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Abstract

We investigate the problem of detecting termination of a distributed computation in systems where processes can fail by crashing. Specifically,
when the communication topology is fully connected, we describe a way to transform any termination detection algorithm A that has been
designed for a failure-free environment into a termination detection algorithm B that can tolerate process crashes. Our transformation assumes the
existence of a perfect failure detector. We show that a perfect failure detector is in fact necessary to solve the termination detection problem in a
crash-prone distributed system even if at most one process can crash.

Let µ(n,M) and δ(n,M) denote the message complexity and detection latency, respectively, of A when the system has n processes and
the underlying computation exchanges M application messages. The message complexity of B is O(n + µ(n, 0)) messages per failure more
than the message complexity of A. Also, its detection latency is O(δ(n, 0)) per failure more than that of A. Furthermore, application message
size increases by at most log( f + 1) bits, where f is the actual number of processes that fail during an execution. We show that, when the
communication topology is fully connected, under certain realistic assumption, any fault-tolerant termination detection algorithm can be forced to
exchange Ω(n f ) control messages in the worst-case even when at most one process may be active initially and the underlying computation does
not exchange any application messages. This implies that our transformation is optimal in terms of message complexity when µ(n, 0) = O(n).

The fault-tolerant termination detection algorithm resulting from the transformation satisfies three desirable properties. First, it can tolerate
the failure of up to n − 1 processes. Second, it does not impose any overhead on the fault-sensitive termination detection algorithm until one or
more processes crash. Third, it does not block the application at any time. Further, using our transformation, we derive a fault-tolerant termination
detection algorithm that is the most efficient fault-tolerant termination detection algorithm that has been proposed so far to our knowledge. Our
transformation can be extended to arbitrary communication topologies provided process crashes do not partition the system.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

One of the important problems in distributed systems is
to detect termination of an ongoing distributed computation,
I A preliminary version of the paper first appeared in the 19th Symposium on
Distributed Computing (DISC), 2005 [N. Mittal, F.C. Freiling, S. Venkatesan,
L.D. Penso, Efficient reduction for wait-free termination detection in a crash-
prone distributed system, in: Proceedings of the 19th Symposium on Distributed
Computing, DISC, September 2005, pp. 93–107].
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which intuitively involves determining whether the computa-
tion has ceased all its activities. A process currently involved
in some activity is considered to be in active state. A process
ceases its activity by changing its state to passive. An active
process can make another process active by sending an ap-
plication message to it. The computation terminates once all
processes become passive and stay passive thereafter. The ter-
mination detection problem was independently proposed by
Dijkstra and Scholten [11] and Francez [13] more than two
decades ago. Since then, many researchers have studied this
problem and, as a result, a large number of efficient algorithms
have been developed for detecting termination (e.g., [31,33,
26,10,27,19,4,34,20,37,24,29,25,9]). Most of the termination
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detection algorithms in the literature have been developed
assuming that both processes and channels stay operational
throughout an execution. Real-world systems, however, are
often prone to failures. For example, processes may fail by
crashing and channels may be lossy. In this paper, we investi-
gate the termination detection problem when processes can fail
by crashing. We assume that process crashes do not result in
restarting of the primary computation.

One of the earliest fault-tolerant algorithm for termination
detection was proposed by Venkatesan [36], which was derived
from the fault-sensitive (that is, fault-intolerant) termination
detection algorithm by Chandrasekaran and Venkatesan [4].
Venkatesan’s algorithm achieves fault-tolerance by replicating
state information at multiple processes. However, it assumes a
pre-specified bound fmax on the maximum number of processes
that can fail by crashing. Its message complexity is O( fmax M +

c), where M is the number of application messages exchanged
by the underlying computation and c is the number of channels
in the communication topology. As a result, the overhead
incurred by the algorithm depends on the maximum number
of processes that can fail during an execution rather than
the actual number of processes that fail during an execution.
Moreover, the algorithm assumes that it is possible to send up
to fmax + 1 (possibly different) messages to different processes
in an atomic manner. Unlike other fault-tolerant termination
detection algorithms, however, Venkatesan’s algorithm does not
assume that the communication topology is fully connected and
works as long the topology is ( fmax + 1)-connected [36]. (A
graph is said to be (k + 1)-connected if it stays connected even
after k or fewer vertices have been removed from the graph.)

Lai and Wu [21] and Tseng [35] modify fault-sensitive
termination detection algorithms by Dijkstra and Scholten [11]
and Huang [19,27], respectively, to derive two different fault-
tolerant termination detection algorithms. Both algorithms
assume a fully connected communication topology. However,
unlike Venkatesan’s algorithm, both have low message
complexity of O(M + f n + n), where n is the initial
number of processes in the system and f is the actual
number of processes that fail during the execution. The
algorithm by Lai and Wu [21] has high detection latency of
O(n) whereas the algorithm by Tseng [35] has high control
message-size complexity of O( f log n + nM) for control
messages exchanged due to process crashes. (We use the term
“application message” to describe a message exchanged by
the underlying computation and the term “control message”
to describe a message exchanged by the termination detection
algorithm. Also, message-size complexity refers to the amount
of control information piggybacked on a message.)

Shah and Toueg give a fault-tolerant algorithm for taking
a consistent snapshot of a distributed system in [32]. Their
algorithm is derived from the fault-sensitive consistent snapshot
algorithm by Chandy and Lamport [5]. As a result, each
invocation of their snapshot algorithm may generate up to O(c)
control messages. When their algorithm is used for termination
detection, the message complexity of the resulting algorithm
is O(cM) in the worst-case. Hélary et al. [18] describe an
algorithm for computing a function on a global data in a
distributed system where processes may fail by crashing. They
also combine their algorithm with Mattern’s counter-based
termination detection algorithm [26], which is fault-sensitive,
to derive a termination detection algorithm that can tolerate
process crashes. Informally, their approach involves repeated
computation of a specific global function until termination
is detected [18]. Each instance of the function computation
requires Ω(n2) control messages and the function may need to
be computed Ω(M + f ) times in the worst-case. Gärtner and
Pleisch [15] give an algorithm for detecting an arbitrary stable
predicate (such as termination) in a crash-prone distributed
system. In their algorithm, every relevant local event is reliably
and causally broadcast to a set of monitors, thereby increasing
the message complexity.

In this paper, when the communication topology is fully
connected, we describe a way to transform any fault-
sensitive termination detection algorithm A into a fault-
tolerant termination detection algorithm B. Our transformation
assumes the existence of a perfect failure detector, which we
show is necessary to solve the problem. Let µ(n,M) and
δ(n,M) denote the message complexity and detection latency,
respectively, of A when the system has n processes and the
underlying computation exchanges M application messages.
The message-complexity of B is O( f (n + µ(n, 0))) messages
more than the message complexity of A. Also, the detection
latency of B is O( f δ(n, 0)) more than the detection latency
of A. For most termination detection algorithms, when the
topology is fully connected, µ(n, 0) is either O(n) or O(c), and
δ(n, 0) is O(1). For example, for the Dijkstra and Scholten’s
algorithm [11], µ(n, 0) = O(n) and δ(n, 0) = O(1)when their
algorithm is modified to handle a non-diffusing computation.
(A computation is said to be diffusing if at most one process
can be active in the beginning and is said to be non-diffusing
otherwise.) The application message-size complexity of B is
only log( f + 1) more than that of A. The fault-tolerant
termination detection algorithm B uses two types of control
messages, namely those for termination detection and those for
recovering from process failures. The former type of control
messages are derived from the control messages of the fault-
sensitive termination detection algorithm A. The message-size
complexity of termination-detection messages is only log( f +

1) more than of A. Further, the message-size complexity of
failure recovery messages is given by O( f log n + n log M).
The fault-tolerant termination detection algorithm resulting
from the transformation satisfies three desirable properties.
First, it can tolerate failure of up to n − 1 processes, that is, it is
wait-free. Second, it does not impose any overhead on the fault-
sensitive termination detection algorithm if no process actually
crashes during an execution. that is, it is fault-reactive. Third,
it does not prevent the application from sending and delivering
messages at any time, that is, it is non-blocking.

The main idea behind our approach is to restart the fault-
sensitive termination detection algorithm whenever a new
failure is detected. A separate mechanism is used to account
for those application messages that are still in-transit when
the termination detection algorithm is restarted. Although the
idea behind our transformation is simple, we use it to derive
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Table 1
Comparison of various fault-tolerant termination detection algorithms

Venkatesan [36] Lai and Wu [21] Tseng [35] Our approach [this paper]

Message complexity O( fmax M + c) O(M + f n + n) O(M + f n + n) µ(n,M)+ O( f (n + µ(n, 0)))
Detection latency O(M) O(n) O( f + 1) δ(n,M)+ O( f δ(n, 0))
Application message-size complexity fmax-way duplicationb – O(log M)a α(n,M)+ log( f + 1)
Control message-size
complexity

Termination
detection

O(log n + log M) O( f log n + log M) O(log M)a β(n,M)+ log( f + 1)

Failure recovery – O( f log n + log M) O( f log n + nM) O( f log n)+ O(n log M)
Assumptions FIFO channels + atomic

multicast
Fully connected
topology

Fully connected
topology

Fully connected topology

n: initial number of processes in the system. c: number of channels in the communication topology.
M : number of application messages exchanged. f : actual number of processes that crash during the execution.
fmax: maximum number of processes that can crash during an execution.
µ(n,M): message complexity of the fault-sensitive termination detection algorithm with n processes and M application messages. We assume that µ satisfies the

following inequality: µ(n, X)+ µ(n, Y ) ≤ µ(n, X + Y )+ µ(n, 0).
δ(n,M): detection latency of the fault-sensitive termination detection algorithm with n processes and M application messages.
α(n,M): application message-size complexity of the fault-sensitive termination detection algorithm with n processes and M application messages.
β(n,M): control message-size complexity of the fault-sensitive termination detection algorithm with n processes and M application messages.

a Assuming an efficient implementation of weight throwing scheme such as the one described in [27]. The algorithm presented in [35] has much higher message-
size complexity of O(M).

b Each message is multicast to fmax + 1 processes implying that a message is duplicated fmax times.

