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Abstract

Long running applications often need to adapt due to changing requirements or changing

environment. Typically, such adaptation is performed by dynamically adding or removing

components. In these type of adaptations, components are often added to or removed from

multiple processes in the system. As a result, during adaptation, the system may consist of

both changed and unchanged processes, causing old and new components to overlap. This

overlapping of components during adaptation may induce cross-component communication,

which may lead to behavior during adaptation that is unpredictable and/or undesirable.

In this paper, we discuss an approach to model and verify overlap adaptation. We use

transitional-invariant lattice and transitional-faultspan lattice to verify correctness of adap-

tation in absence and presence of faults, respectively. We also discuss framework to support

implementation of overlap adaptation.

Key words: Dynamic Adaptation, Assurance, Correctness, Specification, Verification,

Fault-Tolerance

1 Introduction

Software systems need to adapt as the requirements and/or execution environment

change. Stopping the system during adaptation is often undesirable, as it may be in-
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convenient and/or potentially unsafe to interrupt the running system. In other words,

adaptation needs to be performed while the system continues to operate. Such adapta-

tion is commonly referred to as dynamic adaptation.

Adaptive software provides techniques (e.g. [2–9]) that allow the software to modify its

own functional behavior or non-functional behavior (e.g., its fault-tolerance, quality of

service or security requirements). These modifications may include reconfiguration of

some parameters, or addition or removal of application code. A survey in [10] presents

various tools and techniques in building adaptive software. In component-based systems,

adaptation is often performed by adding, removing or replacing components of the

system.

To gain assurance about the adaptation, formal specification and verification of adap-

tation is crucial. In context of dynamic adaptive systems, there are three aspects of

verification: (i) verifying system before adaptation, (ii) verifying system during adap-

tation, and (iii) verifying system after adaptation. While existing verification techniques

can be used to verify system before and system after adaptation, such techniques can-

not be applied directly to verify the system during adaptation. This is because during

adaptation the system (and possibly its specification) is changing whereas existing work

assumes that the system and its specification remain unchanged.

In case of distributed systems, multiple processes need to be changed during adaptation.

In such cases, changes to multiple processes need to be synchronized and interactions

between changed and unchanged processes need to be controlled. We call adaptation in

distributed systems as overlap adaptation when behavior of old program (program before

adaptation) and new program (program after adaptation) overlaps during adaptation.

We classify overlap adaptation into three main categories: (i) mixed-mode adaptation,

(ii) quiescence adaptation, and (iii) parallel adaptation. In case of quiescence adapta-

tion, which is the most common approach for adaptation in distributed systems, there

is no interaction allowed between the old and the new component during adaptation.

During adaptation the old and the new components may exists in the system simulta-

neously, but individual processes are changed such that processes using old component

fractions do not communicate with processes using new component fractions. In con-

trast, in case of mixed-mode adaptation, the old component and the new component

are allowed to interact. In case of parallel adaptation, each node has both the old and

the new component, but communication across components is not allowed; old (respec-

tively, new) component fraction at a process can communicate with old (respectively,

new) component fractions at other processes. In case of non-overlap adaptation in dis-

tributed systems, first the old component is removed from all processes before the new

component is added, thereby, preventing any overlap of behavior of the old component
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and the new component during adaptation.

We show in [11] that mixed-mode adaptation is better in terms of performance. Specif-

ically, the time taken to complete adaptation is less compared to quiescence form of

adaptation, thereby, reducing the service interruption time during adaptation. More-

over, the number of messages that need to exchanged among processes for synchroniza-

tion is lesser in mixed-mode adaptation compared to quiescence adaptation. This is

specifically important in systems, such as wireless and sensor networks, where message

communication is costly. In spite of these advantages mixed-mode adaptation has not

been addressed adequately in the literature due to challenges involved in verification

and implementation.

With the above motivation, in this paper, we present an approach to formally spec-

ify and verify overlap adaptation. Our approach can be applied to both quiescence and

mixed-mode adaptation. The approach discussed in this paper can also be used to spec-

ify and verify non-overlap adaptation. Since adaptation is often used to add (extend)

fault-tolerance properties to a given program, we also focus on methods for verification

of fault-tolerance properties during adaptation. Hence, we extend our approach to verify

fault-tolerance properties during adaptation.

Numerous techniques have been proposed to address various issues in formalizing adap-

tation. A survey in [12] discuss various approaches based on graphs, process alge-

bras, logic and other formalisms used to specify adaptive systems. Most of the ap-

proaches [2,3,5,6,8,13–19] focus on formalizing the structural design and implementa-

tion of adaptive systems. Graph-based approaches [13–15] use graph rewriting rules to

specify dynamism. Approaches in [16, 17] use variety of process algebras such as Cal-

culus of Communicating Systems (CCS), Communicating Sequential Processes (CSP),

and π-calculus. Architectural Description Language (ADL) based approaches [18–20]

model programs as components and connectors, and adaptation as reconfiguration of

connections. Compared to these approaches, our approach is based on simple guarded

commands and focus on verifying the behavior of system during adaptation.

Other approaches that have addressed the issue of verifying adaptation include [21–24].

The approaches in [21–23] focus on offline adaptation, whereas approach in [24] focuses

on online adaptation of a single process system (that can also be extended to distributed

systems that communicate via RPC). However, none of these approaches explicitly focus

on the behavior of system during (overlap) adaptation in distributed systems.

Contributions of the paper. The main contributions of the paper are as follows:

• We introduce adaptation lattice to specify the behavior of system during adaptation.
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• We introduce transitional-invariant lattice to verify correctness of adaptation in the

absence of faults.

• We extend the transitional-invariant lattice to transitional-faultspan lattice to verify

correctness of adaptation in the presence of faults.

• To illustrate our approach, we consider the addition of a forward error correction

based proactive component (cf. Sect. 4), and the replacement of the proactive com-

ponent by an acknowledgment based reactive component (cf. Sect. 6) in context of a

message communication application.

• We briefly describe the extension to the distributed reset-based framework [4] to

support implementation of correct adaptation.

Organization of the paper. The rest of the paper is organized as follows: In Sect.

2, we introduce formal definitions to model an adaptive system, adaptation, and define

specification during adaptation. In Sect. 3, we introduce the notion of transitional-

invariant lattice to verify adaptation in the absence of faults, and illustrate its use in

Sect. 4 by verifying the addition of the proactive component to the message communi-

cation application. In Sect. 5, we introduce the notion of transitional-faultspan lattice

to verify adaptation in the presence of faults and in Sect. 6, we illustrate its use by

verifying replacement of the proactive component with the reactive component in the

presence of faults. In Sect. 7, we present the architecture framework to support the

implementation of adaptation. We discuss some of the issues concerning our work in

Sect. 8, and finally, conclude in Sect. 9.

2 Modeling Adaptation

In this section, we introduce a formal model for adaptation in asynchronous programs.

We consider program as an automaton. Informally, adaptation of a program can be

described as transforming the automaton to another automaton. We first discuss the

informal overview of adaptation in distributed systems and then present the formal

model to reason about the correctness of adaptation. In the rest of the paper, for

sake of brevity, we use the term adaptation to mean overlap adaptation. However, our

approach also applies to non-overlap adaptation.

We refer to the program before adaptation as the old program and program after adap-

tation as the new program. An adaptation replaces the old program being executed

by the system with the new program. We assume that the old program and the new

program are independently correct, i.e., by themselves they can execute and produce

acceptable behavior. The goal of verifying adaptation is to ensure that: (i) the adapta-

tion ends in a state from where the system satisfies the behavior of the new program,
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and (ii) the behavior during adaptation is acceptable (as defined by specification during

adaptation).

An adaptation in a distributed system involves multiple steps that are executed at

various processes. We consider the replacement of a fraction at a single process as an

atomic step of adaptation. The key to verifying adaptation is to ensure that the atomic

steps in adaptation occur in an appropriate order and the instances when they occur

are “safe”, i.e., the specification during adaptation is satisfied. We denote each atomic

step of adaptation as atomic adaptation (defined formally later).

To verify adaptation, the ordering among atomic adaptations and the behavior during

adaptation needs to be verified. To verify the behavior during adaptation we need to

classify the states of the program during adaptation. The intermediate states that occur

during adaptation are due to overlapping of the old program and the new program. The

properties satisfied by these intermediate states may be different from either the old

program or the new program. Consequently, the behavior expected during adaptation

needs to be specified separately from the old program and the new program. Towards

this end, we define the notion of intermediate program. The intermediate program arise

due to overlapping of behavior of the old program and the new program. The first atomic

adaptation modifies the old program into the first intermediate program. Similarly,

other atomic adaptations modifies one intermediate program into the next intermediate

program. The last atomic adaptation results into the new program. The specification

during adaptation identifies the requirements for these intermediate programs.

