barrier

Mprotect (none) page 0
Read Page 0

// Page fault for page 0
Message to Proc 1

Mprotect(read) page 0

Buffer copy
Mprotect(write) page O
Buffer copy
Mprotect(read) page 0
Barrier Barrier

Message to Proc 0

(a) Best case

Proc 0
Read page 0

Write page 0
// Page fault for page 0
Message to Proc 1

Mprotect(write) page 0

Mprotect (read) page O
Buffer Copy

Ovnership to Proc 1

Write page 0
// Page fault for page 0

Message to Proc 1

Mprotect(write) page 0
Buffer Copy

Mprotect(read) page 0
Buffer Copy

Ownership to Proc 1

Proc 1

Read page 0

Ownership to Proc 0

Write page 0
// Page fault for page 0
Message to Proc 0

Mprotect(write) page 0
Buffer Copy

Mprotect(read) page 0
Buffer Copy
Ownership to Proc O

Write page 0
// Page fault for page 0
Massage to Proc 0

Mprotect(write) page 0
Buffer Copy

1+ Repeated 512 times {t

Barrier

Mprotect (none) page O
Read Page 0

// Page fault for page 0
Message to Proc 1

Mprotect (write) page 0
Buffer copy
Mprotact(read) page 0
Barrier

Barrier
Message to Proc 0
Mprotect(read) page 0

Buffer copy

Barrier
Message to Proc 0

(b) Worst case

Overhead counts
Overheads (in Proc 0) Best Case Worst Case
No. of Page faults 2 1025
No. of Messages 2 1026
No. of Mprotects 5 1537
No. of Bcopy 2 1537

(c) Overheads

Fig. 3. Overheads calculation for LSW.

is still the owner of the page. Given this access sequence
in an iteration, Proc 1 will be the owner for the page at
the beginning of next iteration. This is the rationale
behind our assumptions on initial conditions.

The maximum overheads counts occur when the
accesses from different processes are completely inter-
leaved. Such a complete interleaving for a single
iteration of the while loop is shown in Fig. 3(b). We
observe that the maximum overheads occur when after
every write access by Proc 0, there is an intervening write
access by Proc 1, causing the ownership to be

transferred back and forth between the two processes.”
This sequence is repeated for all the iterations of the
inner for loop in the worst case. We calculate the
overheads following steps similar to the ones described
above. The overheads incurred in the best LSW and
the worst case situations for LSW are summarized in
Fig. 3(c).

“A formal proof establishing that such a sequence causes the
maximum overhead is beyond the scope of this paper.



3.1.2. Analysis for ABLSW

The overhead analysis for ABLSW is shown in Fig. 4.
The shared array in this case is bloated twice so that the
first half gets allocated in virtual page 0 and the next half
in virtual page 1. Hence the accesses to the shared array
by the two processes fall in two different pages as shown
in Fig. 4(a).

After the first iteration, Proc 0 becomes owner for
page 0 and Proc 1 for page 1 because of the write
accesses to the respective pages. After the first barrier,
the pages become read-only at the respective processes.
Hence the first write access in the next iteration of the
while loop causes a page fault. However there are no
messages and ownership transfers in this case. The only
page transfer occurs when Proc 0 tries to read page 1 in
the final step of the iteration. The overheads calculation
for ABLSW is shown in Fig. 4(b) and summarized in
Fig. 4(c).

3.1.3. Remarks

We conclude our discussion on the manual analysis
with a few remarks. As was discussed in Sections 3.1.1
and 3.1.2, different temporal ordering of accesses to
shared pages will cause different amounts of overheads.
Our analysis estimates the minimum and maximum
overheads that would be incurred in those cases.

Proc 0 Proc 1
while (cond) do while (cond) do
for i :=begin to end do for i := begin to end do
Read Page 0 Read Page 1
Write Page O Write Page 1
Write Page O Write Page 1
od ed
Barrier() Barrier()
if pid == 0 if pid == 0
for i := 0 to 512 do
Read Page 0

od

for i := 513 to 1024 dd|
Read Page 1

od

Barrier() Barrier()
end end

(a) Page access sequence

Similarly, when shared accesses occur inside a condi-
tional statement, it is not possible to calculate the exact
overhead counts. Our manual analysis can incorporate
probabilistic assumptions about such shared accesses,
using profile information, and can estimate the overhead
counts based on the assumed probabilities. Although
such an approach has not been incorporated in our
manual analysis, this is a simple extension to our
analysis. In fact, in two of the benchmarks programs
used, there are shared memory accesses inside condi-
tional statements. However, since the conditional
statements were true only in a small percentage of the
cases in our analysis, we ignored the shared accesses
within the conditional.

3.2. Benchmarks

This section presents a brief description of the
benchmarks we have analyzed. The benchmarks ana-
lyzed and their problem sizes are listed in Table 1.

Barnes: This application simulates the interaction of a
system of bodies in three dimensions over a number of
time steps using the Barnes-Hut hierarchical N-body
method [10]. The bodies are represented in an octree and
the application spends most of the time traversing the
octree to compute forces on the bodies. The resulting

Proc 0 Proc 1

Read page 0
‘Write page 0
// Page fault for page 0
Mprotect(vrite) page 0
‘Write page 0
Read page 1
Write page 1
// Page fault for page 1
Mprotect(urite) page 1
‘Write page 1
// Read/Writes to page 0 // Read/Writes to page 1
// in the next 511 iterations  // in the neat 511 iterations

Barrier Barrier

Message to Proc 0
Mprotect(read) page O Mprotect(read) page 1
Mprotect(none) page 1
Read Page 0
Read Page 1

// Page fault for page 1
Message to Proc 1

Buffer copy
Mprotect (vrite) page 1

Buffer copy

Mprotect(read) page 1

Barrier Barrier

Message to Proc 0

(b) ABLSW Analysis

Overheads (in Proc 0)

Overheads counts

No. of Page faults

2

No. of Messages

No. of Mprotects

No. of Becopy

1
5
1

(c) Overheads
Fig. 4. Overheads calculation for ABLSW.



