
Improved Scheduling in Rings

Dekel Tsur ∗

Deptartment of Computer Science and Engineering, University of California, San
Diego, CA 92093-0114, USA

Abstract

We study the problem of scheduling unit size jobs on n processors connected by a
ring. We show a distributed algorithm for this problem with an approximation ratio
of 3

2 +
√

2.

Key words: Scheduling, Approximation Algorithms

1 Introduction

The problem of scheduling a set of jobs on parallel machines is a well studied
problem in computer science. In this paper we study the following distributed
model, which was introduced in [4]: There are n processors with communica-
tion links between some of the processors. Initially, each processor has several
unit size jobs (the number of jobs at each processor is specified by an input I
to the problem). At each time step, a processor can process one job from its
queue, and send some of its jobs to its neighbors. Moreover, each processor
can send additional information (e.g. its initial load) to its neighbors in each
time step. The goal is to process all the jobs in minimum time.

Since initially the processors do not have information on the other processors,
it is impossible to give an algorithm that achieves the the optimal schedules for
all inputs. We say that an algorithm A for the problem has an approximation
ratio r, if there is a constant c such that for every input I, A(I) ≤ r·OPT(I)+c,
where A(I) denotes the completion time (also called makespan) of algorithm
A on the input I, and OPT(I) denotes the completion time of the optimal
schedule for the input I.

∗ Fax: 1 858 534 7029.
Email address: dtsur@cs.ucsd.edu (Dekel Tsur).

Preprint submitted to Elsevier Science

Awerbuch et al. [3] gave an algorithm for the problem whose approximation
ratio is O(log n). A lower bound of Ω(log n/ log log n) on the approximation
ratio of any algorithm was given by Alon et al. [1]. For some special cases
of the problem, better approximation algorithms exist. When the processors
are connected by a ring, the algorithm of Awerbuch et al. has a constant
approximation ratio, for some large constant. Fizzano et al. [5] presented an
algorithm for rings with an approximation ratio of 4.22. They also gave a
lower bound of 1.06 on the approximation ratio of any algorithm for rings.
In this paper, we give an algorithm for rings with an approximation ratio of
3
2

+
√

2 ≈ 2.91.

Related Work Deng et al. [4] gave an optimal centralized algorithm for
scheduling on arbitrary graphs, whose running time is polynomial. They also
gave an O(logn)-approximation centralized algorithm for the case when the
jobs have weights. Phillips et al. [6] gave a 2-approximation algorithm for the
latter problem.

Awerbuch et al. [3] studied the online version of the scheduling problem. In
this problem, jobs arrive to the system at different times, and the goal is to
minimize the maximum response time (i.e. the maximum time a job waits
before it is processed). Awerbuch et al. gave an algorithm for this problem
with a competitive ratio of O(log2 n) for general graphs. An Ω(log n) lower
bound for the online problem was given by Alon et al. [1]. Anagnostopoulos
et al. [2] showed a scheduling algorithm which is stable against an adversary.

2 Algorithm for the fractional problem

We first give some definitions. Denote the processors by 1, . . . , n, where proces-
sor i is connected to processor i + 1 for all i (throughout the paper, processor
numbers are assumed to be modulo n). An input to the scheduling problem
will be denoted by I = {x1, . . . , xn} when xi is the initial load of processor i.
The clockwise direction for processor i is the direction of processor i + 1. The
load on processor i at time t is the number of jobs that are at processor i at
the beginning of step t. The completion time of processor i for an input I is
the last step in which the load of i is nonzero.

We first consider a variant of the scheduling problem, called the fractional
problem, in which a processor can split a job into fractional parts, and each
part can either be sent to other processors or processed (at every time step, the
total amount of jobs processed in every processor is at most 1). We will show
an approximation algorithm for the fractional problem, and later we will show

2

how to obtain an approximation algorithm for the original problem (which is
called the integral problem).

