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Abstract

The problem of global state observation is fundamental to distributed systems and to the analysis of data streams. Many interactions in
distributed systems can be analyzed in terms of the building block formed by the pairwise interactions of intervals at two processes. Considering
causality-based pairwise interactions by which two processes may interact with each other, there are 40 orthogonal interaction types. For each
pair of processes (Pi , P j ), let interaction type ri, j be of interest. This paper examines the problem: “If a global state of interest to an application
is specified in terms of such pairwise interaction types, one per pair of processes, how can such a global state be detected?” A solution identifies
a global state in which the interaction type specified for each process pair is satisfied. This paper formulates the specific conditions on the
communication structures to determine which of the intervals being examined at any time may never satisfy the stipulated interaction type for that
pair of processes, and therefore that interval(s) need no longer be considered as forming a part of any solution. Based on this theory, the paper
proposes two on-line distributed algorithms to solve the problem.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A global state is represented by a collection of local
states, one from each process. The problem of global state
observation in a consistent manner is fundamental to distributed
systems, as identified by Chandy’s and Lamport’s seminal
paper on recording global states [14]. Furthermore, the
problem of monitoring and analyzing data streams is becoming
increasingly important, particularly for crisis management
(see [13,38]). Often, data streams have to be analyzed on-line
[1,2] under different constraints and modalities. For example,
I Some portions of this paper have appeared in [P. Chandra, A.D.
Kshemkalyani, Detection of orthogonal interval relations, in: Proceedings 9th
International High Performance Computing Conference (HiPC), in: Lecture
Notes in Computer Science, vol. 2552, Springer-Verlag, 2002, pp. 323–333;
P. Chandra, A.D. Kshemkalyani, Analysis of interval-based global state
detection, in: Proceedings 2nd Int. Conference on Distributed Computing and
Internet Technology (ICDCIT), in: Lecture Notes in Computer Science, vol.
3816, Springer, 2005, pp. 203–216; P. Chandra, A.D. Kshemkalyani, Global
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much research focuses on data streams in sensor networks [19,
31,32], and in generic middleware roles [30,36].

In this paper, we consider applications that require the con-
sistent observation and continuous processing of data in the data
streams. The consistent observation of the global state [14,24]
requires observing the causality constraints among the events in
the execution [28]. This paper generalizes the problem of global
state observation to executions where the “event” at a process
is a high-level abstract event that can contain multiple events
that span across a time interval. The interval has the property
that a predicate defined on local variables is always true in the
interval and is false immediately before and immediately af-
ter the interval. The semantics of the interval depend on the
predicate which is application-specific [17,18,20,22,25,27,29];
application areas such as sensor networks, distributed debug-
ging, deadlock characterization [26], predicate detection [7,11,
12], checkpointing [3–5,33,34], and industrial process control
model such intervals. Such high-level abstract events at pro-
cesses and the corresponding time intervals that they span have
been explicitly studied [18,20,21,29].

Fig. 1(a) shows a consistent global state GS2 and an
inconsistent global state GS1 in a distributed execution where
events are modeled as atomic send, receive, or internal events,
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Fig. 1. (a) Event positions determine the consistency of a global state. (b) Interval positions define the interaction types in a global state.
as per the traditional model of a distributed execution [28].
Fig. 1(b) shows high-level abstract events that may contain
multiple events and span across a time interval. The intervals
are shown as a rectangle. An application-specific predicate
defined at each process becomes true at the start of each interval
shown and it becomes false at the end of each interval shown.
Intervals X , Y , and Z occur at Pi , Pj , and Pk , respectively.
Observe that if interval Y were to begin at event a marked by
a vertical line, the inherent causality-based interaction type of
Y with respect to Z as well as with respect to X would be
different from what is shown. Thus, the relative placement of
one interval with respect to another defines different interaction
types between the interval pair.

It has been observed that causality-based interactions
in distributed executions can be analyzed in terms of the
building block formed by point-to-point pairwise interactions
of intervals at two processes [20]. A detailed analysis of the
causality-based pairwise interactions by which two processes
may interact with each other identified 29 (40) causality-
based orthogonal interaction types, denoted as R, under the
dense (and non-dense) time model, respectively [20]. The
orthogonality of the interaction types in R implies that no
interaction type can be expressed in terms of the other
interaction types. Each interaction type in R between a pair of
intervals is essentially a relationship between the two intervals.
Hence, the interaction types in R are also interchangeably
termed as relations. For each pair of processes (Pi , Pj ), let
interaction type ri, j be of interest. This paper examines the state
detection problem: “If a global state of interest to an application
is specified in terms of such pairwise interaction types, one per
pair of processes, how can such a global state be detected?”
For any relationship r ∈ R, let ri, j (X i , Y j ) denote that r holds
for interval X i at process Pi and interval Y j at process Pj .
The above state detection problem is formally formulated as
the following problem DOOR for the Detection of Orthogonal
Relations [6,22].
Problem DOOR: Given a relation ri, j from R for each pair of
processes Pi and Pj , devise a distributed on-line algorithm to
identify the intervals, if they exist, one from each process, such
that each relation ri, j is satisfied by the (Pi , Pj ) process pair.

Devising an efficient on-line algorithm to solve problem
DOOR is a challenge because of having to track the intervals
at different processes and to determine the pairwise orthogonal
relations in a search space of an exponential number of global
states. In this paper, we first identify the underlying principles
that can be used to solve problem DOOR. We then propose two
distributed algorithms to solve the problem.
Summary of results and contributions:

1. To devise any efficient solution to problem DOOR, this
paper formulates specific conditions on the structure of the
causal communication patterns to determine which of two
intervals being examined from processes Pi and Pj may
never satisfy ri, j , and therefore that interval will never form
part of any solution and should no longer be considered. This
result is embodied as:
• a basic principle that we prove in Theorem 1 — the main

result, and
• Lemma 4 — a useful lemma derived from the above

theorem, that we will use to efficiently manage the
distributed data structures in solving problem DOOR.

Any algorithms to solve DOOR can leverage this principle.
2. The paper proposes two distributed on-line algorithms to

solve problem DOOR, based on the above formulated
conditions to determine when an interval no longer needs
to be considered as a candidate for a solution. Let n be the
number of processes, ms be the total number of messages
sent, mr be the total number of messages received, and p
be the maximum number of intervals at any process. For
unicast communication, ms = mr . The first distributed
algorithm uses O(min(np, 2ms +2mr )) number of messages
with a message size of O(n2). The second algorithm uses
O(n · min(np, 2ms + 2mr )) number of messages with a
message size of O(n). For both the algorithms, the total
space complexity across all the processes is min(4n2 p −

2np, 6msn +4mr n), and the total time complexity across all
processes is O(n · min(np, 2ms + 2mr )). The performance
of the algorithms is compared in Table 1.

3. Global state observation and predicate detection are
fundamental problems in distributed systems. This paper
provides an understanding of interval-based global states in
terms of the causal communication patterns induced by the
message-passing interactions in an execution [25].

4. The process of devising the principle (Theorem 1) which
determines whether at least one interval in any pair of
intervals being examined at any time can be identified as
never forming a part of any solution (Lemma 4), gives a
deeper insight into the nature of reasoning with causality in
a distributed execution. Schwarz and Mattern have identified
this as an important problem [37].

A centralized algorithm to solve problem DOOR (also
referred to as problem Fine Rel,) was given in [7]. The
algorithm was presented without any formal discussion
or analysis of the theoretical basis — embodied here in
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Table 1
Summary of space, time, and message complexities

Metric Algorithm 1 Algorithm 2

Total space complexity O(min(2np(2n − 1), 6msn + 4mr n)) O(min(2np(2n − 1), 6msn + 4mr n))
Space per process (worst case) O(min(4np − 2p, 4msn + 2ms )) O(min(4np − 2p, 4msn + 2ms ))

Total time complexity O(n · min(np, 2ms + 2mr )) O(n · min(np, 2ms + 2mr ))

Time per process (worst case) O(n · min(10p, 20ms + 4mr )) O(n · min(10p, 20ms + 4mr ))

Total number of messages O(min(np, 2ms + 2mr )) O(n · min(np, 2ms + 2mr ))

Message size (average case) O(n2) O(n)
Message size (worst case) O(n · min(2(n − 1)p + 2n, 2ms + 2n)) O(min(2(n − 1)p + 2n, 2ms + 2n))
Total message space O(n2

· min(np, 2ms + 2mr )) average O(n2
· min(4np − 2p, 6ms + 4mr ))
Fig. 2. Intervals at processes. Messages and send and receive events are not
shown to simplify the diagram.

Theorems 1–3 and Lemma 4. That paper also showed how
to perform predicate detection in the context of traditional
modalities on predicates [12]. This paper gives the theory
behind the results of [7] and then gives two distributed
algorithms for DOOR. Distributed algorithms are more elegant
than centralized algorithms and do not require a central server.
Distributed algorithms result in a better workload and space
complexity distribution as compared to a centralized one.
The space complexity and the time complexity get distributed
linearly with the number of processes. Thus, a distributed
algorithm is more scalable than a centralized algorithm. Also,
the network traffic gets distributed more uniformly in a
distributed algorithm compared to the centralized approach
where a traffic bottleneck gets created at the central process.
Preliminary versions of this paper appeared in [6,8,9].

Section 2 gives the system model and background. Section 3
gives the theory used to determine which of two given intervals
at different processes can never be part of a solution set.
Section 4 shows how to track intervals. Sections 5 and 6 present
the distributed algorithms to solve Problem DOOR based on
the results derived in Section 3. Section 7 gives an extended
specification of DOOR. Section 8 gives concluding remarks.

2. System model and background

System model. We assume an asynchronous distributed system
in which n processes communicate by reliable message
passing over logical FIFO channels [20,29]. The execution is
modeled as (E,≺), where ≺ is an irreflexive partial ordering
representing the causality or the “happens before” relation [28]
on the event set E .
Definition 1 (Causality or the “happens before” Relation ≺).
Event e happens before event e′, denoted e ≺ e′, if:

1. event e occurs before event e′ at the same process, or
2. event e is the send of a message m and event e′ is the receive

of m, or
3. there is an event e′′ such that e happens before e′′ and e′′

happens before e′.

E is partitioned into local executions at each process. Let Ei
denote the linearly ordered set of events executed by process
Pi . An event e executed by Pi is denoted ei and may be of three
types — an internal event, a send event, or a receive event. N
denotes the set of all processes. A cut C is a subset of E such
that if ei ∈ C then (∀e′

i ) e′

i ≺ ei H⇒ e′

i ∈ C . A consistent
cut is a downward-closed subset of E , i.e., if e ∈ C then
(∀e′) e′

≺ e H⇒ e′
∈ C . A consistent cut denotes an execution

prefix. Two special consistent cuts ↓ e and e ↑ can be defined
for any event e.

Definition 2 (Past and Future Cuts). For any event e, cut ↓e is
the set of events {e′

|e′
≺ e} that happen before e. Cut e↑ is the

set of events {e′
|e′

6� e}
⋃

{ei , i = 1, . . . , n | ei � e
∧
(∀e′

i ≺

ei , e′

i 6� e)} up to and including the earliest events at each
process for which e happens before the events.

The system state after the events in a cut is a global state
[14]; if the cut is consistent, the corresponding system state
is a consistent global state. We assume that vector clocks are
available [16,35].

Intervals. As introduced in Section 1, the intervals of interest
at each process are the durations during which an application-
specific local predicate is true. See Fig. 2. An interval begins
when the predicate becomes true, and ends when/just before the
predicate becomes false. Each interval defines an abstract event
of coarser granularity at a process, as studied by Lamport [29],
Helary et al. [18], and Kshemkalyani [27]. Such higher-level
abstract events can be used to identify a global state [27].
For example, in the context of checkpointing [4,5,15,33,34],
ψi can be used to describe the kth checkpoint interval at Pi .
To characterize deadlock [26,25], ψi denotes the interval from
the time of incoming wait-for dependency to the time of an
outgoing wait-for dependency, or vice versa; such intervals at
different processes capture how dependency chains grow. For
conjunctive predicate detection [7,12], ψi is the predicate on
the local variables that the application wants to detect.
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Table 2
Dependent relations for interactions between intervals [20]

Relation r Expression for r(X, Y ) Test for r(Xi , Y j ) using vector timestamps

R1 ∀x ∈ X∀y ∈ Y, x ≺ y V −

j (Y j )[i] ≥ V +

i (Xi )[i]

R2 ∀x ∈ X∃y ∈ Y, x ≺ y V +

j (Y j )[i] ≥ V +

i (Xi )[i]

R3 ∃x ∈ X∀y ∈ Y, x ≺ y V −

j (Y j )[i] ≥ V −

i (Xi )[i]

R4 ∃x ∈ X∃y ∈ Y, x ≺ y V +

j (Y j )[i] ≥ V −

i (Xi )[i]

S1 ∃x ∈ X∀y ∈ Y, x 6� y
∧

y 6� x ∃x0
∈ Xi : V −

j (Y j )[ j] 6≤ V x0

i [ j] ∧ V x0

i [i] 6≤ V +

j (Y j )[i]

S2 ∃x1, x2 ∈ X∃y ∈ Y, x1 ≺ y ≺ x2 ∃y0
∈ Y j : V +

i (Xi )[ j] 6< V y0

j [ j] ∧ V y0

j [i] 6< V −

i (Xi )[i]

The second column defines the relations. The third column gives the tests using vector timestamps.