Table 2
The complexity measures when the fault-sensitive termination detection algorithm is acknowledgment-based

Message complexity Detection latency Application message-size
complexity

Control message-size complexity Assumptions

Termination
detection

Failure
recovery

µ(n,M)+ O( f (n +

µ(n, 0)))
δ(n,M)+

O( f δ(n, 0))
log( f + 1) log( f + 1) O( f log n) Fully connected topology

(For complete notation please refer to Table 1.)
a fault-tolerant termination detection algorithm that is more
efficient than all the existing algorithms [21,35,18]. Observe
that group communication service (GCS) along with sending
view delivery [17] can also be used to devise a fault-tolerant
termination detection algorithm. This, however, requires the
application to be blocked until a new view is installed. We are
interested in an approach that does not require the application
to be blocked at any time.

Arora and Gouda [1] also provide a mechanism to reset a
distributed system. Their reset mechanism involves restarting
all processes from their initial states. Messages sent by older
instances are simply ignored. Their approach to achieve fault
tolerance is quite different from our approach. First, the
semantics of their reset operation is different from the semantics
of our restart operation. If their reset mechanism is applied to
our system, then it will not only reset the termination detection
algorithm but will also reset the underlying distributed
computation (whose termination is to be detected). Further,
application messages exchanged by the underlying computation
before it is reset will be discarded. If a failure occurs near
the completion of the underlying computation, the entire work
needs to be redone. In contrast, in our case, the distributed
computation continues to execute without interruption. (We
assume that the underlying computation is able to cope with
process failures without the need to restart itself.) Therefore,
in our case, application messages exchanged before the
termination detection algorithm is restarted, especially those
exchanged between correct processes, cannot be ignored. Arora
and Gouda’s approach is more suitable for applications that can
be reset on occurrence of a failure whereas our approach is
more suitable for applications that continue to execute despite
failures. Another difference between the two approaches is
that their reset operation, which is self-stabilizing in nature,
is designed to tolerate much broader and more severe kinds
of faults such as restarts, message losses and arbitrary state
perturbations in addition to crash failures. Not surprisingly,
their reset operation has higher message and time complexities
than our restart operation.

For comparison between various fault-tolerant termination
detection algorithms, please refer to Table 1. In the table,
we distinguish between two types of control messages: those
that are exchanged by the fault-sensitive termination detection
algorithm (termination-detection messages) and those that are
exchanged to recover from process crashes (failure-recovery
messages). The results of applying our transformation to some
important termination detection algorithms are given in [28].

Typically, generalized transformations tend to be inefficient
compared to customized/specialized transformations. However,
when our transformation is applied to fault-sensitive termina-
tion detection algorithms by Dijkstra and Scholten [11] and
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Huang [19,27], the resulting fault-tolerant algorithms compare
very favorably with those by Lai and Wu [21] and Tseng [35].
Specifically, when our transformation is applied to Dijkstra and
Scholten’s algorithm [11], the resulting algorithm has the same
message-complexity and detection latency as the algorithm by
Lai and Wu [21]. However, application and failure-recovery
messages carry more control information in our algorithm. (Ac-
tually, in Lai and Wu’s termination detection algorithm, there
is no distinction between termination-detection and failure-
recovery messages.) On the other hand, when our transforma-
tion is applied to Huang’s weight throwing algorithm [19], the
resulting algorithm has the same message-complexity and de-
tection latency as that of the algorithm by Tseng [35] but has
slightly higher message-size complexity for application and
termination-detection messages—O(log M)+log( f +1) versus
O(log M). Surprisingly, the size of failure-recovery messages,
which is given by O( f log n+n log M), is much lower than that
of Tseng’s algorithm [35], which is given by O( f log n + nM).
We expect M to be much greater than f + 1 in practice. There-
fore, the overhead of O(log M) + log( f + 1) for all practical
purposes is same as O(log M).

We show that, when the underlying fault-sensitive termina-
tion detection algorithm is acknowledgment-based, the size of
failure-recovery messages can be reduced from O( f log n +

n log M) to only O( f log n) without affecting other complex-
ity measures. As a corollary, when the optimized transformation
is applied to Mittal et al.’s fault-sensitive termination detection
algorithm proposed in [29], which is acknowledgment-based,
the resulting fault-tolerant termination detection algorithm has
message-complexity of O(M + f n + n), detection latency of
O( f + 1), application and termination-detection message-size
complexity of only log( f + 1) and failure-recovery message-
size complexity of O( f log n) (see Table 2). Note that the
message-size complexity of log( f + 1) corresponds to piggy-
backing only one additional integer on a message in practice.
As a result, we believe that the above algorithm is the most ef-
ficient fault-tolerant termination detection algorithm among all
fault-tolerant termination detection algorithms that have been
proposed so far.

We also show that, when the communication topology is
fully connected, our transformation is optimal in the sense
that, under certain realistic assumption, any fault-tolerant
termination detection algorithm can be forced to exchange
Ω(n f ) control messages in the worst-case even when at
most one process may be active initially and the underlying
computation does not exchange any application messages.
Further, the lower bound holds even if all channels are FIFO
(first in first out) and a process can atomically multicast a
message to multiple processes. Our transformation can also
be extended to an arbitrary communication topology provided
process crashes do not partition the system. Details of the
extension can be found elsewhere [28].

We build upon the work by Wu et al. [38]. We do this in the
context of the failure detector hierarchy proposed by Chandra
and Toueg [3], a way to compare problems based on the level of
synchrony required for solving them. We show that termination
detection needs the synchrony assumptions of a perfect failure
detector to be solvable even if at most one process can crash.
This result can be used to further understand the relationship
between termination detection and other problems in fault-
tolerant distributed computing, such as consensus and atomic
broadcast.

Our contributions: To summarize, we make the following
contributions in this paper. First, we present a transformation
that can be used to convert any fault-sensitive termination
detection algorithm for a fully connected communication
topology into a fault-tolerant termination detection algorithm
able to cope with process crashes. Our transformation uses
a perfect failure detector. We also use our transformation to
derive the most efficient fault-tolerant termination detection
algorithm known so far. Second, we establish that, under certain
realistic assumptions, our transformation is optimal in terms of
message-complexity when the communication topology is fully
connected. Third, we prove that a perfect failure detector is the
weakest failure detector for solving the termination detection
problem in a crash-prone distributed system. This holds even if
at most one process can crash.

Roadmap: This paper is organized as follows. In Section 2,
we present our model of a crash-prone distributed system and
describe what it means to detect termination in such a system.
We discuss our transformation for fully connected topology
in Section 3. The lower bound on message complexity of
termination detection in a failure-prone environment is derived
in Section 4. In Section 5 we investigate the type of failure
detector that is necessary for solving the termination detection
problem in fault-prone environment. Finally, we present our
conclusions and outline directions for future research in
Section 6.

2. Model and problem definition

2.1. System model

We assume an asynchronous distributed system consisting
of multiple processes, which communicate with each other by
exchanging messages over a set of communication channels.
There is no global clock or shared memory. Processes are not
reliable and may fail by crashing. Once a process crashes, it
halts all its operations and never recovers. We use the terms
“live process” and “operational process” interchangeably. A
process that eventually crashes is called faulty. A process that
is not faulty is called correct. Note that there is a difference
between a “live process” and a “correct process”. A live
process has not crashed yet but may crash in the future. A
correct process, on the other hand, never crashes. Let P =

{p1, p2, . . . , pn} denote the initial set of processes in the
system. We assume that there is at least one correct process in
the system.

We assume that all channels are bidirectional but may
not be FIFO (first in first out). Channels are assumed to be
reliable in the sense that a message sent by a correct process
to another correct process is eventually delivered. A message
may, however, take an arbitrary amount of time to reach
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its destination. Unless otherwise stated, we assume that the
communication topology is fully connected.

Processes change their states by executing events. When
processes are reliable, an execution of a distributed system
can be modeled as a sequence of events (internal or external)
that have been executed so far on different processes. In this
paper, we treat crash of a process as a special event on that
process. However, unlike other (non-crash) events, a process
cannot execute any further events once it has executed the crash
event. Therefore, when processes can fail by crashing, a system
execution can still be modeled as a sequence of events (internal,
external or crash) that have been executed so far on different
processes.

2.2. Failure detection

We assume the existence of a perfect failure detector [3], a
mechanism which gives processes reliable information about
the operational state of other processes. Upon querying the
local failure detector, a process receives a list of currently
suspected processes. A perfect failure detector satisfies two
properties [3]: strong accuracy (no correct process is ever
suspected) and strong completeness (a crashed process is
eventually permanently suspected by every correct process).
By varying definitions of completeness and accuracy, different
types of failure detectors can be defined. For example, an
eventually perfect failure detector satisfies eventually strong
accuracy (eventually no correct process is ever suspected) and
strong completeness. Chandra and Toueg [3] define an ordering
relation on failure detectors. Failure detector D1 is weaker than
failure detector D2 (denoted D1 ≤ D2) if we can implement D1
using D2. Intuitively, if D1 is weaker than D2, then D2 gives at
least as much information about failures as D1. If D1 ≤ D2 and
D2 6≤ D1 we say that D1 is strictly weaker.