Let algorithm A1 be as follows:

For each j, the xj jobs at processor j are moved into a bucket, denoted
Bj. In each step, the bucket Bj moves clockwise along the ring. When the
bucket Bj reaches processor i, it leaves

min(k, c
√

xj + · · ·+ xi − c
√

xj+1 + · · ·+ xi)

jobs at processor i, where k is the current number of jobs in the bucket and
c is a constant to be determined later. In particular, at the first step, the
bucket Bj leaves min(xj, c

√
xj) jobs at processor j.

Additionally, each processor i sends messages containing the value of xi

in both directions of the ring. If the algorithm has not finished within bn/2c
steps, then at the beginning of step bn/2c + 1, each processor knows the
values of x1, . . . , xn. Then, each processor checks whether there is some
bucket Bi that would contain jobs after traversing the entire ring. If there is
such a bucket, then the buckets process is stopped, and the remaining jobs
are evenly distributed among the n processors.

We note that algorithm A1 is very similar to the algorithm of Fizzano et al. [5].
However, there are few differences that are crucial to our improved analysis.

Theorem 1 The approximation ratio of algorithm A1 is at most 3
2

+
√

2.

PROOF. Consider some input Î = {x̂1, . . . , x̂n}, and let L = OPT(Î). Our
goal is to show that A(Î) ≤ (3

2
+

√
2)L + O(1). We use the following two

lemmas from [5]:

Lemma 2 For every j and k, x̂j + · · ·+ x̂j+k−1 ≤ L(L + k − 1).

Lemma 3 The maximum distance a bucket can travel before it becomes empty
is at most (2/c + 1/c2)L.

We note that Lemma 3 is proved in [5] for the algorithm presented in that
paper, but it is easy to verify that the lemma also holds for our algorithm.

Suppose first that no bucket would contain jobs after n steps. Due to the sym-
metry of the algorithm, it suffices to bound the completion time of every pro-
cessor for which B1 is the last bucket that leaves jobs at the processor. Let r be
such a processor. To simplify the analysis, we define algorithm A2 to be an algo-
rithm that acts like algorithm A1, except that the buckets B2, . . . , Br have an
infinite supply of jobs until they leave processor r. In other words, the bucket

3

Bi leaves exactly c
√

xi + · · · + xj − c
√

xi+1 + · · ·xi jobs at processor j, for
i = 2, . . . , r and j = i, . . . , r. Moreover, if the bucket B1 is not empty when it
arrives to processor r, then it leaves exactly c

√
x1 + · · ·+ xi − c

√
x2 + · · ·+ xi

jobs at processor r. Finally, the jobs at processors r + 1, . . . , n are not moved
into buckets. Clearly, algorithm A2 is not a valid algorithm for the problem.
However, it is easy to verify that on the input Î, the completion time of
processor r in algorithm A1 is less than or equal to its completion time in
algorithm A2. Therefore, in the following we will bound the completion time
of processor r in algorithm A2, which will also bound the completion time in
algorithm A1.

An input I = {x1, . . . , xn} will be called an L-valid input if (1) When algo-
rithm A2 runs on I, the bucket B1 is not empty when it arrives to processor
r, and (2) xj + · · · + xj+k−1 ≤ L(L + k − 1) for all j and k.

To bound the completion time of processor r on the input Î, we will look for
an L-valid input that maximizes the completion time of processor r. For this
end, we give several lemmas which show simple transformations on the input
which do not decrease the completion time of processor r, except perhaps by
a constant.

Claim 4 Let I and I ′ be two inputs such that

(1) There is a set S ⊆ {1, . . . , r−1} such that for every t ∈ {1, . . . , r−1}\S,
the total amount of jobs left by buckets Br−t+1, . . . , Br in processor r in
the run on I is greater than or equal to the corresponding amount in the
run on I ′.

(2) The total amount of jobs left by buckets B1, . . . , Br in processor r in the
run on I is less than or equal to the corresponding amount in the run on
I ′.

Then, the completion time of processor r on the input I is less than or equal
to its completion time on the input I ′ plus |S|.

For the following lemmas, let I = {x1, . . . , xn} be some L-valid input.