2.1 Abstract Model of Adaptation

We model a program as an automaton A represented as a tuple 〈S, Σ, δ, S0〉, where

• S(A) - a set of states

• Σ(A) - a set of actions

• δ(A) - a state-transition relation, where δ(A) ⊆ S(A) x Σ(A) x S(A)

• S0(A) - a nonempty subset of S(A) known as initial states

Each element (s, π, s′) of δ(A) is known as a transition, where s, s′ ∈ S(A) and π ∈

Σ(A). If A has a transition (s, π, s′) it means that π is enabled in state s and executing

action π in state s will lead to state s′. A transition of the form (s,, s
′) denotes that

∃π : π ∈ Σ(A) : (s, π, s′) ∈ δ(A).

We model an adaptation ∆ using a 5-tuple as follows:
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• I - a set of automata

• P - an automaton of the old program, P ∈ I

• Q - an automaton of the new program, Q ∈ I

• Σa - a set of special type of actions known as adaptive actions

• Smap - a state mapping is a partial function S(A) x Σa → S(A′) and A,A′ ∈ I,A 6= A′

The old program, the new program, and all intermediate programs are modeled as au-

tomata. Given an adaptive action, the state mapping defines the states of the automaton

in which the adaptive action can execute, and corresponding states of the resulting au-

tomaton in which the adaptive action terminates. Note that the state mapping is a

partial function, as it may not be possible to perform corresponding atomic adaptation

in all states of the automaton. Each element ((s, πa), s
′) of Smap can be represented

as a triplet (s, πa, s
′). Similar to the state-transition relation of an automaton, a state

mapping Smap can be defined as a subset of S(A) x Σa x S(A′) with the restriction that

if (s, πa, s
′) ∈ Smap and (s, πa, s

′′) ∈ Smap then s′ = s′′. Each element of Smap is known

as an adaptive transition.

Broadly speaking, the state mapping of adaptation ∆ defines an automata-transformation

(partial) function δa : I x Σa → I. Each element ((A, πa),A
′) (equivalently, (A, πa,A

′))

of δa is known as atomic adaptation. Thus, each atomic adaptation is modeled as trans-

forming one automaton to another automaton.

The automata-transformation relation represents an adaptation lattice defined as fol-

lows:

Adaptation Lattice. An adaptation lattice (cf. Fig. 1) is a finite directed acyclic

graph in which each node is labeled with an automaton and each edge is labeled with

an atomic adaptation, such that,

(1) There is a single start node P having no incoming edges. The start node is associ-

ated with the automaton representing the old program. The automata-transformation

function (correspondingly, Smap) satisfies the following condition:

∀A, πa :: (A, πa, P ) 6∈ δa

(2) There is a single end node Q having no outgoing edges. The end node is associated

with the automaton representing the new program. The automata-transformation

function (correspondingly, Smap) satisfies the following condition:

∀A, πa :: (Q, πa,A) 6∈ δa

(3) Each intermediate node R has at least one incoming edge and at least one outgoing

edge. It is associated with the automaton representing the intermediate program.

The automata-transformation (correspondingly, Smap) satisfies the following con-

dition:
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∀A : A 6= P : (∃A′, πa :: (A′, πa,A) ∈ δa) ∧

∀A : A 6= Q : (∃A′, πa :: (A, πa,A
′) ∈ δa)

A path in the lattice from the start node to the end node is called an adaptation path.

�
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Fig. 1. An example of a adaptation lattice.

Based on the above definition, an adaptation can also be viewed as an automaton,

where

• S(∆) =
⋃

A ∈ I
{(A, s) | s ∈ S(A)}

• Σ(∆) =
⋃

A ∈ I
{(A, π) | π ∈ Σ(A)} ∪ Σa

• δ(∆) =
⋃

A ∈ I
{((A, s), (A, π), (A, s′)) | (s, π, s′) ∈ δ(A)} ∪

{((A, s), πa, (A
′, s′) | (s, πa, s

′) ∈ Smap}

• S0(∆) ⊆ S(P)

We now introduce some notations and terminology used in specifying and verifying

adaptive programs.

Enables. An action π of A is enabled in state s if ∃s′ :: (s, π, s′) ∈ δ(A). An adaptive

action πa is enabled in A if ∃s ∈ A, s′ ∈ A′ :: (s, πa, s
′) ∈ Smap(∆).

State predicate. A state predicate X of A is any subset of S(A). We say a X is true

in state s if s ∈ X.

Closure. A state predicate X of A is closed in A (respectively, δ(A), Σ(A)) iff the

following condition holds:

∀s, s′, π :: ((s, π, s′) ∈ δ(A)) ⇒ (s ∈ X ⇒ s′ ∈ X)

Computation. A computation of program A (respectively, adaptation ∆) is a sequence

of states σ = 〈s0, s1, ...〉 satisfying the following conditions:

• For first state s0 in σ, s0 ∈ S0(A) (respectively, S0(∆))

• If σ is infinite then ∀j : j > 0 : (∃π :: (sj−1, π, sj) ∈ δ(A)) (respectively, δ(∆))
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• If σ is finite and terminates in state sl, then there does not exist state s for all π such

that (sl, π, s) ∈ δ(A) (respectively, δ(∆)), and ∀j : j > 0 : (∃π :: (sj−1, π, sj) ∈ δ(A))

(respectively, δ(∆))

Specification. A specification of A is a set of acceptable computations. Following

Alpern and Schneider [25], specification can be decomposed into a safety specification

and a liveness specification. As shown in [26], for a rich class of specifications, safety

specification can be represented as a set of bad transitions that must not occur in

program computations; i.e., safety specification is a subset of S(A) x S(A).

Satisfies. A satisfies specification if each computation of A is in specification. A

satisfies specification from X iff (i) X is closed in A, and (ii) each computation of A is

in specification and starts from a state where X is true (i.e., S0(A) ⊆ X).

Invariant. The state predicate X of A is an invariant iff A satisfies specification from

X. Note that X ⊇ S0(A). Informally speaking, the invariant predicate characterizes

the set of all states reached in the “correct” computations of A.

Safety specification during adaptation. Similar to the specification of A, safety

specification during adaptation ∆ is specified as a set of bad transitions that must not

occur in computations of adaptation ∆, i.e., as a subset of S(∆) x S(∆).

Liveness specification during adaptation. We argue that the specification during

adaptation should be a safety specification. This is due to the fact that one often wants

the adaptation to be completed as quickly as possible. Hence, it is desirable not to

delay the adaptation task to satisfy the liveness specification during adaptation. Rather,

it is desirable to guarantee that, after adaptation, the program reaches states from

where its (new) safety and liveness specification is satisfied. Thus, the implicit liveness

specification during adaptation is that the adaptation completes. In other words, the

liveness specification during adaptation is that each intermediate program eventually

executes its adaptive action. For this reasons, we have omitted the representation of

liveness specification of program.

3 Verifying Adaptation in Absence of Faults

In this section, we introduce the notion of transitional-invariant lattice to verify the

correctness of adaptation. The idea of transitional-invariant lattice is based on the

concept of proof lattice [27], which is used to prove liveness properties of a concurrent

program.
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As discussed in Section 2, the program during adaptation consists of actions of the old

program and actions of the new program. Therefore, we consider intermediate programs

obtained after one or more atomic adaptations. Similar to the invariants that are used

to identify “legal” program states and are closed under program execution, we define

transitional-invariants.

Transitional-invariant. Let R be an intermediate program in the adaptation ∆. A

transitional-invariant is a predicate that is closed in R.

Note that the actions of intermediate program are the old program actions that are

not yet removed and the new program actions that are already added. However, the

adaptive actions do not necessarily preserve the transitional-invariant. Now, we define

transitional-invariant lattice.

Transitional-invariant lattice. A transitional-invariant lattice is an adaptation lat-

tice with each node having one predicate and that satisfies the following five conditions:

1. Safety of old program. The start node P is associated with an invariant SP of

the program before adaptation.

2. Safety of new program. The end node Q is associated with an invariant SQ of

the program after adaptation.

3. Safety of intermediate program. Each intermediate node R is associated with

a predicate TSR that is a transitional-invariant for any intermediate program at

R (i.e., intermediate program obtained by performing adaptations from the entry

node to R). Furthermore, any intermediate program at R satisfies the (safety)

specification during adaptation from TSR.

4. Safety of adaptive action. If a node labeled Ri has an outgoing edge labeled a

to a node labeled Rj, then for all adaptive transitions (s, a, s′) in Smap where TSRi

is true in state s, TSRj
is true in state s′. Furthermore, all the adaptive transitions

(s, a, s′) satisfies the safety specification during adaptation.

5. Progress of adaptation. If a node labeled R has outgoing edges labeled a1, a2, ..., ak

to nodes labeled R1, R2, ..., Rk, respectively, then in all computations of adaptation

there exists a transition (s, s′) such that for some i : 1 ≤ i ≤ k : (s, ai, s
′) ∈ Smap.

Furthermore, ∀s : s ∈ TSR : (∀a, s′ : a ∈ Σa − {a1, ..., ak} : (s, a, s′) 6∈ Smap).

