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Abstract

We compare several different parallel implementation approaches for the clustering
operations performed during adaptive gridding operations in patch-based structured
adaptive mesh refinement (SAMR) applications. Specifically, we target the cluster-
ing algorithm of Berger and Rigoutsos (BR91), which is commonly used in many
SAMR applications. The baseline for comparison is a simplistic parallel extension
of the original algorithm that works well for up to O(102) processors. Our goal is
a clustering algorithm for machines of up to O(105) processors, such as the 64K-
processor IBM BlueGene/Light system. We first present an algorithm that avoids
the unneeded communications of the simplistic approach to improve the clustering
speed by up to an order of magnitude. We then present a new task-parallel im-
plementation to further reduce communication wait time, adding another order of
magnitude of improvement. The new algorithms also exhibit more favorable scaling
behavior for our test problems. Performance is evaluated on a number of large scale
parallel computer systems, including a 16K-processor BlueGene/Light system.

Key words: parallel computing, high-performance computing, task-parallel,
asynchronous, clustering, adaptive mesh refinement

1 Introduction

Adaptive mesh refinement (AMR) is an approach for discretizing and solv-
ing science and engineering problems on computational meshes. It is useful
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Fig. 1. Simple 2D structured AMR mesh hierarchy with three levels of refinement.
Shaded cells are those on which finer grids are overlaid.

for problems with localized fine-scale regions in the computational domain.
By placing the mesh points and computational efforts where they are needed
most, AMR can require far fewer computational resources than would be re-
quired by using uniformly fine meshes. In a dynamic problem where solution
features move and appear or disappear, the AMR mesh changes to adapt to
the changing features. Grid points can be automatically inserted and removed
where needed.

Patch-based structured AMR (SAMR) is an approach originally proposed by
Berger, Oliger, and Colella (BO84; BC89) that composes the adaptively re-
fined mesh by overlaying successively finer individual structured grids, known
as patches, where higher resolution is needed (Figure 1). The mesh is com-
posed of a sequence of levels, each having greater resolution than the previous.
As shown in Figure 1, fine grids lines are aligned with coarse grid lines at
fixed intervals. Although other approaches to AMR, such as tree-based block-
structured AMR, do not require the clustering algorithm, the algorithm is
widely used in patch-based SAMR.

The clustering algorithms described in this paper are used during the dynamic
gridding steps in the SAMR applications. SAMR mesh adaptivity involves
replacing the current level with an updated one and transferring data to the
new level. Refinement involves adding a finer level to the hierarchy, overlaying
the finest existing level. Each of these operations builds new levels. Clustering
generates the initial set of boxes from which to build the new levels. The
boxes are logically rectangular, defined by the indices of their lower and upper
corners.

To create a new level, the application must determine what regions the new
level should cover and generate the structured grids to cover them. A feature
detection scheme specific to the problem is commonly used to “tag” cells that
the new level should cover, e.g., it finds cells that contain large gradients or
numerical error. The clustering algorithm then computes a set of boxes that
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cover the tagged cells. Each box encloses a cluster of tagged cells. The set of
boxes may be further processed (e.g., to enforce size constraints). The grids
in the new level are then created from the final set of boxes.

The algorithm proposed by Berger and Rigoutsos (BR91) is widely used for
clustering in SAMR operations. Often referred to as the Berger-Rigoutsos al-
gorithm, it is generally quite fast and works well in serial. A simplistic parallel
version is sufficiently fast for low and moderate numbers of processors. How-
ever, its scaling properties can be poor, and hence it can be expensive for
large problems run on many processors (WHH03). This paper describes new
algorithms, based on that of (BR91), that have improved scaling properties
on large parallel computers.

It is important to note that clustering is only done when a new grid level is
generated (during refinement and regridding) so that the frequency of grid
adaptation affects the overall clustering cost. For example, a problem with
static adaptivity will only perform clustering once to generate the initial re-
fined grid, whereas a fully adaptive problem will cluster whenever the grid
changes. While it is possible to reduce the overall clustering costs in a compu-
tation by reducing the frequency with which grids are adapted, this approach
introduces other overheads. For instance, the refinement region must include
extra buffer zones to ensure that dynamic features in the solution do not move
beyond the refined region between regridding steps. In this work we focus on
improving the efficiency and scalability of the clustering operation itself, in-
dependent of how often it is applied.