Lemma 5 If xi+1 > 0 for some 2 ≤ i < r, then the completion time of pro-
cessor r on I is less than or equal to its completion time on I ′ = {x1, . . . , xi +
1, xi+1 − 1, . . . , xn}.

PROOF. The difference between the inputs I and I ′ has two effects on the
run of algorithm A2: First, the buckets Bi and Bi+1 leave different amount
of jobs at processor r in the runs on I and I ′ (note that every other bucket
from B2, . . . , Br leaves the same amount of jobs at processor r). More pre-
cisely, when algorithm A2 runs on I, Bi+1 leaves a = c

√
xi+1 + · · ·+ xr −

4

c
√

xi+2 + · · ·+ xr jobs at processor r, and Bi leaves b = c
√

xi + · · ·+ xr −
c
√

xi+1 + · · ·+ xr jobs. When the algorithm runs on I ′, Bi+1 and Bi leave
a′ = c

√
xi+1 + · · ·+ xr − 1 − c

√
xi+2 + · · ·+ xr and b′ = c

√
xi + · · ·+ xr −

c
√

xi+1 + · · ·+ xr − 1 jobs at processor r, respectively. Note that a+b = a′+b′

and a′ < a, so the first condition of Claim 4 is satisfied with S = φ.

The second difference is that bucket B1 leaves different amount of jobs at
processors 1, . . . , r − 1: In the run on I, B1 leaves ai = c

√
x1 + · · · + xi −

c
√

x2 + · · ·+ xi jobs at processor i (for every i < r), and in the run on I ′, B1

leaves c
√

x1 + · · · + xi + 1 − c
√

x2 + · · ·+ xi + 1 < ai jobs at processor i. It
follows that in the run on I ′, bucket B1 always has more jobs than in the run
on I. In particular, since B1 is not empty when it arrives to processor r in
the run on I, it is also not empty when it arrives to processor r in the run on
I ′. By the definition of algorithm A2, B1 leaves the same number of jobs at
processor r in the runs on I and I ′. Thus, the second condition of Claim 4 is
satisfied and the lemma follows. 2

Lemma 6 The completion time of processor r on I is less than or equal to
its completion time on I ′ = {x1 + 1, x2, . . . , xn}.

PROOF. Let

f(x1, . . . , xi) =
c(
√

x1 + · · · + xi −
√

x2 + · · · + xi)

x1

=
c√

x1 + · · · + xi +
√

x2 + · · ·+ xi

be the fraction of the x1 jobs initially in B1 that bucket B1 leaves at processor
i. Since f(x1 +1, x2, . . . , xi) < f(x1, . . . , xi) for all i, and since B1 is not empty
when it arrives to processor r in the run on I, it follows that B1 is not empty
when it arrives to r in the run on I ′. Therefore, in the run on I the bucket B1

leaves a = c(
√

x1 + · · ·+ xr −
√

x2 + · · ·+ xr) jobs at processor r, while in the
run on I it leaves c(

√
x1 + 1 + · · · + xi−

√
x2 + · · ·+ xi) > a jobs at processor

r. The buckets B2, . . . , Br leave the same amount of jobs in processor r in the
runs on I and I ′. Therefore, the lemma follows from Claim 4. 2

Lemma 7 For every 0 ≤ a ≤ x1, the completion time of processor r on I is
at most the completion time of processor r on I ′ = {x1 − a, x2 + a, . . . , xn}
plus one.

PROOF. Consider the definition of f from the previous lemma. As f(x1 −
a, x2 +a, . . . , xi) < f(x1, . . . , xi) for all i, we have that B1 is not empty when it
arrives to processor r in I ′, and therefore the total number of jobs that is left
by the buckets B1, . . . , Br at processor r in the run on I ′ is c

√
x1 + · · ·+ xr,

5

which is equal to the amount of jobs left at processor r in the run on I.
Therefore, the conditions of Claim 4 are satisfied with S = {r − 1}. 2

Lemma 8 Suppose that processor r is not idle between step r − i + 1 (i.e.,
after Bi arrives to r) and its completion time in the run on I. Then, for every
a ≥ 0, the completion time of processor r on I is at most its completion time
on I ′ = {x1, . . . , xi + a, . . . , xn}.