2.3. Termination detection in a crash-prone system

We first describe the condition that should hold for a
distributed computation to be in terminated state. We then
describe the acceptable behavior of a termination detection
algorithm, and also discuss various complexity measures we
use to evaluate the performance of a termination detection
algorithm.

2.3.1. Termination condition to be evaluated
Informally, the termination detection problem involves

determining when a distributed computation has ceased all its
activities. The distributed computation satisfies the following
four properties or rules. First, a process is either active or
passive. Second, a process can send a message only if it is
active. Third, an active process may become passive at any
time. Fourth, a passive process may become active only on
receiving a message. Intuitively, an active process is involved
in some local activity, whereas a passive process is idle.
In case processes never fail and channels are reliable, a
distributed computation terminates once all processes become
passive and stay passive thereafter. In other words, a distributed
computation is said to be classically-terminated once all
processes become passive and all channels become empty.

In a crash-prone distributed system, once a process crashes,
it ceases all its activities. Moreover, any message in-transit
towards a crashed process can be ignored because the message
cannot initiate any new activity. Therefore, in a crash-prone
distributed system, a computation is said to be strictly-
terminated if all live processes are passive and no channel
contains a message in-transit towards a live process. Wu
et al. [38] establish that, for the strict-termination detection
problem to be solvable in a crash-prone distributed system, it
must be possible to flush the channel from a crashed process to a
live process. A channel can be flushed using either return-flush
[36] or fail-flush [21] primitive. Both primitives allow a live
process to ascertain that its incoming channel from the crashed
process has become empty.

In case neither return-flush nor fail-flush primitive is
available, Tseng suggested freezing the channel from a crashed
process to a live process [35,18]. When a live process freezes its
channel with a crashed process, any message that arrives after
the channel has been frozen is ignored. (A process can freeze a
channel only after detecting that the process at the other end of
the channel has crashed.) We say that a message is deliverable
if it is destined for a live process along a channel that has not
been frozen yet; otherwise it is undeliverable. We now say
that a distributed computation is effectively-terminated if all
live processes are passive and there is no deliverable message
in-transit towards a live process. Trivially, strict-termination
implies effective-termination but not vice versa. Deciding
which of the two termination conditions is to be detected
depends on the application semantics. In this paper, we focus
on detecting whether a computation has effectively-terminated.
Our transformation, however, can be easily extended to detect
strict-termination as well.

Wu et al. [38] also show that in order for strict-termination
detection to be solvable, process faults must be detectable.
Translated into the terminology of Chandra and Toueg [3], the
failure detector used should satisfy strong completeness. We
fulfill this requirement by assuming the existence of a perfect
failure detector, which additionally satisfies strong accuracy.
We justify this assumption later by proving that we need at least
a perfect failure detector to solve even effective-termination
detection in a crash-prone distributed system. Further, we
assume that it is possible to freeze the channel from a crashed
process to a live process (that is, application allows messages
from crashed processes to be discarded). Hereafter, we focus
on effective-termination detection. The transformation results
in Section 3, however, remain valid even for strict-termination
detection assuming that channels can be flushed instead of
frozen. We will return to this point later in Section 5.

2.3.2. A termination detection algorithm
An algorithm that solves the termination detection problem

should satisfy the following two correctness properties:

• (liveness) Once the computation terminates, the algorithm
eventually announces termination.
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• (safety) If the algorithm announces termination, then the
computation has indeed terminated.

In this paper, by the phrase “the algorithm announces
termination”, we mean that some operational process in
the system announces termination. In addition to the above
properties, it is desirable that the algorithm be non-blocking,
that is, it should not prevent the application from sending and
delivering messages at any time. Later, when proving the lower
bound on message-complexity, we consider a weaker form of
non-blocking property.

We call a termination detection algorithm fault-tolerant if
it works correctly even in the presence of faults; otherwise it
is called fault-sensitive or fault-intolerant. In this paper, we
use the terms “crash”, “fault” and “failure” interchangeably.
For convenience, we refer to messages exchanged by the
underlying distributed computation as application messages
and to messages exchanged by the termination detection
algorithm as control messages.

The performance of a termination detection algorithm is
measured in terms of three metrics: message complexity,
detection latency and message-size complexity. Message
complexity refers to the number of control messages exchanged
by the termination detection algorithm in order to detect
termination. Detection latency measures the time elapsed
between when the underlying computation terminates and
when the termination detection algorithm actually announces
termination. To compute detection latency of a termination
detection algorithm, we assume that message transmission
delay as well as failure detection delay is at most one time
unit. Further, message processing time is negligible. This is
consistent with the assumption made by Lai and Wu [21]
and Tseng [35] when analyzing detection latency of their
algorithms. Finally, message-size complexity refers to the
amount of control data piggybacked on a message by the
termination detection algorithm.

3. From fault-sensitive algorithm to fault-tolerant algo-
rithm

We assume that the given fault-sensitive termination
detection algorithm is able to detect termination of a non-
diffusing computation, when any subset of processes can be
initially active. This is not a restrictive assumption as it
is proved in [30] that any termination detection algorithm
for a diffusing computation, when at most one process is
initially active, can be efficiently transformed into a termination
detection algorithm for a non-diffusing computation. The
transformation increases the message complexity of the
underlying termination detection algorithm by only O(n)
messages and, moreover, does not increase its detection
latency [30]. We also assume that, as soon as a process learns
about the failure of its neighboring process, it freezes its
incoming channel with the process.

3.1. The main idea

The main idea behind our transformation is to restart the
fault-sensitive termination detection algorithm on the set of
currently operational processes whenever a new failure is
detected. We denote the fault-sensitive termination detection
algorithm – an input to our transformation – by A, and to
the fault-tolerant termination detection algorithm – the output
of our transformation – by B. Before restarting A, we ensure
that all operational processes agree on the set of processes that
have failed. The strong accuracy property of a perfect failure
detector ensures that a new instance of A is started on all
operational processes, that is, no operational process is “left
out”. This is necessary to ensure the safety of the termination
detection algorithm. On the other hand, the strong completeness
property of a perfect failure detector ensures that every crash
is eventually detected and, as a result, a new instance of A is
eventually restarted on a set of processes none of which fails
thereafter. This is necessary to ensure the liveness of A.

3.1.1. A safe subset of processes
Consider a subset of processes Q. We say that a computation

has terminated with respect to Q (classically or strictly or
effectively) if the respective termination condition holds when
evaluated only on processes and channels in the subsystem
induced by Q (that is, when the system consists of only
processes in Q and channels between them). Also, we say that
Q has become safe if (1) all processes in P \ Q have failed,
and (2) every process in Q has learned about the failure of all
processes in P \ Q (and has, therefore, frozen its incoming
channels with processes in P \ Q). We now show that a safe
subset satisfies a form of monotonicity.

Theorem 1. Consider a safe subset of processes Q. Assume
that all processes in Q are live. Then a distributed computation
has effectively-terminated with respect to P if and only if it has
classically-terminated with respect to Q.

Proof. (if) Assume that the distributed computation has
classically-terminated with respect to Q. Thus all processes in
Q are passive and all channels among processes in Q are empty.
Since Q is a safe subset of processes, all processes in P \ Q
have crashed. In other words, all live processes in the system,
namely the processes in Q, are passive. Further, since every
process in Q knows that all processes in P \ Q have crashed, all
channels from processes in P \ Q to processes in Q have been
frozen. As a result, there is no deliverable message in transit to
any live process (that is, a process in Q). Thus the distributed
computation has effectively-terminated with respect to P .
(only if) Now, assume that the distributed computation has
effectively-terminated with respect to P . Therefore all live
processes are passive, which implies that all processes in Q
are passive. Further, there is no deliverable message in transit
towards any live process. Specifically, since all processes in
Q are live and all processes in P \ Q have crashed, none
of the channels among processes in Q contain a deliverable
message in transit. This, in turn, implies that all channels
among processes in Q are actually empty. In other words, the
distributed computation has classically-terminated with respect
to Q. �
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3.1.2. A fault-sensitive algorithm is safe
The above theorem implies that if all live processes agree

on the set of failed processes and there are no further
crashes, then it is sufficient to ascertain that the underlying
computation has classically-terminated with respect to the set
of operational processes. An advantage of detecting classical
termination is that we can use A, a fault-sensitive termination
detection algorithm, to detect termination. We next show that,
even if one or more processes crash, A does not announce
false termination. In other words, a fault-sensitive termination
detection algorithm always satisfies the safety property but may
not satisfy the liveness property.

Theorem 2. When a fault-sensitive termination detection
algorithm is executed on a distributed system prone to process
crashes then the algorithm still satisfies the safety property, that
is, it never announces false termination.

Proof. Let σ be an execution of the system in which one
or more processes crash and the fault-sensitive termination
detection algorithm announces termination. Consider a prefix
τ of σ in which the last event corresponds to termination
announcement by some process, say pt . We show that
the underlying computation has indeed terminated when pt
announces termination.

Consider a sub-execution κ of τ obtained after removing
all crash events from τ . Intuitively, this means that, as far
as processes that stay operational in τ are concerned, they
execute exactly the same sequence of events in τ and κ . On the
other hand, as far as processes that crash in τ are concerned,
they execute exactly the same sequence of events in τ and κ
until they crash (in τ ). Moreover, once a process crashes in
τ , it does not execute any events in κ until pt has announced
termination but, nevertheless, stays operational. Clearly, κ is a
valid execution of the system. This is because it is possible to
delay execution of any process for an arbitrary but finite amount
of time due to the asynchronous nature of the system.

