
1

Feedback-Directed Page Placement for ccNUMA via Hardware-generated Memory Traces

Jaydeep Marathe, Vivek Thakkar and Frank Mueller

Abstract— Non-uniform memory architectures with cache co-
herence (ccNUMA) are becoming increasingly common, not just
for large-scale high performance platforms but also in the context
of multi-cores architectures. Under ccNUMA, data placement
may influence overall application performance significantly as
references resolved locally to a processor/core impose lower
latencies than remote ones.

This work develops a novel hardware-assisted page placement
paradigm based on automated tracing of the memory references
made by application threads. Two placement schemes, modeling
both single-level and multi-level latencies, allocate pages near
processors that most frequently access that memory page. These
schemes leverage performance monitoring capabilities of con-
temporary microprocessors to efficiently extract an approximate
trace of memory accesses. This information is used to decidepage
affinity, i.e., the node to which the page is bound. The method
operates entirely in user space, is widely automated, and handles
not only static but also dynamic memory allocation.

Experiments show that this method, although based on lossy
tracing, can efficiently and effectively improve page placement,
leading to an average wall-clock execution time saving of over
20% for the tested benchmarks on the SGI Altix with a 2x remote
access penalty and 12% on AMD Opterons with a 1.3-2.0x access
penalty. This is accompanied by a one-time tracing overheadof
2.7% over the overall original program wallclock time.

Index Terms— Hardware performance monitoring, NUMA,
trace-guided optimization, page placement

I. I NTRODUCTION

Non-uniform memory architectures with cache coherence (cc-
NUMA) represent an increasingly popular design for commodity
and high-performance computing systems alike. The ccNUMA
paradigm has spread from traditional installations, such as the SGI
Altix, to AMD’s Opteron x86 architecture and is now spreading
to homogeneous multi-core architectures in general. The latter
trend is driven by a need for high-speed interconnects, suchas
AMD’s Hypertransport and Intel’s Common System Interconnect
(CSI) / QuickPath. In such systems, processors access the same
global virtual address space but the physical memory is distributed
across nodes and coherence is maintained using hardware mech-
anisms. Accesses to physical memory local to a processor (on
the same node/attached to the current processing core) result in
lower latencies than accesses to remote memory (on a different
node/core). Similarly, accesses that hit in local caches impose a
lower latency than those resolved by cache accesses to a remote
node or a different core.

An OpenMP micro-benchmark was constructed to evaluate
access latency on an SGI Altix machine, which represents a
typical ccNUMA platform. The program counts the processor
cycles required to access physical memory on the local and remote
nodes. The results are shown in Table I. On average, it takes
more than twice as long to load from remote memory than from
memory on the local node. While this observation generalizes to
ccNUMA machines, actual overheads depend on the interconnect
and the number of nodes (sockets). For instance, HP reports for
its Itanium-class servers latencies ranging from 185ns to 395ns

Authors’ address: J. Marathe, V. Thakkar and F. Mueller, Department of
Computer Science, North Carolina State University, Raleigh, NC 27695-7534,
e-mail: mueller@cs.ncsu.edu, phone: +1.919.515.7889

for remote references for a maximum of 8 and 64 processors,
respectively [1], depending on the number of hops required in
their crossbar memory interconnect. Relative to local references,
we measured latencies of up to 1.6x for a four-socket single core
AMD Opteron system with a Hypertransport interconnect (see
Section IX).

TABLE I

ACCESS LATENCIES ON THESGI ALTIX

Access Type Average Latency [Cycles] Standard Deviation
Local Node Memory 207 121

Remote Node Memory 430 176

The focus of this work is on multi-threaded OpenMP bench-
marks for scientific computing, yet the general paradigm applies
to any threaded code executed on ccNUMA machines, though
experiments for non-scientific code are beyond the scope of
this paper. OpenMP programs from the domain of scientific
applications are often memory bound,i.e., the overall wall-
clock execution time of the program is significantly affected by
the performance of the memory hierarchy. Any physical page
placement that is sub-optimal may result in significantly longer
wallclock execution time. Thus, if the bulk of the accesses are
to pages whose physical memory has been allocated on a remote
node, considerable performance potential may be unnecessarily
sacrificed. An intelligent page-placement scheme that allocates
physical memory on nodes closer to the processors with most
frequent accesses to a page, in contrast, can reduce the average
access latency leading to potentially significant reductions in
wallclock execution time.

The objective of this work is to steer page placement intel-
ligently. Yet, this requires us to determine the overall memory
access pattern of the program and to do so efficiently since
the cost of program analysis needs to be amortized by the
speedups that later result from the chosen data layout optimiza-
tions. Programmers often find it difficult to reason about the
best page placement for each page and would rather prefer to
delegate this task to the operating or runtime system. Furthermore,
system-specific details are often hard to track. For example,
until now, Linux on the SGI Altix utilizes a “first-touch” page
allocation policy, i.e., a page is placed in the local memory of
that processor that first accessed this page. Hence, compulsory
initialization of data elements (e.g., from a file) in a single
thread (as often performed by the master thread under OpenMP)
can cause the page to be allocated permanently on a particular
node. Several OpenMP programs were encountered that had not
been specifically tuned for ccNUMA environments and often
initialized all data elements in the master OpenMP thread. This
caused the bulk of the data space to be allocated in physical
memory on only a single node, thereby drastically increasing the
number of memory load instructions that access remote memory.
But even when programs specifically initialize (“touch”) data in
parallel on multiple threads, sub-optimal page allocationmay be
observed. Such behavior was observed by determining the number
of accesses to a particular page during the stable executionphase
(e.g., a single timestep) of an application for each thread. This
data is subsequently used to derive a better page placement than
the original one.

