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Abstract

Multiple Sequences Alignment (MSA) of biological sequeie@ fundamental problem
in computational biology due to its critical significancewide ranging applications includ-
ing haplotype reconstruction, sequence homology, phpketye analysis, and prediction of
evolutionary origins. The MSA problem is considered NRdherd known heuristics for the
problem do not scale well with increasing number of sequen@m the other hand, with the
advent of new breed of fast sequencing techniques it is n@silge to generate thousands
of sequences very quickly. For rapid sequence analysis, thiérefore desirable to develop
fast MSA algorithms that scale well with the increase in thé&asdet size. In this paper, we
present a novel domain decomposition based techniqueve g MSA problem on multipro-
cessing platforms. The domain decomposition based taeobniq addition to yielding better
guality, gives enormous advantage in terms of executioa éind memory requirements. The
proposed strategy allows to decrease the time complexigngfknown heuristic 0O (V)*
complexity by a factor of(1/p)*, where N is the number of sequencesdepends on the
underlying heuristic approach, ang is the number of processing nodes. In particular, we
propose a highly scalable algorithm, Sample-Align-D, figaing biological sequences using
Muscle system as the underlying heuristic. The proposeatitign has been implemented on
a cluster of workstations using MPI library. Experimentakults for different problem sizes
are analyzed in terms of quality of alignment, executioretand speed-up.
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1 Introduction

Multiple Sequences Alignment (MSA) in computational bgygrovides vital information related
to the evolutionary relationships, identifies conservedifisi\aand improves secondary and tertiary
structure prediction for RNA and proteins. In theory, afitggnt of multiple sequences can be
achieved using pair-wise alignment, each pair gettinghatignt score and then maximizing the
sum of all the pair-wise alignment scores. Optimizing thiers, however, is NP-complete [1]
and dynamic programming based solutions have complexity(@f"), whereN is the number
of sequences and is the average length of a sequence. Such accurate opfiomzatre not
practical for even small number of sequences, thus makingdie algorithms a feasible option.
The literature on these heuristics is vast and includeslwigked works, including Notredame et
al. [2], Edgar [3], Thompson et al. [4], Do et al. [5], Lassmaat al. [6], Sze et al. [7], Schwartz et
al. [8] and Morgenstern et al. [9]. These heuristics are derapombination of ad-hoc procedures
with some flavor of dynamic programming. Despite the usefsdof these widely used heuristics,
they scale very poorly with increasing number of sequences.

The high computational costs and poor scalability of exgsMSA algorithms make the design
of multiprocessor solutions highly desirable. Also, rdcamvances in the sequencing techniques
such as pyrosequencing [10] are enabling fast generati@ng®f amount of sequence data. For ex-
ample, at the time of writing this paper, UniProtKB/Swigs{tontains 366226 sequence entries,
comprising 132054191 amino acids representing 11342 epe&omparing this with less than
50k sequences in 1995, gives a glimpse of exponential grovidiological data. If useful research
has to proceed, the performance of multiple alignment systeas to scale up accordingly with
the enormous amount of data being generated.

The main goal of the work presented in this paper is to ingagtidomain decomposition strate-
gies for biological data computations. For the multiplewsagce alignment problem discussed in
this paper, we use k-mer rank, a metric that depicts sinylafia sequence compared to another
sequence, to partition the input data set into load balasabdets. Subsequently, we show how

these decomposed subsets of sequences can be aligned imterpudicessors in a distributed fash-
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ion, and glued together to get a highly accurate alignmentufiple sequences. Our approach is
capable of aligning a large number of sequences (of the ofd®000 sequences [11]), with time
complexity scaled down by a factor 6f(1/p)*,wherep is the number of processors, achieving
super-linear speedups on multiprocessors without comigingquality of the alignment.

The rest of the paper is organized as follows. We start withief problem statement and
background information relevant to our discussions iniac. Also, we discuss existing par-
allel approaches to the MSA problem and identify their latidns. In Section 3, we discuss the
proposed domain decomposition based MSA algorithm fomalg protein sequences. This is
followed by a rigorous analysis of the computation and comication costs. Section 4 presents
the experimental results and analyzes these results irs tefiaignment quality, execution time,

memory usage, and speedup. Section 5 presents the conslasid outlines future research.

2 Problem Statement and Background I nfor mation

We first define the Multiple Sequences Alignment (MSA) probli@ simplest form, without in-
dulging with the issues such as scoring functions, whictbag®nd the scope of this work. Lat
sequences be presented as &set{S, Sy, Ss,---, Sy} and letS’ = {5, 5,, S;, - - -, Sy} be the
aligned sequence set, such that all the sequencgsaire of equal length, have maximum overlap,
and the total alignment score is maximized according to seeneng mechanism suitable for the
application.

The method followed in most of the existing multiple alignmheystems is that a quick pair-
wise alignment of the sequences is performed, giving a artylmatrix. This similarity matrix is
then used to build a guide tree, which is then used to perfopmogressive profile-profile align-
ment. Note that profile-profile alignments are used to rgrativo or more existing alignments.
Profile-profile alignment is a useful method as it can be useagtadually add new sequences to
already aligned set of sequences, also referred to as ggigeaalignment. It can also be used to

maintain one fixed high quality profile and keep on adding eaqgas aligned to that fixed pro-
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file [4]. These are the basic steps that are followed by al@bdistance based multiple sequence
alignment methods [12]. Fi@? shows a generic MSA scheme, which is also used in Clustalw [4]
The first stage is a pair-wise comparison of the sequences wodsideration. The second stage
corresponds to the construction of guiding tree, which tierlan used in stage three to perform
final profile-profile alignments. To improve the alignmenbrs; various iterative methods have