Note that process pt executes exactly the same sequence of
events in τ and κ and, therefore, cannot distinguish between
them without using a failure detector. As a result, if it announces
termination in τ , then it should also announce termination in κ .
Unlike τ , however, κ is a failure free execution of the system.
Since the termination detection algorithm works correctly for
κ , the underlying computation has actually terminated in κ

when pt announces termination. This in turn implies that the
underlying computation has terminated in τ as well when pt
announces termination. �

The strong completeness property of a perfect failure
detector ensures that an instance of A is eventually initiated
involving only the set of correct processes. This intuitively
ensures the liveness of B. Now, when A is restarted, a
mechanism is needed to deal with application messages that
were sent before A is restarted but are received after A has
been restarted. Such application messages are referred to as
stale or old application messages. The current instance of A
may not be able to handle an old application message correctly.
One simple approach is to “hide” an old application message
from the current instance of A and deliver it directly to the
underlying distributed computation. However, on receiving an
old application message, if the destination process changes
its state from passive to active, then, to the current instance
of A, it would appear as if the process became active
spontaneously. This violates one of the four rules of the
distributed computation. Clearly, the current instance of A may
not work correctly in the presence of old application messages
and therefore cannot be directly used to detect termination of
the underlying computation.

3.1.3. Handling old application messages using a secondary
computation

We use the following approach to deal with old application
messages. We superimpose another computation on top of
the underlying computation. We refer to the superimposed
computation as the secondary computation and to the
underlying computation as the primary computation. As far
as live processes are concerned, the secondary computation is
almost identical to the primary computation except possibly
in the beginning. Whenever a process crashes and all live
processes agree on the set of failed processes, we simulate a
new instance of the secondary computation in the subsystem
induced by the set of operational processes. The processes in
the subsystem are referred to as the base set of the simulated
secondary computation. We then use a new instance of the fault-
sensitive termination detection algorithm to detect termination
of the secondary computation. The older instances of the
secondary computation and the fault-sensitive termination
detection algorithm are simply aborted. We maintain the
following invariants. First, if the secondary computation
has classically terminated then the primary computation
has classically terminated as well. Second, if the primary
computation has classically terminated, then the secondary
computation classically terminates eventually. Note that an
operational process starts new instances of the secondary
computation and the fault-sensitive termination detection
algorithm at the same time.

We now describe the behavior of a live process with respect
to the secondary computation. Intuitively, a process stays active
with respect to the secondary computation at least until it
knows that it cannot receive any old application message (from
another live process) in the future. Consider a safe subset of
processes Q. Suppose an instance of the secondary computation
is initiated in the subsystem induced by Q. A process pi ∈ Q
is passive with respect to the current instance of the secondary
computation if both of the following conditions hold:

1. it is passive with respect to the primary computation, and
2. it knows that there is no old application message in transit

towards it from any process in Q.

An old application message is delivered directly to
the primary computation and is hidden from the current
instance of the secondary computation as well as the current
instance of the fault-sensitive termination detection algorithm.
Specifically, only those application messages that are sent
by the current instance of the secondary computation are
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tracked by the corresponding instance of the fault-sensitive
termination detection algorithm. (In other words, all application
messages are exchanged through the current instance of the
termination detection algorithm except for old application
messages.) It can be verified that the secondary computation
is “legal” in the sense that it satisfies all the four rules
of the distributed computation. Therefore the fault-sensitive
termination detection algorithm A can be safely used to detect
(classical) termination of the secondary computation even in
the presence of old application messages. First, we show that,
to detect termination of the primary computation, it is safe to
detect termination of the secondary computation.

Theorem 3. Consider a secondary computation initiated in the
subsystem induced by a safe subset of processes Q. Then, if the
secondary computation has classically terminated with respect
to Q, then the primary computation has classically terminated
with respect to Q.

Proof. Assume that the secondary computation has classically
terminated with respect to Q. Therefore all processes in Q
are passive with respect to the secondary computation and
no channel between processes in Q contains an application
message belonging to the current instance of the secondary
computation. This, in turn, implies that all processes in Q
are passive with respect to the primary computation and
no channel between processes in Q contains an application
message belonging to the current or an older instance of the
secondary computation. Moreover, since all processes in Q are
passive, no process in Q has crashed, which implies that no
new instance of the secondary computation has been started.
Therefore the primary computation has classically terminated
with respect to Q. �

Next, we prove that, to detect termination of the primary
computation, it is sufficient to detect the termination of the
secondary computation under certain conditions.

Theorem 4. Consider a secondary computation initiated in the
subsystem induced by a safe subset of processes Q. Assume
that the primary computation has classically terminated with
respect to Q and each process in Q eventually learns that
there are no old application messages in transit towards
it sent by other processes in Q. If all processes in Q
stay operational, then the secondary computation eventually
classically terminates with respect to Q.

Proof. Assume that the primary computation has classically
terminated with respect to Q and each process in Q eventually
learns that there are no old application messages in transit
towards it sent by other processes in Q. Clearly, since no
process in Q crashes, all processes in Q eventually turn passive
with respect to the secondary computation initiated on Q.
Further, none of the channels among processes in Q contains
an application message belonging to the secondary computation
initiated on Q. Thus the secondary computation eventually
classically terminates with respect to Q. �

We next describe how to ensure that all operational processes
agree on the set of failed processes before restarting the
secondary computation and the fault-sensitive termination
detection algorithm. Later, we describe how to ascertain that
there are no relevant old application messages in transit. There
are many ways for a live process to determine the number of
old application messages that are in transit towards it from
other live processes. We describe one such mechanism in
Section 3.1.5. Another mechanism is described in Section 3.5.
We assume that both application and control messages are
piggybacked with the complement of the base set of the current
instance (of the secondary computation in progress), which
can be used to identify the specific instance of the secondary
computation. We refer to this complement set as instance
identifier.

3.1.4. Achieving agreement on the set of failed processes
Whenever a crash is detected, one of the live processes

is chosen to act as the coordinator. Specifically, the process
with the smallest identifier among all live processes acts as the
coordinator. Every process, on detecting a new failure, sends a
NOTIFY message to the coordinator containing the set of all
processes that it knows have failed. The coordinator maintains,
for each operational process pi , processes that have failed
according to pi . On determining that all operational processes
agree on the set of failed processes, the coordinator sends a
RESTART message to each operational process. A RESTART
message instructs a process to initiate a new instance of the
secondary computation on the appropriate set of processes and
also to start a new instance of the fault-sensitive termination
detection algorithm to detect its termination.

It is possible that, before receiving the RESTART message
for a new instance, a process receives an application message
or some other control message that is sent by a more recent
instance of the secondary computation than the one currently
in progress at that process. In that case, before processing
the message received, it behaves as if it has also received a
RESTART message and acts accordingly.

The strong accuracy property of a perfect failure detector
ensures that no operational process is erroneously suspected
by other operational processes to have crashed. Without this
property, the new instance of the secondary computation and the
fault-tolerant termination detection algorithm may not involve
all operational processes. This may result in false detection of
termination, especially if the processes that have been “left out”
are active.

3.1.5. Tracking old application messages
A process stays active with respect to the current instance of

the secondary computation at least until it knows that it cannot
receive any old application message from one of the processes
in the relevant subsystem. To that end, each process maintains a
count of the number of application messages it has sent to each
process so far and, also, a count of the number of application
messages it has received from each process so far.

A process, on starting a new instance of the secondary
computation, sends an OUTSTATE message to the coordinator;
the message contains the number of application messages
it sent to each process just before restarting the secondary
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computation. The coordinator, on receiving an OUTSTATE
message from every operational process, sends an INSTATE
message to all live processes. An INSTATE message sent
to process pi contains the number of application messages
that each process has sent to pi before starting the current
instance of the secondary computation. This information can
be easily computed by the coordinator after it has received an
OUTSTATE message from all live processes.

Clearly, once a process has received an INSTATE message
from the coordinator, it can determine how many old
application messages are in transit towards it and wait until it
has received all those messages before becoming passive for the
first time with respect to the current instance of the secondary
computation.

3.1.6. Reducing the message-size complexity
Observe that all messages except for NOTIFY messages

carry an instance identifier that basically corresponds to the set
of processes that all operational processes have agreed on to
have crashed when new instances of the secondary computation
and the fault-sensitive termination detection algorithm are
started. This instance identifier is used by the receiving process
for two purposes. First, it is used to identify the instance of
the secondary computation to which the message belongs (that
is, older, current or newer). Second, if the receiving process
decides to restart the secondary computation (along with the
fault-sensitive termination detection algorithm), then it is used
to determine the base set of the new instances.

To determine whether a message belongs to an older, the
current or a newer instance of the secondary computation, it
is sufficient to compare the cardinality of the set of failed
processes comprising the instance identifier. We do not need
to compare the sets themselves. For example, instead of using
{pi , p j } as an instance identifier, we use its cardinality, namely
two. Now, as far as determining the base set is concerned,
we proceed as follows. Each process keeps track of the order
in which it detects process crashes. Suppose a process pi
currently executing an instance x of the secondary computation
receives a message belonging to a newer instance y, that
is, x < y. To determine the base set for instance y, pi
determines the first y processes it detected to have crashed,
which we claim should be same as the base set for instance
y of the secondary computation. Clearly, a process in the
system can start instance y of the secondary computation
only after receiving a RESTART message for that instance
from the coordinator. This implies that, when the coordinator
sent RESTART message for instance y to all processes, all
operational processes, say Q, agreed on the set of failed
processes and, moreover, the set contained exactly y processes.
Note that the set Q should include pi because of strong
accuracy property of a perfect failure detector. This, in turn,
implies that, for all operational processes, the set of first y
processes they detected to have crashed should be identical
(although their crashes may have been detected in different
orders by different processes).