Table 3
Definitions of the 40 orthogonal interaction types in R [20]

Orthogonal interaction type (on intervals X and Y ) Dependent relation r(X, Y ) Dependent relation r(Y, X)
R1 R2 R3 R4 S1 S2 R1 R2 R3 R4 S1 S2

IA (= IQ−1) 1 1 1 1 0 0 0 0 0 0 0 0
IB (= IR−1) 0 1 1 1 0 0 0 0 0 0 0 0
IC (= IV−1) 0 0 1 1 1 0 0 0 0 0 0 0
ID (= IX−1) 0 0 1 1 1 1 0 1 0 1 0 0
ID′(= IU−1) 0 0 1 1 0 1 0 1 0 1 0 1
IE (= IW−1) 0 0 1 1 1 1 0 0 0 1 0 0
IE′(= IT−1) 0 0 1 1 0 1 0 0 0 1 0 1
IF (= IS−1) 0 1 1 1 0 1 0 0 0 1 0 1
IG (= IG−1) 0 0 0 0 1 0 0 0 0 0 1 0
IH (= IK−1) 0 0 0 1 1 0 0 0 0 0 1 0
II (= IJ−1) 0 1 0 1 0 0 0 0 0 0 1 0
IL (= IO−1) 0 0 0 1 1 1 0 1 0 1 0 0
IL′ (= IP−1) 0 0 0 1 0 1 0 1 0 1 0 1
IM (= IM−1) 0 0 0 1 1 0 0 0 0 1 1 0
IN (= IM′−1) 0 0 0 1 1 1 0 0 0 1 0 0
IN′ (= IN′−1) 0 0 0 1 0 1 0 0 0 1 0 1
ID′′ (= (IUX)−1) 0 0 1 1 0 1 0 1 0 1 0 0
IE′′ (= (ITW)−1) 0 0 1 1 0 1 0 0 0 1 0 0
IL′′ (= (IOP)−1) 0 0 0 1 0 1 0 1 0 1 0 0
IM′′ (= (IMN)−1) 0 0 0 1 0 0 0 0 0 1 1 0
IN′′ (= (IMN′)−1) 0 0 0 1 0 1 0 0 0 1 0 0
IMN′′ (= (IMN′′)−1) 0 0 0 1 0 0 0 0 0 1 0 0

The upper part gives the 29 interaction types for dense time. The lower part gives 11 additional interaction types for non-dense time.
In our discrete event system model, an interval X i at process
Pi is identified by the (totally ordered) subset of adjacent events
of Ei , beginning from the event that makes the predicate true
up to the event that precedes the event that makes the predicate
false. Intervals are denoted by capitals such as X , Y , and Z . The
subscripts are omitted when not necessary or when the context
is clear. Lower-case alphabet x denotes an individual event in
an abstract event X .

Definition 3 (Interval). For a predicate ψi defined on process
Pi , an interval X i (ψi ) ⊆ Ei , satisfies the following.

• ∀ei ∈ Ei , if min(X i ) ≺ ei ≺ max(X i ) then ei ∈ X i
• ψi becomes true at min(X i ) and becomes false at

next(max(X i ))

• ∀xi such that min(X i ) ≺ xi ≺ max(X i ), xi does not falsify
ψi .

The execution history at Pi is 〈s0
i , e1

i , s1
i , e2

i , s2
i . . . e

k
i ,

sk
i , . . .〉, where sk

i is the state after event ek
i . So the definition of

X i attempts to capture the time duration in which ψi remains
true. ψi is application-specific and so we henceforth refer to
intervals without using this parameter.

Orthogonal interaction types/relationships. There are 29 or 40
possible mutually orthogonal ways in which any two durations
can be related to each other, depending on whether the dense
or the non-dense time model is assumed [20]. Informally, with
dense time, ∀z1, z2 in interval Z , z1 ≺ z2 H⇒ ∃z ∈ Z | z1 ≺

z ≺ z2. These orthogonal interaction types were identified
by first using the six dependent relations defined in the first
two columns of Table 2. Relations R1 (strong precedence), R2
(partially strong precedence), R3 (partially weak precedence),
R4 (weak precedence) define causality conditions; S1 and S2
define coupling conditions. The tests in the third column are
explained later in this section.

• (Dense time:) The 29 orthogonal interaction types between
a pair of intervals are given in the upper part of Table 3.
For any intervals X and Y , the orthogonal interaction types
listed in the first column are specified using boolean vectors
of length 12 on the dependent relations R1–R4 and S1–S2
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Fig. 3. Timing diagram for orthogonal interaction types between intervals under the dense time model [20].
(six bits for r(X, Y ) and six bits for r(Y, X)). Of the
29 interaction types, there are 13 pairs of inverses, while
three are self-inverses. E.g., IB and IR are inverses because
IB(X, Y ) = IR(Y, X). The interaction types are illustrated
in Fig. 3, where interval X is shown by a box and interval
Y is in different positions relative to X . Each position of Y
is labeled by an interaction type. Five positions of Y have
two labels each — the differences between these labeled
interaction types are depicted to the right.

• (Non-dense time:) The non-dense time model, which
captures the reality that event sequences and real clocks
are both discrete, permits 11 additional interaction types
between a pair of intervals, defined in the lower part of
Table 3. Of these, there are five pairs of inverses, while one
is its own inverse. For illustrations, refer to [20].

The set of 40 relations is denoted as R.
Example specification of DOOR: In a system with three
processes Pi , Pj , and Pk , detect a global state satisfying
IC(X i , Y j ), IA(Zk, Y j ), and IX(Zk, X i ), or alternately, in
terms of inverses, IV(Y j , X i ), IQ(Y j , Zk), and ID(X i , Zk).
Observe using Fig. 3 that the intervals in Fig. 1(b) satisfy this
specification on the interval-based global state.
Another example specification of DOOR: Detect a global
state satisfying IE(X i , Y j ), IP(Zk, Y j ), and IX(Zk, X i ), or
alternately, in terms of inverses, IW(Y j , X i ), IL′(Y j , Zk), and
ID(X i , Zk). In Fig. 1(b), if interval Y j were to begin from event
a, this specification is satisfied.
Evaluating an orthogonal interaction type. Each of the relations
in R can be tested for using the bit-patterns for the dependent
relations, as given in Table 3. The tests for R1, R2, R3, R4, S1,
and S2 using vector timestamps are given in Table 2. V −

i and
V +

i denote the vector timestamp at process Pi at the start of an
interval and the end of an interval, respectively. V x

i denotes the
vector timestamp of event xi at process Pi . R1–R4 have O(1)
cost. Observe from the tests for S1 and S2 that it is not sufficient
to retain the timestamps of only the start and end of intervals.
Unless some intelligent mechanism is used, the timestamp of
every single event might be needed.
3. The elimination principle

Each process Pi , 1 ≤ i ≤ n, maintains information about
the timestamps of the start and end of its local intervals,
and certain other local information, in a local queue Qi .
The n processes collectively run the distributed algorithms
to process the information in the local queues and solve
problem DOOR. Specifically, the intervals from the queues are
examined pairwise to check if the relation ri, j specified for Pi
and Pj holds. Devising an efficient algorithm to solve problem
DOOR is a challenge because of having to track the intervals at
different processes and to search pn combinations of intervals
that might satisfy the problem specification. We formulate the
exact condition on when, for any interval pair from Pi and
from Pj , the interval from Pi may potentially satisfy ri, j with a
future interval from Pj , and therefore the interval at Pi must be
tracked. This gives a basic principle –Theorem 1 – that can be
used to efficiently manage the distributed data structures. This
theorem in the form of Lemma 4 will be used in practice by
the proposed algorithms to solve DOOR. Specifically, we show
that for a pair of intervals from Pi and from Pj being tested
for ri, j , if the relationship does not hold, then at least one of
the intervals can never be part of any solution and its record
can be deleted without affecting the correctness of the solution
(Lemma 4).

We assume that interval X occurs at Pi and interval Y occurs
at Pj . For any two intervals X and X ′ that occur at the same
process, if R1(X, X ′), then we say that X is a predecessor of
X ′ and X ′ is a successor of X .

We next define the prohibition function H(ri, j ) and the
relation  which will be used to formulate and prove the
main results. These definitions are modified from the definitions
in [7], to give more structure and simplify the technical details.

Intuitively, for each ri, j ∈ R, we define a prohibition
functionH(ri, j ) as the set of all relations R such that if R(X, Y )
is true, then ri, j (X, Y ′) can never be true for some successor Y ′

of Y . H(ri, j ) is the set of relations that prohibit ri, j from being
true in the future.
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Table 4
Axioms for the causality relations of Table 2 [20]

Axiom label r1(X, Y )
∧

r2(Y, Z) H⇒ r(X, Z)

AL1 R1(X, Y )
∧

R2(Y, Z) H⇒ R2(X, Z)
AL2 R1(X, Y )

∧
R3(Y, Z) H⇒ R1(X, Z)

AL3 R1(X, Y )
∧

R4(Y, Z) H⇒ R2(X, Z)
AL4 R2(X, Y )

∧
R1(Y, Z) H⇒ R1(X, Z)

AL5 R3(X, Y )
∧

R1(Y, Z) H⇒ R3(X, Z)
AL6 R4(X, Y )

∧
R1(Y, Z) H⇒ R3(X, Z)

AL7 R2(X, Y )
∧

R3(Y, Z) H⇒ true
AL8 R2(X, Y )

∧
R4(Y, Z) H⇒ true

AL9 R3(X, Y )
∧

R2(Y, Z) H⇒ R4(X, Z)
AL10 R4(X, Y )

∧
R2(Y, Z) H⇒ R4(X, Z)

AL11 R3(X, Y )
∧

R4(Y, Z) H⇒ R4(X, Z)
AL12 R4(X, Y )

∧
R3(Y, Z) H⇒ true

AL13 R1(X, Y ) H⇒ S1(X, Y )
∧

S2(X, Y )
∧

R4(Y, X)
∧

S1(Y, X)
∧

S2(Y, X)
AL14 R2(X, Y ) H⇒ S1(X, Y )

∧
R2(Y, X)

AL15 R3(X, Y ) H⇒ R3(Y, X)
∧

S1(Y, X)
AL16 R4(X, Y ) H⇒ R1(Y, X)
AL17 S1(X, Y ) H⇒ R2(X, Y )

∧
R3(Y, X)

∧
S2(Y, X)

AL18 S2(X, Y ) H⇒ R1(X, Y )
∧

R4(X, Y )
∧

R1(Y, X)
∧

R4(Y, X)
∧

S1(Y, X)

R stands for “R is false”.
Definition 4 (Prohibition Function). Prohibition function H :

R → 2R is defined to beH(ri, j ) = {R ∈ R | if R(X, Y ) is true
then ri, j (X, Y ′) is false for all Y ′ that succeed Y

}
.

Two relations R′ and R′′ in R are related by the allows
relation  if the occurrence of R′(X, Y ) does not prohibit
R′′(X, Y ′) for some successor Y ′ of Y .

Definition 5 (Allows Relation). The “allows” relation  is a
relation on R × R such that R′  R′′ if the following holds:
if R′(X, Y ) is true then R′′(X, Y ′) can be true for some Y ′ that
succeeds Y .

Lemma 1. If R ∈ H(ri, j ) then R 6 ri, j else if R 6∈ H(ri, j )

then R  ri, j .

Proof. If R ∈ H(ri, j ), using Definition 4, it can be inferred
that ri, j is false for all Y ′ that succeed Y . This does not satisfy
Definition 5. Hence R 6 ri, j . If R 6∈ H(ri, j ), it follows that
ri, j can be true for some Y ′ that succeeds Y . This satisfies
Definition 5 and hence R  ri, j . �

Given that R′(A, B)  R′′(A, B ′), where R′ and R′′ are
orthogonal relations from R, the following Lemma 2 shows
some relations between interval pairs A, B and A, B ′ in terms
of the dependent set of causality relations R1 − R4. These
relations will be useful to show a critical relationship between
R′−1 and R′′−1 (Theorem 1) that allows efficient pruning of
intervals on the queues in any algorithm to solve Problem
DOOR.

Lemma 2. If R′  R′′, R′(A, B) and R′′(A, B ′), where R′,
R′′

∈ R, then the statements in Table 5 are true.