been introduced in the later stages, as in the Muscle Sygpm [

2.1 Related Research

There have been numerous attempts to parallelize existiggential multiple sequences align-
ment systems. Clustalw [4] is by far the most parallelizedtiple sequence alignment system.
James et. al. in [13] parallelized Clustalw for PC clusters distributed shared memory parallel
machines. HT Clustal is a parallel solution for heterogesemultiple sequence alignment and
MultiClustal is a parallel version of an optimized Clustdli¥] Zola et al. [15] provided the first
parallel implementation of T-Coffee based on MPI. Diffdrerodules of the Muscle system have
also been parallelized [16]. Other parallelization eBartclude parallel multiple sequence align-
ment with phylogeny search by simulated annealing by Zokl.4tL7], Multithreading Clustalw
for multiple sequence alignment by Chaichoompu et al. [18] S&chmollinger et al. parallel ver-
sion of Dialign [19].

Although there seems to be a considerable amount of effompoove the running times for
aligning large number of sequences using parallel comguiinmust be noted that all the exist-
ing solutions have been aimed at parallelizing differentdoies of a known sequential system.
Therefore the parallelism achieved has been limited to sage of the function being parallelized.
None of the existing parallel alignment approaches has hbknto exploit the data parallelism,
simply because of the lack of a domain decomposition styatégfew attempts [20] [21] have
also been made to cut each sequence into pieces and compatewipe alignment over all the
sequences to achieve multiple sequences alignment. Inda@dh sequence is 'broken’ in half, and

halves are assigned to different processors. The Smitkefian [20] algorithm is applied to these



Saeed-Khokhar Domain Decomposition for MSA on multipreoes 5

divided sequences. The sequences are aligned using dypamgi@mming technique, and then
combined using Combine and Extend techniques [20]. The @wrdnd Extend methods follow
certain models defined to achieve alignment of the comlanatf sequences. These methods pay
little or no attention to the quality of the results obtain&tie end results have considerable loss of
sensitivity. The constraints in these methods are soldipei@ by the models used, thus limiting
the scope of the methods for wide variety of sequences.

Domain decomposition has been pursued for a large numbeg@pti€ation in numerous fields,
including elliptic partial differential equations, imageocessing, graphics simulations, fluid dy-
namics, astronomical and atmospheric calculations [22}st\df these applications, take advan-
tage of parallel processing by decomposing the data domanususing data parallel techniques
to achieve high performance.

In this paper, we investigate a data parallel approachdga atiultiple protein sequences, conse-
guentlydecreasingomputational effort in terms of time and memory whitgrovingor obtaining

quality comparable to other multiple alignment systems.

3 Proposed Distributed M SA Algorithm: Sample-Align-D

In this section, we present details of the domain decomiposgitrategy and the alignment al-
gorithm, referred to as Sample-Align-D. We also analyzedbeputation and communication
complexities of the proposed algorithm.

The proposed domain decomposition strategy draws its ataiivfrom the Sample-Sort ap-
proach [23] that has been introduced to sort a very largefsairabers on distributed platforms.
The sorting and MSA problems share a common characteligicany correct solution requires
implicit comparison of each pair of data items. In SampletSopsmall sample€ N) represent-
ing the entire data set is chosen over distributed parstiming some sampling technique such as
Regular Sampling [24]. Then each item can be independeathpared and ranked against this

sample. If the sample is a true representative of the underigata set, it eliminates the need
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for explicit comparison of every item with the entire set.iSTtvay an/V size sorting problem is
reduced to solving independent sorting problems of si2&'p. We use a similar sampling ap-
proach to the domain decomposition of sequences over afirthessors. In the case of sorting
of integer numbers, numerical values of the numbers are aoedpo compute the rank of each
number. In the case of multiple sequence alignment probleameed to identify a unique feature
of the sequence that could be used to compute the rank of egciersce, in terms of degree of
similarity with other sequences in the set. This rank infation can then be used to partition the
smaller input subsets based on similarity and align smallbsets of similar sequences indepen-
dently. We propose to use k-mer distance [25] as a metricterine the similarity of a sequence
with any other sequence. Intuitively, the k-mer distanceveen any two sequences is based on
the relative frequency of repetitive substrings of diza the sequences. Edgar in [25] showed that
k-tuple similarities correlate well with fractional idetyt and the small values df between 4 and

6 work well for biological sequences. For the sake of congpiess, in the following, we provide
the formal definition of k-mer distance.

k-mer Rank: Let’'s assume that a biological sequence is representedtoyp@ & of n characters
taken from an alphabe?t that containg: different characteréa, - - -, a.). For the words of length

k (hence named k-mers), there are-= ¢* such different words. We represent the set of k-mers
in X by vectorc® = (¢ff,---,cX). The distance between string and any arbitrary string’,

of lengthm, is calculated using;X andc!, the count of k-mer occurrences i andY. Now let

CXY = min(c¥, c¥) denote the common k-mer count.

i z?g

€ CXY
; [min(n,m) — k + 1] @
dFXY) = _log(A + F(X,Y)) (2)

whereF is the fraction of common k-mers betwe&handY’, andd? transforms this into a dis-
tance. A, is a small constant added to prevent logarithm of zero. dasek-mer distance, we

definek-mer rankas follows:
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1 N Fi)
Ri = — d -\ (3)
v

An intuitive outline of the proposed distributed multipkggience alignment solution, referred

to as Sample-Align-D, is given in Algorithm 1.