Note that reducing the size of termination-detection
messages is significant because, as shown in [6], as many as
M termination-detection messages may be exchanged in the
worst-case. On the other hand, the number of failure-recovery
messages generated is bounded by O(n f ).

3.2. A formal description of the transformation

A formal description of the transformation is given in
Figs. 1–4. The transformation is described using twelve atomic
actions. Actions A0–A8 are executed by every process. Action
A0 initializes the state of a process, and also starts the
first instances of the secondary computation SC and the
fault-sensitive termination detection algorithm A by invoking
action A8. Actions B0–B2 are executed by a process when
it becomes the coordinator. Action B0 initializes the state
of a process on becoming the coordinator for the first time.
Actions A1, A2 and A3 describe the hooks that interface
the underlying computation with the termination detection
algorithm: Action A1 is invoked when an application message
is sent, action A2 is invoked when an application message is
received, and action A3 is invoked when a control message
is received. Note that every application message sent by the
underlying computation is first intercepted by the current
instance of A, which may piggyback some control data on the
message. It is then intercepted by the transformation (action
A1) which piggybacks the instance identifier on the message.
Conversely, every application and control message received is
first intercepted by the transformation (actions A2 and A3)
which strips off the instance identifier from the message and
hands it over to either the underlying computation directly
(if an old application message) or the current instance of A
(otherwise). Action A4 is invoked when the current instance
of A announces termination.

Actions A5–A8 handle process crashes. Action A5 is
invoked whenever crash of a process is detected by the failure
detector. As part of executing action A5, a new coordinator is
selected (if required) and incoming channel with the crashed
process is frozen. Action A6 is invoked whenever a RESTART
message is received from the coordinator instructing the process
to start new instances of the SC and A. Action A7 is invoked
on receiving an INSTATE message from the coordinator
which carries information about the number of old application
messages that have been sent to the process from other live
processes so far.

Actions B1 and B2 are executed by a process when it
is acting as the coordinator. Action B1 is invoked when the
coordinator receives a NOTIFY message from a process. As
part of executing B1, the coordinator checks if all processes
have reached an agreement on the set of failed processes. If
yes, it instructs all currently operational processes to start new
instances of SC and A by broadcasting a RESTART message.
Finally, action B2 is invoked when the coordinator receives
an OUTSTATE message. Once it has received an OUTSTATE
message from all live processes, it computes the number of old
application messages in transit towards each live process from
other live processes. It then sends this information to each live
process by sending an INSTATE message to that process.
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Fig. 1. Transforming a fault-sensitive termination detection algorithm into a fault-tolerant termination detection algorithm.
3.3. Proof of correctness

We now prove that our transformation produces an algorithm
B that solves the effective-termination detection problem
given that A is a correct fault-sensitive algorithm for solving
the classical termination detection problem. The following
proposition can be easily verified:
Proposition 5. Whenever an instance of A is initiated on a
process set Q, all processes in P \ Q have in fact crashed
and all channels from processes in P \ Q to Q have been
frozen.

First, we prove the safety property.
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Fig. 2. Transforming a fault-sensitive termination detection algorithm into a fault-tolerant termination detection algorithm (continued).
Theorem 6 (Safety Property). If B announces termination,
then the underlying computation has effectively terminated.

Proof. Assume that B announces termination. This implies
that some instance of A detected classical termination of the
corresponding instance of the secondary computation run by
some subset Q of processes. From Theorem 3, it follows that
the underlying computation has also classically terminated with
respect to Q. Finally, from Theorem 1, it follows that the
underlying computation has effectively terminated with respect
to P . �

Next, we show that B is live. That is,

Theorem 7 (Liveness Property). Once the underlying compu-
tation effectively terminates, B eventually announces termina-
tion.
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Fig. 3. Transforming a fault-sensitive termination detection algorithm into a fault-tolerant termination detection algorithm (continued).
Proof. Assume that the underlying computation is effectively
terminated and consider the point in time when the last process
crashes. Our algorithm ensures that eventually a new instance
of the secondary computation is initiated on the set Q of
remaining live processes. Further, each operational process
eventually learns, via an INSTATE message, the number of old
application messages in transit towards it. Since the underlying
computation has effectively terminated, from Theorem 1,
it follows that the underlying computation has classically
terminated with respect to Q. Further, using Proposition 5
and Theorem 4, it implies that the secondary computation
initiated on Q classically terminates eventually. As a result, the
corresponding instance of A eventually announces termination
of the secondary computation on Q. �

3.4. The complexity analysis

Let µ(n,M) and δ(n,M) denote the message complexity
and detection latency, respectively, of A when the system has
n processes and the underlying computation exchanges M
application messages. To compute the message complexity of
B, we assume that µ(n,M) satisfies the following constraint
for k ≥ 1:

k∑
i=1

µ(n,Mi ) ≤ µ

(
n,

k∑
i=1

Mi

)
+ (k − 1)µ(n, 0). (1)

For all existing termination detection algorithms that we are
aware of, µ(n,M) is of the form a + b · M , where a and b
are some system dependent constants. It can be verified that
the above inequality indeed holds if µ(n,M) is of the above
form. In fact, it can be verified that the inequality holds as long
as µ(n,M) does not contain any term that is sub-linear in M
except for a constant (e.g.,

√
M, log M).

Let f denote the actual number of processes that fail during
an execution of B. We next prove a lemma that is useful in
analyzing the message complexity and detection latency.

Lemma 8. The number of times A is restarted is bounded by
f .

Proof. A new instance of A is started only when a new failure
occurs and, moreover, all operational processes have detected
the failure. Since at most f processes can fail, A can be
restarted at most f times. �

We categorize control messages into two groups. The first
group consists of control messages exchanged by different
instances of A. The second group consists of control messages
exchanged as a result of process crash, namely NOTIFY,
RESTART, OUTSTATE and INSTATE. We refer to the
messages in the first group as termination-detection messages
and to the messages in the second group as failure-recovery
messages.

Theorem 9 (Message Complexity). The message complexity of
B is µ(n,M)+ O( f (n + µ(n, 0))).
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Fig. 4. Transforming a fault-sensitive termination detection algorithm into a fault-tolerant termination detection algorithm (continued).
Proof. Let Mi denote the number of application messages
associated with the i th instance of A. From Lemma 8, there
are at most f + 1 instances of A. Therefore,

f +1∑
i=1

Mi = M.
From (1), the number of termination-detection messages is
given by:
f +1∑
i=1

µ(n,Mi ) ≤ µ

(
n,

f +1∑
i=1

Mi

)
+ f µ(n, 0)

= µ(n,M)+ f µ(n, 0).
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Also, the number of failure-recovery messages is at most
4n per failure (n NOTIFY, n RESTART, n OUTSTATE and
n INSTATE). �

We now bound the detection latency of B. To compute
detection latency in an asynchronous distributed system, it
is typically assumed that message delay is at most one time
unit. Moreover, we assume that the failure detection delay is
bounded by one time unit as well.

Theorem 10 (Detection Latency). The detection latency of B
is given by δ(n,M)+ O( f δ(n, 0)).

Proof. Assume that the underlying computation has termi-
nated. The worst-case scenario occurs when a process crashes
just before the current instance of A is able to detect ter-
mination. Clearly, when a process fails, a new instance of
the secondary computation is started on all operational pro-
cesses within O(1) time units assuming that there are no more
failures—one time unit for failure detection, one time unit for
the coordinator to receive all NOTIFY messages and one time
unit for all live processes to receive RESTART messages. Once
an instance of the secondary computation is initiated, it ter-
minates with O(1) time units as soon as every live process
has received an INSTATE message from the coordinator. Once
an instance of the secondary computation terminates, its ter-
mination is detected within O(δ(n, 0)) time units. Note that
δ(n, 0) = Ω(1). Therefore, after a process fails its termina-
tion is detected within O(δ(n, 0)) time units unless some other
process has failed. It can be proved by induction that the ter-
mination detection can be delayed by only O( f δ(n, 0)) time
units. �

In general, if message delay is bounded by dm time units
and failure detection latency is bounded by d f time units, then
the termination detection latency of our algorithm is bounded
by δ(n,M) + O( f (δ(n, 0) + dm + d f )) time units. (Note that
δ(n, 0) is also a function of dm in this case.) We next bound
the message-size complexity of B. Let α(n,M) and β(n,M)
denote the application and control message-size complexity,
respectively, of A when the system has n processes and the
underlying computation exchanges M application messages.

Theorem 11 (Application Message-Size Complexity). The
application message-size complexity of B is α(n,M)+ log( f +

1).

Proof. The additional information piggybacked on an appli-
cation message is the number of failed processes, which is
bounded by log( f + 1). �

Finally, we bound the control message-size complexity of B.

Theorem 12 (Control Message-Size Complexity). The control
message-size complexity of B for termination-detection
messages is given by β(n,M) + log( f + 1) and for failure-
recovery messages is given by O( f log n + n log M).