Proof. As R′  R′′ and R′(A, B) is true, we can safely assume
that there can exist an interval B ′ that succeeds B and such that
R′′(A, B ′) is true. Now consider axioms AL2, AL4, AL5 and
AL6 given in Table 4. Applying the following transformations
gives statements T1 to T4 of Table 5, respectively.
Table 5
Given R′  R′′, R′(A, B) and R′′(A, B′), for R′, R′′

∈ R , statements
between interval pairs A, B and A, B′ using the dependent relations R1–R4

Statement label Statements

T1 R1(A, B) H⇒ R1(A, B′)

T2 R2(A, B) H⇒ R1(A, B′)

T3 R3(A, B) H⇒ R3(A, B′)

T4 R4(A, B) H⇒ R3(A, B′)

T5 R1(B′, A) H⇒ R1(B, A)
T6 R2(B′, A) H⇒ R2(B, A)
T7 R3(B′, A) H⇒ R1(B, A)
T8 R4(B′, A) H⇒ R2(B, A)

1. Substitute A, B, B ′ for X, Y, Z , respectively, in Table 4.
2. As B ′ succeeds B, substitute true for R1(B, B ′), R2(B, B ′),

R3(B, B ′), and R4(B, B ′).

Consider axioms AL1, AL2, AL3, and AL4 given in Table 4.
Applying the following transformations gives statements T5 to
T8, of Table 5, respectively.

1. Substitute B, B ′, A for X, Y, Z , respectively, in Table 4.
2. As B ′ succeeds B, substitute true for R1(B, B ′), R2(B, B ′),

R3(B, B ′), and R4(B, B ′). �

We now show an important result between any two relations
in R that satisfy the “allows” relation, and the existence
of the “allows” relation between their respective inverses.
Specifically, if R′ allows R′′ (and R′

6= R′′), then Theorem 1
shows that R′−1 necessarily does not allow relation R′′−1.
This theorem is illustrated in Fig. 4. Part (a) shows R′(X, Y )
and R′′(X, Y ′), i.e., R′  R′′. By definition, we have
R′−1

(Y, X) and R′′−1
(Y ′, X). The question then is, as posed

in part (b), whether R′′−1
(Y, X ′) holds. Theorem 1 shows that

R′′−1
(Y, X ′) cannot hold, and hence R′−1 does not allow R′′−1.

This theorem is used in deriving Lemma 4 which will be
practically used in deriving solutions to problem DOOR, and
to prove the correctness of such solutions.
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Fig. 4. Illustration of Theorem 1.
Theorem 1. For R′, R′′
∈ R and R′

6= R′′, if R′  R′′ then
R′−1

6 R′′−1.

Proof. We prove by contradiction. The assumption using which
we show a contradiction is the following.

R′(X, Y ) is true, R′(X, Y ) R′′(X, Y ′) and

R′−1
(Y, X) R′′−1

(Y, X ′). (1)

By Lemma 2, T1 to T8 must hold for both R′(X, Y )  
R′′(X, Y ′) and R′−1

(Y, X)  R′′−1
(Y, X ′). So we get two

sets of constraints for intervals X, X ′, Y , and Y ′ in terms of
the dependent causality relations R1 to R4.

Consider R′(X, Y )  R′′(X, Y ′). Instantiating A by X , B
by Y , and B ′ by Y ′ in T1–T8, we have the following set of
constraints that need to be satisfied.

C1: R1(X, Y ) ⇒ R1(X, Y ′)

C2: R2(X, Y ) ⇒ R1(X, Y ′)

C3: R3(X, Y ) ⇒ R3(X, Y ′)

C4: R4(X, Y ) ⇒ R3(X, Y ′)

C5: R1(Y ′, X) ⇒ R1(Y, X)
C6: R2(Y ′, X) ⇒ R2(Y, X)
C7: R3(Y ′, X) ⇒ R1(Y, X)
C8: R4(Y ′, X) ⇒ R2(Y, X).

Now consider R′−1
(Y, X)  R′′−1

(Y, X ′). Instantiating A
by Y , B by X , and B ′ by X ′ in T1–T8, we have the following
set of constraints that need to be satisfied.

C9: R1(Y, X) ⇒ R1(Y, X ′)

C10: R2(Y, X) ⇒ R1(Y, X ′)

C11: R3(Y, X) ⇒ R3(Y, X ′)

C12: R4(Y, X) ⇒ R3(Y, X ′)

C13: R1(X ′, Y ) ⇒ R1(X, Y )
C14: R2(X ′, Y ) ⇒ R2(X, Y )
C15: R3(X ′, Y ) ⇒ R1(X, Y )
C16: R4(X ′, Y ) ⇒ R2(X, Y ).

From Eq. (1), it can be seen that the interval pairs (Y ′, X) and
(Y, X ′) both are related by the orthogonal relation R′′−1. Hence
r(Y ′, X) ⇔ r(Y, X ′), where r is any of the six dependent
relations given in Table 2. Thus replacing r(Y, X ′) by r(Y ′, X)
in C9 to C12, we have the following constraints.

C17: R1(Y, X) ⇒ R1(Y ′, X)
C18: R2(Y, X) ⇒ R1(Y ′, X)
C19: R3(Y, X) ⇒ R3(Y ′, X)
C20: R4(Y, X) ⇒ R3(Y ′, X).
From Eq. (1), it can also be seen in a similar way that the
interval pairs (X, Y ′) and (X ′, Y ) both are related by the
orthogonal relation R′′. Hence r(X, Y ′) ⇔ r(X ′, Y ), where
r is any of the six dependent relations given in Table 2. Thus
replacing r(X ′, Y ) by r(X, Y ′) in C13 to C16, we have the
following constraints.

C21: R1(X, Y ′) ⇒ R1(X, Y )
C22: R2(X, Y ′) ⇒ R2(X, Y )
C23: R3(X, Y ′) ⇒ R1(X, Y )
C24: R4(X, Y ′) ⇒ R2(X, Y ).

The two constraint sets (C1)–(C8) and (C17)–(C24) given
above can be combined to obtain restrictions on the type of
interactions (given in Table 3) that R′(X, Y ) can belong to.
Combining constraints C1 to C4 with constraints C21 to C24
gives

R1(X, Y ) ∨ R2(X, Y ) ∨ R3(X, Y ) ∨ R4(X, Y ) ⇒ R1(X, Y ).

Note from the definitions in Table 2 that R1(X, Y ) ⇒

R2(X, Y ) ∧ R3(X, Y ) ∧ R4(X, Y ). Thus,

R1(X, Y ) ∨ R2(X, Y ) ∨ R3(X, Y ) ∨ R4(X, Y )

⇒ R1(X, Y ) ∧ R2(X, Y ) ∧ R3(X, Y ) ∧ R4(X, Y ). (2)

The above implication implies that relations R1(X, Y ),
R2(X, Y ), R3(X, Y ), and R4(X, Y ) are either all true or all
false.

Using a similar approach, combining constraints C17 to C20
with constraints C5 to C8 gives

R1(Y, X) ∨ R2(Y, X) ∨ R3(Y, X) ∨ R4(Y, X)

⇒ R1(Y, X) ∧ R2(Y, X) ∧ R3(Y, X) ∧ R4(Y, X). (3)

This means relations R1(Y, X), R2(Y, X), R3(Y, X), and
R4(Y, X), are either all true or all false.

Implications (2) and (3) restrict the interaction type (given
in Table 3) to which R′(X, Y ) can belong. We now examine all
the restricted cases to which R′(X, Y ) can belong, i.e., when
R1(X, Y ) to R4(X, Y ) are all true, and when R1(X, Y ) to
R4(X, Y ) are all false, and show that R′(X, Y ) cannot exist;
which is a contradiction to Eq. (1). Using Implication (2), there
are two broad cases for R′(X, Y ).
Case 1. R1(X, Y ), R2(X, Y ), R3(X, Y ), and R4(X, Y ) are all
true.

From Table 3, R′(X, Y ) must be IA. Further, from
constraints C1 to C4, we get

R1(X, Y ′), R2(X, Y ′), R3(X, Y ′), R4(X, Y ′) are true.

(4)

Using axioms AL13 to AL16, we get R1(Y, X), R2(Y, X),
R3(Y, X), R4(Y, X), S1(X, Y ), S2(X, Y ), S1(Y, X), S2(Y, X)
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are all false. Now substituting X, Y ′ for X , Y in axioms AL13
to AL16, we get

R1(Y ′, X), R2(Y ′, X), R3(Y ′, X), R4(Y ′, X), S1(X, Y ′),

S2(X, Y ′), S1(Y ′, X), S2(Y ′, X) are false. (5)

From Table 3, R′′(X, Y ′) must be IA. Thus, the only
combination by which to instantiate R′ and R′′ so that they
satisfy the case assumption and Eqs. (4) and (5) is IA. Thus,
we have R′(X, Y ) = R′′(X, Y ′) = IA. As R′

6= R′′ by the
theorem statement, this case cannot exist.
Case 2. R1(X, Y ), R2(X, Y ), R3(X, Y ) and R4(X, Y ) are all
false.

From Table 3, R′(X, Y ) ∈ {IG, IK, IJ, IQ, IR, IV}. There are
two subcases considering Implication (3).

1. R1(Y, X), R2(Y, X), R3(Y, X), and R4(Y, X) are all true.
Then R′(X, Y ) must be IQ. From constraints C17 to C20,
we get

R1(Y ′, X), R2(Y ′, X), R3(Y ′, X), R4(Y ′, X) are true.

(6)

Substituting Y ′, X for X , Y in axioms AL13 to AL16, we
get

R1(X, Y ′), R2(X, Y ′), R3(X, Y ′), R4(X, Y ′), S1(X, Y ′),

S2(X, Y ′), S1(Y ′, X), S2(Y ′, X) are false. (7)

From Table 3, R′′(X, Y ′) must be IQ. Thus, the only
combination by which to instantiate R′ and R′′ so that they
satisfy the case/subcase assumptions and Eqs. (6) and (7)
is IQ. Thus, we have R′(X, Y ) = R′′(X, Y ′) = IQ. As
R′

6= R′′ by the theorem statement, this case cannot exist.
2. R1(Y, X), R2(Y, X), R3(Y, X), and R4(Y, X) are all false.

Then R′(X, Y ) must be IG. From constraints C5 to C8, we
get

R1(Y ′, X), R2(Y ′, X), R3(Y ′, X), R4(Y ′, X) are false.

(8)

Now substituting Y ′, X for X , Y in axioms AL13 to AL16,
we get

R1(X, Y ′), R2(X, Y ′), R3(X, Y ′), R4(X, Y ′) are false.

(9)

From Table 3, R′′(X, Y ′) must be IG. Thus, the only
combination by which to instantiate R′ and R′′ so that they
satisfy the case/subcase assumptions and Eqs. (8) and (9)
is IG. Thus, we have R′(X, Y ) = R′′(X, Y ′) = IG. As
R′

6= R′′ by the theorem statement, this case cannot exist.

Hence there cannot exist a case where R′(X, Y )  
R′′(X, Y ′) and R′−1

(Y, X)  R′′−1
(Y ′, X). This contradicts

the assumption in Eq. (1), proving the theorem. �

Theorem 2. For any R′, R′′
∈ R, and for any Y ′ that is a

successor of Y , R′(X, Y ) ∈ H(R′′(X, Y ′)) if and only if

1. R2(Y, X)
∧

R1(Y, X)
∧

R4(X, Y )
∧

R3(Y ′, X) or
2. R2(Y, X)

∧
R4(X, Y )

∧
R3(X, Y ′) or

3. R4(X, Y )
∧

R2(Y, X)
∧

R4(Y ′, X) or
4. (R2(Y, X)
∧

R2(X, Y )
∧

R4(X, Y ))
∧

(R3(X, Y ′)
∨

R4(Y ′, X)) or

5. R2(X, Y )
∧

R1(X, Y ′).

Proof. Observe from the definition of allows that whether one
orthogonal relation R′(X, Y ) allows another R′′(X, Y ′) is based
on the values of dependent relations R1–R4 using which the
orthogonal relations are defined. R1–R4 determine the allows
relation because they fundamentally determine the orthogonal
relationship that results by the placement of the start of Y ′ after
the completion of Y . However, the coupling relations S1 and
S2 are not involved in determining the allows relation because
they deal with interactions between X and Y , or between X and
Y ′, internal to the interval pair.

From Lemma 1, R′
∈ H(R′′) if and only if R′

6 R′′. We
now prove the theorem with the aid of Figs. 4 and 5. Fig. 5
shows that space-time can be partitioned into six regions I–VI
with respect to any interval X . Graphically, an event on the line
depicting the border of min(X)↑ or of max(X)↑ belongs to
the right side region. An event on the line depicting the border
of ↓min(X) or of ↓max(X) belongs to the left side region.
R′(X, Y ) ∈ H(R′′(X, Y ′)) if and only if the end of Y does not
permit the beginning of Y ′ to occur after it. This can be true if
one of the following five cases holds:

1. Y ends in Region II; Y ′ begins in Region I
2. Y ends in Region III; Y ′ begins in Region I or II or IV
3. Y ends in Region IV; Y ′ begins in Region I or II or III
4. Y ends in Region V; Y ′ begins in Region I or II or III or IV
5. Y ends in Region VI; Y ′ begins in Region I or II or III or IV

or V.