Correctness of Adaptation. Intuitively, an adaptation is correct if the following

conditions are satisfied: If the adaptation begins in a legitimate state of the old program

then during adaptation safety during adaptation is met and the resulting state of the

new program is legitimate. With this intuition, if adaptation begins in a state where

invariant of the old program is true, then we say that adaptation is correct if:
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• Adaptation terminates in a state where invariant of the new program is true

• During adaptation safety specification during adaptation is satisfied

• Eventually adaptation terminates

The following theorem states that finding a transitional-invariant lattice is necessary

and sufficient for proving correctness of adaptation.

Theorem 1. Given SP as the invariant of the program before adaptation and SQ as

the invariant of the program after adaptation, the adaptation from P to Q is correct if

and only if there is a transitional-invariant lattice for the adaptation with start node

associated with SP and end node associated with SQ.

Proof.

(⇒) If transitional-invariant lattice exists then adaptation is correct.

If the stated conditions are satisfied, then the specification of old program is satis-

fied when the adaptation starts. Also, the existence of transitional-invariant lattice

during adaptation ensures that for each intermediate program that occurs during adap-

tation, the specification during adaptation is satisfied. Moreover, from the definition of

transitional-invariant lattice, each adaptive action satisfies safety specification during

adaptation. Also, in each intermediate program eventually some adaptive action will be

executed, which ensures liveness of adaptation. Furthermore, the last adaptive action

terminates in the invariant of the new program, from where the system satisfies the be-

havior of the new program. Thus, the existence of transitional-invariant lattice proves

correctness of adaptation.

(⇐) If adaptation is correct then transitional-invariant lattice exists (proof by construc-

tion).

Assuming the adaptation is correct, to show the existence of the lattice, we proceed as

follows. First, we identify the structure of the lattice. Then, for each node, we identify

the corresponding transitional-invariant.

By definition, the transitional invariant lattice has one entry node P that is associated

with SP , the invariant of the old program and one exit node associated with SQ, the

invariant of the new program. For the following discussion, let the entry node be denoted

as current node.

Now, consider all computations C of adaptation that start from the transitional-invariant

associated with the current node. For each of these computations, identify the computa-

tion prefix until first occurrence of the atomic adaptation (including the state/program
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reached after the atomic adaptation). This occurrence exists since correctness of adap-

tation implies that eventually the program would be changed to the new program. Let

CP denote the set of these computation prefixes. If ai is an atomic adaptation occurring

in this set of computation prefixes then add an edge from the current node to a new

node, say Ri. The label on the edge from the current node to Ri would be ai.

To identify the invariant associated with Ri, proceed as follows: The initial value of the

invariant is TRi-init, where TRi-init denotes the set of all states in C that occur after

the atomic adaptation ai. Now, consider all computations of the program at Ri (i.e.,

these computations do not include the atomic adaptation) that start from TRi-init.

The set of states reached in this set of computation identifies the transitional-invariant

TRi at node Ri. Now, this process is repeated for all possible atomic adaptations in CP ;

this will identify the new nodes and corresponding programs and transitional-invariants

at those nodes.

The above process is repeated for all newly created nodes as well. If the atomic adapta-

tion being considered is the last adaptation in the multi-step adaptation process (i.e.,

the resulting program would be the new program) then the successor node is Q.

By construction, we can see that the transitional-invariant at each node is closed and

the computation of the intermediate program from that transitional-invariant will result

in execution of one of the permitted atomic adaptation and the resulting state would

satisfy the constraint of the lattice. Moreover, since the adaptation is correct, when

the last atomic adaptation is performed, the resulting state must be in SQ. Thus, the

constructed lattice meets all the constraints of the transitional-invariant lattice. 2

4 Example: Message Communication

In this section, we present an example that illustrates how transitional-invariant lattice

can be used to verify correctness of adaptation in the context of a message communica-

tion program. We first discuss the programming notation used to describe the system.

We then describe the fault-intolerant message communication program and the FEC-

based proactive component. Next, we discuss adaptation of adding a proactive compo-

nent to the fault-intolerant message communication program. We then discuss (in Sect.

6) adaptation of replacing the proactive component with an acknowledgment-based

reactive component.
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4.1 Programming Notation

In this subsection, we discuss the programming notation we use to describe the system.

For brevity, we express programs using guarded commands [28–30]. This gives a compact

representation of the program defined in Sect. 2 (in terms of state space and transitions).

It is straightforward to translate from the compact representation of the program to its

automata representation discussed in Sect. 2 as we discuss in this subsection.

Program and process. A program P is specified by a finite set of processes and

channels. A process p is specified by a set of variables and a finite set of actions.

The processes in a program communicate with one another by sending and receiving

messages over unbounded channels that connect the processes. A channel from process

p to process q is denoted by a channel variable Cp,q, which is an unbounded queue. Only

process p can append an item of data to the rear of the queue Cp,q and only process

q can delete an item at the head of the queue Cp,q. Each variable has a predefined

nonempty domain. A state of a process is obtained by assigning each variable a value

from its respective domain. The state of the channel connecting p and q is given by

the value of the queue Cp,q. The state of the program is given by the state of all the

processes and the channels. Thus, the state space of the program P, S(P), is the set

of all possible states of P. We use s(x) to denote value of variable x in state s, and

V (p) to denote the set of variables of process p. The state predicate of P is a boolean

expression over process and channel variables.

Note that a state predicate may be characterized by the set of all states in which its

boolean expression is true and, therefore, is a subset of the state space of the program.

Action. An action of p is uniquely identified by a name, and is of the form

〈name〉 : 〈guard〉 → 〈statement〉

A guard of each action is a boolean expression over the process and the channel variables.

The statement of each action is such that its execution updates zero or more process

or channel variables. The set of actions of the program P, Σ(P) is given by the set

of names of all the actions of all the processes of P. Each action of p gives a set of

transitions of the form (s, π, s′) such that the guard of action π is true in state s and

execution of statement of π in s results in state s′. Thus, the state-transition relation

δ(P) is obtained from the set of actions of all the processes of P.

Component and fraction. A component is specified by a finite set of fractions that

are involved in providing a common functionality. Intuitively, a component implements

a part of the desired behavior of the system, such as some algorithm or protocol. A
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component fraction is specified by a set of variables and a finite set of actions that are

associated with a single process. A component (respectively, fraction) is syntactically

same as a program (respectively, process), with only difference that some variables of

the component are designated as input, whose values are supplied by the program with

which it is composed. The composition of the component and the program is the union

of the variables and actions of the component and the program.

Adaptive action. An adaptive action is a special type of action, which is identified

by a unique name and is of the form

〈name〉 : 〈guard〉 → TransformTo(p′, Φ).

When the statement of the adaptive action is executed, the current process is replaced

by p′ and state-mapping Φ is used to initialize the variables of p′. Each adaptive action

πa gives a set of adaptive transitions of the form (s, πa, s
′) such that the guard of πa

is true in state s of process p and execution of the statement of πa results in state

s′ = Φ(s) of process p′. The state mapping function Smap(∆) is obtained from the set

of all adaptive actions.

From modeling perspective, we consider that the adaptive action replaces the entire

process, even if only a small part of it is actually changed. In actual implementation,

the adaptive action can performed in various ways, such as blocking of some method,

or loading/unloading of some class. However, from verification point of view it is only

important to consider the effect of the adaptive action. Additionally, considering each

adaptive action as a generic form of process replacement gives the developer freedom

to implement the adaptive action based on the platform and the language used.

State mapping. We define the following classes of state mapping, Φ, that occur during

atomic adaptation:

• Identity mapping. In identity mapping, the names and values of the variables remain

the same. Formally, for a variable y of V (p′), there exists a variable y of V (p) such

that for all s, (Φ(s))(y) = s(y).

• Quasi mapping. In quasi mapping, the name of the variable of the new process is

different from that of the old process, though its value is same as the value of some

equivalent variable in the old process state when the adaptive action is executed.

Formally, for a variable y of V (p′), there exists a variable x of V (p) such that for all

s, (Φ(s))(y) = s(x).

• Initial mapping. In initial mapping, the variables of the new process are initialized

to some value as in the initial state of the new process. Formally, for a variable y of

V (p′), for all s, (Φ(s))(y) = y0, where y0 ∈ S0(y) and S0(y) is the set of values from
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domain of y that y can take in the initial states of process p′.

• Functional Mapping. In functional mapping, the value of the variable of the new

process is some function of the values of variables of the old process. Formally, for a

variable y of V (p′), for all s, (Φ(s))(y) = f(V (p)).

• Arbitrary Mapping. A special type of functional mapping is arbitrary mapping, where

all variables of the new process are assigned some arbitrary value. Formally, for a

variable y of V (p′), for all s, (Φ(s))(y) = yd, where yd ∈ D(y) and D(y) denotes the

domain of variable y.

• Mixed Mapping. Most mapping that occur in practice are mixed mapping, in which

variables of the new process V (p′) are divided into disjoint sets, and one of the above

mappings is associated with each set.

Notation. We use “.” to denote the belongs to relation. For example, if variable v belongs

to process p, it is denoted by p.v, and action a of process p is denoted by p.a. A process

p of program P is denoted by P.p, and a fraction i of component C is denoted by C.i.