Clustering is one of several steps typically used in grid adaptation. While
the overall speed of an SAMR simulation depends on other steps, numerical
algorithms, the problem being solved and other parameters, we focus on the
clustering step in this paper.

The algorithms described are implemented in the SAMRAI framework (HK02;
SAM04) developed at Lawrence Livermore National Laboratory. The concepts
developed should readily apply to other SAMR implementations.

The remainder of the paper is organized as follows. Section 2 reviews the
original Berger-Rigoutsos clustering algorithm. Section 3 discusses two single-
task parallel implementations for the Berger-Rigoutsos algorithm and their
performance. Section 4 introduces a task-parallel approach and two algorithms
using this approach. The performance of the task-parallel algorithms are given
and compared to the single-task algorithms. Concluding remarks are given in
the last section.
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2 Previous Clustering Algorithms for SAMR

In 1991, Berger and Rigoutsos (BR91) considered a number of general varia-
tions of bottom-up and top-down clustering algorithms for SAMR. Bottom-up
variations start with seed points computed from a tagged-cell pattern and
build boxes around the seed points using variances of the k-means partition-
ing algorithm (And73; Har73). The top-down algorithm places all tagged cells
into an initial single box, then splits the initial and subsequent boxes to even-
tually form the final set of boxes (see Figure 2). These variations are forms
of hierarchical clustering. Each hierarchical clustering corresponds to a tree,
known as a dendogram, with the initial grouping at the root and the final
groupings at the leaves (DH73) (see Figure 3).

Berger and Rigoutsos judged their top-down algorithm as best. In this algo-
rithm the criteria for whether and where to split a box are based on ideas
from edge detection algorithms (MH80), using signatures. Signatures for a
d-dimensional box are computed by projecting each tag to the d axes and
summing the number of tags at each point on the axes (see Figure 2a). The
signatures form one-dimensional descriptions of the tag distribution in higher-
dimensional boxes.
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Fig. 2. A top-down hierarchical clustering example using the Berger-Rigoutsos Al-
gorithm (BR91). Tagged cells are marked by dots. a) Signatures, bounding box and
cutting plane used by the Berger-Rigoutsos algorithm. Σ is the signature. ∆ is the
undivided Laplacian of the signature; ∆i = Σi−1 − 2Σi + Σi+1. Heavy-lined box is
the bounding box of the clustered tags. Dashed line is the location of the cutting
plane based on the inflection point criterion (see text). b) Resulting box clusters.

Signatures are used to decide whether and where to split a candidate box in
the top-down algorithm, according to the following criteria:

(1) A box is split if it does not meet a preset efficiency threshold. Efficiency
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Fig. 3. Dendogram corresponding to the clustering example in Figure 2. The edges
in the dendogram connects parents to their children. Node 0 is the initial cluster.
Node 2, 3, and 4 constitute the final clusters.

is defined as the ratio of the number of tagged cells in the box to all cells
in the box. It controls the degree of extra refinement in untagged regions.

(2) The first preferred location to split a box is at a hole, or zero value, in a
signature.

(3) If no hole is found in the signature, the next preferred cutting plane
location is at an inflection point (zero-crossing of the second derivative)
of a signature. Figure 2a shows the second derivative of the signature
approximated by the undivided Laplacian ∆.

In step (1), if the efficiency threshold is set to 1, every new box constructed will
contain only tagged cells. While this may seem desirable, in practice it leads to
construction of many small boxes, a process that introduces other overheads.
It is generally most efficient to set the threshold to something slightly less than
1, which reduces the number of boxes but includes some cells in the refined
region that were not originally tagged to be refined.

Rantakokko (Ran03) described a similar top-down algorithm but (optionally)
with specific criteria for choosing the next box to split. Whereas Berger-
Rigoutsos equivalently chooses the next box from a breadth-first search of
the current dendogram leaves, Rantakokko chooses, from all current dendo-
gram leaves, the one that has the most untagged cells. This search introduces
a dependency among the branches of the dendogram which would inhibit the
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task-parallel approach we are presenting (though other concepts we introduce
would still be usable). In this work, we focus on the original Berger-Rigoutsos
criteria which remains in wide use.