Proof. The additional information piggybacked on all
termination-detection messages is the number of failed pro-
cesses, which is bounded by log( f + 1). A failure-recovery
message contains the following information: (1) set of failed
processes, and (2) count of the number of application messages
sent so far to each process. The overhead due to the two is
bounded by O( f log n) and O(n log M), respectively. �

3.5. Optimizing for the special case: When all application
messages are acknowledged

Our basic transformation makes minimal assumptions about
the termination detection algorithm. When the fault-sensitive
termination detection algorithm is acknowledgment-based, it is
possible to reduce the size of application and control messages
significantly without affecting the message complexity and
detection latency at all. In the basic transformation, failure
recovery messages, specifically INSTATE and OUTSTATE
messages, have to carry a vector of size n, where each entry in
the vector is bounded by O(log M). Vectors exchanged through
these messages help processes determine whether there are any
old application messages in transit towards them. In case the
underlying fault-sensitive termination detection algorithm uses
acknowledgment messages to test for emptiness of channels,
we can avoid exchanging vectors altogether. The main idea is
as follows. A process, on restarting the termination detection
algorithm, waits until all its old application messages sent
to currently live processes have been acknowledged. It then
sends a QUIESCENT message to the coordinator. Once the
coordinator has received a QUIESCENT message from all
operational processes, it knows that there are no old application
messages in transit towards any operational process and sends
an ALL QUIESCENT message to all operational processes.
On receiving the ALL QUIESCENT message, a process can
infer that it will not receive any old application messages
hereafter and the secondary computation running at the process
becomes identical to its primary computation. Observe that,
for the modification to work correctly, all application messages
have to be acknowledged. Specifically, a process has to send an
acknowledgment message even for an old application message.

With the above modification, the size of failure-recovery
messages decreases from O( f log n + n log M) to O( f log n).
All other complexity measures remain the same. Further, our
transformation satisfies another desirable property, namely size
of all messages actually becomes bounded.

3.6. Discussion

If return-flush primitive is available, then our transformation
can be easily adapted to detect strict termination as follows.
A process, on detecting the crash of another process, first
executes return-flush primitive to flush all messages in transit
towards it from the crashed process before sending the NOTIFY
message to the coordinator. Our transformation can also be
generalized to derive a fault-tolerant termination detection
algorithm for an arbitrary communication topology as follows.
Whenever a process crashes, remaining processes in the system
first elect a new leader (or a coordinator) using Awerbuch’s
spanning tree construction algorithm [2]. The newly elected
leader is then responsible for starting a new instance of
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the secondary computation and the fault-sensitive termination
detection algorithm. Details of the transformation for arbitrary
communication topology can be found elsewhere [28].

4. Establishing the lower bound on message-complexity

Observe that if the computation exchanges Ω(n f )
application messages, then any termination detection algorithm
– fault-sensitive or fault-tolerant – has to exchange Ω(n f ) con-
trol messages in the worst-case [6]. We, however, show that
if the communication topology is fully connected, then, under
certain realistic assumption, any fault-tolerant termination de-
tection algorithm can be forced to exchange Ω(n f ) control
messages even if the underlying computation does not gener-
ate any application messages. Specifically, we assume that the
termination detection algorithm is non-inhibitory in nature as
defined next:

Definition 1 (Non-Inhibitory Property). A termination detec-
tion algorithm is said be non-inhibitory if it satisfies the follow-
ing property: whenever the computation at process pi wants to
send an application message to the computation at process p j
and neither pi nor p j crashes, the message can be delivered to
the computation at p j within a finite number of steps of pi and
p j .

Note that if a termination detection algorithm immediately
delivers an application message on arrival to the underlying
computation, then it trivially satisfies the non-inhibitory
property. In general, a termination detection algorithm satisfies
the non-inhibitory property only if it delays delivery of an
application message to the computation because of messages
sent before the application message was sent. In almost all
termination detection algorithms – fault-sensitive as well as
fault-tolerant – that we are aware of, the termination detection
algorithm transmits the application message immediately
possibly after piggybacking some control information on it.
Further, an application message is delivered to the computation
immediately on arrival possibly after processing the control
information piggybacked on the message. Therefore most
termination detection algorithms in the literature are non-
inhibitory in nature. A termination detection algorithm that
does not satisfy the non-inhibitory property is the algorithm by
Francez [13] which uses partial freezing of the computation to
detect termination.

The main idea behind the lower bound proof is as follows.
Consider an initial state of the system in which all but
one processes are passive. The one remaining process may
be passive or active—the exact state is not known to other
processes. We show that if this process fails, then there is
an execution of the system in which all operational processes
except one send at least one control message. Moreover, after
the control messages have been sent, the system reaches a
state in which these operational processes, which sent control
messages, do not know the exact state of the one remaining
operational process. By repeating this argument, the desired
lower bound can be proved. To formally prove the lower bound,
we first define some notation.
4.1. System states, executions and sub-executions

A state of a distributed system can be modeled using the
initial state of the system and the sequence of events that
have been executed so far. An initial state of the system
basically specifies the state of each process with respect to
the computation and the termination detection algorithm. The
state of the system obtained after executing events in σ starting
from the initial state I is denoted by 〈I, σ 〉. We use ε to
denote an empty sequence of events. Trivially, I = 〈I, ε〉.
We use the terms “sequence of events” and “system execution”
interchangeably.

For two system executions σ and τ , we use σ◦τ to denote the
system execution obtained after appending τ to σ . For a system
state 〈I, σ 〉 and a system execution τ , we use 〈I, σ 〉 |H τ to
denote the fact that τ is a valid execution of the system starting
from state 〈I, σ 〉, that is, it is possible to extend the execution
σ to the execution σ ◦ τ by executing events in τ .

For a system execution σ and a process pi , σ 〈pi 〉 refers
to the sub-execution of σ that contains those events of σ that
belong to pi . Also, let σ 〈 p̄i 〉 denote the sub-execution of σ that
contains those events of σ that do not belong to pi . Note that
an event in σ either belongs to σ 〈pi 〉 or σ 〈 p̄i 〉. For a channel
from a process pi to a process p j , σ 〈pi → p j 〉 denotes the
sub-execution of σ that contains those events of σ that affect
the state of the channel. Observe that σ 〈pi → p j 〉 basically
consists of all events of σ that either involve sending of a
message by pi to p j or receiving of a message by p j from
pi . The following proposition follows from the “asynchronous
nature” of the system.

Proposition 13. Consider a system state 〈I, σ 〉 and a system
execution τ such that τ is a valid execution of the system
starting from state 〈I, σ 〉. If a process pi does not send any
message during τ , then τ 〈 p̄i 〉 is also a valid execution of the
system starting from state 〈I, σ 〉. Formally,

(〈I, σ 〉 |H τ) ∧ (pi does not send any message during τ)

⇒ 〈I, σ 〉 |H τ 〈 p̄i 〉.

Two events are causally related if they are related by
the Lamport’s happened-before relation [22]. Specifically, an
event e happened-before an event f , if one of the following
conditions holds:

1. events e and f are events on the same process and e
occurred-before f in real-time, or

2. events e and f are send and receive events, respectively, of
the same message, or

3. there exists an event g such that e happened-before g and g
happened-before f .

If e happened-before f , then we say that f causally depends
on e. Intuitively, if f causally depends on e, then it may not
be possible to execute f until e has been executed. On the
other hand, if f does not causally depend on e, then f can
be executed even if e has not been executed. We use σ ∗

〈 p̄i 〉

to denote the sub-execution of σ obtained after removing all
events in σ 〈pi 〉 and events that causally depend on some event
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in σ 〈pi 〉 from σ . The next proposition is a generalization of the
previous proposition.

Proposition 14. Consider a system state 〈I, σ 〉 and a finite
system execution τ such that τ is a valid execution of the system
starting from state 〈I, σ 〉. For any process pi , τ ∗

〈 p̄i 〉 is a valid
execution of the system starting from state 〈I, σ 〉. Formally,

〈I, σ 〉 |H τ ⇒ 〈I, σ 〉 |H τ ∗
〈 p̄i 〉.

For a system execution σ , let crashed(σ ) denote the set of
processes that failed during σ . The future of a system state
〈I, σ 〉 with respect to processes in Q is said to be contained in

the future of a system state 〈J, τ 〉, denoted by 〈I, σ 〉
Q
v 〈J, τ 〉,

if the following conditions are satisfied:

• processes in Q have identical states in I and J ,
• crashed(σ ) = crashed(τ ),
• for each process pi in Q, σ 〈pi 〉 = τ 〈pi 〉, and
• for each channel from process p j to process pi with pi ∈ Q,
σ 〈p j → pi 〉 is a prefix of τ 〈p j → pi 〉.

Intuitively, when the above conditions are satisfied, any
execution of the system starting from state 〈I, σ 〉, which only
contains steps belonging to processes in Q, is also a valid
execution of the system starting from state 〈J, τ 〉. Note that the
converse may not hold. This is because some channels in 〈J, τ 〉
may contain messages that are not present in the corresponding
channels in 〈I, σ 〉. (These channels are from processes in P \ Q
to processes in Q.) Formally, a system execution σ is said to
be restricted to processes in Q, abbreviated as Q-restricted,
if it only contains events belonging to processes in Q. We
have,

Proposition 15. Consider two system states 〈I, σ 〉 and 〈J, τ 〉,

and a subset of processes Q such that 〈I, σ 〉
Q
v 〈J, τ 〉. If κ is a

Q-restricted execution of the system starting from 〈I, σ 〉, then
κ is also a valid execution of the system starting from 〈J, τ 〉.
Formally,

(〈I, σ 〉
Q
v 〈J, τ 〉) ∧ (〈I, σ 〉 |H κ) ∧ (κ is Q-restricted)

⇒ 〈J, τ 〉 |H κ.

The above proposition follows from the fact that, in an
asynchronous distributed system, a process only has “local
knowledge” of the system and, therefore, only has limited
ability to distinguish between various system states [6].
For a system state 〈I, σ 〉, let active〈I, σ 〉 (respectively
passive〈I, σ 〉) denote the set of active (respectively passive)
processes in 〈I, σ 〉. Let the crash event of process pi be
denoted by crash(pi ). We are now ready to prove the lower
bound.

4.2. Lower bound proof

Our lower bound proof uses two special system states,
namely elementary and critical. A system state 〈I, σ 〉 is said
to be elementary if all processes are passive in the initial state
I . A system state is said to be critical if, in the state, exactly
one operational process is active and no channel contains any
application message.