Table 6 gives the conditions for interval Y to end in a region, and
for interval Y ′ to begin in a region, in terms of the dependent
set of relations R1–R4. For each condition, the number of
conjuncts equals the number of borders that constrain the
region. For each of the five cases above, the conditions on Y ′

beginning in the union of regions can be observed from Fig. 5
and Table 2. We show the formal derivations using Table 6.

Case 1. Y ends in Region II; Y ′ begins in Region I.
Conjuncting the conditions from Table 6, we get:

(R2(Y, X) ∧ R1(Y, X) ∧ R4(X, Y ))
∧

R3(Y ′, X).

Case 2. Y ends in Region III; Y ′ begins in Region I or II or
IV. The condition for Y ′ beginning in Region I or II or IV gives
the following.

R3(Y ′, X)
∨
(R4(Y ′, X) ∧ R3(Y ′, X) ∧ R3(X, Y ′))∨

(R4(Y ′, X) ∧ R3(X, Y ′)). (10)

We have a ∨ b ∨ c = a
∨
(a(b ∨ c)) where a, b, c are

boolean variables. Substituting R3(Y ′, X) for a, R4(Y ′, X) ∧

R3(Y ′, X) ∧ R3(X, Y ′) for b, and R4(Y ′, X) ∧ R3(X, Y ′) for
c in Eq. (10), we get:

R3(Y ′, X)
∨
(R3(Y ′, X)

∧
((R4(Y ′, X) ∧ R3(Y ′, X)

∧R3(X, Y ′))
∨
(R4(Y ′, X) ∧ R3(X, Y ′))))

= R3(Y ′, X)
∨
(R3(Y ′, X) ∧ R4(Y ′, X) ∧ R3(X, Y ′))
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Fig. 5. Six causality-based regions identified by an interval.
Table 6
Given R′(X, Y ) and R′′(X, Y ′), for R′, R′′

∈ R , conditions for Y to end in a region and for Y ′ to begin in a region with respect to interval X , using the dependent
relations R1 − R4

Region Y ends in region Y ′ begins in region

I R1(Y, X) R3(Y ′, X)
II R2(Y, X) ∧ R1(Y, X) ∧ R4(X, Y ) R4(Y ′, X) ∧ R3(Y ′, X) ∧ R3(X, Y ′)

III R2(Y, X) ∧ R4(X, Y ) R3(X, Y ′) ∧ R4(Y ′, X)
IV R4(X, Y ) ∧ R2(Y, X) R4(Y ′, X) ∧ R3(X, Y ′)

V R2(Y, X) ∧ R2(X, Y ) ∧ R4(X, Y ) R3(X, Y ′) ∧ R1(X, Y ′) ∧ R4(Y ′, X)
VI R2(X, Y ) R1(X, Y ′)
∨
(R3(Y ′, X) ∧ R4(Y ′, X) ∧ R3(X, Y ′))

= R3(Y ′, X)
∨
((R3(Y ′, X) ∧ R3(X, Y ′))∧

(R4(Y ′, X) ∨ R4(Y ′, X)))

= R3(Y ′, X)
∨
(R3(Y ′, X) ∧ R3(X, Y ′)). (11)

From axiom AL15, we get:

R3(Y ′, X) H⇒ R3(X, Y ′). (12)

Replacing R3(Y ′, X) in Eq. (11) by R3(Y ′, X)∧R3(X, Y ′), we
get:

(R3(Y ′, X) ∧ R3(X, Y ′))
∨
(R3(Y ′, X) ∧ R3(X, Y ′))

= R3(X, Y ′)
∧
(R3(Y ′, X) ∨ R3(Y ′, X))

= R3(X, Y ′). (13)

Conjuncting this with the condition from Table 6 that Y ends in
Region III gives R2(Y, X) ∧ R4(X, Y ) ∧ R3(X, Y ′).

Case 3. Y ends in Region IV; Y ′ begins in Region I or II or
III. The condition for Y ′ beginning in Region I or II or III gives
the following.

R3(Y ′, X)
∨
(R4(Y ′, X) ∧ R3(Y ′, X) ∧ R3(X, Y ′))∨

(R4(Y ′, X) ∧ R3(X, Y ′)). (14)
By using Eq. (12) and replacing R3(X, Y ′) in Eq. (14) by
R3(X, Y ′) ∧ R3(Y ′, X), we get:

R3(Y ′, X)
∨
(R4(Y ′, X) ∧ R3(Y ′, X) ∧ R3(X, Y ′))∨

(R4(Y ′, X) ∧ R3(X, Y ′) ∧ R3(Y ′, X))

= R3(Y ′, X)
∨
(R4(Y ′, X) ∧ R3(Y ′, X)∧

(R3(X, Y ′) ∨ R3(X, Y ′)))

= R3(Y ′, X)
∨
(R4(Y ′, X) ∧ R3(Y ′, X)). (15)

We have R3(Y ′, X) H⇒ R4(Y ′, X). Replacing R3(Y ′, X) by
R3(Y ′, X) ∧ R4(Y ′, X) in Eq. (15), we get:

(R3(Y ′, X) ∧ R4(Y ′, X))
∨
(R4(Y ′, X) ∧ R3(Y ′, X))

= R4(Y ′, X)
∧
(R3(Y ′, X) ∨ R3(Y ′, X))

= R4(Y ′, X). (16)

Conjuncting this with the condition from Table 6 that Y ends in
Region IV gives R4(X, Y ) ∧ R2(Y, X) ∧ R4(Y ′, X).

Case 4. Y ends in Region V; Y ′ begins in Region I or II or
III or IV. The condition for Y ′ beginning in Region I or II or
III or IV can be expressed as the union of the conditions for Y ′

beginning in regions I,II, or IV, and of Y ′ beginning in regions
I,II, or III. This is a disjunct of Eqs. (13) and (16), viz.,

R4(Y ′, X) ∨ R3(X, Y ′). (17)
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Table 7
H(ri, j ) for the 40 independent interaction types in R

Interaction type ri, j ∈ R H(ri, j ) H(r j,i )

IA (= IQ−1) φ R \ {IQ}

IB(= IR−1) {IA, IB, IF, II, IP, IO, IU, IX, IUX, IOP} R \ {IQ}

IC (= IV−1) {IA, IB, IF, II, IP, IO, IU, IX, IUX, IOP} R \ {IQ}

ID (= IX−1) R \ {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′
} R \ {IQ}

ID′ (= IU−1) R \ {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′
} R \ {IQ}

IE (= IW−1) R \ {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′
} R \ {IQ}

IE′ (= IT−1) R \ {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′
} R \ {IQ}

IF (= IS−1) R \ {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′
} R \ {IQ}

IG (= IG−1) R \ {IQ, IR, IJ, IV, IK, IG} R\ {IQ, IR, IJ, IV, IK, IG}

IH (= IK−1) R \ {IQ, IR, IJ, IV, IK, IG} R \ {IQ, IR, IJ}

II (= IJ−1) R \ {IQ, IR, IJ, IV, IK, IG} R \ {IQ, IR, IJ}

IL (= IO−1) R \ {IQ, IR, IJ} R \ {IQ, IR, IJ}

IL′ (= IP−1) R \ {IQ, IR, IJ} R \ {IQ, IR, IJ}

IM (= IM−1) R \ {IQ, IR, IJ} R \ {IQ, IR, IJ}

IN (= IM′−1) R \ {IQ, IR, IJ} R \ {IQ, IR, IJ}

IN′ (= IN′−1) R \ {IQ, IR, IJ} R \ {IQ, IR, IJ}

ID′′ (= (IUX)−1) R \ {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′
} R \ {IQ}

IE′′ (= (ITW)−1) R \ {IQ, IS, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′
} R \ {IQ}

IL′′ (= (IOP)−1) R \ {IQ, IR, IJ} R \ {IQ, IR, IJ}

IM′′ (= (IMN)−1) R \ {IQ, IR, IJ} R \ {IQ, IR, IJ}

IN′′ (= (IMN′)−1) R \ {IQ, IR, IJ} R \ {IQ, IR, IJ}

IMN′′ (= (IMN′′)−1) R \ {IQ, IR, IJ} R \ {IQ, IR, IJ}

The upper part givesH for dense time. The lower part givesH for the 11 additional interaction types for non-dense time.
Conjuncting this with the condition from Table 6 that
Y ends in Region V gives (R2(Y, X) ∧ R2(X, Y ) ∧

R4(X, Y ))
∧
(R4(Y ′, X) ∨ R3(X, Y ′)).

Case 5. Y ends in Region VI; Y ′ begins in Region I or II or
III or IV or V. Using Eq. (17) and Table 6, the condition for Y ′

beginning in Region I or II or III or IV or V gives the following.

R4(Y ′, X)
∨

R3(X, Y ′)
∨
(R3(X, Y ′) ∧ R1(X, Y ′)

∧R4(Y ′, X)). (18)

As R1(X, Y ) H⇒ R3(X, Y ), it means R3(X, Y ) H⇒

R1(X, Y ). Substituting R3(X, Y ′) ∧ R1(X, Y ′) for R3(X, Y ′)

in Eq. (18), we get:

R4(Y ′, X)
∨
(R3(X, Y ′) ∧ R1(X, Y ′))

∨
(R3(X, Y ′)

∧ R1(X, Y ′) ∧ R4(Y ′, X))

= (R3(X, Y ′) ∧ R1(X, Y ′))∨ (
(R4(Y ′, X) ∨ (R3(X, Y ′) ∧ R1(X, Y ′)))

∧
true

)
= (R3(X, Y ′) ∧ R1(X, Y ′))

∨
R4(Y ′, X)∨

(R3(X, Y ′) ∧ R1(X, Y ′))

= R4(Y ′, X) ∨ (R1(X, Y ′) ∧ true)

= R4(Y ′, X) ∨ R1(X, Y ′). (19)

From axiom AL16, we get R4(Y ′, X) H⇒ R1(X, Y ′). Now
substituting R4(Y ′, X) ∧ R1(X, Y ′) for R4(Y ′, X) in Eq. (19),
we get:

(R4(Y ′, X) ∧ R1(X, Y ′))
∨

R1(X, Y ′)

= R1(X, Y ′)
∧
(true ∨ R4(Y ′, X))
= R1(X, Y ′). (20)

Conjuncting this with the condition from Table 6 that Y ends in
Region VI, we get R2(X, Y ) ∨ R1(X, Y ′). This completes the
theorem. �

Theorem 3. Table 7 givesH(ri, j ) for each of the 40 interaction
types in R.

Proof. The table is constructed by implementing the tests
(1)–(5) in Theorem 2. To determine H(R′′(X, Y ′)), we first
determine which of the five tests (1)–(5) are falsified by R′′.
For the tests that are satisfied by R′′, we determine which of
the relations R ∈ R satisfy any of these tests on X and Y —
these relations belong toH(R′′(X, Y ′)). For this determination,
we derive the following intermediary sets γ1 to γ5 from Table 3
and Theorem 2, corresponding to Y ending in regions II to VI
of Table 6.

γ1: R2(Y, X)
∧

R1(Y, X)
∧

R4(X, Y ) is true for
γ1 = {IJ, IR}

γ2: R2(Y, X)
∧

R4(X, Y ) is true for γ2 = {ID, ID′, ID′′, IL,
IL′, IL′′, IS}

γ3: R4(X, Y )
∧

R2(Y, X) is true for γ3 = {IG, IV, IK}

γ4: R2(Y, X)
∧

R2(X, Y )
∧

R4(X, Y ) is true for γ4 = {IC,
IE, IE′, IE′′, IH, IM, IM′, IM′′, IN, IN′, IN′′, IMN, IMN′,

IMN′′, IT, IW, ITW}

γ5: R2(X, Y ) is true for γ5 = {IA, IB, IF, II, IP, IO, IU, IX,
IOP, IUX}.

Now consider the following relations R′′
∈ R.

1. R′′
∈ {IA}. Let R′′(X, Y ′) hold.

Then R3(Y ′, X) = 0 falsifying (1), R3(X, Y ′) = 1
falsifying (2), R4(Y ′, X) = 0 falsifying (3), R3(X, Y ′) = 1
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and R4(Y ′, X) = 0 falsifying (4), and R1(X, Y ′) = 1
falsifying (5). Hence there cannot exist any relationship in
R satisfying Theorem 2 and hence H(R′′) = ∅.