Algorithm 2.1 is a recursive version of the Berger-Rigoutsos algorithm used
in SAMRAI. We denote it as a single-task algorithm to differentiate it from
others that we present later. Each recursive call takes a single candidate box
and builds up a list of non-overlapping boxes that, collectively, cover the tags
in the candidate box. If the candidate box is split the algorithm is called
recursively for the two child boxes. We add at line (iii) an additional step (not
present in the Berger-Rigoutsos algorithm) of checking the combined efficiency
of the child boxes. The combined efficiency is defined as the ratio of tagged
cells summed in the left and right 1 boxes to the sum total of cells in those
boxes. This ratio is defined only if the left and right boxes are not split. If
the combined efficiency does not improve by the factor β over the parent’s
efficiency, the parent’s box is not split. In practice, we use β ≈ 1.2. The goal
of this step is to avoid generating two smaller boxes if the potential gain in
efficiency is minimal. The recursive structure of Algorithm 2.1 provides the
parent-children and sibling relationships needed for the check on combined
efficiency.

1 We use the terms left and right in an imagistic sense only, to aid comprehension.
In 3D boxes may be split into two parts with respect to a plane orthogonal to either
the x, y, or z axes.
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Algorithm 2.1: SingleTaskBergerRigoutsos(C, b)

comment: Compute a set of boxes C (the cluster), start-
ing with candidate box b

compute signatures of b (i)

b←bounding box of tags in b

if efficiency(b) ≥ threshold

then C ← {b}

else



































































































split b in two to create boxes bL and bR (ii)

SingleTaskBergerRigoutsos(CL, bL)

SingleTaskBergerRigoutsos(CR, bR)

if



























length(CL) > 1 or

length(CR) > 1 or

combined efficiency > β efficiency(b)

(iii)

then C ← {CL, CR}

else C ← {b}

We refer to the original Berger-Rigoutsos clustering method as a single-task
algorithm since operationally it consists of a set of tasks that are executed se-
quentially (i.e., one at a time). With respect to Figure 3, the tasks are executed
in the order: 0, 1, 3, 4, 2. Later, in Section 4, we will introduce task-parallel
methods that permit some of these tasks to be performed simultaneously.

3 Single-task Clustering Algorithms

Clustering involves accumulating and operating on tagged cells from the over-
all problem domain. That is, the clustering operation initially considers the
tagged cells over the entire level domain before breaking the domain up through
recursive subdivisions. This top-down approach causes its cost to grow with
problem size. Figure 4 demonstrates the typical growth in the clustering costs
for a scaled problem. This problem advects a geometrically complex discon-
tinuity across a domain with grid refinement following the discontinuity. It is
desirable to keep adaptive gridding overheads to a minimum so that most of
the computational work is concentrated on the numerical physics. The figure
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shows the costs of the numerical physics and the overheads introduced by
clustering during the adaptive gridding operations for the application run on
a production computer at LLNL. Note that on a small number of processors,
the cost of clustering is more than two orders of magnitude smaller than the
physics calculations, but on 1024 processors the clustering cost is several times
more costly than the physics. This demonstrates how poor scaling of the clus-
tering operations can severely impact the performance of fully adaptive SAMR
applications on large parallel systems. Although the clustering cost is clearly
problematic, it may not be the only slow algorithm. Overall performance of
the SAMR application also depends on other steps that are outside the scope
of this paper.

Fig. 4. Clustering vs. numerics costs for a weakly scaled adaptive advecting front
problem (global problem size is proportional to the number of processors) . Poor
scaling of the clustering algorithm causes it to become dominant on large numbers
of processors. The clustering algorithm used was a simplistic extension of the serial
algorithm, described in the text as the GlobalSumCluster algorithm.

Like most SAMR implementations (CGL+03; BB87; KB96; RBL+00), SAM-
RAI uses a domain decomposition single-program multiple-data (SPMD) par-
allelization approach. Individual structured grids that form a level are dis-
tributed to processors in such a way that the load is balanced. All data on
a grid resides on the processor that owns the grid. However, each processor
maintains an identical copy of the global list of boxes. When clustering with
this distributed data model, communication is required for the signature com-
putation. The simplest approach for this operation is to use standard global
sum operations. Partial signatures are computed using the data local to each
processor, then the global signature is formed by summing the contributions
from all processors. Each processor then independently performs the identical
computations as would occur if all data resided on a single processor.