For brevity, we avoid using belongs to relation if it is obvious from the context.

4.2 Fault-Intolerant Communication Program

Specification of the communication program. An infinite queue of messages at

a sender process s is to be sent to two receiver processes r1 and r2 via two unicast

channels and copied in corresponding infinite queues at the receivers. Faults may cause

loss of messages in the channel.

program Pintol

process s

var sQ : queue of integer

m : integer

begin

send : ¬isEmpty(sQ) → m := head(sQ);

Cs,r1 , Cs,r2 := Cs,r1 ◦ m,Cs,r2 ◦ m

end

process ri[i = 1, 2]

var rQ : queue of integer

m : integer

begin

receive : ¬isEmpty(Cs,ri
) → m := head(Cs,ri

);

rQ := rQ ◦ m

end

Fig. 2. Message communication program (fault-intolerant version).

The message communication program is shown in Fig. 2. Only send and receive actions
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of the program are shown, since only those actions are considered for adaptations.

Processes s, r1, and r2 maintain queues sQ , r1.rQ , and r2.rQ respectively. sQ contains

messages that s needs to send to r1 and r2. The messages received by ri from s are

stored in ri.rQ. Let mQ be the queue of all messages to be sent. (mQ is an auxiliary

variable that is used only for the proof.) Initially, sQ = mQ . The function head(sQ)

returns the message at the front of sQ , and head(sQ , k) returns k messages from the

front of sQ . The function type(Cs,r) returns the type of message at the head of channel

queue. The notation sQ ◦ d denotes the concatenation of sQ and 〈d〉.

Invariant. The invariant of the communication program is SP = S1 ∧ S2, where

S1 = ∀i : (mi ∈ r1.rQ ∨ mi ∈ r2.rQ) ⇒ mi ∈ mQ , and

S2 = ∀i : mi ∈ mQ ⇒ (mi ∈ sQ Y ((mi ∈ Cs,r1 Y mi ∈ r1.rQ) ∧ (mi ∈ Cs,r2 Y mi ∈ r2.rQ))).

In the above invariant, S1 indicates that messages received by the receivers are sent by

the sender. S2 indicates that a message mi is not yet sent by the sender, or it is in the

channel, or it is already received by the receiver, all exclusive.

Notation. The symbol Y denotes exactly one operator, i.e. x Y y Y z implies exactly one

of x, y and z is true.

4.3 Proactive Component

The proactive component sends extra messages to the receiver, which the receiver can

use to recover from lost messages. It consists of two types of fractions: encoder and

decoder. The encoder fraction is added at the sender process and the decoder fraction

is added at the receiver process. The encoder takes (n − k) data packets and encodes

them to add k parity packets. It then sends the group of n (data and parity) packets.

The decoder needs to receive at least (n − k) packets of a group to decode all the data

packets. This component provides tolerance to certain message loss faults (discussed in

Sect. 6).

Fig. 3 shows the abstract version of the proactive component. The encoder and decoder

fractions of the component are shown. The encoder fraction consists of two actions:

encode and fec send. The decoder consists of two actions: decode and fec receive.

These fractions are composed with the process that will use them. The composition of

fraction and process is done by union, which is equivalent to appending the actions of

the fraction and the process. We assume that appropriate renaming is performed so that

there are no inconsistencies in definitions of the variables of the fractions and the pro-

cesses. The message communication program composed with the proactive component
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Component fec

Fraction encoder

inp sQ : queue of integer

r1, r2

var n, k, u, l,m : integer {initially, u = l = m = 0}

encQ : array [integer, 0..n − 1] of integer {initially, encQ = ⊥}

begin

encode : true → encQ[u, 0..n − 1] := fec encode(head(sQ, n − k));

u := u + 1

[] fec send : encQ[l,m] 6= ⊥ → Cs,r1 , Cs,r2 := Cs,r1 ◦ encQ[l,m], Cs,r2 ◦ encQ[l,m];

m := (m + 1) mod n;

if m = 0 then

l := l + 1

fi

end

Fraction decoder i

inp rQ : queue of integer

s

var n, k, x, y, p,m : integer {initially, p = 0}

rbufQ : array [integer, 0..n − 1] of integer {initially, rbufQ = ⊥}

begin

fec receive : ¬isEmpty(Cs,ri
) → x, y,m := head(Cs,ri

);

rbufQ [x, y] := m

[] decode : count(rbufQ[p,0..n − 1] = ⊥) >= (n − k) →

rQ := rQ ◦ fec decode(rbufQ[p, 0..n − 1]);

p := p + 1

end

Fig. 3. Proactive component.

is shown in Fig. 4.

Program Pfec

process s

var : Pintol .s.var ∪ fec.encoder .var

begin

fec.encoder.encode

[] fec.encoder.fec send

end

process ri[i = 1, 2]

var : Pintol .ri.var ∪ fec.decoder i.var

begin

fec.decoder.fec receive

[] fec.decoder.decode

end

Fig. 4. Message communication program (with proactive component).

Specification of program using the proactive component. Program using the

proactive component satisfies the same specification as the communication program (cf.

Sect. 4.2).

Invariant. The invariant of the program using the proactive component is SQ =

S1 ∧ SF , where

SF = ∀i : mi ∈ mQ ⇒ (mi ∈ sQ Y ((mi ∈ r1.rQ Y mi ∈ data(encQ∪Cs,r1∪r1.rbufQ)) ∧ (mi ∈

r2.rQ Y mi ∈ data(encQ ∪ Cs,r2 ∪ r2.rbufQ))))
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We use the notation mi ∈ data(encQ ∪ Cs,r1 ∪ r1.rbufQ) to imply that message mi can

be generated from the data in {encQ ∪ Cs,r1 ∪ r1.rbufQ}. In the above invariant, SF

indicates that the message is either at the sender, or already received by the receiver,

or it can be generated from the data in the channel and the buffers at the sender and

the receiver.

4.4 Adaptation: Addition of the Proactive Component

Given a program shown in Fig. 2, the adaptation of adding the proactive component

converts the program to one shown in Fig. 4. We first need to have adapt-ready version

of the program Pintol as shown in Fig. 5.

program Pa-intol

process s

var : Pintol .s.var

begin

Pintol .s.send

[] a1 : true → TransformTo(Pa-ip1 .s,Φa1);

end

process ri[i = 1, 2]

var rQ : queue of integer

begin

Pintol .ri.receive

[] a(i+1) : a1 ∧ isEmpty(Cs,ri
) → transformTo(Pfec .ri,Φa(i+1)

);

end

Fig. 5. Message communication program (fault-intolerant version, adapt-ready).

Specification during adaptation. The specification during adaptation is that S1

continues to be true during adaptation.

program Pa-ip1

process s

var : Pintol .s.var

begin

a4 : a2 ∧ a3 → TransformTo(Pfec.s,Φa4);

end

process ri[i = 1, 2] : same as in Fig. 5

Fig. 6. Intermediate program Pa-ip1 .

We identify the intermediate programs during adaptation after each atomic adaptation.

The execution of adaptive action a1 in Pa-intol results in the intermediate program Pa-ip1

shown in Fig. 6. Pa-ip1 does not send any packets, but the packets that are there in

the channel can still be received by the receivers r1 and r2. In the execution of Pa-ip1

eventually all the packets in the channel are read and no new packets are added in the
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channel from sender to receiver. Thus, the guards of the adaptive actions a2 and a3

eventually get enabled. The transitional-invariant of Pa-ip1 is: TS 1 = S1 ∧ S2, where

S1, S2 are as defined earlier in Section 4.2.

program Pa-ip2

process s : same as in Fig. 6

process r1 : same as in Fig. 4

process r2 : same as in Fig. 5

Fig. 7. Intermediate program Pa-ip2 .

Since a1 and a2 occur independently, we consider both possible orderings among them.

The execution of adaptive action a2 in Pa-ip1 results in the intermediate program Pa-ip2

shown in Fig. 7. In Pa-ip2, receiver r1 has replaced its fraction, whereas receiver r2 has

not yet replaced its fraction and can receive any remaining packets in the channel from s

to r2. Eventually, in the execution of Pa-ip2 the guard of adaptive action a3 gets enabled

and a3 is executed resulting in the intermediate program Pa-ip4.

The transitional-invariant of Pa-ip2 is TS 2 = S1 ∧ S3, where

S3 = ∀i : mi ∈ mQ ⇒ (mi ∈ sQY((mi ∈ r1.rQ)∧(mi ∈ Cs,r2Ymi ∈ r2.rQ))∧isEmpty(Cs,r1) =

true ∧ isEmpty(r1.rbufQ) = true ∧ r1.p = 0).

program Pa-ip3

process s : same as in Fig. 6

process r1 : same as in Fig. 5

process r2 : same as in Fig. 4

Fig. 8. Intermediate program Pa-ip3 .