Table 1
Benchmarks and problem sizes

Benchmark Problem size

Barnes 1024 bodies, 40 iterations
Water-Spatial 64 molecules, 400 iterations
Radix 16384 keys, 256 radix

access pattern is quite irregular. Further the data
structure representing a body, which is the basic unit
of memory access in the algorithm, has a size of 96
bytes. Thus multiple bodies (about 42) gets allocated in
a single shared page of 4 kilobytes size. When these
bodies are accessed by different processes, significant
false sharing behavior is exhibited in page-based DSMs.
There is also significant true sharing in each iteration,
when process 0 reads all the bodies, once the forces have
been calculated on them, to compute their global
positions. The domain decomposition in this application
is spatial and across iterations bodies can move from
one region of space to another, resulting in a different
process accessing the body. However, such an occur-
rence is less probable, and in our analysis, for simplicity,
we have assumed that bodies do not move over to
different process in any iteration. Also our experimental
results (reported in Section 4.1) indicate that the
inaccuracies due to this assumption are minor. In our
ABLSW and ABSC analysis, the data structure for a
body is padded to 128 bytes and we consider an
allocation of one body per shared page, i.e., a bloat
factor of 32. We consider other bloat factors and
their effects on the performance of the application in
Section 4.5.

Water-Spatial: This application evaluates the forces
and potential that occur over time on a system of water
molecules using a O(n) algorithm [29]. It imposes a
uniform 3-D grid of cells on the problem domain and
the domain decomposition is spatial in this application.
The molecules are allocated in an array and each process
gets a group of elements to operate on. It happens that
many shared pages have elements accessed by 2 or more
processes that update them, causing write—write false
sharing. This happens in the intra-molecular forces
calculation phase. Also, when processes read the
neighboring molecules’ data to compute inter-molecular
forces, read—write false sharing® occurs. Molecules move
over to neighboring spatial domain occasionally in few
iterations. Since such an occurrence is rare, in our
analysis, we have assumed molecules do not move over.

SRead—write false sharing occurs when two processes access non-
overlapping parts of a shared page and one of the processes writes to
the page and the other reads the page. The first read by the reading
process would cause the page to become read-only at the writing
process in the case of LSW. Hence the next write access at the writing
process will cause a page fault. However the rest of the accesses do not
cause page faults.

The data structure representing a molecule is 384 bytes
in size and our ABLSW and ABSC analysis assumes
padding of molecule data structure to 512 bytes and an
allocation of one molecule per shared page, i.c., a bloat
factor of 8.

Radix: The radix sort is based on the method
described in [5]. The algorithm is iterative, performing
one iteration for each radix r digits of the keys. In each
iteration, the histograms calculated locally are accumu-
lated into a global histogram, using which the keys are
permuted into a new array which is used in the
subsequent iteration. We have considered a key size of
64 bytes. The permutation step exhibits highly irregular
access pattern and high degree of false sharing. In the
ABLSW and ABSC implementation, we bloat each key
(64 bytes) to a shared page (4096 bytes), i.e., a bloat
factor of 64. This eliminates false sharing completely in
the permutation step.

3.3. Why manual analysis?

Before presenting the results of our manual analysis,
we address the following two questions: (i) Why perform
(manual) analysis if experimental evaluation of the
different approaches can be conducted on some plat-
form? (ii)) Do these overheads costs reported here
directly translate into execution time? We counter the
first question with the argument that if the underlying
implementation used for experimental evaluation incurs
certain overheads that are specific to that implementa-
tion of the protocol, rather than being intrinsic to the
protocol itself, then the experimental evaluation is
somewhat biased. We note one such overhead in Section
4.1. Our implementation independent analysis presents a
true picture by considering only the overheads that are
intrinsic to the protocol. However, an important caveat
here regarding the manual analysis is that one should
apply certain caution in comparing overheads counts,
especially when the contribution to the execution time
could be different under different protocols. For
example, the overheads time for synchronization and
message overheads can be different for two methods,
even when the overheads counts are identical. None-
theless, comparing overheads counts, obtained from an
implementation independent analysis, does provide a
fair basis for comparing different methods.

The above caveat is essentially what is referred to by
question (ii)) above. We address this question by
performing the experimental evaluation of all the
methods on the same platform which not only comple-
ments our manual analysis results, but also attributes
costs (overheads time) for the various overheads. We
present the results of the experimental evaluation in
Section 4. Last, certain limitations of our manual
analysis are discussed in Section 3.5.



3.4. Results

The results of our analysis on the overheads counts in
different protocols for the three applications are
presented in Tables 2—4. We have considered a 4-process
version of the applications and the overheads shown are
incurred by process 0. The overheads incurred on other
processes exhibit a similar behavior. Each row in the
table indicate the number of times a particular overhead
is incurred in the different protocols. For example, 3362
page fault kernel overheads are incurred by Barnes in
LMW protocol. It can be observed from the discussion
in Section 3.1 that this overhead analysis is independent
of any specific implementation. For LSW, we have
reported the best case and the worst case overheads. It
should be noted that the results reported are based on
the analysis of the entire application.

A consistent trend observed in all the applications is
that the overheads in ABLSW and ABSC are signifi-
cantly higher than in LMW or in best case LSW. This is
somewhat surprising given that false sharing is com-
pletely eliminated in ABLSW and ABSC, by reducing
the sharing granularity to the level of basic units of
memory access in the applications; i.e., each shared page
consists of only one body, one molecule, or one key. The
number of page fault kernel overheads and the message
overheads incurred in ABLSW are higher at least by a
factor of 2 in Water-Spatial and by a factor of 10 in
other applications compared to LMW.