We refer to this algorithm as GlobalSumCluster. This algorithm is identi-
cal to Algorithm 2.1 except that line (i) has been augmented with the commu-
nications described in the previous paragraph. (Although we have not found a
description of GlobalSumCluster in the literature, we believe that others
have used this algorithm in their AMR codes and therefore we make no claim
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as to its novelty.)

The GlobalSumCluster algorithm performs well as long as the number
of processors is reasonably small (typically < 100). However, as problems are
scaled up to run on large numbers of processors, performance degrades for two
reasons. First the length of the signatures increases with problem size; that
is, more data is exchanged through the global sums. Second, the number of
global sums increases as we consider more box regions; in practice, the number
of global sums increases roughly proportional to the problem size. The cost of
each global reduction is theoretically 2 O(NP log(P )), where N is the amount
of signature data and P is the number of processors. This is the reason behind
the rapid increase in costs demonstrated in Fig 4.

Analysis reveals that, as the recursion level in the Algorithm 2.1 increases, the
box sizes and hence the number of tags evaluated by the algorithm quickly
decrease. Table 1 shows how the number of participating processors changes
with each recursion level in a sample problem using 128 processors. We say a
processor participates if it owns data that contributes to the global sum that
is needed to evaluate the candidate box. The table shows that the relevant tag
data for most calls resides on a small subset of processors. In this example,
we find that 74.5% of all global sum operations require data from 18 or fewer
processors. Thus in the global sums, 110 of the 128 processors are performing
needless communication.

These findings indicate that global sums are unnecessary for most signature
construction operations. To achieve a more scalable approach, we redesigned
the algorithm by replacing global sums with sums within each group of par-
ticipating processors. We refer to the sum reduction within the group of par-
ticipant as group-summing.

The GroupSumCluster algorithm is similar to Algorithm 2.1 but uses
group-summing. If a processor is not the root processor (processor 0) and
owns no patch that intersects box b (i.e., if it is not a participating processor),
the routine returns immediately. The processors that remain then commu-
nicate amongst themselves to compute the signature for b. The signatures
are assembled on the root processor using an all-to-one reduction operation
(where all refers to the participating processors). The root processor performs
the operations involving the location of box cut points and cutting boxes. In
the box splitting step, line (ii) of Algorithm 2.1, the root processor broadcasts
bL and bR to all processors participating in the current recursion level. Then,
recursive calls are made on the participating processors only. Since the root
processor participates in all recursive calls, when the recursion ends, it has the
complete list of boxes.

2 In practice, the performance may not conform to this model. Actual performance
depends on software and hardware communications design.
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Table 1
Breakdown of processor participation for an adaptive Sedov computation on 128
processors, for which the BR clustering algorithm was called over 500 times. The
number of participating processors decrease rapidly with the depth of recursion. For
example, 74.5% of the function calls require 18 or fewer processors.

Recursion
level

Max number of
participating
processors at
recursion level

Percent of
function calls
at or below

recursion level

0 128 100

1 100 98

2 80 95.6

3 80 91.5

4 32 84.7

5 18 74.5

6 8 61.9

7 8 46.3

8 8 30.6

9 8 17

10 4 7.1

11 2 1.4

We tested the above approach using MPI communicators for the all-to-one re-
ductions but found that hand-coded point-to-point MPI operations performed
significantly better. This may arise from the need to synchronize processors
each time an MPI communicator is formed, but we did not explore the issue
in depth.

GroupSumCluster remains a single-task algorithm. The tasks are executed
in the same order as before, but not all tasks are executed by all processors.
As we will see in the next subsection, the resulting savings in communication
cost has significant performance benefits.

3.1 Single-task Algorithm Timing Results

We evaluated the performance of our two single-task algorithms, Global-

SumCluster and GroupSumCluster, for a representative moving-grid
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configuration. Calculations were performed on three different parallel com-
puter systems, with up to 16K processors.

Performance is measured for adapting to a 3D sinusoidal front advecting
through the domain (see Figure 5). Although the physics calculation in this
problem is absent, the moving grid is representative of a geometrically com-
plex shock wave moving through a domain. We leave out the physics to isolate
the performance of the clustering operation. The grid domain size is 24x16x16
cells on the coarsest level. In physical space, the domain is a right hexahe-
dron with a corner at (0,0,0) and the opposite corner at (3,2,2). The front is
initially centered at (0.5, 0, 0) and moves (0.02, 0.005, 0.005) each time step.
The SAMR hierarchy has four levels, with a refinement ratio of two for each
level. The patches in the hierarchy are distributed in parallel without regard
to their spatial relationships, thus adjacent patches are not more likely to
be on the same processor than separated patches. The sinusoidal front moves
through the domain and the grids around it are re-generated from tagged cells
five times. The global problem size remains the same as the number of pro-
cessors increases (strong scaling). Where needed, three timings are done on
each processor partition, and outlying dat (presumably caused by unrelated
applications using the high-speed network at the same time) are omitted. The
results presented are average times taken from the remainder.