PROOF. In the run on I ′, the bucket B1 leaves
√

x1 + · · · + xj + a −√
x2 + · · ·+ xj + a <

√
x1 + · · ·+ xj − √

x2 + · · ·+ xj jobs on processor j,
for every j ≥ i. Therefore, B1 is not empty when it arrives to processor r,
and the total amount of jobs left at processor r is

√
x1 + · · ·+ xr + a, which

is larger then the total amount of jobs left at processor r in the run on I. 2

Note that in Lemmas 5–8, the input I ′ satisfies the first requirement in the
definition of L-valid input. For the input Î, we assume w.l.o.g. that x̂i = 0
for i = r + 1, . . . , n. We repeatedly apply the transformation of Lemma 5 for
every index i for which the input after the transformation is L-valid. Then, we
apply the transformation of Lemma 6 or Lemma 7 in order to make x1 equal
to L. The new input I = {x1, . . . , xn} satisfies either

x1, . . . , xn = L, L2,

s − 1 times
︷ ︸︸ ︷

L, . . . , L, b, 0, . . . , 0

where b ≤ L and s ≤ r − 2, or

x1, . . . , xn = L, b, 0, . . . , 0

where b < L2. Then, we apply the transformation of Lemma 8 with i = s + 2
and a = L − b in the first case, and with i = 2 and a = L2 − b in the second
case. We will later show that the conditions of Lemma 8 are satisfied. In both
cases, the new input I ′ = {x′

1, . . . , x
′
n} satisfies

x′
1, . . . , x

′
n = L, L2,

s times
︷ ︸︸ ︷

L, . . . , L, 0 . . . , 0.

The input I ′ is L-valid. Therefore, when algorithm A2 runs on I ′, the bucket

B1 leaves c(
√

L2 + (i − 1)L −
√

L2 + (i − 2)L) jobs at processor i for i =
2, . . . , s + 2, and

c
(√

L2 + (s + 1)L −
√

L2 + sL
)

=
cL

√

L2 + (s + 1)L +
√

L2 + sL

≥ cL

2
√

L2 + (s + 1)L

6

jobs for i = s + 3, . . . , r − 1. Thus, the number of jobs bucket B1 leaves at
processor 2, . . . , r − 1 is at least

s+2∑

i=2

c
(√

L2 + (i − 1)L −
√

L2 + (i − 2)L
)

+
(r − s − 3)cL

2
√

L2 + (s + 1)L

= c
√

L2 + (s + 1)L − c
√

L2 +
(r − s − 3)cL

2
√

L2 + (s + 1)L
.

Clearly, this number is at most the number of jobs that are initially in B1,
which is x′

1 = L. Setting α = (s + 1)/L and β = (r− s− 3)/L, we obtain that

√
1 + α − 1 +

β

2
√

1 + α
≤ 1

c
.

This yields that β ≤ 1
2
(1 + 1/c)2 and

√
1 + α ≤ z(c, β), where

z(c, β) =
1 + 1

c
+

√
(

1 + 1
c

)2 − 2β

2
.

The total number of jobs that the buckets B1, . . . , Br leave at processor r is

c
√

L2 + (s + 1)L = cL
√

1 + α. Therefore, the completion time of processor r
on the input I ′ is at most

r − s − 2 + cL
√

1 + α = 1 + βL + cL
√

1 + α ≤ 1 + (β + cz(c, β))L.

By Lemmas 5–8, A1(Î) ≤ A2(I) + 1 ≤ 2 + (β + cz(c, β))L. Therefore,

max
I

A1(I) − 2

OPT(I)
≤ max

β≤ 1

2
(1+1/c)2

(β + cz(c, β)).