Why should ABLSW or the EmFiGS approach incur
such high page fault overheads given that it eliminates

false sharing completely? To answer this question, first
let us note that the applications we have analyzed do
contain true sharing behavior wherein a single process
(such as Proc 0) reads the entire shared array after force
calculation on all bodies/molecules were complete
(similar to the read in Proc 0 between the two barriers
in the example shown in Fig. 2). Also, more than one
body or molecule accessed by a process are co-located in
the same shared page in the case of LMW, and a single
page fault causes the entire page to be validated in the
Multiple Writer approach, i.e., a single page fault brings
in the entire page (several bodies/molecules/keys).
Whereas in the EmFiGS approach, due to the emulation
of fine grain sharing, each page fault brings in a lesser
amount of data (only one body, molecule, or key) on a
true sharing miss. This results in a lower granularity
system requiring more page faults than a higher
granularity system to bring in the same amount of data.
In other words, the amount of spatial locality exploited
also reduces with reduction in sharing granularity. In
the above cases, the Multiple Writer approach can gain
by exploiting spatial locality, whereas the EmFiGS
approach exploits significantly less spatial locality. This
reduction in exploitation of spatial locality is the
principal reason for ABLSW and ABSC having more
page faults and consequently more associated overheads
like messages and mprotects than LMW or the best
case LSW.

By tolerating false sharing, LMW incurs less page
faults, messages, and mprotects than other methods.
However, it incurs additional overheads of twin/diff

Table 2 Table 4

Overheads in Barnes Overheads in Radix

Overheads LMW LSW ABLSW  ABSC Overheads LMW LSW ABLSW  ABSC
Best case  Worst case Best case  Worst case

Page faults 3362 4797 34,809 54,407 58,507 Page faults 1049 1372 4,194,652 28,000 28,000

Messages 3684 3567 35,055 31,693 58,589 Messages 1050 1053 3,146,032 28,708 60,000

Barriers 82 82 82 82 82

Barriers 22 22 22 22 22

Mprotect 6683 9512 54,120 108,732 116,932 Mprotect 2754 2680 4,195,960 61,496 65,536
Twin/Diff 7339 — — — — Twin/Diff 2734 — — — —
Table 3
Overheads in Water-Spatial
Overheads LMW LSW ABLSW ABSC

Best case Worst case Best case Worst case Best case Worst case
Page faults 19,200 18,400 140,000 34,800 73,200 66,000 104,400
Messages 18,000 22,000 143,600 41,200 79,600 194,000 347,600
Barriers 3602 3602 3602 3602 3602 3602 3602
Mprotect 38,800 35,600 208,400 83,200 147,200 153,594 236,800
Twin/Diff 32,400 — — — — — —




create and diff apply which are not incurred in other
protocols. It can be seen that, if the costs of the
overheads of twin/diff create and diff apply are not
significant, LMW is likely to perform better than other
methods.

In Water-Spatial, the inter molecular forces computa-
tion phase exhibits read—write false sharing, i.e., a
molecule’s data structure is read by other processes
while a different part of it is being updated by its owner.
Any such intervening read by other processes would
cause the molecule to become read-only in its owner,
causing the subsequent write to result in a page fault.
However, if the reads do not intervene during the writes,
these page faults would not occur. Due to this behavior,
different interleaving of reads/writes incur varying
overheads in ABLSW and ABSC in the case of Water-
Spatial. As a consequence, we report the best and the
worst case overheads for ABLSW and ABSC too for
Water-Spatial. Whereas Barnes and Radix, which do
not have read—write false sharing, are not affected by the
interleaving reads/writes under the ABLSW and ABSC
protocols.

Except in Barnes, the worst case overheads of LSW
are significantly higher than the overheads in ABLSW
and ABSC. This indicates that the ping-pong effect could
occur to a large extent in these applications. If this
happens, then ABLSW and ABSC, which completely
eliminate false sharing, could possibly perform better
than LSW. However, if the actual overheads fall closer
to the best case in LSW, as our experimental results
indicate, then LSW will perform better than ABLSW
and ABSC in all the three applications.

In conclusion, we observe that the EmFiGS approach
(ABLSW and ABSC) incur significantly higher over-
heads (by a factor of as much as 90) than the Multiple
Writer approach. Since our analysis is implementation
independent, we conclude that any implementation of
EmFiGS such as ABLSW, ABSC, or even Millipage/
Multiview will incur more true sharing overheads than
the savings in false sharing.

3.5. Remarks

Even though our manual analysis presents a true
picture by considering the overheads that are intrinsic to
the protocol, the analysis is not without limitations.
First of all, it should be noted that the manual analysis is
performed by inspection of the source code of the
benchmarks. Therefore, availability of the source code is
a primary requirement for our manual analysis. The
manual analysis requires the knowledge of how the
accesses to shared data structures translate to accesses to
shared pages. This is easy to obtain if the accesses are
straightforward, as in the case of array accesses. When
the accesses to shared data structures are through
pointers, then the manual analysis becomes complex

and tedious. Next, it should be remarked here that our
manual analysis takes into consideration only the major
overheads incurred in the applications, like page faults
from a software DSM perspective. However, it does not
take into account other system related (finer) overheads
like TLB misses and cache misses. Further, we can
compare the counts of overheads incurred by two
different methods directly, only if the overheads
themselves are identical. For example, the twin/diff
overheads which are only incurred in LMW, or the
message and synchronization overheads which incur
different amounts of execution time in different methods
are difficult to compare. In such cases, the conclusions
we can draw from the overheads counts are somewhat
limited. Therefore, care should be taken in avoiding the
caveats of manual analysis described above, while
interpreting the results of the analysis. To address some
of these issues and to attribute costs, in terms of
execution time, for the different overheads, we present
the experimental evaluation of the different methods in
the following section. The experimental evaluation
complements our manual analysis by presenting a
complete picture and helps draw a better comparison
of the different methods. Thus the manual analysis and
the experimental evaluation go hand-in-hand in pre-
senting a complete comparative performance evaluation
of the methods.