2. R′′
∈ {IB, IC}. Let R′′(X, Y ′) hold.

Then R3(Y ′, X) = 0 falsifying (1), R3(X, Y ′) = 1
falsifying (2), R4(Y ′, X) = 0 falsifying (3), R3(X, Y ′) = 1
and R4(Y ′, X) = 0 falsifying (4), and R1(X, Y ′) = 0,
satisfying (5).
From γ5, condition (5) is satisfied by all relations in
H(R′′) = γ5 = {IA, IB, IF, II, IP, IO, IU, IX, IUX, IOP}.

3. R′′
∈ {ID, ID′, ID′′, IE, IE′, IE′′, IF}.

Let R′′(X, Y ′) hold.
Then R3(Y ′, X) = 0 falsifying (1), R3(X, Y ′) = 1
falsifying (2), R4(Y ′, X) = 1 satisfying (3), R3(X, Y ′) = 1
and R4(Y ′, X) = 1 satisfying (4), and R1(X, Y ′) = 0,
satisfying (5).
At least one of conditions (3), (4), (5) is satisfied by all
relations in H(R′′) = γ3 ∪ γ4 ∪ γ5, i.e., by all except those
in {IQ, I S, IR, IJ, IL, IL′, IL′′, ID, ID′, ID′′

}.
4. R′′

∈ {IG, IH, II}. Let R′′(X, Y ′) hold.
Then R3(Y ′, X) = 0 falsifying (1), R3(X, Y ′) = 0
satisfying (2), R4(Y ′, X) = 0 falsifying (3), R3(X, Y ′) = 0
and R4(Y ′, X) = 0 satisfying (4), and R1(X, Y ′) = 0,
satisfying (5).
At least one of conditions (2), (4), (5) is satisfied by all
relations in H(R′′) = γ2 ∪ γ4 ∪ γ5, i.e., by all except those
in {IG, IJ, IQ, IR, IV, IK}.

5. R′′
∈ {IL, IL′, IL′′, IM, IM′, IM′′, IN, IN′, IN′′, IMN, IMN′,

IMN′′, IO, IP, IOP, IJ, IK}.
Let R′′(X, Y ′) hold.
Then R3(Y ′, X) = 0 falsifying (1), R3(X, Y ′) = 0
satisfying (2), R4(Y ′, X) = 1 satisfying (3), R3(X, Y ′) = 0
and R4(Y ′, X) = 1 satisfying (4), and R1(X, Y ′) = 0,
satisfying (5).
At least one of conditions (2), (3), (4), (5) is satisfied by all
relations in H(R′′) = γ2 ∪ γ3 ∪ γ4 ∪ γ5, i.e., by all except
those in {IJ, IQ, IR}.

6. R′′
∈ {IQ, IR, IV, IX, IU, IW, IT, IS, IUX, ITW}. Let

R′′(X, Y ′) hold.
Then R3(Y ′, X) = 1 satisfying (1), R3(X, Y ′) = 0
satisfying (2), R4(Y ′, X) = 1 satisfying (3), R3(X, Y ′) = 0
and R4(Y ′, X) = 1 satisfying (4), and R1(X, Y ′) = 0,
satisfying (5).
At least one of conditions (1), (2), (3), (4), (5) is satisfied by
all relations in H(R′′) = γ1 ∪ γ2 ∪ γ3 ∪ γ4 ∪ γ5, i.e., by all
except those in {IQ}.

This completes the theorem. �
From Lemma 1, R′  R′′ if and only if R′

6∈ H(R′′). The
allows relation among the interaction types in R is depicted
using Fig. 6. The figure is drawn using the complements of
the entries of Table 7. Observe that only interaction types in
{IA, IC, ID, ID′, ID′′, IG, IJ, IQ} allow themselves, i.e., they do
not belong to their own prohibition set. These are exactly those
interaction types for which Y lies entirely within a single region
in Fig. 5. Also observe that only IA, IG, IQ satisfy r−1  r−1.
The allows relation is the transitive closure over the edges
shown using solid lines and the dashed lines. The dashed lines
represent the allows relation between interaction types, that
lead to loops in the graph. R is partitioned into 6 equivalence
classes that correspond to the 6 cases to which R′′ can belong to
in Theorem 3. In each class, the interaction types have the same
prohibition function, and hence the same set of interaction types
allows the interaction types in that class. We have the following
result from Definition 5 and Fig. 6.

Corollary 1. The allows relation is transitive.

The following two lemmas are necessary to show the
correctness of any algorithm to solve problem DOOR.

Lemma 3. If R(X i , Y j ) holds, and R ∈ H(ri, j ), where ri, j 6=

R, then interval X i can be removed from the queue Qi .

Proof. From the definition of H(ri, j ), we get that ri, j (X i , Y ′

j )

cannot exist, where Y ′

j is any successor interval of Y j . Further,
as ri, j 6= R, we have that interval X i can never be a part of the
solution and its record can be deleted from the queue. �

The following final result, although simple in form, is based
on the crucial Theorem 1 and shows that both R 6∈ H(ri, j )

and R−1
6∈ H(r j,i ) cannot hold when R 6= ri, j . Hence, by

Lemma 3, if R(X i , Y j ) 6= ri, j then the record of at least one of
the intervals X i and Y j being tested must be deleted.

Lemma 4. If R(X i , Y j ) holds and R 6= ri, j , then interval X i
or interval Y j is removed from its queue Qi or Q j , respectively.

Proof. We use contradiction. From Lemma 3, the only time
neither X i nor Y j will be deleted is when R 6∈ H(ri, j ) and
R−1

6∈ H(r j,i ). From Lemma 1, it can be inferred that R  ri, j

and R−1  r j,i . As r−1
i, j = r j,i , we get R  ri, j and

R−1  r−1
i, j . This is a contradiction as by Theorem 1, R  

ri, j ⇒ R−1
6 r−1

i, j . Hence R ∈ H(ri, j ) or R−1
∈ H(r j,i ), and

thus at least one of the intervals will be deleted. �

Observe from Table 7 or Fig. 3 that it is possible that both
intervals being examined should be deleted.

Example. If ri, j = IC and R(X i , Y j ) = IF, then X i can
never satisfy IC(X i , Y ′

j ) for any successor Y ′

j of Y j . Indeed,

IF ∈ H(IC). So X i must be deleted. Also, R(Y j , X i ) = IF−1
=

IS and r j,i = IV . Y j can never satisfy IV(Y j , X ′

i ) with any
successor X ′

i of X i . Indeed, IS ∈ H(IV). So Y j must also be
deleted.

Significance of Theorem 1 and Lemma 4: Lemma 4
embodies a principle (Theorem 1) that can be used to solve
Problem DOOR efficiently. Essentially, the solutions need to
examine the intervals in the queues, a pair of intervals from the
queues of different processes, at a time. Lemma 4 guarantees
that in each such test, at least one or both intervals being
examined are deleted, unless ri, j (X i , Y j ) is satisfied by that
pair of intervals X i and Y j . The algorithms differ in how they
construct the queues, and in how they process the intervals and
the queues.
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Fig. 6. The allows relation is given by the transitive closure of the arrows in solid lines.
Fig. 7. The protocol for vector clock and Interval Clock at Pi , 1 ≤ i ≤ n [7].

4. Data structures

The data structures required by Algorithms 1 and 2 (see
Sections 5 and 6) to solve Problems DOOR are given in
this section. The data structures were used by the centralized
algorithm [7] to detect Possibly and Definitely modalities on
predicates.

Each process Pi , (1 ≤ i ≤ n) keeps two arrays.

1. Vi : array[1..n] of integer. This is the Vector Clock [16,35].
2. Ii : array[1..n] of integer. This is a Interval Clock which

tracks the latest intervals at processes. Ii [ j] is the timestamp
V j [ j] when the predicate φ j of interest at Pj last became
true, as known to Pi .

Fig. 7 shows how to update the vector clock and Interval Clock.
Each process Pi , (1 ≤ i ≤ n) also keeps a queue Qi of Logi .
Fig. 8. Data structures and operations to construct Logi and enqueue it in Qi
at Pi (1 ≤ i ≤ n) [7].

3. Logi : contains the information for an interval, needed to
compare it with other intervals.

The protocol to create a Logi for a local interval and enqueue
it in Qi is given in Fig. 8. If two or more successive intervals
on the same process have the same relationship with all other
intervals at all other processes, then the Log corresponding
to only one of them needs to be stored on the queue. Two
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Fig. 9. The tests for S2(Xi , Y j ) and S1(Y j , Xi ) [7].

successive intervals Y and Y ′ on process Pj will have the same
relationship if no message is sent or received by Pj between
the start of Y and the end of Y ′. The Log is used to determine
the orthogonal relationship between two intervals, based on the
tests in Table 2 for the dependent relations. The tests for S1 and
S2, in terms of the Log, are given in Fig. 9.

5. Distributed algorithm 1

5.1. The algorithm

We reformulate Problem DOOR as follows to design a
solution.
Problem DOOR: Given a relation ri, j from R for each pair of
processes Pi and Pj , devise a distributed on-line algorithm to
identify the set of intervals I, if they exist, one interval Ii from
each process Pi , such that the relation ri, j (Ii , I j ) is satisfied by
each (Pi , Pj ) process pair.

A token-based algorithm is given in Fig. 10. If no set of
intervals satisfying the above conditions exists, the algorithm
does not return any interval set. The algorithm uses a token T
that has two vectors. T .Log[i] contains the Log corresponding
to the interval at the head of queue Qi . T .C[i] = true if and
only if the interval at the head of queue Qi may be a part of
the final solution and the corresponding log Logi is stored in
the token T .Log[i]. If T .C[i] = false then it is known that
the interval at the head of queue Qi cannot be a part of the
solution, its corresponding log is not contained in the token,
and the interval can be deleted from Qi .

A process Pi receives a token only if T .C[i] = f alse, which
means the interval at the head of queue Qi is not a part of
the solution, and hence the interval is deleted. The orthogonal
relationship R(X, Y ) between the next interval X on the queue
Qi and each other interval Y whose log Log j is contained
in T .Log[ j] and T .C[ j] = true is determined (lines 3d–3i).
According to Lemma 4, there are now three cases. (1) ri, j =

R(X, Y ). (2) ri, j 6= R(X, Y ) and interval X can be removed
from the queue Qi . (3) ri, j 6= R(X, Y ) and interval Y can be
removed from the queue Q j . In the third case, the log Log j in
T .Log[ j] corresponding to interval Y is deleted and T .C[ j] is
set to false (lines 3m–3n). In the second case, T .C[i] is set to
false (line 3k) so that in the next iteration of the while loop, the
interval X is deleted (lines 3a–3b). Both cases (2) and (3) may
occur as a result of a comparison. The above process is repeated
until the interval at the head of queue Qi satisfies the required
relationships with each of the interval Logs remaining in the
token T . The process Pi then adds the log Logi corresponding
to the interval at the head of queue Qi to the token T .Log[i];
T .C[i] is already equal to true. A solution is detected when
T .C[k] is true for all indices k (lines 3p–3q), and is given by
all the n log entries of all the processes, T .Log[1 . . . n]. If the
above condition (line 3p) is not satisfied, then the token is sent
to some process Pj whose log Log j is not contained in the token
T .Log[ j] (in which case T .C[ j] = f alse, lines 3s–3v).

Note that the wait in line 3d can be made non-blocking
by restructuring the code using an interrupt-based approach.
Algorithm 2 in Section 6 employs this interrupt-based
approach.

5.2. Correctness proof

Lemma 5. After Pi executes loop (3f–3n), if T .C[i] = true
then the relationship ri, j is satisfied for interval X i at the head
of queue Qi and each interval Y j at the head of queue Q j such
that T .C[ j] = true.

Proof. The body of the loop (lines 3j–3m) implements
Lemma 3 by testing for R(X i , Y j ) ∈ H(ri, j ) and
R−1(Y j , X i ) ∈ H(r j,i ). If ri, j is not satisfied between interval
X i and interval Y j , then by Lemma 4, X i or Y j is deleted,
i.e., (lines 3j–3k) or (lines 3l–3m) are executed and hence
T .C[i] or T .C[ j] is set to false. This implies that if both T .C[i]
and T .C[ j] are true then the relationship ri, j (X i , Y j ) is true.