Algorithm 1 Sample-Align-D Intuitive Description
Require: p processor for computation

Require: N sequences of amino acids, Ss, - - -, Sy
Ensure: Multiple alignment of N sequences

1. In parallel, calculate the global k-mer rank for each seqge in each processor

2. Redistribute the sequences using the k-mer ranks suthdfaences with similar k-mer
ranks are accumulated on the same processor.

3. In parallel, align the sequences on each processor usyngeguential multiple sequence
alignment (MSA) system

4. Calculate the global ancestor using local ancestorsugextiby the local alignments at
each processor in the previous step.

5. In parallel, fine tune the alignment on each processogubkimglobal ancestor

3.1 k-mer Rank based Decomposing Domain

Our aim is to decompose the data set into subsets such tregdhences within a subset are more
similar to each other than the sequences in other subsetgallyidthis can be accomplished by
partitioning the phylogenetic tree in a load balanced fastsuch that the partitions also mini-
mize communication across processors. The partitionirggbblem graph can be performed by
making a virtual grid over the graph structure [26]. This kswell only if the problem graph
is uniform. In MSA, the phylogentic trees are rarely uniforithus partitioning with naive tech-
niques will lead to non-uniform loads. However, most of tlestng partitioning techniques for
non-uniform problem graphs [27—31] cannot be used in thee claue to progressive alignment de-
pendencies in MSA, as discussed extensively in [15]. Indllewing, we outline a novel domain

decomposition strategy that is based on k-mer rank sirtidari
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There are three main parameters that may contribute to thpuation load in the MSA prob-
lem. These include: the number of sequences, the lengtleadfuences, and the similarity rank
(that we call k-mer rank as discussed in the previous sesjtidiowever, as our analysis will re-
veal in the later sections, the lengths of the sequences tdoomtribute much computationally.
Hence we can safely neglect the length of the sequencesddttdalanced partitioning, and con-
sider the k-mer rank and the number of sequences for paitigoand mapping. We will use a

novel sampling based strategy to compgitebal k-mer ranks.

3.1.1 Globalised k-mer Rank

For a highly divergent set of sequences, k-mer rank compoteglach sequence locally on each
processor using only/p sequences would be different from the k-mer rank computetel
the N sequences. In order to address this problem, we sainpdgjuences from each processor
such that the k-mer ranks of theBesamples represent the ranks of the corresponding s€f pf
sequences, yielding a total 6fx p samples. Collectively, it is safe to assume that thesep
samples represent the entire set\osequences. The k-mer rank based ordering of thesey
sequences Yyields a phylogenetic tree of the samples, whitlrm represent all the sequences.
Each processor re-computes the k-mer ranks of its sequeisags this global sample. Subse-
qguently, redistribution based on this new k-mer rank alssuess that sequences accumulated in
each processor are 'similar’ to each other.

In Fig.[d, we plot the k-mer ranks computed using samplesi(redl to as globalized ranks) and
using all the sequences collectively (referred to as ckrédranks). As depicted in this figure, the
curves have high degree of similarity. The statistics ofttl@ approaches for 500 sequences are
presented in Tabl€] 1. As can be seen that the standardidaviat the two sets of ranks is very
low ( 0.58). This shows that the k-mer ranks férsequences computed using a global sample is

statistically indistinguishable from the k-mer ranks cartgal using all théV sequences.
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Figure 1:Globalized ranks and Centralised Ranks

Table 1: Comparison of the k-mer ranks computed using global sangtédlized) and using the entire
set of sequences (centralized).

(Maximum, Minimum) Central (1.44827,0.0
Average Centralized 0.722962
(Maximum, Minimum) Globalized (1.46207,0.0)
Average Globalized 1.11302
Variance w.r.t. Centralized 0.33190
Standard Dev. w.r.t Centralized 0.576377

3.1.2 Redistribution Based on Globalized k-mer Rank

Each processor computes the k-mer ranks ofvits= N/p sequences locally using all th€/p
sequences, and sorts the sequences based on this local remker Here NV is the number of
sequences in the input apds the number of processors. From each ofjthecally sorted lists,
k = (p — 1) evenly spaced samples are chosen. The k-mer ranks of(fhesé) samples (pivots)
divide the local set intgp ordered subsets. The k-mer ranks of these 1 samples from each
processor are gathered at the root processor, yieldinga sesizep(p — 1) ranks.

This regular-sampled séf is sorted to compute the ordered list, Y5, Y53, - - -, Y1) deter-

mining the range of k-mer ranks over all the processors. TaBksY), 5, Y, ,/2, -, Y(p—2)pip/2
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are chosen as pivotp (n total) dividing the k-mer rank range int@ buckets. These pivots are
then broadcast to all the processors. Each processor $ensisguences having k-mer ranks in the
range of bucket to processoi. For the bound on the size of the dataset in each processor aft

redistribution, we refer to the analysis in Section 3.2.

3.1.3 TheAlignment

Next, a sequential MSA program is executed on each proces¥oce our ultimate goal is to
have a global alignment of all th® sequences, a procedure has to be devised to concatenate
these 'chunks’ ofocally (herelocally is defined as the chunk of sequences that are aligned on a
single processor) aligned sequences so thajlttzal alignment of multiple sequences is achieved.
Edgar in [32] has observed that multiple sequences alighfoethnomologous sequences can be
obtained by aligning each sequence to ithet profile. This approach is similar to the one used
in the PSI-BLAST, where &nownprofile is used to align any query sequence with the sequences
that have generated the profile. This technique may alsotbgadzed atemplatebased method,
as observed by Notredame in his recent work [12]. We use dagigoncept along with domain
decomposition of the sequences. We extract the local arcesi each processor aftlrcally
aligning each subset in parallel. All of these local anassaoe collected at the root processor and
are aligned using a sequential multiple sequence alignalgatithm. The ancestor of all the local
ancestors, referred to as the global ancestor, is then taetitb all the processors. Subsequently,
the global ancestor is used to perform a profile-profile afignt. That is, each set of the locally
aligned sequences (referred to as profile) in each processdigned with the global ancestor
profile.