Table 2
Computers used to evaluate performance.

Machine
name Model

Processor
type

Max
number of
processors

CPUs per
computing

node
Network
type

MCR
Linux
cluster

2.4 Ghz
Xeon

1024 2
Quadrics
QsNet

Thunder
Linux
cluster

1.4 Ghz
Itanium 2

2048 4
Quadrics
QsNet

BG/L
Linux
cluster

700 Mhz
PPC 400

16K 2 3D Torus

We present the results on two current LLNL production parallel platforms,
MCR and Thunder, and the new BlueGene/Light (BG/L) system. All are
distributed memory parallel, with modest shared memory parallelism. Table 2
shows the characteristics of the platforms. The “Max number of processors”
shown in Table 2 is the number available for the experiments, not the absolute
maximum on the platforms. On BG/L, there are 32K processors, but half of
them are used as communication co-processors (the standard configuration).
Although the BG/L system will eventually have 64K processors (and 64K
communicaiton co-processors), the full machine was not yet fully available at
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a) Tagged cells on
sinusoidal wave

front

b) Patches
generated around
the tagged cells

c) Two-dimensional
analogue

Fig. 5. Sinusoidal front test problem. A sinusoidal front is advected primarily in the
x-direction. The upper image shows the cells near the front–these are tagged for
clustering. The middle image shows a typical set of boxes output by the clustering
algorithm. Only one level in the AMR hierarchy is shown, with each box having a
different color. To aid in visualizing the 3D problem, the lower image shows a 2D
analogue showing the box outlines of 5 levels, each in a different color.

the time we conducted the experiments.

Figure 6 shows the clustering times for the two algorithms. Again, note that
both algorithms produce identical results; they only differ in the way the
communications are organized. The GroupSumCluster algorithm is signif-
icantly faster than the GlobalSumCluster algorithm. In the upper half
of the range of number of processors shown, the line for the GroupSum-

12



Cluster algorithm rises less steeply, indicating that it is scaling better in
the ranges shown.

Table 3 shows the actual timing results of the two approaches. The Group-

SumCluster implementation is faster than the GlobalSumCluster im-
plementation by 4.2x on 1K processors of MCR, by 13x on 2K processors of
Thunder and by 7.4x on 16K processors of BG/L.

Fig. 6. Comparison of the clustering cost for an advecting sinusoidal front problem
using the two single-task implementations, GlobalSumCluster and GroupSum-

Cluster .

Table 3
Timing comparison of two single-task clustering algorithms. Algorithm Global-

SumCluster uses a simplistic parallelization (which accumulates the signatures
using global sums). Algorithm GroupSumCluster uses the new group-suming
approach.

Timings (seconds)

Algorithm 1K 2K 16K

MCR Thunder BG/L

GlobalSumCluster 7.4 15 36

GroupSumCluster 1.8 1.2 4.8
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4 Task-parallel Clustering Algorithms

Despite the performance gains achieved by using a better communication
scheme in the single-task algorithm, scalability is still limited by two factors.
First, communication costs, which dominate the overall time, worsen as the
number of processors increases. Second, the algorithm relies on a single man-
ager processor that coordinates contributions from multiple worker processors.
Clearly, this will not be efficient on systems with O(105) processors.

Fortunately, the Berger-Rigoutsos top-down hierarchical approach does present
an opportunity to integrate task-parallelism into the logic. After a task’s box
is split, the left and right branches form tasks that are mutually indepen-
dent, meaning that decisions for one task do not affect the decisions for the
other. In Figure 3, for instance, tasks 1 and 2 are mutually independent, as are
tasks 3 and 4. If task 1 is split before task 2 is completed, then tasks 2, 3 and 4
are all mutually independent. It is possible to work on the independent tasks
concurrently rather than sequentially.