Using simple calculus, we obtain that maxI((A1(I) − 2)/OPT(I)) ≤ c2/8 +
c/2 + 1 + 1/c + 1/2c2. We minimize the last expression by choosing c =

√
2,

and obtain that maxI((A1(I) − 2)/OPT(I)) ≤ 3
2

+
√

2.

We now show that the conditions of Lemma 8 are satisfied, namely, that
processor r is not idle from step r − s − 1 until its completion time on the
input I. We first show that processor r is not idle from step r − s − 1 to step
t − 2. For i = 3, . . . , s, bucket Bi leaves less jobs in processor r than bucket
Bi+1. Therefore, it suffices to show that the average number of jobs that is
left by a bucket from B3, . . . , Bs+2 is at least 1. That is, we need to show that

c
√

b + (s − 1)L ≥ s. This inequality is indeed satisfied since we have from

Lemma 3 that s + 2 ≤ r ≤ (
√

2 + 1
2
)L. Moreover, we have that the amount of

jobs left by B2 and B3, . . . , Bs+2 at processor r is c
√

b + (s − 1 + L)L ≥ s+2,
and therefore processor r is not idle from step r − s − 1 until its completion.

7

Now, consider the case when there is a bucket that would not become empty
after n steps. After the first bn/2c steps, the remaining jobs are evenly dis-
tributed among the processors in bn/2c steps, and then processed in at most
d 1

n

∑n
i=1 xie steps. Clearly, L = OPT(I) ≥ d 1

n

∑n
i=1 xie, so A1(I) ≤ 2bn/2c +

d 1
n

∑n
i=1 xie ≤ n+L. By Lemma 3, n ≤ (2/c+1/c2)L = (

√
2+ 1

2
)L. Therefore,

A1(I) ≤ (3
2

+
√

2)L. 2

3 Algorithm for the integral problem

In the previous section we gave an approximation algorithm for the fractional
problem. In this section, we will show an approximation algorithm, denoted
A′

1, for the integral problem. Recall that algorithm A1 consists of two stages.
In the first stage, the processors send jobs only clockwise. Algorithm A′

1 will
simulate the first stage of algorithm A1 with a constant loss of performance.
In the second stage of algorithm A′

1 the remaining jobs are evenly distributed
among the processors.

Theorem 9 For every algorithm A for the fractional problem in which jobs
are sent only clockwise, there is an algorithm A′ for the integral problem such
that A′(I) ≤ A(I) + 2 for every integral input I.

PROOF. Consider some input I = {x1, . . . , xn}. Let pi(t) be the total amount
of jobs processes by processor i during the first t steps of algorithm A, and let
si(t) be the total amount of jobs sent by processor i to processor i + 1 during
the first t steps. For the algorithm A′ which will be defined shortly, we define
p′i(t) and s′i(t) in a similar manner.

Algorithm A′ is as follows: At step t ≤ A(I), each processor i computes the
values of pi(t) and si(t). Then, processor i processes one job if it has available
jobs and bpi(t)c − p′i(t − 1) ≥ 1. Finally, processor i sends min(k, bsi(t)c −
s′i(t− 1)) jobs to processor i + 1, where k is the number of jobs in processor i
at time t. At each step t ≥ A(I)+1, each processor processes one of remaining
jobs.

Lemma 10 For every i and t ≤ A(I), p′
i(t) = bpi(t)c and s′i(t) = bsi(t)c.

PROOF. We prove the lemma using induction on t. The base t = 0 is trivial.
Suppose that we have proved the lemma for t−1, and consider some processor
i at step t.

8

Let p = pi(t) − pi(t − 1) be the amount of jobs that is processed by processor
i during step t of algorithm A. Clearly, p is less than or equal to the amount
of jobs at processor i at the beginning of step t, namely

pi(t) − pi(t − 1) = p ≤ xi + si−1(t − 1) − si(t − 1) − pi(t − 1).

From the induction hypothesis we have that s′i(t−1) = bsi(t−1)c ≤ si(t−1),
so

pi(t) ≤ xi + si−1(t − 1) − si(t − 1) ≤ xi + si−1(t − 1) − s′i(t − 1).