4. Experimental evaluation

This section presents our experimental evaluation of
the benchmarks. Our experimental platform is a 12 node
IBM SP2 connected by a high-performance switch. The
SP2 system consists of a number of POWER2 Archi-
tecture RISC System/6000 processor nodes each with its
own main memory and its own copy of AIX operating
system. The page size is 4 kilobytes. We used CVM [17],
an open source software DSM system for our experi-
ments. CVM uses MPI as the underlying messaging
layer. We compiled CVM with MPL, which is IBM’s
proprietary implementation of the MPI standard. CVM
supports LMW, LSW and Sequential Consistency
protocols. We implemented the array bloating technique
in CVM. Although in principle array bloating can be
achieved using compiler instrumentation, we manually
instrumented the benchmarks to support array bloating.
Also, we have suitably modified CVM to obtain detailed
break-ups of the overhead times.

Throughout this section, we present and discuss the
results of the three benchmarks run on 4 processors for
the input sizes shown in Table 1. Each of these
benchmarks was also run on 2, 8, and 12 processors,
and for a larger input size. These results show a similar
trend and are not presented here due to space
limitations.



4.1. Validation of manual analysis

Tables 5-7 show the overheads incurred by the
applications in the 4 processor case under different
protocols. The column marked “Expt.” shows the
measured values of the overheads incurred by process
0 when the applications were run on CVM.

We see that the experimental values of all the
overheads, except mprotect, match well and fall within
10% of those obtained from our manual analysis. A part
of this (minor) deviation is due to the simplifying
assumption—molecules/bodies do not move from one
process to another (refer to Section 3.2)—in our
analysis. The difference in the mprotect overhead can
be reasoned as follows. In CVM, the mprotect () system
call is used to invalidate a page at a barrier, and it is
called once for each write notice. Suppose a page has k
write notices, then the mprotect() system call is
invoked k times, even though the first call is sufficient
to invalidate the page. In our manual analysis, we have

correctly accounted only one mprotect for an invalida-
tion. Consequently, the experimental values of mpro-
tect deviates by 50-100% from the values obtained
from our analysis. This is one example of an imple-
mentation-dependent overhead which is very specific to
the way CVM implements invalidation. Note that by
not including such implementation-dependent over-
heads, our manual analysis presents a true comparison
of the different protocols.

The overheads in LSW measured in the experiments
fall within the minimum and maximum values calcu-
lated in our analysis, and are closer to the best case
overhead values. The overheads in the worst case LSW,
calculated from our manual analysis are approximately
2, 5 and 400 times the measured experimental values in
Barnes, Water-Spatial, and Radix, respectively.

Comparing the overheads measured from our experi-
mental evaluation, we can observe that LMW incurs
significantly less overhead than ABLSW (by a factor of
2.5-15) or ABSC (by a factor of 4-20). LSW, despite

Table 5

Overheads in Barnes—comparison of analysis vs. experimental

Overheads LMW LSW ABLSW ABSC

Analysis Expt. Best case Worst case Expt. Analysis Expt. Analysis Expt.

Page faults 3362 3425 4797 34,809 15,393 54,407 55,833 58,507 59,104

Messages 3684 3963 3567 35,055 14,654 31,693 31,202 58,589 89,126

Barriers 82 82 82 82 82 82 82 82 82

Mprotect 6683 12,004 9512 54,120 37,219 108,732 148,077 116,932 154,817

Twin/Diff 7339 8002 — — — — — — —

Table 6

Overheads in Water-Spatial—comparison of analysis vs. experimental

Overheads LMW LSW ABLSW ABSC

Analysis Expt. Best Worst Expt. Best Worst Expt. Best Worst Expt.

case case case case case case

Page faults 19,200 20,333 18,400 140,000 27,791 34,800 73,200 54,535 66,000 104,400 82,104

Messages 18,000 19,435 22,000 143,600 28,536 41,200 79,600 42,443 194,000 347,600 315,469

Barriers 3602 3602 3602 3602 3602 3602 3602 3602 3602 3602 3602

Mprotect 38,800 51,288 35,600 208,400 70,048 83,200 147,200 147,200 153,594 236,800 226,869

Twin/Diff 32,400 43,359 — — — — — — — — —

Table 7

Overheads in Radix—comparison of analysis vs. experimental

Overheads LMW LSW ABLSW ABSC

Analysis Expt. Best case Worst case Expt. Analysis Expt. Analysis Expt.

Page faults 1049 1193 1372 4,194,652 9770 28,000 28,102 28,000 28,102

Messages 1050 1284 1053 3,146,032 9558 28,708 18,359 60,000 60,426

Barriers 22 22 22 22 22 22 22 22 22

Mprotect 2754 7855 2680 4,195,960 25,568 61,496 129,342 65,536 86,404

Twin/Diff 2734 3628 — — — — — — —




experiencing considerable false sharing, incurs less
overheads, less by a factor of 1.5-3 than ABLSW in
all applications.

4.2. Execution time results

In this section, we address the question, “how do the
observed overhead counts translate into execution
times?”’.

4.2.1. The method

Fig. 5 shows a detailed split-up of the execution time
of the applications in the 4 processor case. The
performance results for 2 and 8 processor cases are
reported in Appendix A. Our discussion here concen-
trates on the performance results of 4 processors,
although they are also applicable to 2 and 8 processors.
The total execution time of an application is broken
down into the computation time (i.e., time spent in the
computation steps of the application—shown as “Com-
putation” in graph legend) and the overheads time. In a
separate experiment, we measured the computation time
for each application running on a single processor (with
%th of the problem size) and found that it matches
closely with computation time reported here. Hence we
say that overheads considered in our study account for
all time other than the computation time.