The execution of adaptive action a3 in Pa-ip1 results in the intermediate program Pa-ip3

shown in Fig. 8. In Pa-ip3, receiver r2 has replaced its fraction, whereas receiver r1 has

not yet replaced its fraction and can receive any remaining packets in the channel from s

to r1. Eventually, in the execution of Pa-ip3 the guard of adaptive action a2 gets enabled

and a2 is executed resulting in intermediate program Pa-ip4.

The transitional-invariant of Pa-ip3 is TS 3 = S1 ∧ S4, where

S4 = ∀i : mi ∈ mQ ⇒ (mi ∈ sQY((mi ∈ r2.rQ)∧(mi ∈ Cs,r1Ymi ∈ r1.rQ))∧isEmpty(Cs,r2) =

true ∧ isEmpty(r2.rbufQ) = true ∧ r2.p = 0).

program Pa-ip4

process s : same as in Fig. 6

process ri[i = 1, 2] : same as in Fig. 4

Fig. 9. Intermediate program Pa-ip4 .

In the intermediate program Pa-ip4 shown in Fig. 9, only the adaptive action a4 is

enabled, and execution of a4 results in the new program Pfec . The transitional-invariant

of Pa-ip4 is TS 4 = S1 ∧ S5, where
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S5 = ∀i : mi ∈ mQ ⇒ (mi ∈ sQ Y (mi ∈ r1.rQ ∧ mi ∈ r2.rQ)) ∧ isEmpty(Cs,r1) =

true ∧ isEmpty(r1.rbufQ) = true ∧ r1.p = 0 ∧ isEmpty(Cs,r2) = true ∧ isEmpty(r2.rbufQ) =

true ∧ r2.p = 0.

State mapping. The state mapping for each adaptive action is shown in Table 1.

Each adaptive action initializes the state of the new process when it is executed based

on this mapping.

Mapping Function Process Affected New State

Φa1 s Identity mapping

Φa2 r1 {rQ , s} - Identity mapping,

{n, k, x, y, p,m, rbufQ} - Initial mapping

Φa3 r2 {rQ , s} - Identity mapping,

{n, k, x, y, p,m, rbufQ} - Initial mapping

Φa4 s {sQ , r1, r2} - Identity mapping,

{n, k, u, l,m, encQ} - Initial mapping

Table 1. State mapping for each adaptive action.

��

��

��

��

��

��

:intol PP S

1- 1:a ipP TS

2- 2:a ipP TS
3- 3:a ipP TS

4- 4:a ipP TS

:fec QP S

Fig. 10. Adaptation lattice for addition of proactive component.

Fig. 10 shows the adaptation lattice for the adaptation of adding the proactive compo-

nent.

Theorem 1.1. The adaptation lattice of Fig. 10 is a transitional-invariant lattice for

the adaptation of adding the proactive component. Hence, the adaptation is correct. 2
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5 Verifying Adaptation in Presence of Faults

In Sect. 3, we defined transitional-invariant lattice that is used to verify correctness of

adaptation in absence of faults. In this section, we define transitional-faultspan lattice

to verify correctness of adaptation in presence of faults. We first introduce some terms

that we use use in this section. These definitions are based on the previous work in

[29, 31]. Next, we define transitional-faultspan and transitional-faultspan lattice. Using

these definitions, we present an approach to prove correctness of adaptation in presence

of faults.

Fault class. Let Σf be a set of fault actions. A fault class F (A) for program A is a

subset of the set S(A) x Σf x S(A). We use A[]F to denote the transitions obtained by

taking the union of the transitions in δ(A) and the transitions in F (A). A fault class

F (∆) for adaptation ∆ is:
⋃

A ∈ I
{((A, s), Σf , (A, s′)) | (s, Σf , s

′) ∈ F (A)}.

Fault-span. A state predicate T is a fault-span (F -span) of A from invariant S iff

(i) S ⊆ T , and (ii) T is closed in A[]F . Fault-span of a program identifies the set of

states that a program can reach in presence of faults and asserts that the set of states

is closed under the execution of program and fault actions.

Computation in presence of faults. A computation of program A (respectively,

adaptation ∆) in presence of faults is a sequence of states σ = 〈s0, s1, ...〉 satisfying

following conditions:

• For first state s0 in σ, s0 ∈ S0(P) (respectively, S0(∆))

• If σ is infinite then ∀j : j > 0 : (∃π :: (sj−1, π, sj) ∈ δ(A) ∪ F (A)) (respectively,

δ(∆) ∪ F (∆))

• If σ is finite and terminates in state sl, then there does not exist state s for all π such

that (sl, π, s) ∈ δ(A) (respectively, δ(∆)), and ∀j : j > 0 : (∃π :: (sj−1, π, sj) ∈ δ(A))

(respectively, δ(∆))

• ∃n : n ≥ 0 : (∀j : j > n : (∃π :: (sj−1, π, sj) ∈ δ(A)) (respectively, δ(∆))

The second requirement captures that in each step, either a program (respectively,

program or adaptive) transition or a fault transition is executed. The third requirement

captures that faults do not have to execute. Finally, the fourth requirement captures

that the number of fault-occurrences in a computation is finite. This requirement is

the same as that made in previous work [32–35] to ensure that eventually recovery can

occur.
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Fault-tolerance (F-tolerant). A is F -tolerant for specification spec from S iff the

following two conditions hold: (i)A satisfies spec from S, and (ii) there exists T such

that T is an F -span of A from S, and every computation of A[]F starting in a state

where T is true satisfies safety specification.

Remark. Henceforth, whenever the invariant S and the program A are clear from the

context, we will omit them; thus, “T is a F -span of A from S for spec” abbreviates to

“T is a F -span”.

Let FP be the fault class of the old program (i.e., the program before adaptation) and

FQ be the fault class of the new program (i.e., the program after adaptation). Let SP be

an invariant and TP be a FP -span of the old program. Similarly, let SQ be an invariant

and TQ be a FQ-span of the new program. The old program is FP -tolerant, and the new

program is FQ-tolerant. Let F be the fault class during adaptation.

In the context of adaptation, we define transitional-faultspans to identify the set of

states that the program can reach while performing adaptation in presence of faults.

Transitional-faultspan. Let R be an intermediate program in the adaptation ∆, and

TS be a transitional-invariant of R. A transitional-faultspan (F -span) of R from TS

is a predicate TT that satisfies following two conditions: (i)TS ⊆ TT , and (ii)TT is

closed in R[]F .

Now, we define transitional-faultspan lattice.

Transitional-faultspan lattice. A transitional-faultspan (F -span) lattice is an adap-

tation lattice where each node is associated with two predicates, a transitional-invariant

and a transitional-faultspan, and the following conditions are satisfied:

0. Correctness in absence of faults. The adaptation lattice obtained by consid-

ering the transitional-invariants only forms a transitional-invariant lattice.

1. Fault-tolerance of old program. The entry node P is associated with a FP -span

TP of the program before adaptation.

2. Fault-tolerance of new program. The exit node Q is associated with a FQ-span

TQ of the program after adaptation.

3. Fault-tolerance of intermediate program. Each intermediate node R is asso-

ciated with a predicate TTR that is a transitional-faultspan (F -span) from TSR

for any intermediate program at R (i.e., intermediate program obtained by per-

forming adaptations from the entry node to R). Furthermore, any intermediate

program at R is F -tolerant from TSR.

4. Safety of adaptive action. If a node labeled Ri has an outgoing edge labeled a
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to a node labeled Rj, then for all adaptive transitions (s, a, s′) in Smap where TTRi

is true in state s, TTRj
is true in state s′. Furthermore, all the adaptive transitions

(s, a, s′) satisfies the safety specification during adaptation.

5. Progress of adaptation. If a node labeled R has outgoing edges labeled a1, a2, ..., ak

to nodes R1, R2, ..., Rk, respectively, then in all computations of adaptation there

exists a transition (s, s′) such that for some i : 1 ≤ i ≤ k : (s, ai, s
′) ∈ Smap.

Furthermore, ∀s : s ∈ TTR : (∀a, s′ : a ∈ Σa − {a1, ..., ak} : (s, a, s′) 6∈ Smap).

Correctness of adaptation in presence of faults. Intuitively, an adaptation is

correct in presence of faults F if the following conditions are satisfied: If the adaptation

begins in a legitimate state of the old program then during adaptation each intermediate

program is F -tolerant and the resulting state of the new program is legitimate. With

this intuition, if adaptation begins in a state where fault-span of the old program is

true, then we say that adaptation is correct if:

• Adaptation terminates in a state where fault-span of the new program is true

• During adaptation, each intermediate program is F -tolerant

• Eventually adaptation terminates

The following theorem states that finding a transitional-faultspan lattice is necessary

and sufficient for proving correctness of adaptation.

Theorem 2. Given SP as the invariant of the program before adaptation, TP as the

faultspan used to show that the program before adaptation is tolerant to FP , SQ as the

invariant of the program after adaptation, and TQ as the faultspan used to show that

the program after adaptation is tolerant to FQ, the adaptation from P to Q is correct

in presence of faults F if and only if there is a transitional-faultspan (F -span) lattice

for the adaptation with start node associated with SP and TP , and end node associated

with SQ and TQ.