In order to apply pair-wise alignment functions to profile$rofile Sum of Pairs (PSP) scoring

function must be defined. We use the same PSP score as defii3ad amd [32]:

PSP = ZZ fi 17 log(pij /pip;) (4)

Herex andy are the profiles being aligned,and j are the amino acid in profilep; is the
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background probability of, p;; is the joint probability of: and; aligned to each othey,” is the
observed frequency afin columnz of the first profile, and: is the observed frequency of gaps
in that column. The same attributes are assumed for the g@uofilFor our purposes, we will
take advantage of PSP functions based on the 200 PAM matixa3d the 240 PAM VTML
matrix [35]. Some multiple alignment methods implementetént scoring functions such as Log
expectation (LE) functions, but for our purposes PSP sgasiuffices. Of course, future work on
decomposition strategies might investigate such funstiorhis context.

This fine tuning step based on ancestor profile is depictedgnZ: For a highly divergent
sequences set, we propose an additional step, in whichgwzafiin be added to the root processor
with respect to their similarity rank. This does not chanige tomputation or communication

costs, but gives the effect of 'profile-progressive’ sorghfing in the root processor.
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Figure 2:Profile aligning with the ancestor and combining sequenbsess.

The summary of different steps in the Sample-Align-D Algjam is shown in Figl 13, and a

detailed algorithmic description is given in the Appendsxfdgorithm([2.
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Figure 3:Summary of Sample-Align-D procedure

3.2 Analysisof Computation and Communication Costs

For the computation and communication analysis we use aeaggained computing model such
asC*-model [36] and [37]. Also, for analysis purposes, we asstitatthe Muscle System [3] is
being used at each processor as the underlying sequentigdlmeequence alignment system. It
must be noted that the computation complexity of the aligmnseep will vary depending on the
sequential MSA system used for alignment within each prsmes

In the following analysis we assume that each processowhasV/p sequences, wher¥ is

the total number of sequences to be aligned,aisdche number of processors. The average length
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Table 2:Computation Costs:

STEP O(Time) O(Space)
k-mer rank computation onu(= N/p) sequences w2L w+ L
Sorting of N/p sequences based on k-mer rank w log w log w
Samplek = p — 1 sequences w p

k-mer rank computation dft x p) sequences in root processor p4L p2 + L
Sorting ofk x p sample k-mer ranks (k x p)log(k x p) log(k X p)
k-mer rank computation of each ab(= %) sequences againgtx p samples w((k x p+ 1)2L] w(k x p+ L)
Muscle executed onf = %) sequences in parallel wh +wL? w2+L2
Ancestor extraction from each of tlpgprocessors + export to the root procesgor p2 p2
Muscle executed on local ancestopse{fements) (p)4+(p)L2 (p) 2412
Profile alignment with all combined aligned sequences oh e&the processor wL? w
TOTAL Computation Cost (for = &) o((X)*+ (L2 [ o(H)?+L?)

of a sequence i&. In Table[2, we outline the computation cost of each step@gthorithm and

its memory requirement.

3.3 Communication Cost

The communication overhead is an important factor thaatkstthe performance of a distributed
message passing parallel system. If the communicatiorheaeris much higher than the com-
putation cost, the performance of the system is limited.tuf@tely, the communication cost of
our system is much less than the cost of the alignment. Ha#lgrthe proposed Sample-Align-D

algorithm has two rounds of communication. In the first roqumdmall set of samples is collected
at the root processor and a set of pivots is broadcast fromotitgorocessor. In the second round,
sequences are redistributed to achieve better alignmadtbalanced load distribution. For the
analysis of the communication costs we have adopted theegaained computation model [36]
and [22]. However, we ignore the message start up costs audnasunit time to transmit each
data byte.

We have assumed the Regular Sampling strategy [24] becéiisesoitability to our problem

domain. Some of the reasons are :

1. The strategy is independent of the distribution of omdjidata, compared to some other
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strategies such as Huang and Chow [23].

2. It helps in partitioning of data into ordered subsets gfrag. equal size. This presents an
efficient strategy for load balancing as unequal number qéieeces on different proces-
sors would mean unequal computation load, leading to podoqmeance. In the presence
of data skew, regular sampling guarantees that no processgoutes more tha(ﬁ%) se-

guences [24].

3. It has been shown in [24] that regular sampling yieldsrogtipartitioning results as long as
N > p?, i.e., the number of data itend$ is much larger than the number of processgrs

which would be a normal case in the MSA application.

3.3.1 First Communication Round

Assumingk = p — 1, i.e., each processor chooges 1 samples, the complexity of the first phase
is O(pZL)+ O(plogp) + O(k x plogp), whereO(sz) is the time to collecp(p — 1) samples
of average lengtli at the root processof(p log p) is the time required to broadcast- 1 pivots

to all the processor and x plogp) is the time required to broadcast< p sequences to all the

processors.