The overheads time is in turn broken down into the
various overheads listed in Section 2.7. Except for the
page fault kernel overhead time, all other overhead
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times are actually measured by running the application
on CVM. The page fault kernel overhead was measured
by timing an empty SIGSEGV handler. The page fault
kernel overhead per page fault was found to be 100 ps.
Note that in our discussions, the page fault kernel
overhead neither includes the actions performed to
make the shared page consistent, nor the time taken to
set up the appropriate read/write permissions. All
timings are normalized with respect to the total
execution time of the applications running under the
LMW protocol in respective cases. The graphs show the
timings on node 0. Timings on other nodes a follow
similar trend.

4.2.2. Results

All the applications follow the same trend as in the
manual analysis, i.e., ABLSW and ABSC perform
significantly worse than LMW by a factor of 1.5 to as
much as 90 times. Further, contrary to the popular
belief about the “heavy-weightedness’ of multiple writer
protocols, we observe that the Twin/Diff overheads (not
visible in the graphs) contribute to less than 1% of the
total overheads. Decreased false sharing overheads
leveraged by the negligible overheads in supporting
multiple writers cause LMW to perform better than
ABLSW and ABSC.

As the overheads in LSW fall closer to the best case
(as seen from Tables 5-7), we see that LSW also
performs better than ABLSW and ABSC by 1.2 to 20
times. As remarked earlier, the poor performance of
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Fig. 5. Normalized execution time split-up.



EmFiGs methods is due to the decrease in spatial
locality. To further explain this, we first classify the page
faults in the applications into two categories:

True sharing fault: The first page fault to a shared
page between two synchronization points is considered a
true sharing fault.

False sharing fault: All page faults other than the first
page fault to a shared page between two synchronization
points are considered false sharing faults. These faults
occur only if some other process writes to the page in the
same interval, causing the permission of the page to be
changed to read-only in this process. Since the applica-
tions we have considered are free of data-races, the
writes by the two processes are to non-overlapping
regions. Therefore the subsequent page faults are solely
due to false sharing.

We measure the true sharing and false sharing faults
in the applications using the above classification criteria
and report them in Table 8.

Comparing the total number of page faults in the
applications from Tables 5-7 with the number of true
sharing and false sharing faults in Table 8, we see that
all the page faults are true sharing faults in ABLSW and
ABSC. In Water-Spatial, a few false sharing faults also
occur due to the read—write false sharing of the
individual molecules themselves. Thus we observe that
the reduced exploitation of spatial locality causes high
true sharing faults in ABLSW and ABSC. This increase
in the number of true sharing faults necessitates more
page request messages. Therefore we observe higher
message overheads in ABLSW and ABSC.

LSW and SC protocols require that a page that is
written by a process be made read-only at that process
and invalidated at other processes at the next synchro-
nization point. In ABLSW and ABSC, due to bloating
of shared arrays, more pages have to be made read-only
or invalidated at synchronization points than LMW or
LSW. This leads to more work during a barrier
synchronization in ABLSW, which in turn results in a
larger barrier overheads. In the case of ABSC, the action
performed at a barrier synchronization is minimal.
However, it happens that one of the processes (typically
process 0) arrives at a barrier earlier. This is because
process 0 has read/write permission for all pages that it
is modifying and read permission for all other pages.

Table 8
False sharing (FS) and true sharing (TS) faults

Hence this process completes all its computation until
the next synchronization point. During this period, the
process does not see asynchronous messages sent by
other processes. This happens because in CVM asyn-
chronous message are received using polling, and polling
occurs only when the application process invokes a
DSM layer routine. This is another example of
implementation dependent overhead. We discuss this
further in Section 4.4.

As a consequence of the above, process 0 enters the
DSM layer only upon executing the next synchroniza-
tion call. Subsequently all page/diff requests of other
processes were satisfied by process 0, and the other
processes arrive at the barrier. In our performance
measurements, the barrier time also includes the waiting
time at the barrier. Hence the barrier overhead is larger
even in ABSC. Thus we see that the decreased
exploitation of spatial locality is the main reason for
poor performance of ABLSW and ABSC, the dominat-
ing overheads being message and barrier overheads. We
address the spatial locality effects in the following
section.

4.3. Overcoming spatial locality effects using tapeworm

In the previous section, we have seen that the
principal reason for the poor performance of ABLSW
and ABSC is the high true sharing faults which is the
result of reduced exploitation of spatial locality in these
protocols. This raises the question that if the effects of
reduced spatial locality are eliminated, will ABLSW and
ABSC perform better than LSW or LMW? In other
words, can the EmFiGS approach be somehow made
useful? In this section, we propose to incorporate
Tapeworm [18], a record-replay scheme which helps
overcome spatial locality effects, in ABLSW. We refer to
this combined scheme as ABLSW-TW, and evaluate its
performance in this section.

The basic idea behind Tapeworm is to “‘record”
accesses to a shared page in an interval between two
synchronization points (not necessarily two consecutive
ones). The recorded accesses can be “replayed” at the
beginning of the next instance of the same interval, say
the next iteration. Replaying means validating those
pages early. The pages can be validated in an aggregated

Benchmark Number of false sharing (FS) and true sharing (TS) faults

LMW LSW ABLSW ABSC

FS TS FS TS FS TS FS TS
Barnes 0 3425 3967 11,426 0 55,833 0 59,104
Water-Spatial 0 19,892 7373 17,864 2280 52,899 22,407 60,825
Radix 0 1193 5519 1197 0 28,102 0 28,102
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Fig. 6. Normalized execution time split-up.

fashion speculatively. The read accesses to the shared
array by the processes will not cause page faults in the
current iteration, if the accesses to shared page follow
the recorded information. Thus, iterative applications
that tend to access same set of shared pages across
iterations benefit from the tapeworm mechanism by
incurring fewer page faults and messages. However, if
the accesses to shared memory are irregular and non-
repetitive, then these applications do not benefit from
tapeworm and might even perform poorly because of
the wasted effort in fetching unnecessary pages.