Proof. The proof of this theorem is similar to the proof of Theorem 1 discussed in

Section 3. 2

Remark. Different types of tolerance specifications that normally occur in practice,

namely, masking, fail-safe, and non-masking tolerance have been considered in the pre-

vious work [26,29,31]. In above discussion, we have considered masking fault-tolerance.

The definitions can be easily extended to consider the fail-safe and non-masking toler-

ance during adaptation.
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5.1 Adaptation of Self-Stabilizing Programs

In this section, we consider the adaptation considered in [36] where the authors have

focused on adapting from one self-stabilizing program into another self-stabilizing pro-

gram [32]. We show that this is an instance of our approach where all the transitional-

faultspan predicates are true.

A program is self-stabilizing if starting from an arbitrary state it eventually recovers

to a legitimate state. Thus, in transforming from one stabilizing program to another,

we can let all the fault-spans (i.e., fault-span of the old program, fault-span of the

new program and transitional-faultspans of intermediate programs) be true. With this

approach, if the old program starts in any state, eventually the new program execution

begins although the state of the new program may be arbitrary. Since the new program

is self-stabilizing, it will eventually recover to legitimate states.

Note that in [36] the corresponding transitional-invariants may not exist. Specifically,

even if the old program begins in legitimate states, the new program may initially be in

illegitimate states before recovery takes place. Moreover, [36] allows arbitrary behavior

during adaptation and, hence, the specification during adaptation may not be met.

6 Example: Message Communication (Continued)

In this section, we continue with the example of Sect. 4. We consider the adaptation

that replaces the proactive component with the reactive component. We first discuss

the adapt-ready version of the proactive component and the faults tolerated by the

proactive component. Next, we describe the acknowledgment-based reactive component.

We then discuss the adaptation of replacing the proactive component by the reactive

component. Finally, we identify the transitional-faultspan lattice to verify correctness

of this adaptation in presence of faults.

6.1 Proactive Component

We discussed the proactive component in Sect. 4.3. The adapt-ready version of the

proactive component is shown in Fig. 11.

The specification of the program using proactive component is discussed in Sect. 4.3.

Additionally, it tolerates message loss faults of class F1 (cf. Fig. 12). Faults of class

F1 causes a loss of up to k messages in a group. In writing the fault transitions, we

use auxiliary variables mg to denote a message m from group g, and lostCount g
i to
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Program Paa-fec

process s

var : Pfec .s.var

begin

fec.encoder.encode

[] fec.encoder.fec send

[] aa1 : true → transformTo(Paa-ip1 .s,Φaa1)

end

process ri[i = 1, 2]

var : Pfec .ri.var

begin

fec.decoder.fec receive

[] fec.decoder.decode

[] aa(i+2) : aa2 ∧ isEmpty(Cs,ri
) → transformTo(Pack .ri,Φaa(i+2)

)

end

Fig. 11. Message communication program (with proactive component,
adapt-ready).

denote the number of messages lost in group g in the channel from s to ri. Initially,

∀g :: lostCount g
i = 0.

msg lossi : mg ∈ Cs,ri
∧ lostCount

g
i
≤ k → Cs,ri

:= Cs,ri
− mg ;

lostCount
g
i

+ +

Fig. 12. Fault class F1

Fault-span. The F1-span of the program using the proactive component is TQ = SQ.

The fault-span is same as the invariant since the proactive component provides masking

fault-tolerance.

6.2 Reactive Component

The reactive component deals with message loss by retransmitting the lost packets.

It uses acknowledgments to confirm the receipt of messages sent by the sender, and

negative acknowledgments to confirm the loss of messages sent by the sender. It consists

of aSnd fraction at the sender and aRcv fraction at the receiver. The aSnd fraction

adds a group and a packet number in each packet. It maintains a window of size w

and sends all packets in that window to the receiver. It waits for acknowledgment of

receipt of a group before moving the window one group forward. If it receives a negative

acknowledgment for any packet, it sends that packet again to the receiver. When the

aRcv fraction at the receiver receives a packet out of order, it waits for few more packets

before sending a negative acknowledgment to the sender. When all packets in a group

are received, it sends an acknowledgment for that group to the sender.

The reactive component provides tolerance to message loss faults F2 shown in Fig. 14.

Faults of class F2 causes loss of messages from the channel. For simplicity, we assume

that acknowledgment messages are not lost; however, the component can be easily
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Component ack

Fraction aSnd

inp sQ : queue of integer

r1, r2

var n, w, gi, pi, ga, gna, pna, m : integer {initially, pi = gi = 0}

sQcopy i : queue of integer {initially, Empty}

snti : array [0..w − 1, 0..n − 1] of integer {initially ⊥}

param i : i = 1, 2

begin

copyi : isEmpty(sQcopyi) → sQcopyi := sQ

[] sendi : ¬isEmpty(sQcopyi) ∧ snti[gi, pi] = ⊥ → snti[gi, pi] := data(gi, pi, head(sQcopy i));

Cs,ri
:= Cs,ri

◦ snti[gi, pi];

pi := (pi + 1) mod n;

if pi = 0 then

gi := (gi + 1) mod w

fi

[] resendi : type(Cri ,s) = nack → gna, pna,m := head(Cri ,s);

if snti[gna, pna] 6= ⊥ then

send snti[gna, pna] to ri

fi

[] ack rcvi : type(Cri ,s) = ack → ga, snti[ga, 0..n − 1] := head(Cri ,s),⊥

end

Fraction aRcv i

inp rQ

s

var n, w, g, p, k,nxt grp,m : integer {initially k = nxt grp = 0}

rbufQ : array [0..w − 1, 0..n − 1] of integer {initially ⊥}

ud grp : array [0..w − 1] of boolean {initially false}

param j : 0 ≤ i ≤ w − 1

begin

receive : ¬isEmpty(Cs,ri
) → g, p,m := head(Cs,ri

);

rbufQ[g, p], ud grp[g] := m, true

[] deliverj : ud grp[j] = true → if count(rbufQ [j, 0..n − 1] = ⊥) = n then

rQ := rQ ◦ rbufQ [j, 0..n − 1];

rbufQ [j, 0..n − 1], Cri,s := ⊥, Cri,s ◦ ack(j);

ud grp[j],nxt grp := false, (j + 1)modw

fi

[] send nack : count(ud grp[0..w − 1] = true) > 2 → for k = 0 to n − 1

if rbufQ[nxt grp, k] = ⊥ then

Cri,s := Cri,s ◦ nack(nxt grp, k)

fi

end

end

Fig. 13. Acknowledgment component.

extended to deal with faults that lose acknowledgments by using timeout guards.

msg lossi : m ∈ Cs,ri
→ Cs,ri

:= Cs,ri
− {m}

Fig. 14. Fault class F2

Fig. 13 shows the abstract version of the reactive component. The aSnd fraction consists

of four actions: copy, send, resend, ack rcv. The aRcv fraction consists of three ac-

tions: receive, deliver, and send nack. These fractions are composed with processes

that will use them. The message communication program composed with the reactive

component is shown in Fig. 15.
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Program Pack

process s

var : Paa−fec .s.var ∪ ack .aSnd .var

param i : i = 1, 2

begin

ack.aSnd.copyi

[] ack.aSnd.sendi

[] ack.aSnd.send againi

[] ack.aSnd.ack rcvi

end

process ri[i = 1, 2]
begin

var : Paa−fec .ri.var ∪ ack .aRcv i.var

param k : 0 ≤ k ≤ w − 1

begin

ack.aRcv.receive

[] ack.aRcv.deliverk

[] ack.aRcv.send nack

end

Fig. 15. Message communication program (with reactive component).

Specification of program using the reactive component. Program using the

reactive component satisfies the same specification as the communication program (cf.

Sect. 4.2). Additionally, it tolerates message loss faults F2.

Invariant. The invariant of the program using the reactive component is SR = S1∧SA,

where

SA = ∀i : mi ∈ mQ ⇒ ((mi ∈ sQcopy 1 Y mi ∈ r1.rQ Y (mi 6∈ (sQcopy 1 ∪ r1.rQ) ⇒

(mi ∈ snt1 ∧ (mi ∈ Cs,r1 Y mi ∈ r1.rbufQ)))) ∧ (mi ∈ sQcopy2 Y mi ∈ r2.rQ Y (mi 6∈

(sQcopy 2 ∪ r2.rQ) ⇒ (mi ∈ snt2 ∧ (mi ∈ Cs,r2 Y mi ∈ r2.rbufQ))))).

In the above invariant, SA indicates that for a message m, exactly one of the following

is true:

- m is at the sender, and is not yet sent

- m is received by the receiver

- m is buffered by the sender, and m is either in the channel or is buffered at the

receiver

Fault-span. The F2-span of the program using the reactive component is TR = S1∧TA,

where

TA = ∀i : mi ∈ mQ ⇒ ((mi ∈ sQcopy 1 Y mi ∈ r1.rQ Y (mi 6∈ (sQcopy 1 ∪ r1.rQ) ⇒ mi ∈

snt1)) ∧ (mi ∈ sQcopy 2 Y mi ∈ r2.rQ Y (mi 6∈ (sQcopy2 ∪ r2.rQ) ⇒ mi ∈ snt2))).