Since xi and s′i(t − 1) are integers, and s′i−1(t − 1) = bsi−1(t − 1)c by the
induction hypothesis, we obtain that

bpi(t)c ≤ bxi + si−1(t − 1) − s′i(t − 1)c = xi + bsi−1(t − 1)c − s′i(t − 1)

= xi + s′i−1(t − 1) − s′i(t − 1).

Therefore,

bpi(t)c − p′i(t − 1) ≤ xi + s′i−1(t − 1) − s′i(t − 1) − p′i(t − 1).

The right side of the inequality above is the number of jobs in processor i
at the beginning of step t of algorithm A′. Moreover, bpi(t)c − p′i(t − 1) =
bpi(t)c − bpi(t − 1)c ∈ {0, 1}. It follows that in algorithm A′, processor i
processes bpi(t)c − p′i(t − 1) jobs during step t. Hence, p′

i(t) = bpi(t)c.

Showing that s′i(t) = bsi(t)c is done in a similar manner: Clearly,

si(t) − si(t − 1) ≤ xi + si−1(t − 1) − si(t − 1) − pi(t),

so

si(t) ≤ xi + si−1(t − 1) − pi(t) ≤ xi + si−1(t − 1) − p′i(t).

Thus,

bsi(t)c ≤ xi + bsi−1(t − 1)c − p′i(t) = xi + s′i−1(t − 1) − p′i(t).

Hence

bsi(t)c − s′i(t − 1) ≤ xi + s′i−1(t − 1) − s′i(t − 1) − p′i(t).

The right side of the last inequality is the number of jobs at processor i at step
t (after possibly assigning a job to be processed). Therefore, in algorithm A′,
processor i sendsbsi(t)c − s′i(t − 1) jobs during step t, and s′i(t) = bsi(t)c. 2

9

Let li(t) (resp., l′i(t)) be the load on processor i at the beginning of step t of
algorithm A (resp., A′). We have that for every i and t ≤ A(I) + 1.

l′i(t) = xi + s′i−1(t − 1) − s′i(t − 1) − p′i(t − 1)

= xi + bsi−1(t − 1)c − bsi(t − 1)c − bpi(t − 1)c
≤ xi + si−1(t − 1) − si(t − 1) − pi(t − 1) + 2 = li(t) + 2.

In particular, l′i(A(I) + 1) ≤ 2. It follows that A′(I) ≤ A(I) + 2. 2

From Theorem 1 and Theorem 9 we obtain that the approximation ratio of
algorithm A′

1 is at most 3
2
+
√

2 (the analysis of the second stage of algorithm A′
1

is identical to the analysis of the second stage of algorithm A1).

Acknowledgements

We thank Yossi Azar for helpful discussions.

References

[1] N. Alon, g. Kalai, M. Ricklin, and L. J. Stockmeyer. Lower bounds on
the competitive ratio for mobile user tracking and distributed job scheduling.
Theoretical Computer Science, 130(1):175–201, 1994.

[2] A. Anagnostopoulos, A. Kirsch, and E. Upfal. Load balancing in arbitrary
network topologies with stochastic adversarial input. SIAM J. on Computing,
34(3):616–639, 2005.

[3] B. Awerbuch, S. Kutten, and D. Peleg. Competetive distributed job scheduling.
In Proc. 24th Symposium on the Theory of Computing (STOC 92), pages 571–
580, 1992.

[4] X. Deng, H. Liu, J. Long, and B. Xiao. Competitive analysis of network load
balancing. J. of Parallel and Distributed Computing, 40(2):162–172, 1997.

[5] P. Fizzano, D. R. Karger, C. Stein, and J. Wein. Distributed job scheduling in
rings. J. of Parallel and Distributed Computing, 45(2):122–133, 1997.

[6] C. A. Phillips, C. Stein, and J. Wein. Task scheduling in networks. SIAM J.
Discrete Math., 10(4):573–598, 1997.

10