Consider an elementary system state 〈I, σ 〉 and a critical
system state 〈J, τ 〉 that are “indistinguishable” to the processes
that are passive in the two states. We show that, if the process
that is active in the critical state fails, then a large number
of passive processes have to send control messages before
termination can be announced. Specifically, we show that if the
active process of 〈J, τ 〉 crashes, then all processes in Q except
possibly one have to send one or more control messages before
some process can announce termination.

Lemma 16. Consider two system states 〈I, σ 〉 and 〈J, τ 〉 such
that:

• 〈I, σ 〉 is an elementary state,
• 〈J, τ 〉 is a critical state with active〈J, τ 〉 = {pi } and

passive〈J, τ 〉 = Q, and

• 〈I, σ 〉
Q
v 〈J, τ 〉.

If Q 6= ∅, then any execution κ of the system starting from
〈I, σ ◦crash(pi )〉 in which no process crashes and some process
eventually announces termination satisfies the following:

• κ is Q-restricted, and
• each process in Q except possibly one sends at least one

control message during κ .

Proof. Consider an execution κ of the system starting from
〈I, σ◦crash(pi )〉 in which no process crashes and some process,
say pt , eventually announces termination. Such an execution
exists since the termination detection algorithm is live. Suppose
there are two processes in Q, say p j and pk , that do not send
any control message during κ . Clearly, either p j 6= pt or
pk 6= pt . Without loss of generality, assume the former. Let
R = Q \ {p j }. Consider the system execution ρ = κ〈 p̄ j 〉.
Note that ρ is R-restricted (and therefore Q-restricted). Since
p j does not send any message (application or control) during
κ , we can apply Proposition 13 and thus have:

ρ is a valid execution of the system starting from state

〈I, σ ◦ crash(pi )〉. (2)

Also, since pt announces termination during κ and κ〈pt 〉 =

ρ〈pt 〉, we have,

pt announces termination during ρ. (3)

Further, we have,

(〈I, σ 〉
Q
v 〈J, τ 〉) ∧ (〈I, σ ◦ crash(pi )〉 |H ρ)

⇒ {adding crash(pi ) to σ and τ }

(〈I, σ ◦ crash(pi )〉
Q
v 〈J, τ ◦ crash(pi )〉)

∧(〈I, σ ◦ crash(pi )〉 |H ρ)

⇒ {ρ is Q-restricted and using Proposition 15}

〈J, τ ◦ crash(pi )〉 |H ρ.

In other words,
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ρ is a valid execution of the system starting from state

〈J, τ ◦ crash(pi )〉. (4)

Next, consider the system state 〈J, τ 〉. Suppose, in this state,
the computation at pi sends an application message to the
computation at p j . Using the non-inhibitory property of the
termination detection algorithm, there exists a finite system
execution λ consisting only of events belonging to pi and p j
such that p j receives the application message from pi and
becomes active. We have,

〈J, τ 〉
R
v 〈J, τ 〉

⇒ {λ is {pi , p j }-restricted, crashed(λ) = ∅,

and R ∩ {pi , p j } = ∅}

〈J, τ 〉
R
v 〈J, τ ◦ λ〉

⇒ {adding crash(pi ) to both τ and τ ◦ λ}

〈J, τ ◦ crash(pi )〉
R
v 〈J, τ ◦ λ ◦ crash(pi )〉

⇒ {ρ is R-restricted, using (4) and Proposition 15}

〈J, τ ◦ λ ◦ crash(pi )〉 |H ρ.

Note that the computation has not terminated in state 〈J, τ ◦

λ ◦ crash(pi )〉 because p j is active. Therefore the computation
has not terminated in state 〈J, τ ◦ λ ◦ crash(pi ) ◦ ρ〉 as
well. However, using (3), pt announces termination during ρ,
which violates the safety property of the termination detection
algorithm. Therefore it follows that each process in Q except
possibly one sends at least one control message during κ . �

Next, we show that it is possible to go from a
pair of “indistinguishable” elementary and critical system
states to another pair of “indistinguishable” elementary and
critical systems states while forcing the termination detection
algorithm to exchange a relatively large number of control
messages. The next lemma allows us to repeat the argument
in the previous lemma by showing that it is possible to go from
state 〈I, σ 〉 (respectively 〈J, τ 〉) to state 〈I, σ ◦φ〉) (respectively

〈J, σ ◦ψ〉) such that 〈J, τ ◦ψ〉 is a critical state and 〈I, σ ◦φ〉
R
v

〈J, τ ◦ ψ〉 where R = passive〈J, τ ◦ ψ〉.

Lemma 17. Consider two system states 〈I, σ 〉 and 〈J, τ 〉 such
that:

• 〈I, σ 〉 is an elementary state,
• 〈J, τ 〉 is a critical state with active〈J, τ 〉 = {pi } and

passive〈J, τ 〉 = Q, and

• 〈I, σ 〉
Q
v 〈J, τ 〉.

If Q 6= ∅, then there exists two system executions φ and ψ
starting from states 〈I, σ 〉 and 〈J, τ 〉, respectively, and a subset
of processes R such that:

• crashed(φ) = crashed(ψ) = {pi },
• 〈J, τ ◦ψ〉 is a critical state with active〈J, τ ◦ψ〉 = {p j } and

passive〈J, τ ◦ ψ〉 = R,

• 〈I, σ ◦ φ〉
R
v 〈J, τ ◦ ψ〉, and
• at least n − |crashed(σ ◦ φ)| − 1 control messages are sent
during φ.

Proof. Consider any execution κ of the system starting from
state 〈I, σ ◦ crash(pi )〉 in which no process crashes and some
process eventually announces termination during κ . Using
Lemma 16, κ is Q-restricted and all processes in Q except
possibly one sends one or more control messages during κ . Let
S ⊆ Q be the set of processes that send at least one control
message during κ . Clearly, Q \ S contains at most one process.
In case Q \ S 6= ∅, let p j be the process in the singleton set
Q \ S. On the other hand, if Q \ S = ∅, then we choose
p j to be a process in Q such that each process in Q \ {p j }

sends its first control message without receiving a message that
p j sent during κ . Process p j exists because otherwise it can
be shown that the Lamport’s happened-before relation contains
a cycle—a contradiction. Let R = Q \ {p j }. Consider the
system execution ρ = κ∗

〈 p̄ j 〉. Note that ρ is R-restricted
(and therefore Q-restricted). Using Proposition 14, we
have:

ρ is a valid execution of the system starting from state

〈I, σ ◦ crash(pi )〉. (5)

Clearly, the manner in which p j is chosen, we have,

〈∀pk : pk ∈ R : pk sends at least one control

message during ρ〉. (6)

Also, we have,

(〈I, σ 〉
Q
v 〈J, τ 〉) ∧ (〈I, σ ◦ crash(pi )〉 |H ρ)

⇒ {adding crash(pi ) to σ and τ }

(〈I, σ ◦ crash(pi )〉
Q
v 〈J, τ ◦ crash(pi )〉)

∧(〈I, σ ◦ crash(pi )〉 |H ρ)

⇒ {ρ is Q-restricted and using Proposition 15}

〈J, τ ◦ crash(pi )〉 |H ρ.

In other words,

ρ is a valid execution of the system starting from state

〈J, τ ◦ crash(pi )〉. (7)

Next, consider the system state 〈J, τ 〉. Suppose, in this state,
the computation at pi sends an application message to the
computation at p j . Using the non-inhibitory property of the
termination detection algorithm, there exists a finite system
execution λ consisting only of events belonging to pi and p j
such that p j receives the application message from pi and
becomes active. We have,

〈J, τ 〉
R
v 〈J, τ 〉

⇒ {λ is {pi , p j }-restricted, crashed(λ) = ∅, and

R ∩ {pi , p j } = ∅}

〈J, τ 〉
R
v 〈J, τ ◦ λ〉

⇒ {adding crash(pi ) to both τ and τ ◦ λ}

〈J, τ ◦ crash(pi )〉
R
v 〈J, τ ◦ λ ◦ crash(pi )〉
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⇒ {ρ is R-restricted, using (7) and Proposition 15}

〈J, τ ◦ λ ◦ crash(pi )〉 |H ρ.

The required system executions are given by φ = crash(pi )◦

ρ and ψ = λ ◦ crash(pi ) ◦ ρ. Clearly, crashed(φ) =

crashed(ψ) = {pi }. Also, in state 〈J, τ ◦ ψ〉, only p j is active,
all other operational processes are passive and no channel
contains any application message. Therefore 〈J, τ ◦ ψ〉 is a
critical state with active〈J, τ ◦ψ〉 = pi and passive〈J, τ ◦ψ〉 =

R. It can be verified that 〈I, σ ◦ φ〉
R
v 〈J, τ ◦ ψ〉. Finally,

since R = Q \ {p j } = (P \ crashed(σ ◦ φ)) \ {p j }, |R| =

n−|crashed(σ◦φ)|−1. Therefore at least n−|crashed(σ◦φ)|−1
control messages are sent during φ. �

The lower bound can now be proved using the previous two
lemmas.

Theorem 18 (Lower Bound). Any termination detection
algorithm must exchange Ω(n f ) control messages in the worst
case even if at most one process is active initially and the
computation does not exchange any application messages,
where n, with n > 2, is the number of processes in the system
and f , with f < n, is the number of processes that fail during
the execution.

Proof. The proof is by construction. Consider two initial
system states I and J such that all processes are passive in I
and all but one are passive in J . Let σ0 = ε, τ0 = ε and
Q0 = passive〈J, ε〉. Clearly, both are possible initial states
of the computation when at most one process can be active.
Further, (1) 〈I, σ0〉 is an elementary state, (2) 〈J, τ0〉 is a critical

state with passive〈J, τ0〉 = Q0, and (3) 〈I, σ0〉
Q0
v 〈J, τ0〉.