Fig. 6 shows the normalized execution time of
applications under ABLSW-TW protocol. The normal-
ized execution time of applications under other proto-
cols are also shown for comparison. The execution times
are as observed on node 0 when the application were run
on 4 processors. The execution time results for 2 and 8
processor cases are shown in Appendix A.

Comparing the execution times of ABLSW and
ABLSW-TW, we observe that the execution time
reduces by a factor of 2 in Barnes. Note that while the
message time has increased slightly, the barrier and page
fault kernel overhead times have decreased significantly
in this application, causing ABLSW-TW to perform
better than ABLSW. However, in the remaining two
applications, the execution time under ABLSW-TW is
marginally higher than ABLSW. In Water-Spatial, even
though the page faults are completely removed, and the

page fault kernel overhead is nearly zero, due to the
increased message overhead, ABLSW-TW performs
worse than ABLSW by about 2%. In Radix, Tapeworm
is not very beneficial as (i) the number of iterations is
only 4, (ii) the recorded information can only be used in
the last two iterations, and (iii) the record/replay scheme
is not accurate for RADIX, as the writes were to
different sets of pages in each iteration. As a conse-
quence, the reduction in the number of page faults and
messages in Radix under ABLSW-TW is not as
significant as in Barnes. We also observe an increased
message overhead in Radix under ABLSW-TW, which
contributes to its poor performance.

Next, we observe that the barrier synchronization
overhead is lower in ABLSW-TW than in ABLSW. This
is because, the actions performed in a barrier vary
between the protocols (although the number of barriers
executed under different protocols is the same). Also, we
observe that the message time under ABLSW-TW has
increased by 15-30% compared to ABLSW in all three
application. This is partly because of the increased
message sizes in ABLSW-TW due to aggregation.
Further the increase is also due an the implementation
specific detail, namely, asynchronous message handling
in CVM. We analyze the message overhead in greater
detail in the following section.

Last, comparing ABLSW-TW with LMW, we ob-
serve that the execution under LMW is significantly



lower, by a factor of 1.4-90, in all three applications.
Thus, even after removing all the true sharing fault
overheads caused by the reduced exploitation of spatial
locality in array bloating or the EmFiGS approach,
ABLSW-TW performs poorly due to the increased
message overhead, increased barrier wait time, and the
large mprotect overheads due to array bloating. Thus
LMW seems to be a clear winner and tolerates false
sharing effects.

4.4. Analysis of message overhead

In CVM, a process sends messages to other processes
on various events like page faults, lock acquire, or
barrier. These messages are handled asynchronously,
i.e., a message is processed only when the receiving
process polls for the message, even though the message
might have been received by the underlying messaging
layer at an earlier point of time. This is because the
receiving process is typically unaware of the message
arrival. In CVM, polling for messages is performed
using the MPI probe function at the beginning of the
page fault handler or in any explicit function calls to
com_barrier, com_lock, or com_unlock. As a result of this
asynchronous message handling, some time is elapsed
between the instant the message arrives at a node and
the instant the receiving process actually “‘sees” it. We
refer to this time as “holdup” time (Keleher [24] uses the
term ‘“‘responsiveness’).

We measure the holdup time for a request message by
taking the difference between the time when the message
is sent from the sender and the time when the receiver
“sees” the message.® This difference actually gives the
sum of latency of the message and the holdup time. In
CVM, request messages are small as they contain only a
flag indicating the type of request, e.g., page request and
diff request. Therefore, we approximate the above time
to the holdup time of the message. Table 9 shows the
average holdup time per message in the three applica-
tions under the different protocols.

We see that the average holdup time for ABLSW-TW
is highest in all cases. In fact, the average holdup time in
ABLSW-TW is 2-8 times larger than the average holdup
time in LMW. In ABLSW-TW, since pages are fetched
ahead of demand, the number of page faults incurred is
significantly lower. Hence, the number of calls to
MPI_probe also becomes lower. Therefore, we see a high
holdup time in ABLSW-TW. Consequently, the message
overhead in ABLSW-TW is higher and ABLSW-TW
performs poorer than LMW and LSW. Further, we
observe that the average holdup time among other
protocols do not follow a consistent trend. This may be
due to the fact that the holdup time is strongly

SWe use IBM’s proprietary implementation of the MPI standard in
which MPI_Wtime function returns the global time.

Table 9
Average holdup time

Benchmarks Average holdup time (in ps)

LMW LSW ABLSW ABLSW-TW ABSC
Barnes 156 691 232 7214 153
Water-Spatial 1196 870 449 2701 288
Radix 526 375 3482 4115 2203

influenced by the frequency of MPI_probe calls, which,
in turn, depends on the application behavior like how
often  synchronization primitives (cvm_barrier,
cvm_lock, and cvm_unlock) are called. These are the
occasions when DSM layer gets control and the
MPI_Iprobe is issued. As a consequence, we see a
somewhat inconsistent trend in the holdup times under
LMW, LSW, ABLSW, and ABSC.

Thus, the decreased number of page faults in
ABLSW-TW causes an indirect effect of increased
holdup time and consequently higher message over-
heads. This effect is mainly due to the implementation of
message handling in CVM, i.e., asynchronous message
handling. This raises the question “Would ABLSW-TW
perform better with application-level polling [24] or
interrupt-based message handling?”. To address this
question, we employed application level polling in the
benchmarks. We inserted the cvm probe call, which
checks for new messages and processes the outstanding
messages if any, in the innermost loops of the bench-
marks. We report the execution times of the benchmarks
in the 4 processes case with and without cvm_probe in
Table 10.