An algorithm taking advantage of the task independence can be created by
adopting a task-parallel approach, where the operations on each independent
box form a task. Each task is data-parallel, requiring communication within
the group of processors participating in the task. Dependencies of the tasks
can be determined by a parent-child relationship. Parents and their children
are not independent because children cannot be created until a parent’s box is
split, and parent tasks depend on the results of its children so it can perform
the combined efficiency check. However, different child tasks are independent
of their siblings (and consequently of their cousins, nephews, etc.). Thus, tasks
that have no children, and whose children have all completed, are independent
of one another and can proceed concurrently.

There are two complicating factors in designing a task-parallel algorithm.
First, although two tasks may be independent in the sense described above,
they may be interdependent in that they require data from the same proces-
sor. Second, in a task-parallel implementation much of the time is actually
consumed waiting for dependent tasks to finish. For instance, a parent task
may launch some child tasks and must then wait for its children to complete.

Both of these factors can be dealt with by exiting the current task at some
point and starting (or restarting) a different task. Details of the algorithm
used at each task, and the task-switching mechanism, are discussed in the
next section.
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4.1 Task Algorithm

The task routine used in the task-parallel implementation is shown in Al-
gorithm 4.1. Functions attributable to a task use the internal data and are
written using the task’s dot (.) operator borrowed from C++ syntax. For ex-
ample, task.Box() returns the box of the task, and task.Overlap() returns
the amount of overlap between the candidate box and local grids on the tagged
level.

Algorithm 4.1 largely follows the steps in the original single-task algorithm
2.1 to evaluate a candidate box. The processors compute local signatures and
sum the signatures on the root processor. The root processor decides whether
to accept or split the candidate box and broadcasts the decision to the partici-
pating group of processors (along with candidate boxes for child tasks, if any).
If the box is does not meeth the efficiency criteria, line (i), the task routine
creates child tasks and computes the associated group of processors holding
data for the task. The child tasks are then placed in the task manager (details
of which are given in the next section).

Once a task has put its children in the task manager it waits for them to finish.
The function WaitForChildren called at line (ii) was a wait similar but
not identical to those caused by communications. The operational difference is
that the task is not immediately put in the task manager; it is put there only
after its last child finishes, at line (iii). Differentiating “communication waits”
from “child waits” prevents a parent task from being unnecessarily checked
until all its children are completed. When the parent continues, the Check-

CombinedEfficiency method performs a combined efficiency check (like
what is done in the single-task Algorithm 2.1) to determine if the efficiency of
the children warrants keeping them over their parent (i.e. if the combination
of the children boxes are within a certain tolerance of the parent box).
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Algorithm 4.1: TaskRoutine(task)

if task.Overlap() > 0

then











































































































































































task.ComputeLocalSignatures()

task.SumReduceSignatures()

if local process rank = 0

then











task.Box()← bounding box of tags

task.AcceptOrSplit()

task.BroadcastAcceptability()

if task.Acceptability() = false (i)

then



































































task.CreateChildren()

task.FormChildGroups()

PutInTaskManager(task.LeftChild())

PutInTaskManager(task.RightChild())

task.WaitForChildren() (ii)

task.CheckCombinedEfficiency()

comment:After last child completes, parent may continue.

if task.Sibling() is completed

then PutInTaskManager(task.Parent()) (iii)

To exit a task before it completes, we implemented a self-suspending node
routine by building in logic for suspending the routine and returning to where
it left off. The node routine suspends itself by storing its state in a data struc-
ture and exiting. When it is restarted, it jumps to the point where it was
suspended, using the stored information. The node routine suspends itself at
points where the processor has to wait and does no useful work. The node rou-
tine may be viewed as a sequence of alternating local computation and wait
phases, much like other SPMD applications. A node might wait for its commu-
nications or for its children to complete. (Communications must be initiated
by non-blocking calls so that the task is not forced to wait for the communi-
cation to finish.) Algorithm 4.2 illustrates the general logic for implementing
the self-suspending node routine.
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Algorithm 4.2: SelfSuspendingNodeRoutine(node)

comment: node is a data structure containing data associated
with a particular dendogram node. This data includes
the state of the node routine when it was suspended.
The “switch” statement structure is borrowed from
the C language.

switch ( state of task ) (i)

case starting routine: (ii)

compute local signatures for node

initiate sum-reduce operation for signatures

case reducing signature: (iii)

if sum-reduce is incomplete

then



























save state of task (iv)

PutInTaskManager(node)

return

...

case ...:

...

endswitch

The “switch” statement (i) directs the routine to the appropriate “case state-
ments” (ii, iii, etc.). At statement (iv), to where the node routine would return
before it completes, it marks its state and places itself back in the task manager
for restarting later.