3.3.2 Second Communication Round

In the second round each processor sends the sequences kawar rank in the range of bucket
1 to processot. Each processor partitions its block intosub-blocks, one for each processor,
using pivots as bucket boundaries. Each processor thers sekadub-blocks to the appropriate
processor. The sizes of these sub-blocks can vary from%bstequences depending on the initial
data distribution. Taking the average case where the elesnrethe processor are distributed uni-
formly, each sub-block will hav;ég sequences. Thus this step would reqmt(é;l) time assuming

an all-to-all personalized broadcast communication givai37]. However, in the following we

show that based on regular sampling no processor will regainre tharﬁ% elements in total in
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the worst case. Therefore still the overall communicatiost evill beO(%).

Let’s denote the pivots chosen in the first phase by the agraysz, ys. - - -, y,—1. Consider any
processors, wherel < i < p. All the sequences to be processed by processuarst have k-mer
rank> y;_; and< y;. There argi — 2)p + § sequences of the regular sample whichsrg;_,,
implying that there are at lealit= ((i — 2)p + g)% sequences in the entire data that have k-mer
rank < y;_;. On the other hand, there afe — i)p — 5 sequences in the regular sample that have
k-mer rank> y;. Thus, there areb = ((p —i)p — §) % sequences oW which are> ;. Since the
total number of sequences§, at mostN — ub — [b sequences will get assigned to processor
It is easy to show that this expression is upper boundeﬁgayThe cases for = 1 andi = p are
special because the pivot interval for these two processdrsThe load for these processors will
always be less thah]pi. Due to page limitations, we refer to [24] for further detaf the analysis.

The collection ofp local ancestors at the root processor and broadcast of thalghncestor
costsO(L log p) communication overhead each. Therefore the communicatishis:O(p*L) +
O(plogp) + O(%) + O(Llogp).

The total asymptotic time complexiy of the algorithm would be:

ComputationCosts = O(%)4 + O(%)L2 (5)
CommunicationCosts = O(p?L) + O(plogp) + O(%) + O(Llogp) + O(k x plogp) (6)
N N N
T~ O(=)*+ (=)L + (p°L) + (— (7)
((p) (p) )+ (L) (pL)

Next we briefly comment on the scalability of the Sample-AHg algorithm. We will use the
isoefficiencymetric [22] to show that Sample-Align-D is highly scalabFfeor this we first define
two important terms: problem size defined as the number ot lsasnputation steps to solve a
problem on a single processor using the best sequentiaithiign overhead function is defined as
the cost, that is not incurred by the fastest known sequeltgarithm. We denote problem size

with W, and overhead function with, (1, p).
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E

W =
E—-1

x To(W, p) (8)

whereE denotes the efficiency and l&t = % The overhead function of Sample-Align-D:

T,(W,p) ~ %) < L4 x L ©)

It is easy to show that asymptotically the iso-efficiency afifple-Align-D isO(p?), i.e., the
number of sequences shall increase by a factq?db maintain the efficiency with increasing

number of processors.

4 Performance Evaluation

The performance evaluation process has been divided irdopawts: the first part deals with
the quality assessment, and the second part deals withieradiHPC metrics such as execution
time, scalability, memory requirements, etc. The perfaroeaevaluation of the Sample-Align-D
algorithm is carried out on a Beowulf Cluster consisting ®lidtel Xeon processors, each running
at 2.40GHz, with 512KB cache and 1GB DRAM memory. As for thteiconnection network, the
system uses Intel Gigabit network interface cards on eadtasl node. The operating system on

each node is Fedora Core 7(kernel level:2.6.18-1.279&ft6

4.1 Quality Assessment

The quality assessment in our case posed a considerablengebecause most of the existing
benchmarks such as BaliBase [38] and Prefab [3] used in tératiuire are of very small sizes.
Therefore they are not effective in evaluating aaynplingbased approach or domain decomposi-
tion based distributed approach. Also, other parallel apgines to multiple alignment do not have
any decomposition strategy, making the quality of the palrakersion similar to the sequential

version. Hence, a quality assessment criterion for datallpamultiple alignment methods was
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not available. In addition to assessing quality using tiegitional benchmarks, we have also for-
mulated a method that can be used to access the quality ofighenant produced by distributed

or data parallel MSA approaches.

4.1.1 Quality Assessment using Traditional Benchmarks

Traditional benchmarks such as BaliBase and Prefab are quibprehensive in terms of types of
sequences contained in these benchmarks. BaliBase, forpéxahas five basic categories and
covers most of the scenarios when making multiple sequdiggeveents [2]. For the evaluation of

multiple sequence alignment programs, Balibase is dividi&dS hierarchical reference sets:

e Refl for equi-distant sequences with various levels of eoradion,

Ref2 for families aligned with a highly divergent "orphar€guence,

Ref3 for subgroups witk: 25% residue identity between groups,

Ref4 for sequences with N/C-terminal extensions, and

Ref5 for internal insertions.

Tabled 8,[# and15 compare the quality of Sample-Align-D wiffetent sequential algorithms
in terms of quality metrics, Q-Score, and TC-Score, usedahb@se and Prefab benchmarks,
respectively. The score for the sequential algorithms hen derived from [3]. The Sample-
Align-D was executed on a 4-processor system, thereforegpponds to a 4 factor domain decom-
position.