We observe that even though application level polling
improves the performance by upto 20% in some cases,
we do not see any change in the general trend with
respect to the relative performance of the different
methods in any of the applications. Therefore, we
conclude that the experimental results presented in this
section, especially with respect to the relative perfor-
mance of the different methods, will hold good even
when application level polling is used.

4.5. Effects of bloat factor

In our discussion so far on the array bloating
implementation, we have assumed the allocation of only
one body, molecule or key per shared page, i.c., we have
considered bloat factors of 32, 8 and 64 in Barnes,
Water-Spatial and Radix, respectively. From the dis-
cussions in Section 3.4, it is evident that the above bloat
factors can eliminate false sharing completely. However,
at the same time, they also reduce the exploitation of
spatial locality in the applications. Thus the bloat factor
parameter has a two-fold effect: increasing it reduces
false sharing but decreases exploitation of spatial



Table 10
Execution times with application level polling

Benchmark Time in seconds
LMW LSW ABLSW ABSC ABLSW-TW
Async. Appln. Async. Appln. Async. Appln. Async. Appln. Async. Appln.
message polling message polling message polling message polling message polling
Barnes 32.83 31.72 43.63 43.54 141.08 140.55 162.32 164.11 71.74 71.12
Water-Spatial 59.67 51.07 88.19 92.80 85.04 78.02 151.01 147.21 84.25 72.94
Radix 4.16 3.03 21.11 21.32 364.03 328.74 410.54 343.47 358.21 346.10
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locality, whereas decreasing it introduces more false
sharing but increases exploitation of spatial locality.
Hence, a natural question that arises is where is the
tradeoff point for these two effects. To investigate this,
we present the execution times of the three applications
running under ABLSW with different bloat factors.

The execution times of the applications are broken
down into false sharing overheads, true sharing over-
heads, and the computation time. All the overheads due
to false sharing faults’ (including the associated
messages, operations in SIGSEGV handlers, and
mprotects) are included in false sharing overheads.
The overheads due to true sharing faults are included in
true sharing overheads. We include the only other
overhead, viz., the barrier overhead, also in true sharing
overheads. This is because the amount of work done at
barrier (like invalidation of pages) is directly propor-
tional to the number of shared pages. The computation
time is the time spent in computation steps in the
application.

Fig. 7 presents the break-up of the execution time into
false sharing overhead, true sharing overhead, and
computation time for the three applications running
under ABLSW protocol with varying bloat factors. On
the x-axis, we plot the actual number of bytes that are
used per shared page. This is equivalent to the size of a
millipage in Millipage/Multiview. The corresponding
bloat factors are also shown in brackets. Note that,

"Refer to Section 4.2.2.

higher the value of bloat factor, fewer bodies, molecules,
or keys are allocated per page. Thus, the left most point
on the x-axis corresponds to a bloat factor of 1, which
represents pure LSW protocol and the right most point
represents the full ABLSW protocol as discussed in
Section 3.2. The y-axis represents of execution time in
seconds. The graph shows 3 regions representing false
sharing overheads, true sharing overheads, and the
computation time.

In all cases the false sharing overhead decreases with
increasing bloat factors. When the bloat factor is such
that there is only one body, molecule, or key per shared
page, there is no false sharing in the application and we
see that false sharing overhead is 0. The true sharing
overhead increases for all applications with increasing
bloat factor. A break-even between these two overheads
occur at a bloat factor of 2 (2048 bytes per page) in the
case of Barnes and at a bloat factor of 4 (1024 bytes per
page) in the case of Radix. As can be observed at least in
Barnes and Radix, the increase in true sharing
significantly dominates over the decrease in false
sharing. Hence the total execution time is seen to be
increasing at higher bloat factors. In Water-Spatial too,
the false sharing overhead decreases and the true sharing
overhead increases with increasing bloat factors. the
break-even occurs at a bloat factor of 8 (512 bytes per
page) Because of the less steep increase in the true
sharing overhead (with increasing bloat factors), the
effects of increased true sharing overhead is not as
evident as it is in the other two applications. None-



theless, the true sharing overhead does increase with
bloat factor; its contribution to the execution time at
bloat factors 1, 2, 4 and 8 are 54.5, 56.1, 58.6 and 62.0
seconds respectively.

Thus we see that the inter-play between the false
sharing and true sharing overheads produces best
performance at a lesser value of bloat factor, which in
general is not equal to the value where we have only one
body, molecule, or key per page. We call the ABLSW
with this bloat factor as best case ABLSW. Table 11
shows the execution time of best case ABLSW along
with LMW. We see that even with the best case bloat
factor, ABLSW performs worse than LMW by an a
factor 1.15 to 4.06. Last, we see that having a value of
bloat factor lesser than the maximum value required to
eliminate false sharing completely is beneficial in
ABLSW even at the cost of some false sharing
overheads (Figs. 8 and 9).

Table 11
Comparison of best case ABLSW vs. LMW

Benchmark Exec. time in seconds

LMW Best case ABLSW
Barnes 32.83 38.34
Water-Spatial 59.67 85.87
Radix 4.16 11.22
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5. Related work

There is a large body of literature in the area of
software distributed shared memory [4,20,21]. A specific
concern in page-based software DSM systems is the
effect of false sharing on the performance. The LMW
approach which uses the relaxed memory consistency
model [1,19] with multiple writers [6,15] has been widely
used to overcome the effects of false sharing. Recently,
Itzkovitz and Schuster in their work on Millipage/
Multiview [11,12] present a different technique to
eliminate false sharing in page-based software DSMs
by emulating fine grain sharing. Their work only reports
performance speed-ups obtained from their technique,
but does not present a quantitative comparative analysis
of the multiple writer approach and Millipage. The work
presented in this paper addresses this problem both by
an implementation independent analysis and thorough
experimental evaluation.