We repeatedly apply Lemma 17 starting from system states
〈I, σ0〉 and 〈J, τ0〉. Consider the kth application of the lemma
with 1 ≤ k ≤ f . Let the two system executions obtained by
applying the lemma be φk and ψk . Also, let σk = σk−1 ◦ φk

and τk = τk−1 ◦ ψk . Since exactly one process crashes after
each application of the lemma, exactly k processes have crashed
during σk . Further, since at least n − k − 1 control messages
are sent during φk , Ω(nk) control messages are sent during
σk . Clearly, no application messages are exchanged during σk

because the system has already terminated in the initial state I .
Finally, (1) 〈I, σk〉 is an elementary state, (2) 〈J, τk〉 is a critical

state with passive〈J, τk〉 = Qk , and (3) 〈I, σk〉
Qk
v 〈J, τk〉.

Therefore Lemma 17 can be applied again to system states
〈I, σk〉 and 〈J, τk〉 provided k < f which, in turn, implies that
k < n − 1, that is, Qk 6= ∅.

The lower bound is obtained by applying Lemma 17 up to f
times. �

Note that the lower bound proof depends on Proposi-
tions 13–15. These propositions hold even if all channels are
FIFO and a process can atomically multicast a message to sev-
eral processes. Therefore the lower bound holds under these as-
sumptions as well.
5. The weakest failure detector for termination detection

Failure detectors are not only an abstraction to yield
information about the operational state of processes, they
can also be regarded as synchrony abstractions since they
are usually implemented using heartbeat messages and
timeouts [23]. For example, an eventually perfect failure
detector is strictly weaker than a perfect failure detector,
and, therefore, can be implemented with weaker synchrony
assumptions (namely those of partial synchrony [12] instead of
full synchrony). Proving that a certain type of failure detector
is necessary for solving a problem provides an insight into the
minimal amount of synchrony needed to solve that problem.
In this section, unless otherwise stated, “termination” refers to
“effective-termination”.

We now show that a perfect failure detector is necessary
for solving the termination detection problem in a crash-prone
distributed system. To that end, we transform an instance
of any fault-tolerant termination detection algorithm into a
perfect failure detector at one process pi , that is, pi is able to
reliably detect process crashes. A full perfect failure detector
can then be implemented by using n parallel instances of the
transformation algorithm, one for each process pi .

Assume that we are given an algorithm A that can detect
termination of any computation involving an arbitrary set of
processes even in the presence of process crashes. Recall again
that the phrase “eventually, A announces termination” to mean
that eventually some live process announces termination. To
implement a perfect failure detector at process pi , we set
up n independent computations Ci j , one for each process p j .
The computation Ci j consists of only two processes pi and
p j . Initially, pi is passive and p j is active. Further, p j never
becomes passive and the computation does not exchange any
application messages. By construction, Ci j terminates when
and only when p j crashes. An instance of the termination
detection algorithm A, say Ai j , is used to detect termination
of the computation Ci j . We now emulate a perfect failure
detector as follows: Whenever pi detects termination of Ci j ,
it starts suspecting p j permanently. We now show that this
algorithm implements a perfect failure detector at process
pi if A correctly solves the effective-termination detection
problem.

First, consider the strong accuracy property, which says
that a process is never suspected before it crashes. Assume
that pi suspects p j . It follows from our transformation that
the instance Ai j of the termination detection algorithm has
announced termination of the computation Ci j . SinceA satisfies
the safety property, Ci j has indeed terminated. This, in turn,
implies that p j has crashed.

Now, consider the strong completeness property, which says
that eventually every crashed process is permanently suspected
by every correct process. Assume that pi is correct and p j has
crashed. Once p j crashes, clearly, the termination condition
holds for the computation Ci j . Since A satisfies the liveness
property, its instance Ai j eventually announces termination
of Ci j . This, in turn, implies that pi eventually announces
termination of Ci j . From the construction, upon detecting
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termination of Ci j , pi starts suspecting p j permanently. This
concludes the proof.

Overall, this shows that if we can solve termination detection
in a crash-prone distributed system, then we can also implement
a perfect failure detector in such a system. In other words, a
perfect failure detector is necessary for solving the effective-
termination detection problem.

Remark 1. Our transformation for implementing a perfect
failure detector using a fault-tolerant termination detection
algorithm assumes that a process can stay active indefinitely.
In case this is not acceptable, we provide the following
alternative transformation. Specifically, the computation Ci j
is now defined as follows. Initially, process p j is active but
process pi is passive. While a process (pi or p j ) is active,
it sends an application message to the other process and
becomes passive. Clearly, as the computation Ci j proceeds, pi
and p j continuously make each other active – starting from
p j – until one of them crashes. It can be verified that if the
instance Ai j announces termination at pi , then p j has crashed
(strong accuracy). Further, once p j crashes, the instance Ai j
eventually announces termination at pi if pi is correct (strong
completeness). �

The weakest failure detector for a problem is a failure
detector that is necessary and sufficient to solve that problem.
We show above that a perfect failure detector is necessary. Our
transformation in Section 3 shows that a perfect failure detector
is also sufficient. Combining the two, we can conclude that
a perfect failure detector is the weakest failure detector for
solving the effective-termination detection problem. The result
holds as long as at least one process can crash and assuming
that channels can be frozen. Therefore, it generalizes the result
of Wu et al. [38], which shows that a failure detector has to
be complete. Our result also further clarifies the relationship
between the termination detection problem and the consensus
problem: Wu et al. [38] show that strict-termination detection
is harder than consensus because the former cannot be solved
without the ability to flush incoming channels with failed
processes. By relating termination detection to the failure
detector hierarchy of Chandra and Toueg [3], our result has
two interesting corollaries. First, even effective-termination
detection is strictly harder than consensus in environments
where a majority of processes remains correct. This follows
from the result that in such cases the weakest failure detector for
solving consensus (namely, eventually weak failure detector) is
strictly weaker than a perfect failure detector [3]. Second, when
any number of processes can crash (and we restrict ourselves to
using only realistic failure detectors which cannot predict the
future behavior of processes), effective-termination detection is
actually equivalent to consensus [8].

By using the same line of argument as above, it can be
shown that the perfect failure detector is also the weakest failure
detector for strict termination detection if channels can be
flushed instead of frozen. In such a setting and after detecting
the crash of a neighbor, a process may invoke a return-flush
or fail-flush [36,21] primitive on the connecting channel to
make certain that the channel is empty. Does this mean that a
perfect failure detector is the weakest failure detector for strict
termination detection as well?

Interestingly, the answer is no. Clearly, the ability to flush
a channel is necessary to solve strict termination detection.
So it remains to compare the power of a flush primitive with
the power of a freeze primitive. Freezing the channel can
be implemented in asynchronous crash-prone systems very
easily: incoming messages from the frozen channel are simply
ignored. Finding out whether an incoming channel from a
crashed process is empty requires some form of synchrony.
Charron-Bost et al. [7,16] prove that, in an asynchronous
crash-prone distributed system, it is impossible to reliably
detect whether there still exists a message in transit on an
incoming channel from a crashed process with any form of
failure detector, even a perfect one. Intuitively, this is because
a failure detector in the formal sense of Chandra and Toueg
[3] is defined as a function of process failures, that is, a
function of operational states of processes. It does not offer
any information about the final state of a crashed process or
the state of a communication channel. This in turn implies
that it is impossible to implement a channel flush primitive
using a failure detector [16,7]. This impossibility result carries
over to strict termination detection, since such a primitive is
necessary to solve it. Fortunately, strict termination detection
still can be solved in a fully synchronous distributed system. If
processes can crash, then implementing a synchronous system
on top of an asynchronous system requires a failure detection
sequencer—a device which is strictly stronger than a perfect
failure detector [16]. With such a device, it is also possible
to implement a flush primitive in an asynchronous distributed
system.

6. Conclusions and future work

In this paper, we have presented a transformation using
a perfect failure detector that can be used to convert
any termination detection algorithm for a fully connected
communication topology which has been designed for a failure-
free environment into a termination detection algorithm that can
tolerate process crashes. Our transformation does not impose
any additional overhead on the system (besides that imposed by
the underlying termination detection algorithm) if no process
actually crashes during an execution. One of the advantages
of our transformation is that it can be used to derive the
most efficient fault-tolerant termination detection algorithm
known so far. Our transformation can be generalized to an
arbitrary communication topology provided process crashes
do not partition the system. We have proved that a perfect
failure detector is the weakest failure detector for solving
the termination detection problem in a crash-prone distributed
system. This holds even if at most one process can crash.
We have also proved that, under certain realistic assumptions,
our transformation is optimal in terms of message-complexity
when the communication topology is fully connected. As a
future work, we plan to investigate the optimality of our
transformation with respect to other metrics including detection
latency and message-size complexity.
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Our focus in this paper has been on studying the
termination detection problem under crash-stop failure model,
that is, once a process crashes, it never recovers again.
An interesting direction of research is to investigate the
termination detection problem under crash-recovery model in
which crashed processes may recover after some time. Our
preliminary work indicates that it is impossible to solve the
termination detection problem in crash-recovery model using
only a realistic failure detector, that is, a failure detector
that cannot predict future behavior of processes [14]. We
are currently working on developing a stabilizing termination
detection algorithm when processes can crash and recover [14].
As a future work, we plan to investigate the conditions under
which the termination of a computation can be detected in a
safe manner under crash-recovery model using only a realistic
failure detector.
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