4.2 Task Manager Algorithm

We investigated two approaches for a task manager algorithm. The first is
a simple queue-based method wherein tasks are pulled from the queue and
started (or restarted). The task either completes, or the self-suspending rou-
tine re-enters the task at the tail of the queue. In either case the manager
continues to the next task at the head of the queue. Described in Algorithm
4.3, this simple queue task manager was found to be inefficient because it
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looped through an enormous number of cycles before finding a task with com-
pleted communications, consuming CPU cycles without making progress to-
ward completion.

Algorithm 4.3: QueueTaskManager(Q)

comment:Q is a queue (list) of tasks.

while length(Q) > 0

do















































task ← Dequeue(Q)

SelfSuspendingTaskRoutine(task)

comment: If task did not complete, it is put back in the
queue by the self-suspending task routine of
Algorithm 4.2.

To get around this problem we needed a mechanism to more quickly find
those tasks that can make immediate progress. This led to our second ap-
proach, which was ultimately adopted into our code since it yielded better
performance. This approach utilizes a two-stage method where one stage treats
tasks that can make immediate progress and another stage treats tasks that
are waiting on communications. In the two-stage approach, the queue mecha-
nism only accepts tasks that can make immediate progress, which include new
tasks and tasks whose children have just completed. Tasks that were waiting
for communication are processed by a second stage that is entered when the
queue is empty. This algorithm, which involves two stages, is referred to as
the two-stage task manager.

Algorithm 4.4: TwoStageTaskManager()

while











There are tasks in the queue or

there are incomplete communications

do



























Restart all tasks in the queue until the queue is empty

Wait for some communication calls to finish

Restart tasks corresponding to completed communications
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In the two-stage task manager, tasks waiting for communication are referenced
through their MPI Request objects through a mapping of the request back
to the task. (MPI Request objects are handles, returned by MPI, that refer
to specific outstanding communication requests.) Communication waits are
handled by MPI Waitsome and invoked only when there are no more tasks
that can make immediate progress, which in practice happens when the queue
is empty. Parent tasks waiting for their children to complete are not entered
into the two-stage task manager; children tasks put their parent back into the
manager once they have completed (see Algorithm 4.1). The outermost loop in
the two-stage algorithm is required because more tasks might be added to the
queue as it executes, and more communication operations might be launched.

Implementation of the two-stage task manager required storing a queue of
tasks, an array of MPI Request objects and a mapping from the request ob-
jects to the tasks waiting for them. The array of request objects was input
to MPI Waitsome to get the next set of MPI communications that have
completed.

The task manager acts as a user-space thread controller analogous to the
multi-thread approach. We chose not to use multi-thread libraries for this in
order to have more flexibility to experiment with the implementation. For
example, the task manager used information not available to the threading
library to choose which task to start.

4.3 Multiple Owners

The task-parallel approach uses the more effecient group-sum approach of al-
gorithm GroupSumCluster, which relies on the root processor to receive
the signature, evaluate the candidate box and broadcast the results. However,
with many tasks occuring simultaneously, the possibility of the root processor
becoming overloaded arises. We alleviate this problem by selecting an “owner”
for each participating group from among the group members. Each group uses
its ownwer as the “root” for group communication rather than all using the
same root processor. We give the name TaskParallelCluster to the sim-
pler task-parallel algorithm that uses a single root processor for all tasks. The
multi-owner task-parallel algorithm is namedMultiOwnerTaskParallel.

For the multi-owner algorithm, the owner processor was selected as the one
having the greatest overlap with the candidate box. We experimented with
other selection criteria, such as choosing the processor owning or participating
in the fewest number of tasks, but the differences to clustering performance
were minimal.