In all the tests for quality assessment using benchmarksnitbe seen that Sample-Align-D
preformed very close to the Muscle system. This is becausg®aAlign-D was implemented
with Muscle System as the underlying sequential MSA alfariat each processor. Therefore, the

guality obtained is limited by the quality of the underlyiaignment system.
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Table 3:BaliBase Scores

| Method | Q | TC|
Muscle 0.896| 0.747
T-Coffee 0.882| 0.731
NWNSI(MAFFT) || 0.881| 0.722
Clustalw 0.860| 0.690
Sample-Align-D || 0.858 || 0.720
FFTNSI(MAFFT) || 0.844| 0.646

Table 4:Prefab Q-Scores

| Method | Q-Score(All) |
Muscle 0.645
Sample-Align-D 0.623
T-Coffee 0.615

NWNSI(MAFFT) 0.615
FFTNSI(MAFFT) 0.591
Clustalw 0.563

Table 5:BaliBase Q-Scores on subsets

| Method | Refl || Ref2 || Ref3 | Ref4 || Ref5|
Sample-Align-D || 0.882 || 0.932 || 0.800 || 0.872 || 0.804
Muscle 0.887( 0.935|| 0.823| 0.876]| 0.968
T-Coffee 0.866( 0.934|| 0.787| 0.917]| 0.957
NWNSI 0.867 0.923|| 0.787| 0.904| 0.963
Clustalw 0.861 0.932|| 0.751| 0.823]| 0.859
FFTNSI 0.838( 0.908|| 0.708| 0.793]| 0.947
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4.1.2 Quality Assessment with Increasing Degree of Decomposition

While the quality of alignment produced by the Sample-Allgralgorithm for benchmark data
sets is comparable to the other systems, due to the smallalizbese benchmarks, we could not
evaluate the quality against several desired parametagrand typical of a distributed environment
such as sample size, number of partitions, average lengtbqpfences, etc. In the following, we
first outline the assessment procedure that allows us taa@esthe quality while changing different
parameters, and then present performance results. Inubsestion, we compare only with the

Muscle System.

Quality comparsion

Sample-Align-D
muscle -------

Q-Score
1

0995
099 -
0.985 |
0.98
0.975 |
097 |

No. of Processors, P

Figure 4:Quality comparison, with varying average length of the seges.

Using the Rose sequences generator [39] we have generast28f sequences, with their
corresponding 'true’ alignment, while changing the follog/three parameters: the length of the
sequences, the number of sequences, and the phylogersttioa of the sequences. The length
of the sequences in our tests varied from 100 to 2000, the aunflsequences varied from 100
to 20000 and the average phylogenetic distance varied f@d 1000. These values are typical
of biological sequences in existing databases. Each ofehwas aligned using Sample-Align-D
with different number of processors, and 'true’ alignmepiiained from the Rose system was used
as a benchmark. The metrics used for the the assessmentSuer®{3], TC-Score [38], Modeler

score [40], Cline (Shift) score [41], and Sum of Pairs (SR¥ec The quality scores obtained by
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the Sample-Align-D Algorithm are compared with the Musclestem scores (only Q-scores are
reported in this paper).

The experiments were conducted with different data setgevideeping two of the parameters
held constan@s These parameters include number of sequences, phylogdrstance, and av-
erage sequence length. The experiments were also conductditferent machine sizes to study
scalability and the effect of degree of domain decompasiio quality of alignment.

Fig.[4 depicts performance in terms of Q-score with incregsiumber of processors, while
increasing average length of sequences from 200 to 200@&nlbe seen that the increase in the
number of processors to 16 didn’t effect the Q-scores. Tise®@es correlated very well with that
of the Muscle System. The scores remained above 0.97 foagedength of 2000. There was
virtually no difference observed in the SP scores computedhfe Muscle system and Sample-

Align-D for respective pair of length and number of procesassed, as shown in Figl. 5.

Sum of Pairs Score

Sample-Align-D

muscle --------

SP Score
3000

2500
2000
1500
1000

500 [

20

Figure 5:Sum of Pairs (SP) score, with varying average length of theesces.

The quality with respect to the phylogentic distance is ply the most important criterion.
Theoretically, MSA systems should be able to give good migtalignments for increasing pair-
wise sequence distance. After all, the relationship betvaistance species would reveal the phy-

logenetics of the species. As pointed out in [42], all autbomaultiple alignment systems perform

1Constants held for the experiments are: Length =200, Numitequence=200 and phylogenetic distance =100
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poorly with increasing pair wise distance between the secgge Different quality metrics calcu-
lated while increasing the phylogentic distance from 10QQ60 are shown in Fid. 6 and Fig. 7
for Q-Scores and TC-Scores, respectively. As can be seentfiese figures, the quality in fact
decreased with increasing pairwise distance. Our invatsbig for this criteria, however, was not
to rectify the quality issues with increasing pairwise aigte, but to see the correlation between

the underlying MSA system and the effects of the domain deasition strategy.

Quality variation with phylogenetic distance

Sample-Align-D
muscle --------

Q-Score

coooooooo
O=MNWHArUION®WO—=

No. of Processors, P

Figure 6:Q-score, with varying average pairwise distance of secggenc

Quality variation with phylogenetic distance

Sample-Align-D
muscle --------

TC-Score

coocoooooo
O—=MNWHAhUIONDWO =

No. of Processors, P

Figure 7:TC-score, with varying average pairwise distance of secggn

As can be seen from Fifl 6, the Q-scores correlated extrewalywith the Q-scores of the