In the above fault-span, TA indicates that a message is either not yet sent by the sender,

or is received by the receiver, or if it sent by the sender but not yet received by the
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receiver then it is buffered by the sender.

6.3 Adaptation: Replacement of the proactive with the reactive component

Given a program shown in Fig. 11, the adaptation of replacing the proactive component

with the reactive component converts the program to one shown in Fig. 15.

Specification during adaptation. The specification during adaptation is that S1

continues to be true during adaptation in presence of faults F1.

Program Paa-ip1

process s

var : Paa−fec .s.var

begin

fec.encoder.fec send

[] aa2 : aa1 ∧ l = u → transformTo(Paa-ip2 .s,Φaa2);

end

process ri[i = 1, 2] : same as in Fig. 11

Fig. 16. Intermediate program Paa-ip1 .

We identify the intermediate programs during adaptation after each atomic adaptation.

The execution of adaptive action aa1 in Paa-fec results in the intermediate program

Paa-ip1 shown in Fig. 16. Paa-ip1 does not encode more packets, but will send any re-

maining encoded packets. In the execution of Paa-ip1, eventually all the encoded packets

are sent to the receivers. Thus, the guard of adaptive action aa2 becomes true. The

transitional-invariant of Paa-ip1 is: TS 5 = SQ ∧ S6, where SQ is defined earlier in Sect.

4.3, and

S6 = (∀j : j ≥ u : encQ [j, 0..n − 1] = ⊥) ∧ (l ≤ u).

The transitional-faultspan TT 5 of Paa-ip1 is same as TS 5.

Program Paa-ip2

process s

var : Paa−fec .s.var

begin

aa5 : aa3 ∧ aa4 → transformTo(Pack.s,Φaa5);

end

process ri[i = 1, 2] : same as in Fig. 11

Fig. 17. Intermediate program Paa-ip2 .

The execution of aa2 results in the intermediate program Paa-ip2 shown in Fig. 17. Paa-ip2

does not send any packets, but the packets that are there in the channel can still be

received by the receivers r1 and r2. In the execution of Paa-ip2 eventually all the packets

in the channel are read and no new packets are added in the channel from sender to

receiver. Thus, the guards of the adaptive actions aa3 and aa4 eventually get enabled.
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The transitional-invariant of Paa-ip2 is: TS 6 = S1 ∧ S7 ∧ S8, where S1 is defined earlier

in Sect. 4.2, and

S7 = ∀i : mi ∈ mQ ⇒ (mi ∈ sQ Y ((mi ∈ r1.rQ Y mi ∈ data(Cs,r1 ∪ r1.rbufQ)) ∧ (mi ∈

r2.rQ Y mi ∈ data(Cs,r2 ∪ r2.rbufQ)))), and

S8 = (∀j : j ≥ u : encQ [j, 0..n − 1] = ⊥) ∧ (l = u).

The transitional-faultspan TT 6 of Paa-ip2 is same as TS 6.

Program Paa-ip3

process s : same as in Fig. 17

process r1 : same as in Fig. 15

process r2 : same as in Fig. 11

Fig. 18. Intermediate program Paa-ip3 .

Since aa3 and aa4 occur independently, we consider both possible orderings between

them. The execution of adaptive action aa2 in Paa-ip2 results in the intermediate program

Paa-ip3 shown in Fig. 18. In Paa-ip3, receiver r1 has replaced its fraction, whereas receiver

r2 has not yet replaced its fraction and can receive any remaining packets in the channel

from s to r2. Eventually, in the execution of Paa-ip3 the guard of adaptive action aa3

gets enabled and aa3 is executed resulting in the intermediate program Paa-ip5. The

transitional-invariant of Paa-ip3 is TS 7 = S1 ∧ S8 ∧ S9 ∧ S10, where

S9 = ∀i : mi ∈ mQ ⇒ (mi ∈ sQ Y (mi ∈ r1.rQ ∧ (mi ∈ r2.rQ Y mi ∈ data(Cs,r2 ∪

r2.rbufQ)))), and

S10 = isEmpty(Cs,r1) = true ∧ r1.rbufQ = ⊥.

The transitional-faultspan TT 7 of Paa-ip3 is same as TS 7.

Program Paa-ip4

process s : same as in Fig. 17

process r1 : same as in Fig. 11

process r2 : same as in Fig. 15

Fig. 19. Intermediate program Paa-ip4 .

The execution of adaptive action aa4 in Paa-ip2 results in the intermediate program

Paa-ip4 shown in Fig. 19. In Paa-ip4, receiver r2 has replaced its fraction, whereas receiver

r1 has not yet replaced its fraction and can receive any remaining packets in the channel

from s to r1. Eventually, in the execution of Paa-ip4 the guard of adaptive action aa3 gets

enabled and aa3 is executed resulting in intermediate program Paa-ip5 . The transitional-

invariant of Paa-ip4 is TS 8 = S1 ∧ S8 ∧ S11 ∧ S12, where

S11 = ∀i : mi ∈ mQ ⇒ (mi ∈ sQ Y ((mi ∈ r1.rQ Y mi ∈ data(Cs,r1 ∪ r1.rbufQ)) ∧ mi ∈
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r2.rQ)), and

S12 = isEmpty(Cs,r2) = true ∧ r2.rbufQ = ⊥.

The transitional-faultspan TT 8 of Paa-ip4 is same as TS 8.

Program Paa-ip5

process s : same as in Fig. 17

process ri[i = 1, 2] : same as in Fig. 15

Fig. 20. Intermediate program Paa-ip5 .

In the intermediate program Paa-ip5 shown in Fig. 20, only the adaptive action aa5

is enabled, and execution of aa5 results in the new program Pack . The transitional-

invariant of Paa-ip5 is TS 9 = S1 ∧ S10 ∧ S12 ∧ S13, where

S13 = ∀i : mi ∈ mQ ⇒ (mi ∈ sQ Y (mi ∈ r1.rQ ∧ mi ∈ r2.rQ)).

The transitional-faultspan TT 9 of Paa-ip5 is same as TS 9.

State mapping. The state mapping for each adaptive action is shown in Table 2.

Each adaptive action initializes the state of the new process when it is executed based

on this mapping.

Mapping Function Process Affected New State

Φaa1 s Identity mapping

Φaa2 s Identity mapping

Φaa3 r1 {rQ , s} - Identity mapping,

V (r1) − {rQ , s} - Initial mapping

Φaa4 r2 {rQ , s} - Identity mapping,

V (r2) − {rQ , s} - Initial mapping

Φaa5 s {sQ , r1, r2} - Identity mapping,

V (s) − {sQ , r1, r2} - Initial mapping

Table 2. State mapping for each adaptive action.

Fig. 21 shows the adaptation lattice for the adaptation of adding the proactive compo-

nent.

Theorem 2.1. The adaptation lattice of Fig. 21 is a transitional-faultspan (F1-span)

lattice for the adaptation of replacing the proactive component with the reactive compo-

nent. Hence, the adaptation is correct in presence of faults. 2
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Fig. 21. Adaptation lattice for replacement of proactive component with reactive component.

7 Implementation Framework for Correct Adaptation

In the previous sections, we have discussed how to model an adaptation in a distributed

system and presented the approach based on the adaptation lattice to verify the adap-

tation. However, one potential problem with the use of such lattice is that it may be

expensive to perform all the verification tasks identified by the lattice. In [37], we have

showed how the size of the lattice increases with the number of atomic adaptations and

the number of processes, and have identified the tradeoffs associated with the size of

the lattice.

Even in cases where verifying the conditions of the transitional-invariant lattice is dif-

ficult, the lattice is valuable in the context of testing. In particular, the transitional-

invariants can be utilized to determine if a particular execution of the dynamic adap-

tation satisfies the required constraints specified by the transitional-invariant lattice.

In [38], we have shown how we can perform testing of dynamic adaptation using predi-

cate detection techniques. Also, we may consider verifying/testing a subset of the tasks

identified by the adaptation lattice. For example, we may choose to verify only subset

of adaptation paths in the lattice and ensure that the adaptation follows only one of

the verified paths, or we may choose to only verify that the adaptation follows some
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path in the lattice, and that the program after adaptation starts in its invariant. Addi-

tionally, we may choose to verify the transitional-invariants at certain instances during

adaptation, such as at the start of each intermediate program, rather than during the

entire execution of the intermediate program.

In general, while transforming the adaptation model into its concrete implementation,

we need to ensure that what has been verified for the model holds for the corresponding

implementation also. With this motivation, in this section, we give a brief description

of an adaptation framework that allows the developer to implement the adaptation so

that it follows some adaptation path in the lattice. Also, the framework provides an

execution trace of the adaptation that can be used for testing. Additional details of this

framework are available in [39]. We are currently extending this framework to verify

the transitional-invariants for the intermediate programs along the adaptation path.