It remains to show that Y j which is T .Log[ j] is the same as
head(Q j ). This follows by observing that (i) T .Log[ j] was the
same as head(Q j ) when the token last visited and left Pj , and
(ii) head(Q j ) is deleted only when T .C[ j] is false and hence
the token visits Pj . �

Theorem 4. When a solution I is detected by the algorithm
in Fig. 10, the solution is correct, i.e., for each i, j ∈ N and
Ii , I j ∈ I, the intervals Ii = head(Qi ) and I j = head(Q j )

are such that ri, j (Ii , I j ).
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Fig. 10. Algorithm 1: Distributed token-based algorithm to solve Problem DOOR.
Proof. It is sufficient to prove that for the solution detected,
which happens at the time T .C[k] = true for all k (lines
3p–3q), (i) ri, j (Ii , I j ) is satisfied for all pairs (i, j), and (ii)
Ik = head(Qk) for all k. To prove (i) and (ii), note that
at this time, the token must have visited each process at
least once because only the token-holder Pi can set T .C[i]
to true. Consider the latest time ti when process Pi was last
visited by the token (and T .C[i] was set to true and T .Log[i]
was set to head(Qi )). Since ti until the solution is detected,
T .C[i] remains true and head(Qi ) is not deleted, otherwise
the token would have to revisit Pi again (lines 3s–3v) —
leading to a contradiction. Linearly order the process indices
in array Visit[1 . . . n] according to the increasing order of the
times of the last visit of the token. Then for k from 2 to
n, we have that when the token was at PVisit[k], the intervals
corresponding to T .Log[Visit[k]] and T .Log[Visit[m]], for all
1 ≤ m < k, were tested successfully for rVisit[k],Visit[m] and
T .C[Visit[k]] and T .C[Visit[m]] were true after this test. This
shows that the intervals from every pair of processes got tested,
and by Lemma 5, that R(XVisit[k], YVisit[m]) = rVisit[k],Visit[m]

was satisfied for XVisit[k] = head(QVisit[k]) and YVisit[m] =

head(QVisit[m]) at the time of comparison.
Hence, all the interval pairs (Ii , I j ) of the solution got tested

and satisfied ri, j . Further, since the time of each latest test (say,
at process a), the solution interval Ia = head(Qa) did not get
deleted because T .C[a] remains true after ta . �

Let I(h) denote the set of intervals, one at the head of each
queue, during hop h of the token. Each I(h) identifies a system
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state (not necessarily consistent). Also observe that for any I(h)
and I(h + 1) and any process Pi , interval Ii (h + 1) in I(h + 1)
is a successor of or equal to interval Ii (h) in I(h). We thus say
that all the I are linearly ordered, and I(h) precedes I(h′), for
all h′ > h. Let I(S) denote the set of intervals that form the first
solution. Let I(init) denote the initial empty set of intervals.
Clearly, I(init) precedes I(S).

Lemma 6. In any hop h of the token, no interval X i ∈ I(S)
gets deleted from Qi .

Proof. We show by contradiction. Let X i be the first interval
belonging to the solution, that gets deleted. Once X i appears at
head(Qi ) in line 3e, there are two cases by which it could get
deleted.

1. At Pi , the test in line 3j evaluates to true, causing X i to be
deleted in line 3b of the next iteration. Now R(X i , Y j ) ∈

H(ri, j ) must be true from the test. However, Y j is a
predecessor of some interval Y ′

j such that ri, j (X i , Y ′

j ) holds
because of our assumption that X i is the first solution
interval to be deleted. Hence Y ′

j could not have been deleted
from Q j yet. Therefore, ri, j (X i , Y ′

j ) can be true and R  
ri, j , i.e., R 6∈ H(ri, j ), contradicting the successful test.

2. The token passes to some other process Pj . Pj evaluates the
test of line 3l to true, using its own interval Y j = head(Q j )

and X i in T .Log[i]. As a result, T .C[i] is set to false and
the token will later visit Pi at which time X i gets deleted.
Flipping the roles of i and j from Pj ’s perspective at Pj ,
the test of line 3l is: “R(X i , Y j ) ∈ H(ri, j ) and R 6= ri, j ”.
Using the same logic as in the previous case, we can see
that R(X i , Y j )  ri, j (X i , Y ′

j ) and hence R 6∈ H(ri, j ),
contradicting the successful test. �

Corollary 2. When an interval X i ∈ I(S) appears at
head(Qi ), T .C[i] remains true and T .Log[i] = X i henceforth.

Proof. When X i appears at head(Qi ), T .C[i] is set to true (line
3d) and Log[i] is assigned X i (line 3o). By Lemma 6, X i is
never deleted, which can happen only if T .C[i] remains true
and T .Log[i] remains X i . �

Lemma 7. In any hop h of the token, at least one interval gets
deleted.

Proof. Line 3b deletes the interval at head(Qi ) when the token
arrives at process Pi . �

Theorem 5. If a solution I(S) exists, i.e., for each i, j ∈ N,
the intervals Ii , I j belonging to I(S) are such that ri, j (Ii , I j ),
then the solution is detected by the algorithm in Fig. 10.

Proof. The token keeps circulating until T .C[i] is true for all i .
By Theorem 4, this will not happen before I(S).

From state I(init) in which T .Log was initialized to contain
no log, we apply Lemmas 6 and 7. Lemma 6 guarantees that no
interval belonging to the solution set I(S) gets deleted from its
queue. Lemma 7 guarantees progress, i.e., in each iteration of
the while loop of line 3a for each hop of the token, the interval
at the head of the queue of the token-holder process must get
replaced by the immediate successor interval at that process.
Specifically, at each hop, some interval I ′ not belonging to I(S)
gets deleted and is replaced by its successor interval I ′′ after
determining that no I between I ′ and I ′′ can be a part of the
solution. Thus, the progession of the states I(h) does not skip
any interval.

So, in a finite number of hops, the system must reach the
state I(S), where all the solution intervals are at the heads of
their queues. Corollary 2 guarantees that from the time each
such solution interval X i appeared at the head of Qi until the
present, T .C[i] remains true and T .Log[i] is not deleted. At this
time, T .C[i] is true for all i , hence a solution is detected, and is
given by T .Log. �

Theorems 4 and 5 show that the algorithm detects a solution
if and only if it exists.

5.3. Complexity analysis

The complexity analysis is done in terms of the parameters,
ms , mr , and p, defined in Section 1.

5.3.1. Space complexity at P1 to Pn

This analysis is similar to that of the centralized
algorithm [7] because the local data structures are the same.

1. In terms of ms and mr : The Log corresponding to an interval
is stored on the queue only if the relationship between
the interval and all other intervals at other processes is
different from the relationship which its predecessor interval
had with all the other intervals at other processes (see
Fig. 8). Two successive intervals Y and Y ′ will have different
relationships if a receive or a send occurs between the start
of Y and the end of Y ′. So four intervals are stored for every
message — two for the send event and two for the receive
event. As there are ms number of send and mr number of
receive events in the entire execution (ms = mr in the case of
unicast), a total of 2ms +2mr interval Logs are stored across
all the queues, though not necessarily at the same time.
• The total space overhead across all processes is 2.msn +

(2ms + 2mr ).2n = 6msn + 4mr n. For each of the
ms messages sent, each other process eventually (due
to transitive propagation of Interval Clock) may need to
insert an Event Interval tuple (size 2) in its Log. This can
generate 2ms .n overhead in Logs across the n processes.
The term (2ms + 2mr ).2n arises because the vector
timestamp at the start and at the end of each interval is
also stored in each Log. Thus, the average number of Logs
per process is (2ms +2mr )/n, the average space overhead
per process is 6ms + 4mr , and the average size of Log is
O(n).

• For a process, the worst case occurs when it sends and
receives the maximum number of messages to/from all the
other n −1 processes. The maximum number of messages
a single process can send and receive is ms because the
number of messages it receives (say m′) is less than ms
and the corresponding m′ send events cannot happen at
this process. In this case, the number of Logs stored on the
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process queue is 2ms , two Logs for each send and receive
event. The reason being, for each send and each receive,
the maximum number of consecutive intervals which can
have different relations with respect to intervals at all other
processes is two. Hence two intervals need to be stored per
send event and per receive event. The total space required
at the process is 2ms .2n + 2ms = O(msn). The term
2ms .2n arises because each of the 2ms Logs contains
two vector timestamps. The term 2ms arises because for
each of the ms messages sent, a process eventually (due
to the transitive propagation of Interval Clock) inserts an
Event Interval tuple of size 2 in its Log.

The worst case just discussed is for a single process; the
total space overhead always remains O((ms + mr )n) and
on an average, the space complexity for each process is
O(ms + mr ). The worst case Log size is 2ms + 2n.

2. In terms of p: The total number of Logs stored at each
process is p because in the worst case, the Log for each
interval may need to be stored. The total number of Logs
stored at all the processes is np. Consider the cumulative
space requirement for Log over all the intervals at a process.
• Each Log stores the start (V −) and the end (V +) of an

interval, which requires a maximum of 2np integers over
all Logs per process.

• Additionally, an Event Interval is added to the Log for
every component of Interval Clock which is modified due
to the receive of a message. Since a change in a component
of Interval Clock implies the start of a new interval on
another process, the total number of times the component
of Interval Clock can change is equal to the number of
intervals on all the processes. Thus the total number of
Event Interval which can be added to the Log of a single
process is (n−1)p. This gives a total of 2(n−1)p integers
(corresponding to Event Intervals) per process.

The total space required for Logs corresponding to all p
intervals on a single process is 2(n−1)p+2np = 4np−2p.
Hence the total space complexity is 4n2 p − 2np = O(n2 p)
and the average size of Log is 4n − 2. The worst case Log
size is 2(n − 1)p + 2n.

Thus, the total number of Logs stored on all the processes
is min(np, 2ms + 2mr ), the total space overhead for all the
processes is min(4n2 p − 2np, (6ms + 4mr )n), the worst case
space overhead per process is min(4np − 2p, 4msn + 2ms),
and average size of Log is O(n). The worst case size of Log is
min(2(n − 1)p + 2n, 2ms + 2n).

5.3.2. Time complexity
1. In terms of p: The time complexity is the product of

the number of steps required to determine the orthogonal
relationships between a pair of processes, and n(n − 1)/2,
the number of process pairs.
Consider the total number of comparisons between any pair
of processes. For processes Pi and Pj , intervals X i and
Y j are compared from the head of their queues Qi and
Q j , respectively. From Lemma 4, if R(X, Y ) 6= ri, j , then
interval X or interval Y is deleted from its queue. Thus X
and Y get compared only once in this case. Now consider
the case when R(X, Y ) = ri, j . Both T .C[i] and T .C[ j]
equal true (lines 3j–3m in Fig. 10). As the while loop on
line 3a gets executed only when T .C[i] is false, there will
be no comparison between intervals at Pi and Pj until either
T .C[i] or T .C[ j] becomes false. This will only happen if
either of X or Y is compared to another interval Z j at head
of queue Qk and X or Y gets deleted. So even if R(X, Y ) =

ri, j , X and Y get compared only once. This implies that the
intervals at the head of Qi and Q j are compared only once.
As there can be a total of 2p unique intervals at the head
of Qi and Q j , a maximum of 2p interval comparisons can
occur between Pi and Pj .
Now consider the time complexity for determining all
relationships between a pair of processes Pi and Pj . To
determine R1(X, Y ) to R4(X, Y ) and R1(Y, X) to R4(Y, X)
for one interval pair requires eight tests; hence, 16p tests
are needed to determine them for the pair of processes.
To determine the number of comparisons required by S1
and S2 (see Fig. 9), consider the maximum number of
Event Intervals stored in Log j .p log[i] that are queued on
Q j over the execution lifetime as part of the Logs, i.e., the
maximum number of Event Intervals corresponding to Pi
stored in Q j over Pj ’s execution lifetime. An Event Interval
is added to Log j .p log[i] only when there is a change in the
i th component of Interval Clock at the receive of a message.
The i th component of Interval Clock changes only when a
new interval starts at Pi , which happens at most p times.
As there are a total of 2p comparisons between Pi and Pj ,
the test for (each of) S1 and S2 is executed 2p times. From
Fig. 9 (lines 1a, 1d), it can be observed that a comparison
in line 1b will result in either deletion of an Event Interval
(line 1c) or an exit from the for loop (line 1d). The maximum
number of times the for loop can iterate is equal to the
maximum number of deletes that can occur. This is equal
to the number of Event Intervals stored in Log j .p log[i],
which is equal to p. As p < 2p, the rest of the time,
the for loop exits at line 1d. This bounds the total running
time of the for loop to 2p for determining S1 between all
interval pairs between Pi and Pj . Thus, to determine S1
and S2 between all interval pairs between Pi and Pj , the
number of comparisons is 2 ∗ 2p = 4p. This gives a total of
16p+4p = O(p) comparisons between a pair of processes.
As there are 2p intervals pairs between two processes, the
average number of comparisons required to determine an
orthogonal relationship is O(1).
As the number of process pairs is (n(n−1))/2, the total time
complexity of the algorithm is O(n2 p).