19



4.4 Task Parallel Performance

We evaluated the performance of our two task-parallel algorithms, TaskPar-

allelCluster and MultiOwnerTaskParallel using the moving-grid
configuration with which we tested the single-task algorithms with earlier (see
Section 3.1). Figure 7 shows timing results of the two algorithms; for compari-
son, timings of the single-task algorithms are also shown. Both task-parallel al-
gorithms outperformed the single-task algorithms. The improvement ofMul-

tiOwnerTaskParallel over GroupSumCluster is almost as much as
that ofGroupSumCluster overGlobalSumCluster. For small and mod-
erate numbers of processors, where both single-task algorithms were compa-
rable, the MultiOwnerTaskParallel algorithm was several times faster.
The task-parallel algorithms also exhibited improved scaling characteristics
seen by the relatively mild rise in run times as the number of processors is
increased.

Fig. 7. Comparison of the clustering cost for an advecting sinusoidal front problem,
using the task-parallel algorithms. For comparison, the results from the single-task
algorithms are also shown.

Table 4 shows the speed-up factors of the different clustering algorithms on
the largest processor partitions tested on each machine. Both task parallel
implementations show significantly higher speed-ups compared to the best
single-task algorithm. The MultiOwnerTaskParallel algorithm showed
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roughly a 2x better speed-up over the TaskParallelCluster algorithm
on MCR and Thunder, and a 40x speed-up on BG/L. Better load balance
in the multi-owner implementation accounted for the improved performance.
In the best case, algorithm MultiOwnerTaskParallel achieved a 48-fold
increase in speed over the GlobalSumCluster algorithm.

Table 4
Speed-up factors on different machines/numbers of processors for the single-task
and task-parallel clustering algorithm on the largest number of processors of each
platform.

Speed-up over
GlobalSumCluster

algorithm

Algorithm 1K 2K 16K

MCR Thunder BG/L

GroupSumCluster 4.2 13 7.4

TaskParallelCluster 7.1 20 11

MultiOwnerTaskParallel 13 48 40

To investigate the effect of increasing the problem size, we also evaluated the
performance of the task parallel algorithms on a larger problem, using the
same experiment described earlier but with six levels of refinement rather
than four. The resulting six-level configuration had two orders of magnitude
more boxes than the four-level configuration. Figure 8 shows the timing re-
sults for this larger problem. Improvements similar to those in the four-level
problem can be seen. The relative ranks of the algorithm speeds are largely
the same. The biggest difference is an increase in the gap between the Mul-

tiOwnerTaskParallel algorithm and the rest. This was probably due to
the algorithm’s better load balancing, which became more important as the
the problem size increased. The figure shows theMultiOwnerTaskParal-

lel algorithm to be about 10x faster than the next fastest implementation
on all three platforms. Interestingly, the TaskParallelCluster algorithm
suddenly performs worse than the GroupSumCluster algorithm after eight
processors on Thunder. This may be due to the numerous non-blocking com-
munications managed by the root processor, which could cause sub-optimal
performance of the underlying communication.

5 Summary

We discussed several methods for parallelizing the clustering algorithm of
Berger and Rigoutsos (BR91). First, we focused on the performance using
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Fig. 8. Clustering cost for a larger problem.

two single-task parallel implementations of the original serial algorithm. The
first was a simplistic extension of the original algorithm. The second elim-
inated unneeded communications by limiting collective communications to
smaller groups of processors. We then introduced a task-parallel approach
in which we divided the work into independent tasks that ran concurrently,
to better utilize the time spent waiting on communications. We assessed the
task-parallel algorithm with two variations, one that uses a single root proces-
sor for all communicaitons, and another which selects the root processor for
communications from among the group members. We compared performance
of the different algorithms for a model structured adaptive mesh refinement
(SAMR) problem on several current parallel platforms, including up to 16K
processors of the BlueGene/Light system.

Our experiments showed that the best single-task implementation was one that
limited collective communications to the groups of processors that held rele-
vant data (rather than using global collective communications). It is between
4x and 13x faster than the simplistically parallelized algorithm, depending on
the computing platform and number of processors.

Adding task-parallelism to the new communication approach further sped up
the clustering process, as did using multiple root processors in the collective
communications. The fastest algorithm utilized all three concepts: limitting
communication groups, task-parallelism and multiple root processors in the
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collective communications. It was up to 5.4x faster than the best single-task
algorithm and up to 40x faster than the algorithm using global communica-
tions. On a larger test problem, this algorithm showed even greater gains over
the other algorithms.

The new algorithms showed much better scaling qualities that is very advan-
tageous for large processor systems like BG/L. Their performance remained
largely consistent across the three platform used in our experiments.
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