Saeed-Khokhar Domain Decomposition for MSA on multipreoes 22

SP-Score with phylogenetic distance

Sample-Align-D
muscle --------

SP-Score
300

250 K
200
150
100
50

No. of Processors, P

Figure 8:SP Score, with varying average pairwise distance of segsenc

Muscle System. The TC-scores of the Sample-Align-D degiatd-ig.[7 show slighincreasein
the quality when compared with TC scores of the Muscle SystEme increase can be attributed
to the decomposition strategy which is more inclined towarahserving columns in the multiple
alignment, owing to profile alignments. The decrease in tlgn@ent scores in general with
increasing phylogenetic distance, is due to the decreabe afignment quality obtained from the
underlying MSA system. Without loss of generality, the ayabf a decomposition based MSA
can be expected to correlate well with the underlying setiglemultiple alignment system that
may perform well in terms of quality. Fig] 8 shows the quafigrformance in terms of SP score.
The assessment of the quality of alignment with increasurgher of sequences is also impor-
tant. As before, we are interested in the relative qualigligihment obtained after decomposition.
Fig.[9 shows the quality in terms of Q-Scores for differezesiof the sequences set. The qual-
ity of the Sample-Align-D Algorithm based alignments sgbncorrelates with the quality of the
alignments obtained by the Muscle system. It must be notedit are reporting quality for up to

8000 sequences, because the sequential Muscle System alds tmprocess larger datasets.
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Quality with increasing number of Sequences

Sample-Align-D
muscle -------

Q-Score
1 -

0.98
0.96
0.94
092

09 |

088 |
0.86

6000
Number of Sequences, N 7000
8 No. of Processors, P

Figure 9:Quality of alignment, with increasing number of sequences.

4.1.3 Example of Application to Serine/Threonine Kinases

The purpose of a multiple sequence alignment system is eredsind study the conservation of
domain and motifs. To illustrate this, we present here amgia Fig.?? that illustrates the use-

fulness of our system, in terms of conservation of motifs.iNMstrate here the functional features
of kinases, also present in the BaliBase as well as useddetration by Notredame [2]. Each se-
guence is identified by its SwissProt/UniProt identifierntgoof the identifications have changed,
and are illustrated as is viewed in SwissProt at the timeisfghblication. In the example, there
are 3 motifs identified. These motifs are the core blockstitied by BaliBase, and are conserved
by Sample-Align-D, marked as red, orange and blue. The mat# in greater order of difficulty,

with red as the least difficult. The blue labeled motif is thestrdifficult to conserve in the example
set, because of the long indel in KIN3-Yeast. As can be semmp-Align-D is able to conserve

this most difficult motif, for decomposition factor of 4 asraofor benchmarks.

4.2 Performancein Termsof HPC Parameters

In this section we analyze performance in terms of executioa, scalability, and memory. The
objective of the evaluation is to determine the advantaféiseoproposed domain decomposition

based technique in terms of speedup and reduction in meraqojrements. In this section we
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also compare Sample-Align-D with the known parallel apphes reported in the literature.

4.2.1 Execution Timeand Memory

For the sake of coherence in our presentation we generageesees with same parameters that
were used for the quality assessment. We report resultfts B0000 sequences. To the best of
authors’ knowledge, there are no published reports of mlgythis large number of sequences in

the literature.

Observed Timing for Sample-Align-D for 1000, 2000 and 4000 sequences

2500 T
1000 Sequences —+—
2000 Sequences ------
4000 Sequences ---A---
x 8000 Sequences %
12000 Sequences —-%—
2000 16000 Sequences ---3---
20000 Sequences -- -&-- -

1500

3
El ",
£ )
=
£
= 1000
£
£
= N -
500
. Y ‘..“-. .
O p I - R
0 LT mm——e s ................... P . ....................... sl
0 4 8 12 16

Number of Processors, P

Figure 10:Scalability of the execution time w.r.t. the number of presa's.

As shown in FigLL1D, in the case of Sample-Align-D the exexutime decreases sharply with
the increase in the number of processors. We are able to&0igD sequences in just 3.9 minutes,
compared to 2100 minutes on a sequential Muscle Systemirmmgtfor 12000, 16000 and 20000
sequences are also shown for Sample-Align-D. The timingh@ node with Muscle is not shown
because Muscle Systems was not able to handle this largeanwhbequences and the resources
requirement in terms of memory and time, grew exponentfaliyhese sets of sequences.

As shown in Fig[ 111, Sample-Align-D Algorithm exhibits supi@ear speed-ups (of the order
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Scalibility Performance
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Figure 11:Super-linear speed-ups for Sample-Align-D with incregsinmber of processors.

of 600) on a 16 processor system. This is primarily becawsedmputation complexity decreases
by O(p*) with the increase in the number of processor, as suggestaarialgorithmic analysis
section.

The low memory requirements, as predicted by our analys&eittion 3.2, are also evident
in our experimental results. The memory requirements whidesasing the length of sequences,
phylogenetic distance, and number of sequences, are smoig.[12 Fig 18 and Fid. 14 respec-
tively. The most interesting figure is the one that depiotstiemory requirements with increasing
number of sequences. As can be seen in[Fij. 14, with the seiaahe number of sequences,
the memory requirements for Muscle System is increasingmamptially with 1200 MB required
for 8000 sequences. However, the maximum memory requiresdmple-Align-D even for 8000

sequences is not greater than 100 MB.
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Memory Usage with increasing length

Sample-Align-D
muscle -------

Max. Memory(MB)
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Figure 12:Memory usage, with varying average length of the sequences.

Memory Usage with phylogenetic distance

Sample-Align-D
muscle -------

Max. Memory (MB)
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Figure 13:Memory usage, with varying average pairwise distance afieseces.

4.2.2 Comparison with Existing Parallel M SA Systems

There have been significant efforts towards paralleliziig§Mechniques, as discussed in Section
3. We have selected Parallel Clustalw and Parallel T-Coffee of the most widely used parallel
MSA systems, to compare the performance of the proposed I8aktign-D Algorithm. The
limitation of this aspect of evaluation was also the setectf the common sequence set. This
is due to the fact that most of the existing parallel systerasuaable to handle large number of

sequences because of one or two explicit sequential stagjesse solutions.
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Memory Usage with increasing number of Sequences

Sample-Align-D
muscle --------

Max. Memory(MB})200 _
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Figure 14:Memory usage, with varying number of sequences.