The framework is as shown in Fig. 22(b) and is based on distributed reset protocol [40].

A framework node is instantiated at each process in the application (cf. Fig. 22(a)).

Each framework node consists of a component manager, an adaptation module and a

reset module (cf. Fig. 22(b)). The component manager performs the addition, removal

and replacement of component fractions. The adaptation module selects an appropriate

component, the choice of which is orthogonal to the design of the framework. The reset

module ensures that the adaptation follows the desired adaptation path.
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(b) Framework Node

Fig. 22. Framework for Implementing Correct Adaptation

As discussed in Sect. 2, each adaptive action in the lattice has a guard associated with it,

and the adaptive action is executed only when its guard is true. For adaptation to follow

a path in the lattice, the component should provide a function to check for its state. To

perform this check, the framework requires the developer to provide checkState function

for each fraction of the component. We consider following adaptive actions in our work:
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(i) block a fraction, (ii) add a fraction, (iii) remove a fraction, and (iv) replace a

fraction. Corresponding to the adaptive actions, the checkState function returns one of

the five values: (i) safetoblock, (ii) safetoadd, (iii) safetoremove, (iv) safetoreplace, and

(v) unsafe. The return value is computed based on the guards and the adaptive action

that needs to be executed at the given fraction. The framework automatically invokes

this function as needed, and based on the return value it executes the appropriate

adaptive action. In the next subsection, we show how the framework uses the checkState

function to perform the adaptation.

7.1 Reset-Based Composition of Distributed Component

In this subsection, we discuss replacement of a distributed component; addition and

removal being special cases of replacement. We show how our framework uses the dis-

tributed reset protocol to perform this adaptation.

For the discussion of component replacement, assume that the adaptation module at

a process, say X, has decided to replace the distributed component. We call X the

initiator. To replace the component, the component manager at X generates a magic

number for the instance of the new component. The magic number is generated by using

the initiator ID, the current time at the initiator, and is used to uniquely identify the

instance of the new component. The component manager appends the magic number

of the component that the application is using in the message header while communi-

cating with component managers at other processes of the application. The component

manager at X uses the reset module for changing the distributed component.

Overview of steps in dynamic component replacement. The dynamic compo-

nent replacement is achieved by three waves, namely, an initialization wave, a transition

wave and a completion wave. The reset module at X initiates the component replace-

ment by sending the initialization wave. In the initialization wave, all processes change

to the transit state and initialize the component fraction of the new distributed compo-

nent. Thus, in the transit state, a process has initialized the new component fraction,

although it is still using the old component fraction. Upon successful completion of the

initialization wave, the reset module starts the transition wave. Each process receiving

the transition wave invokes the checkState function of the component fraction to de-

termine the state of the component fraction. During the transition wave, the processes

remove the old component fraction and add the new component fraction depending on

the state information returned by the checkState function. The checkState function is

designed to be non-blocking. If the checkState function returns unsafe, then it is called

periodically until it returns a value corresponding to some adaptive action. After a leaf
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process has completed the replacement of its component fraction, it sends the comple-

tion wave to its parent. Further, if a non-leaf process has completed the replacement

of its component fraction and it has received the completion wave from all of its chil-

dren, it propagates the completion wave to its parent. The completion wave eventually

reaches the initiator X. We refer readers to [39] for details on these reset waves.

In above discussion, we used two complete waves (initialization and transition) and

one half wave (completion wave) for the adaptation. However, based on the adaptation

specification the framework can be customized to use less number of waves. For example

in case of mixed-mode adaptation, it is possible to customize the framework to perform

adaptation using only one half wave.

8 Discussion

In this section, we discuss some of the issues related to our approach.

Why is the specification during adaptation a safety specification?

The specification of the application before adaptation can be arbitrary. However, during

adaptation the specification should be a safety specification. It is not desirable to delay

the adaptation to satisfy liveness during adaptation. Rather, we would expect the adap-

tation to complete as quickly as possible and the new program to satisfy the safety and

liveness after adaptation. For example, consider a transaction processing system with

liveness guarantees to commit or abort. In this case, either the adaptation should not

start in the middle of the transaction, or if the adaptation can be started in the middle

of the transaction than the liveness should be met once the adaptation completes. Thus,

the implicit liveness specification during adaptation is that adaptation completes.

What is the tradeoff between concurrency among atomic adaptations and verification

complexity of adaptation?

In an adaptation, the atomic adaptations occurring at different processes may occur

in an asynchronous manner. Therefore, to verify a given adaptation, we need to con-

sider all possible orderings of concurrent atomic adaptations. Putting concurrent atomic

adaptations in various possible orderings is a potential cause of the explosion in size

of the adaptation lattice. Clearly, the complexity of verifying adaptation depends on

the size (number of nodes and edges) of the adaptation lattice, as each node and each

edge in the lattice needs to be verified independently. In [37], we discuss the tradeoff

between concurrency during adaptation and complexity of verifying that adaptation.
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Based on the tradeoff between concurrency of adaptation and complexity of verifying

that adaptation, we can choose a subgraph (sublattice) of the given lattice that has all

the properties of the adaptation lattice as defined in Sect. 3. The adaptation in this

case has to be constrained so that it follows the path in the sublattice.

How is the transitional-invariant lattice constructed?

While details of finding these predicates is outside the scope of the paper, we note

that the techniques developed to calculate invariants (e.g. [28, 41]) can also be used

to find transitional-invariants. For a given adaptation model, we can perform reacha-

bility analysis for each intermediate program obtained after execution of the atomic

adaptation. The reachability computation for each intermediate program helps in iden-

tifying the transitional-invariants for that intermediate program, and we can construct

a transitional-invariant lattice for the given adaptation. Furthermore, the techniques

for dynamically discovering likely invariants from execution of the system such as [42]

can be used to find transitional-invariants for the adaptation lattice.

How is the checkState function defined?

Given the adaptation lattice, the guards of the atomic adaptation, and the information

about the previous atomic adaptations on the the path can be used to compute the

checkState function. Further, in case the adaptation lattice is not available, the check-

State function can be calculated based on the dependency analysis as discussed in [4].

The dependency analysis basically identifies different kinds of dependency relations that

exist among the fractions of the component and between the fractions and the applica-

tion process where it is installed. Also, this function could be defined with the help of

safe states considered in [4, 43].

Will the adaptation block forever if any fraction is not available for addition or replace-

ment?

It is desirable not to start an adaptation rather than having adaptation start and block

indefinitely. The initialization wave in the distributed reset ensures that all fractions

are available and can be initialized before it begins the replacement (or addition) of

component fractions. This guarantees that once the adaptation has started, it will not

block indefinitely due to unavailability of any fractions.

34



9 Conclusion

In this paper, we presented an approach to verify the correctness of adaptation. We

introduced the notion of transitional-invariant lattice and transitional-faultspan lattice

to verify the correctness of adaptation in absence and presence of faults, respectively. We

demonstrated the use of our approach in verifying two example adaptations: (i) adding

the proactive component to a message communication application in absence of faults,

and (ii) replacing the proactive component with the reactive component in presence

of faults. We also described an architecture framework that we used to implement the

adaptation. For reasons of space, we refer readers to [39,44], where we discuss additional

examples.

In our approach for verifying adaptation, there are two main parts: (1) identifying

the transitional-invariants (respectively, transitional fault-spans), and (2) verifying that

they meet the properties of the transitional-invariant (respectively, transitional fault-

span) lattice. The latter part is a traditional problem considered in program verifica-

tion and, hence, existing techniques can be used in this part. In Sect. 8, we identified

how existing approaches could be used for the former part as well. However, methods

for identifying (either automatically or semi-automatically) transitional-invariants and

transitional fault-spans are a future work that is outside the scope of this paper.

We also briefly described a framework that can be used in implementing dynamic adap-

tation (additional details of this framework are available in [39]). Currently the frame-

work allows the adaptation to follow a path that is defined by the checkState function

(which is itself determined from the lattice). We plan to extend it so that it can also

test that the appropriate transitional-invariants (respectively, transitional fault-spans)

are also satisfied. This framework is also applicable where the designer can identify the

structure of the transitional-invariant lattice (typically, a easy task) but cannot identify

the transitional-invariants (typically, a challenging task). Also, we have also used this

approach to provide a tradeoff between concurrency in adaptation and the cost of its

verification [37].

There are several possible extensions to this work. One extension to this work is to

generate the lattices automatically, given the invariants (and, fault-spans) of the appli-

cation before adaptation and after adaptation. Based on the adaptation requirements,

the automatic generation of the lattices would enable us to identify different paths to

achieve adaptation and also ensure correctness of those paths.

Also, in our framework, currently the checkState function is written by the adapta-

tion manager or component developer. It is desirable to automate the development of
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checkState function. Given the transitional-invariant lattice, it is possible to design an

algorithm to define the checkState function for each fraction. We are exploring ways to

automatically write the checkState function with minimum possible human intervention.
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