2. In terms of ms and mr : Consider a process Pj . The number
of Logs L j enqueued on Q j is equal to 2(r j + s j ), where
r j and s j are the number of receives and sends on Pj .
(see Section 5.3.1). Also as seen above, the total number
of comparisons between intervals on a pair of processes is
equal to the total number of intervals (or the corresponding
Logs) on the two processes. This is equal to L i + L j .
Now consider the time complexity for determining all
relationships between a pair of processes Pi and Pj . A
total of 8(L i + L j ) comparisons are necessary to determine
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R1(X, Y ) to R4(X, Y ) and R1(Y, X) to R4(Y, X) for the
pair of processes. To determine the number of comparisons
required by S1 and S2 (see Fig. 9), consider the maximum
number of Event Intervals stored in Log j .p log[i] that are
queued on Q j over the execution lifetime as part of the Logs.
An Event Interval is added to Log j .p log[i] only when
there is a change in the i th component of Interval Clock at
the receive of a message. The change in the i th component
of Interval Clock will only reach Pj if there is a send from
Pi that reaches Pj either directly or through the transitive
propagation of Interval Clock. This happens at most si times.
As there are a total of L i + L j comparisons between Pi
and Pj , the test for S1 and S2 is executed L i + L j times.
From Fig. 9, observe that the maximum number of times
the for loop (line 1a) can iterate is equal to the maximum
number of deletes (line 1c) that can occur. This is equal
to the number of Event Intervals stored in Log j .p log[i],
which is equal to si . As si < L i + L j , the rest of the time,
the for loop exits at line 1d. This bounds the total running
time of the for loop to L i + L j for determining S1 between
all interval pairs between Pi and Pj . Thus, to determine S1
and S2 between all interval pairs between Pi and Pj , the
number of comparisons is 2(L i + L j ). This gives a total of
10(L i + L j ) comparisons between a pair of processes. Thus
for all pairs of processes, the total time complexity is equal
to

∑n−1
i=1

∑n
j=i+1 10(L i + L j ) = 10(n − 1)

∑n
k=1 Lk =

10(n − 1)(2ms + 2mr ) (refer Section 5.3.1).

Hence the total time complexity of the algorithm is O((n − 1) ·
min(20np, 20(ms + mr ))), viz., O(n · min(np, 2ms + 2mr )).

We now derive the worst case time complexity per process.

1. In terms of p: Processing at Pi occurs only when it has
the token. When Pi receives the token, T .C[i] is false and
the existing head(Qi ) is deleted because it cannot be part
of the solution. Thus the token is received by Pi at most
once for an interval. On each visit to Pi , the new head(Qi )

gets compared once to one interval from each other process.
Thus the total number of interval pair comparisons at Pi is
(n − 1)p. Using reasoning similar to that for the total time
complexity, it can be easily shown that for all comparisons
on Pi , R1–R4 require 8(n − 1)p tests and S1, S2 require
2(n−1)p tests; leading to worst case 10(n−1)p steps which
is O(np).

2. In terms of ms and mr : The total number of interval pair
comparisons at Pi is (n −1) times the number of Logs on Pi .
The maximum number of Logs on Pi is 2ms (Section 5.3.1).
So the total number of interval pair comparisons on Pi
is 2(n − 1)ms . Again, it can be easily shown that for all
comparisons on Pi , R1–R4 require 16(n − 1)ms steps and
S1, S2 require (n − 1)[4ms + 2(

∑
k Lk) − 2L i ] = 4(n −

1)(ms + mr ) steps, leading to a worst case (n − 1)(20ms +

4mr ) steps.

Hence, the worst case time complexity per process is O(n ·

min(10p, 20ms + 4mr )).

5.3.3. Message complexity
The token is sent to Pj whenever C[ j] is false. C[ j] is false

if the interval at the head of the queue Q j has to be deleted.
Thus, the maximum number of times the token is sent is equal
to the total number of intervals across all the queues, which
is equal to min(np, 2ms + 2mr ). Hence, the total number of
messages sent is min(np, 2ms + 2mr ). The maximum number
of Logs stored on a token is n−1 and the size of each Log on the
average is O(n) (see Section 5.3.1). Thus, the average message
size is O(n2) and the average total message space overhead is
O(n2

· min(np, 2ms + 2mr )). The worst case message size is
O(n · min(2(n − 1)p + 2n, 2ms + 2n)) (see Section 5.3.1 for
worst case Log size).

6. Distributed algorithm 2

6.1. The algorithm

This algorithm is also token-based like Algorithm 1 but
differs in that the token-holder does not do any direct processing
but distributes the work that is performed in the loop of (3f–3n)
of Fig. 10. The algorithm is given in Fig. 11. Besides the token
(T ), REQUEST (REQ) and REPLY (REP) message types are
used. Each procedure is executed atomically. Only the token-
holder can send REQs and receive REPs. The token-holder
process (Pi ) broadcasts a REQ to all other processes (line 3b).
The Log corresponding to the interval at the head of the queue
Qi is piggybacked on the REQ (line 3a). When a REQ from Pi

arrives at Pj , process Pj determines the orthogonal relationship
R(X, Y ) between the piggybacked interval X and the interval
Y at the head of its queue Q j (line 4d). If ri, j 6= R(X, Y ),
Pj determines whether X or Y or both can be dequeued (lines
4e, 4g), and if Y , it dequeues Y from Q j (line 4i). According
to Lemma 4, ri, j = R(X, Y ) or else there are two alternate
cases. If ri, j 6= R(X, Y ) and Y can be dequeued from Q j , Y is
dequeued and process index j is stored in REP.updated (lines
4h, 4i). If ri, j 6= R(X, Y ) and X can be dequeued from Qi , the
process index i is stored in REP.updated (line 4f). Both X and
Y may get dequeued. Pj then sends a RE P message carrying
the indices of the queues that got updated/are to be updated to
Pi . When Pi receives a RE P from all other processes, it stores
the indices of all the updated queues in T.updatedQs. Note that
the token T is currently at Pi . Process Pi then checks if its index
i is contained in updatedQs. If so, it deletes the interval at the
head of Qi (line 8f). A solution is detected when updatedQs
becomes empty. If updatedQs is non-empty, the token is sent to
a randomly selected process from updatedQs (line 8g).

Observe that index i gets deleted from T.updatedQs only
when Pi receives the token T . Index i may get added back
to T.updatedQs when (i) Pi which holds the token receives a
REP such that i ∈ REP.updated, or (ii) Pi receives a REQ
from the token-holder Pj and while executing lines 4g–4i,
R(X i , Y j ) ∈ H(ri, j ); hence, i ∈ REP.updated on the REP
sent by Pi to Pj and Pj inserts i in T.updatedQs. Index
i can get alternately added and deleted multiple times from
T.updatedQs. Also observe that unlike Algorithm 1, a pair of
intervals may get compared twice.
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Fig. 11. Algorithm 2: Distributed algorithm to solve Problem DOOR.
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6.2. Correctness proof

Lemma 8. If the relationship between a pair of intervals X i
and Y j is not equal to ri, j , then either i or j or both are inserted
into T.updatedQs.

Proof. From Lemma 4, if ri, j is not satisfied then either X i or
Y j , or both should get deleted. In the algorithm of Fig. 11, the
test in line 4e or line 4g evaluate(s) to true. Hence, either i or j
or both are inserted in REP.updated which is later included in
T.updatedQs (line 8a). �

Lemma 9. An interval is deleted from queue Qi if and only if
the index i is inserted into T.updatedQs.

Proof. When comparing two intervals X i and Y j at Pj , Y j is
deleted (line 4i) if and only if j is inserted into REP.updated
(line 4h) because lines 4h and 4i are a part of the same then
block. REP.updated is then set-unioned into T.updatedQs by Pi
(line 8a). Similarly X i is deleted at Pi (line 8f) if and only if Pj
inserts i in REP.updated (line 4f) and this gets set-unioned into
T.updatedQs by Pi (line 8a), thus leading to i ∈ T.updatedQs
(line 8a,8f). �

Theorem 6. When a solution I is detected by the algorithm
in Fig. 11, the solution is correct, i.e., for each i, j ∈ N and
Ii , I j ∈ I, the intervals Ii = head(Qi ) and I j = head(Q j )

are such that ri, j (Ii , I j ).

Proof. It is sufficient to prove that for the solution detected,
which happens at the time T.updatedQs is empty (line 8c), (i)
ri, j (Ii , I j ) is satisfied for all pairs (i, j), and (ii) Ik = head(Qk)

for all k. To prove (i) and (ii), note that at this time, the token
must have visited each process at least once because only the
token-holder can delete its index from T.updatedQs.

Consider the latest time ti when process Pi last sent out
the token (and i 6∈ T.updatedQs). Since ti until the solution
is detected, i 6∈ T.updatedQs otherwise the token would have
to revisit Pi again (line 8g) — leading to a contradiction.
Therefore, applying Lemma 9, head(Qi ) is not deleted from
ti until the solution is detected and hence head(Qi ) = Ii ∈

I. Linearly order the process indices in array Visit[1 . . . n]

according to the increasing order of the times of the last visit
of the token. Then for k from 2 to n, we have that: (i) when the
token was at PVisit[k], the intervals corresponding to XVisit[k] =

head(QVisit[k]) and YVisit[m] = head(QVisit[m]), for all 1 ≤

m < k, were tested successfully, i.e., R(XVisit[k], YVisit[m]) =

rVisit[k],Visit[m], by PVisit[m] via the REQ and RE P messages,
and (ii) k,m 6∈ T.updatedQs when the token leaves PVisit[k].
If the test was unsuccessful, then i or j would be inserted in
T.updatedQs as per Lemma 8 — a contradiction.

This shows that the intervals from every pair of processes
got tested successfully. For each k (1 ≤ k ≤ n), the
interval head(QVisit[k]) that is tested successfully with all
head(QVisit[m]), (1 ≤ m < k), is not deleted until the solution
is detected. Hence, the same interval head(QVisit[k]) is used in
the later successful tests with head(QVisit[a]), for k < a ≤ n,
that are initiated by PVisit[a]. So head(QVisit[k]) is the solution
interval Ik . �
Lemma 10. In any hop h of the token, no interval X i ∈ I(S)
gets deleted.

Proof. We show by contradiction. Let X i be the first interval
among those in I(S), that gets deleted. X i appears at head(Qi )

when its predecessor is deleted. There are two cases by which
X i could get deleted.

1. Pi receives the token and executes SendReq, in which
REQ.log is set to X i and REQ is broadcast to other
processes. Pj determines in line 4e that the test R(X i , Y j ) ∈

H(ri, j ) succeeds, where Y j = head(Q j ). Pj inserts i in
REP.updated, and sends RE P to Pi . On receiving RE P , Pi
deletes X i from head(Qi ), see step (8). Note, however, Y j
is a predecessor of some interval Y ′

j such that ri, j (X i , Y ′

j )

holds, because of our assumption that X i is the first solution
interval to be deleted. Hence Y ′

j could not have been deleted
from Q j yet. Therefore, ri, j (X i , Y ′

j ) can be true and R  
ri, j , i.e., R 6∈ H(ri, j ), contradicting the successful test.

2. The token reaches some other process Pj . Pj broadcasts
REQ, with REQ.log = Y j = head(Q j ). Pi receives REQ
and executes SendReply. When Pi executes the test in line
4g, with the roles of X i and Y j flipped from Pi ’s perspective,
the test becomes: “R(X i , Y j ) ∈ H(ri, j ) and R 6= ri, j ” and
evaluates to true. It adds i to REP.updated and dequeues
X i = head(Qi ) (lines 4h–4i). Using the same logic as in the
previous case, we can see that R(X i , Y j ) ri, j (X i , Y ′

j ) and
hence R 6∈ H(ri, j ), contradicting the successful test. �

Corollary 3. When an interval X i ∈ I(S) appears at
head(Qi ), the token visits Pi once and after that visit, i 6∈

T.updatedQs henceforth.

Proof. X i appears at head(Qi ) when its predecessor interval
is deleted. When the predecessor is deleted, i was inserted
in T.updatedQs as per Lemma 9. By line 8g, the token will
eventually be sent to Pi , at which time i is deleted from
T.updatedQs (line 5a). By Lemma 6, X i is never deleted from
head(Qi ). Hence, by Lemma 9, i is never inserted back in
T.updatedQs. �

Lemma 11. The token makes a hop to Pi if and only if
head(Qi ) has been deleted during or after the last visit of the
token to Pi .

Proof. From line 8g, observe that the token is sent to Pi if and
only if i ∈ T.updatedQs. From Lemma 9, we have that i is set-
unioned into T.updatedQs (during or after the last visit to Pi )
if and only if at least one interval is deleted from Qi (during or
after the last visit to Pi ). To make this appliable to the initial
state in which T.updatedQs is {1, 2, . . . n}, we assume that a
dummy initial interval has been initially deleted from each Qi
after a prior visit of the token. The result follows. �

Theorem 7. If a solution I(S) exists, i.e., for each i, j ∈ N, the
intervals Ii , I j belonging to I are such that ri, j (Ii , I j ), then the
solution is detected by the algorithm in Fig. 11.
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Proof. The token keeps circulating until T.updatedQs = ∅. By
Theorem 6, T.updatedQs = ∅ will not happen before I(S)
(otherwise a false solution would be detected).