We chose the data sets that Zola et al. [15] used for the diabuaf Parallel T-Coffee, named
PF00500, consisting of 1048 sequences with maximal lenj828 characters. The execution
times of different parallel algorithms for the data sets@otted in Fig[ 15. The execution time of
Parallel T-Coffee is significantly higher than that of therfpde-Align-D algorithm. For example,
on a 16 processor system, it took around 9.1 hours for Palaleffee, 4.3 minutes for Parallel
Clustalw, and only 8.1 seconds for Sample-Align-D. Our expents show that the performance of
Parallel Clustalw degrades significantly compared to Samtign-D as the number of sequences

in the set increases.

5 Conclusion and Discussions

We have described a domain decomposition (data paraltekegly for multiple sequence align-
ment of biological sequences. To our knowledge, this is tiseditempt to investigate domain de-
composition for the multiple sequences alignment problé&his domain decomposition allowed
us to devise a highly scalable multiple alignment system efaited algorithmic technique based
on a novel decomposition strategy was described and rigdiowe and space complexity analy-

ses were presented. The proposed strategy decreased ¢heotinplexity of any MSA heuristic
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Figure 15:Comparison of execution times of parallel T-Coffee, patalllustalw and Sample-Align-D

O(N)* by a factor ofO(1/p)*. Consequently, super-linear speed-ups were achievedemen-
dous decrease in memory requirements were observed, dstpdeldy the complexity analysis.
A rigorous quality analysis of the decomposition technigques also introduced, and the effect of
decomposition on the quality of the alignment was investigaThe quality analysis allowed us to
determine the quality of the alignment relative to that @ timderlying sequential MSA system.

A number of research problems remain open and the technigueduced in this manuscript
suggest new directions of research that can be pursued. pdreresearch problems in computa-
tional biology and parallel processing that arise from #search presented in this manuscript are

as follows:

1. We have presented the decomposition strategy as a pa@igputing solution. However,
the super-linear speed-ups on multiple processors sutiggshe use of the sampling based

decomposition strategy on single processor systems wtadda able to deliver significant
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time and space advantages as evidentin [43]. The deconguosiitategy in any of the exist-
ing multiple alignment systems with some form of iterativality 'patch-up’ strategy would
be useful. Also, multi-core processors can take enormousradge of the decomposition

strategy for improved efficiency.

2. In our partitioning strategy, the load balancing schesnigaised on the k-mer rank and the
number of sequences. It would be interesting to develop & mlaborated load balancing
scheme considering additional factors such as the lengtheo$equences and the type of

sequences being considered.

3. The domain decomposition based strategy has been gatstifor distance based multiple
sequences alignment methods such as Muscle and Clustalvaultl be interesting to in-
vestigate the same or similar partitioning strategy foreottype of consistency and profile

based methods such as T-Coffee, ProbCons, Mafft, DbC|itaMMALS etc.

4. We have considered a subset of alignment parametersydarme, PSP scores, 200 PAM
matrix and the 240 PAM VTML matrix. It would be insightful t@osider different mutation

matrix and other parameters, and investigate the effeade@imposition on quality.

5. Phylogenetic trees are the crux of research on evolutidnalogy. However, building phy-
logenetic trees for large number of species is consideratiygpute intensive. It would
be useful to apply decomposition to build distance basedogleyetic trees for multiple

genomes.

6. Asthe sizes of the biological sequence archives andtatalcata are increasing at an expo-
nential rate, the pattern and motifs searching is gettisgemsingly more time consuming.
The application of decomposition strategy could allow tarsk these keys motifs in such
databases. The strategy can also find its applicationsgettand lead identification in drug

discovery.
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7. The strategy can be used to obtain computational analytisut having the need to actu-
ally import’ the sequences locally e.g. multiple sequenakgnment can be performed on
distant databases, without transferring the entire se¢@fisnces, which some times might

be desirable due to proprietary data issues etc.
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APPENDI X

Algorithm 2 Sample-Align-D (sequences)

Require: p processors for computation afd sequences of amino acidg, S, -+, Sy
Ensure: Gaps are inserted in each sequence such that:

e All sequences have the same length and the Score of the ghatgais maximized according to the chosen scoring function

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

AssumeN/p sequences on each of th@rocessors

Locally compute k-mer rank of all the sequences in eachgasor

. Sort the sequences locally in each processor based om fanie

. Choose a sample setlosequences in each processor, where N/p
. Send thé samples from each processor to all the processors.

. Compute the k-mer rank of each sequence againgt the samples.

. Sort the sequences locally in each processor based opwthke-mer rank.

Using regular sampling, chooge- 1 sequences from each processor and send only their rankotid a r
processor.

. Sortall thep x (p — 1) ranks at the root processors and divide the range of rankg imtickets.

Send the bucket boundaries to all the processors.

Redistributed sequences among processors such thiehseg with k-mer rank in the range of buckete
accumulated at processomwhere0 > i < p + 1.

Align sequences in each processor using any sequentigbla alignment system
Broadcast the Local Ancestor to the root processor

Determine Global Ancestor GA at the root processor bgnalig local ancestors received from all the
processors

Broadcast GA to all the processors

Realign each of the sequencegiprocessors based on ancestor GA using profile-profile akgrnoe.
Each of the profiles of aligned sequences are tweaked ustranitestor profile, with constraints.

Glue all the aligned sequences at the root processor.
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