The successor to Millipage [13,23] extends the
technique to adapt the sharing granularity across
variables and code sections dynamically. This is a much
recent work and is not addressed elaborately in our
work. Nonetheless, our manual analysis can be extended
directly to adaptive Millipage by considering different
sharing granularities across different iterations and
different sections of the iteration. Also, the maximum
speedup improvement that is reported in this work [23]

Normalised Execution time splitup
18
=
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

LMW  LSW ABLSWABLSW-TW ABSC
Protocols

Page fault kernel overhead
Twin/Diff overheads
Bcopy overhead

Barrier overhead

M protect overhead
Message overhead
Computation

d) Legend

Fig. 8. Normalized execution time split-up—2 processors case.
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is 1.8 for the adaptive Millipage over original Millipage.
But we observe that the speedup improvements of LMW
over ABSC (following the EmFiGS approach, repre-
sentative of Millipage) are 4.9, 2.5, and 99 for the three
applications. Further, the Tapeworm technique more or
less captures the adaptiveness by validating multiple
pages dynamically. However, our results establish that
even ABLSW-TW does not perform better than LMW.

Orthogonal approaches based on compiler techniques
have been presented by Scales et al. [25], Jeremiassen
[14], and Granston [9] to overcome false sharing effects
in software DSM system. While the later two works
[9,14] are specifically for fine grain hardware DSM, the
first work proposes a software DSM that supports fine
grain sharing. In [7], the performance of Shasta [25], a
fine grain software DSM system, and Cashmere [26], a
software coherent shared memory on a cluster.
Although this work presents quantitative performance
results, it does not focus on false sharing. Our paper, on
the other hand, compares false sharing removal and
false sharing tolerance on page-based DSM systems with
no additional hardware support.

Our Array Bloating is somewhat similar to the pad
and align transform approach followed in [14]. Freeh
and Andrews [8] have proposed the “Writer-owns”
protocol which improves upon the multiple writer
protocol by dynamically re-mapping sub-pages (called
“atoms”) to the processes that write to them at run time,
to reduce false sharing. While the focus of these works

are on developing efficient DSM architecture, our work
concentrates on comparative performance evaluation of
the different approaches. To the best of our knowledge,
there is no such comparative study reported in the
literature.

In the work [3] by Amza et al. it is claimed that the
performance of many applications running under
relaxed consistency models improve when sharing
granularity is increased. This work also discusses trade-
offs between increased false sharing and better exploita-
tion of spatial locality in LMW systems, when bigger
consistency units (sizes bigger than a page) are used in
software DSMs. They attribute the performance im-
provements to the fact that the benefits of aggregation
usually outweigh false sharing penalty. This is in
agreement with our results. Further our work adds
more insight to this observation by comparing LMW
with systems having lower granularity (sizes smaller
than a page), but running SC and LSW protocols. Last,
while their performance results are based on experi-
mental evaluation on Treadmarks software DSM [20]
under LMW protocol, our work presents both analytical
and experimental results for LMW, LSW, ABLSW, and
ABSC.

Zhou et al. [30] present the performance tradeoffs of
relaxed consistency models and true fine grain sharing.
They claim that the performance of hardware fine grain
sharing systems with sequential consistency tends
towards the performance of relaxed consistency models.



But in our work, we have considered emulated fine grain
sharing without any architectural support.

6. Conclusions

In this paper, we have presented the performance
evaluation of two approaches to overcome false sharing,
viz., the Multiple Writer approach and the EmFiGS
approach, in page-based software DSM systems. Our
evaluation is two pronged: (i) an implementation
independent approach which reports overheads counts
in different methods and (ii) an experimental evaluation
of the methods implemented on top of CVM, a page-
based software DSM running on IBM-SP2. Our results
indicate that even though false sharing is eliminated
completely in the EmFiGS approach, its overheads are
found to be significantly higher by a factor of 1.5 to 90
times the overheads in multiple writer approach. The
high overheads in the EmFiGS approach are due to the
decreased exploitation of spatial locality. By emulating
finer granularity of sharing, the EmFiGS approach
incurs more true sharing overheads than the savings in
false sharing. In contrast, the overheads incurred by the
multiple writer approach to support multiple writers is
insignificant, which is contrary to the popular belief.
Further, the EmFiGS approach performs worse than
LSW (Lazy release Single Writer) protocol, which
experiences the false sharing overheads in full. The
performance of the EmFiGS method, namely ABLSW
doesn’t improve significantly even after incorporating
Tapeworm, which is a record-replay technique to fetch
pages ahead of demand in an aggregated fashion. Thus,
ABLSW-TW, ABLSW with Tapeworm, performs worse
than LMW. Next, we have analyzed the effects of
asynchronous message handling on the performance of
the methods. Last, we have also investigated the effect of
sharing granularity in the EmFiGS approach. The
tradeoffs between higher false sharing at higher sharing
granularity and reduced exploitation of spatial locality
at lower sharing granularity are reported.

The overhead analysis presented in this paper is
restricted to software DSMs with no hardware support
and no OS modification. It can be extended to software
DSMs that include hardware support and/or OS
modification. We have reported experimental evaluation
of various overheads in a public domain software
(CVM) on IBM’s Scalable Parallel (SP) architecture
with a high-performance switch. It is possible to study
the effects of various overheads under different messa-
ging layers and newer network interface architecture as
well as a different mechanism, such as interrupt based
scheme, for handling asynchronous messages. Last, as
discussed in Section 5 our manual analysis can be
extended directly to adaptive granularity schemes by

considering different sharing granularities across differ-
ent iterations. These are possible future directions.
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