From state I(init) in which T.updatedQs was initialized to
N , we apply Lemmas 10 and 11. As the token keeps making
hops, Lemma 11 guarantees progress because each hop made
to Pi is due to at least one interval from Qi having been
deleted (during or after the previous hop to Pi ). Lemma 10
guarantees that no interval in the solution set I(S) gets deleted.
Thus, for every hop, some interval not belonging to I(S)
has been replaced by its immediate successor interval and the
progression of the states I(h) does not skip any interval.

So, in a finite number of hops, the system must reach state
I(S), where all the solution intervals are at the heads of their
queues. Corollary 3 guarantees that from the time X i ∈ I(S)
appears at the head of Qi , the token visits Pi exactly once, after
which i 6∈ T.updatedQs. Once the intervals at the head of each
queue belong to I(S), the token makes |T.updatedQs| ≤ n hops
after which T.updatedQs becomes ∅ and the solution is detected
(lines 8c, 8d). This follows because whenever no interval gets
deleted during a token visit, |T.updatedQs| must decrement by
one (line 5a and Lemma 9). �

Theorems 6 and 7 show that the algorithm detects a solution
if and only if it exists.

6.3. Complexity analysis

Space complexity: The space complexity analysis is the same as
that for Algorithm 1 because the log operations are common to
both the algorithms. The worst case space overhead per process
is min(4np−2p, 4msn+2ms). The total space overhead across
all processes is min(4n2 p − 2np, (6ms + 4mr )n).

Time complexity: As for Algorithm 1, consider the number of
comparisons between a pair of processes Pi and Pj . Observe
that the only time the intervals at head of Qi and Q j are
compared is when the token is either with Pi or Pj . So the
maximum number of comparisons between the heads of Qi
and Q j is equal to the number of visits of the token to Pi
and Pj . By Lemma 11, the token will come back to Pi when
at least one interval at the head of Qi has been deleted. Thus
the maximum number of token visits to Pi and Pj , and hence
the number of comparisons between Pi and Pj , is equal to
the sum of the number of intervals on Pi and Pj . This is
equal to min(2p, L i + L j ), as in Algorithm 1. Using reasoning
similar to that in Algorithm 1, it can easily be shown that the
total and per process time complexities are also the same as
that for Algorithm 1, i.e., O(n · min(np, 2ms + 2mr )) and
O(n · min(10p, 20ms + 4mr )), respectively.

Message complexity: From Lemma 11, T makes a hop to Pi
iff at least one Log from Qi has been deleted since the last
visit. Hence, for each Log, at most one token T , n − 1 REQs,
n−1 REPs and are sent. As the total number of Logs over all the
queues is min(np, 2ms + 2mr ), the total number of messages
sent by all the processes is O(n · min(np, 2ms + 2mr )). Each
REQ carries a Log which has average size O(n) and worst case
size O(min(2(n − 1)p + 2n, 2ms + 2n)) (see Section 5.3.1),
while the size of each REP and each T is O(1) and O(n),
respectively. The average message size is O(n) and worst case
message size is the worst case Log size.

Total T space: O(n) · O(min(np, 2ms + 2mr ))

Total REQ space: Each Log is sent once on n − 1 REQs, hence
(n −1) · O(min(4n2 p−2np, 6msn +4mr n))
= O(n2

· min(4np − 2p, 6ms + 4mr )).
Total REP space: (n − 1) · O(1) · O(min(np,ms + 2mr ))

= O(n · min(np, 2ms + 2mr )).

Hence the total message space overhead over all the messages
is equal to O(n2

· min(4np − 2p, 6ms + 4mr )). Note that
in the case of broadcast media, the number of REQs sent for
each Log is one because REQs are broadcast by sending one
message (line 3b). The message space complexity reduces to
O(n · min(4np − 2p, 6ms + 2mr )), although the total number
of messages sent stays at O(n · min(np, 2ms + 2mr )).

7. An extended specification of DOOR

We now consider an extension to problem DOOR, given
in [7].

Problem DOOR′: Given a set of relations r∗

i, j ⊆ R for each
pair of processes Pi and Pj , determine on-line the intervals,
if they exist, one from each process, such that any one of the
relations in r∗

i, j is satisfied (by the intervals) for each (Pi , Pj )
pair. If a solution exists, identify the interaction type from R for
each pair of processes in the first solution.

To solve DOOR′, given an arbitrary r∗

i, j , a solution based on
an algorithm to solve DOOR will not work because in the tests
of lines 3j, 3l (Algorithm 1) and 4e, 4g (Algorithm 2), neither
interval may be removable, and yet none of the relations from
r∗

i, j might hold between the two intervals. In more detail, let
r1, r2 ∈ r∗

i, j and let R(X, Y ) hold, where R 6∈ r∗

i, j . Now let

R 6∈ H(r1), R−1
6∈ H(r2−1). Interval Y cannot be deleted

because R−1
6∈ H(r2−1), implying that r2−1(Y, X ′) may be

true for a successor X ′ of X . Interval X cannot be deleted
because R 6∈ H(r1), implying that r1(X, Y ′) may be true for
a successor Y ′ of Y . This leads to a combinatorial explosion of
global states to consider.

Example. Let r∗

i, j = {IF, IQ} and let R(X, Y ) = IL. Since
IL 6∈ H(IF), there can exist a successor Y ′ of Y such that
R(X, Y ′) = IF. Hence X cannot be deleted. Similarly, since
IL−1(= IO) 6∈ H(IQ−1

= (IA)), there can exist a successor X ′

of X such that R−1(Y, X ′) = IQ and hence Y cannot be deleted.

A special property, termed CONVEXIT Y , on r∗

i, j such
that the deadlock is prevented was identified in [7]. Informally,
this property says that there is no relation R outside r∗

i, j such

that for any r1, r2 ∈ r∗

i, j , R  r1 and R−1  r2−1. This
property guarantees that when intervals X and Y are compared
for r∗

i, j and R(X, Y ) holds, either X or Y or both get deleted,
and hence there is progress.
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Definition 6 (Convexity).

CONVEXIT Y : ∀R 6∈ r∗

i, j :

(
∀ri, j ∈ r∗

i, j , R ∈ H(ri, j )∨
∀r j,i ∈ r∗

j,i , R−1
∈ H(r j,i )

)
.

Lemma 12. If R(X i , Y j ) holds and R ∈
⋂

ri, j ∈r∗
i, j
H(ri, j ), then

interval X i can be removed from Qi .

Proof. From the definition of H(ri, j ), we infer that no relation
ri, j (X i , Y ′

j ), where ri, j ∈ r∗

i, j and Y ′

j is any successor interval
of Y j , can be true. Hence interval X i can never be a part of the
solution and can be deleted from Qi . �

Lemma 13. If R(X i , Y j ) holds and R 6∈ r∗

i, j , where r∗

i, j
satisfies property CONVEXIT Y , then either interval X i or
interval Y j is removed from its queue.

Proof. We use contradiction. From Lemma 12, the only
time neither X i nor Y j will be deleted is when both R 6∈⋂

ri, j ∈r∗
i, j
H(ri, j ), and R−1

6∈
⋂

r j,i ∈r∗
j,i
H(r j,i ). However, as

r∗

i, j satisfies property CONVEXIT Y , we have that R ∈⋂
ri, j ∈r∗

i, j
H(ri, j ) or R−1

∈
⋂

r j,i ∈r∗
j,i
H(r j,i )must be true. Thus

at least one of the intervals can be deleted by an application of
Lemma 12. �

The proof of the following theorem is similar to the proofs
used for Algorithms 1 and 2. Lemmas 12 and 13 should be used
instead of Lemmas 3 and 4, respectively, and reason with r∗

i, j
instead of with ri, j .

Theorem 8. If the set r∗

i, j satisfies property CONVEXIT Y ,
then Problem DOOR′ is solved by the following changes to
Algorithms 1 and 2.

• Replace the test in line 3j of Algorithm 1 (Fig. 10) and
line 4e of Algorithm 2 (Fig. 11) by:

if (R(X, Y ) ∈

⋂
ri, j ∈r∗

i, j

H(ri, j ) and R 6∈ r∗

i, j ) then

• Replace the test in line 3l of Algorithm 1 (Fig. 10) and
line 4g of Algorithm 2 (Fig. 11) by:

if (R−1(Y, X) ∈

⋂
r j,i ∈r∗

j,i

H(r j,i ) and R−1
6∈ r∗

j,i ) then

Corollary 4. The time, space, and message complexities of
the algorithms to solve DOOR′ are the same as those of the
algorithms to solve DOOR.

Proof. The only changes to Algorithm 1 for DOOR are in lines
(3j) and (3l). The only changes to Algorithm 2 for DOOR are in
lines (4e) and (4g). In both cases, instead of checking R(X i , Y j )

for membership in H(ri, j ), in line (3j) or (4e), R(X i , Y j ) is
checked for membership in

⋂
ri, j ∈r∗

i, j
H(ri, j ). Both H(ri, j ) and⋂

ri, j ∈r∗
i, j
H(ri, j ) are sets of size between 0 and |R| = 40.

Hence, the time, space, and message complexities to solve
DOOR′ are the same as those for DOOR. �
8. Discussion and conclusions

Causality-based pairwise temporal interactions between
intervals in a distributed execution provide a valuable way to
specify and model synchronization conditions and information
interchange. This paper examined the underlying theory to
solve the problem DOOR of how to devise algorithms to
identify a set of intervals, one from each process, such that a
given set of pairwise temporal interactions, one for each process
pair, holds for the set of intervals identified. DOOR represents
a fundamental global state detection problem, in terms of
intervals and causality-based pairwise interactions. Devising
an efficient on-line algorithm to solve problem DOOR is
a challenge because of the overhead of having to track the
intervals at different processes. For any two intervals being
examined from processes Pi and Pj , this paper formulated
and proved the underlying principle which identifies which
(or both) of the intervals’ records can be safely deleted if the
intervals do not satisfy ri, j . This principle can be used by any
algorithm, to efficiently manage the local interval queues.

The paper also proposed two fully distributed algorithms to
solve problem DOOR. These algorithms leverage the above
principle to efficiently manage and prune the local interval
queues. The performance of the algorithms is summarized in
Table 1. The results in [7] showed how to use the centralized
solution to DOOR to detect conjunctive predicates under
traditional modalities in a centralized manner at the same cost
but with a lot more information. The same theory can be used
to adapt the distributed algorithms presented here to detect the
traditional modalities at the same cost but with a lot more
information. Algorithm 2 has also been adapted to detect strong
conjunctive predicates efficiently [10].

Problem DOOR is important because it generalizes the
global state observation and the predicate detection problems;
further, solutions to problem DOOR which provide a much
richer palette of information about the causality structure in
the application execution (see [7]), cost about the same as the
solutions to traditional forms of global predicate detection.

The process of formulating the underlying principle of
determining which intervals can be discarded as never forming
a part of a solution that satisfies a specification of DOOR,
also gave a deeper insight into the structure of causality in
a distributed execution, and the global state observation and
predicate detection problems [37].

A centralized algorithm that fuses event streams reported
from a sensor network to detect temporal predicates was given
in [23]. This work assumed tightly synchronized physical
clocks, and the predicates were defined using global time.
This centralized algorithm can be converted to a distributed
algorithm along the lines that the centralized algorithm of [7]
has been converted to the distributed algorithms here.

One example application area of DOOR is distributed
debugging. Let the intervals of interest at a process denote
durations in which some local variable state error is flagged.
By detecting a global state in which the local intervals
satisfy specific causality relationships specified by each ri, j ,
the interdependence (as defined by R1 − R4, S1, S2) of the
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program states across processes can be precisely identified.
This can help to determine the extent, nature, and cause of the
error manifestation across the processes.

As another example, consider the problem of detecting
crisis situations, as motivated in [13,38]. A crisis situation
can be specified as a function of the global state. The local
predicate is true when there is a local crisis condition. What
is required is the ability to take instantaneous snapshots of
the distributed execution. Although this is not possible in the
absence of perfectly synchronized physical clocks, we can
specify snapshot states representing crisis situations in terms
of the causality relation, viz., in terms of R1–R4, S1, S2.
With such a specification of the global crisis condition, our
presented distributed algorithms can detect the global crisis
state. Observe that if the full power of R is not required, a
coarser granularity of specification, provided by the Possibly
and Definitely modalities [12], can be used. As shown by
the centralized algorithm of [7], the complexity of detecting
the global snapshot under the fine-grained modalities of R is
the same as the complexity of detecting the global snapshot
under the coarser-grained modalities of Possibly and Definitely.
The distributed algorithms to solve DOOR′ presented here
can be directly used to detect global states under the coarser-
grained modalities, as shown in [7], while providing the extra
information of the fine-grained modality ri, j for each (i, j)
pair.
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