2

To determine the locality of memory references to pages,
an efficient whole-program analysis tool is required. Such a
tool monitors the memory accesses during the stable execution
phase of an application. The information is subsequently utilized
to derive the best page placement in terms of reducing the
number of remote references to a given page. Depending on
the interconnection topology, remote accesses amongst multiple
nodes may incur constant or variable latencies. We handle both
of the above cases in our work.

The general approach is as follows. First, a truncated one-
timestep version of the target application is executed. Exploiting
performance monitoring capabilities in existing microprocessors,
an approximate trace of the memory accesses from all the active
processors during this partial (truncated) run is efficiently ex-
tracted. This access information is subsequently used to decide the
best page placement,i.e., the physical node on which a particular
virtual page should be allocated. This information is denoted
as the “affinity hint” per page. Finally, the entire application is
executed, yet with transparent wrappers that allocate pages on the
assigned physical node based on the affinity hints.

The first scheme simplifies NUMA systems in that it assumes
a constant latency for remote references. It leverages the default
“first-touch” page allocation policy of operating systems,such
as implemented on SGI IA64 Altix systems. For this approach,
allocation is realized within wrappers by “touching” the target
page from a processor on the assigned node. Both statically
defined and dynamically allocated regions of memory are handled
by initialization and allocation wrappers, respectively.Statically
defined memory regions (in thebss segment) defer to page
touching upon application startup while the page touch is delayed
for dynamically allocated regions to allocation time. Experimental
results on the first ccNUMA platform, an SGI Altix, show that
long-latency loads provide a better indicator for page placement
than TLB misses. Overall, an average wall-clock execution time
savings of greater than 20% was observed over all benchmarks.
The average one-time tracing overhead amounted to 2.7% of the
wallclock time for the complete original NAS and SPEC OpenMP
application benchmarks.

The second scheme targets ccNUMA platforms where remote
memory references depend on the hop count over the interconnect.
This is the case for most NUMA platforms, including HPs
Integrity line, SGI’s IA64 Altix machines and AMD’s Hyper-
transport for the Opteron architecture. For the latter, theOpteron
architecture, a different sampling mechanism was developed as
AMD has not publicly revealed any hardware sampling support
for memory references yet in contemporary Opteron systems.
Instead of obtaining traces on the Opteron architecture, the hard-
ware capabilities of Intel’s performance monitoring unit on recent
Pentium4/Xeon processors is utilized. These traces, basedon the
execution of a common application binary for both Intel and AMD
processors, are utilized for deriving page affinity information as
before. The page hints are subsequently driving page placement
for an application running on an Opteron ccNUMA platform.
The intent was to demonstrate theportability of the developed
processor-centric scheme and also to evaluate the impact of
page placement for the benchmark set on the widely used
Opteron/Hypertransport architecture, which is similar toIntel’s
forthcoming Common System Interconnect (CSI) / QuickPath
for larger multi-core architectures. In the course of this work,
a novel and more aggressive page affinity policy was developed.

The policy exploits the fact that remote node access latencies
on NUMA systems, such as the Opteron, are not uniform but
vary by the distance (hop count) between the source and target
nodes. Experimental results from the Opteron platform indicate
that this scheme results in an average wallclock time savingof
12%. This is lower than the wallclock time reduction observed
on the SGI Altix. The difference can be attributed to the factthat
remote accesses are relatively less expensive on the Opterons than
on the Altix (depending on the number of hops, 1.3x/1.6x/2x
on the Opterons but 2x on the Altix). Overall, the developed
schemes make automatic page placement a cheap commodity that
is widely transparent to the user. This result is unprecedented in its
low overhead of the scheme, its elegant exploitation of hardware
monitoring, operating system and runtime system support and
coverage of not only static arrays, as in past work, but also heap-
allocated regions.

II. OVERVIEW OF THE FRAMEWORK

The overall framework for trace-guided page placement is
depicted in Figure 1. It consists of three distinct phases —trace
generation, affinity decisionand trace-guided page placement.

During trace generation, a truncated version of the multi-
threaded program consisting of a single timestep is executed.
During execution, information about the memory access pattern
for each thread is collected. Each OpenMP thread is explicitly
bound to a different processor using thesched setaffinity
primitive for the experiments discussed in Section VI. Further-
more, dynamic allocation requests issued during executionare
intercepted and logged. The collected information is used during
the affinity decisionphase to choose the most favorable mapping
of pages to nodes,i.e., the page affinity. Finally, the entire appli-
cation is re-executed, this time in its non-truncated, fullversion,
and the affinity information is utilized to force allocationof pages
on the respective nodes derived from the affinity information.

The approach has been extensively automated such that user
interaction is only required in three steps. First, a special header
file transparentlywrapsallocation functions like malloc with calls
to handler functions. Second, a call to an initialization function is
placed at the very start of the program. This function effects page
placement for statically-defined memory regions during trace-
guided runs and initializes the hardware performance monitor
during the trace collection run. Third, the user must identify the
stable execution phaseof the program and mark the phase with
calls to handler functions. For example, in time-stepped programs,
the stable execution phase is a single timestep. The idea is to
collect a snapshot of the program’s memory access patterns during
a snippet of its stable execution phase, which becomes the basis
for guiding page placement decisions. In the following section, a
detailed description of the framework is given.

III. T RACE GENERATION

Two types of trace information need to be captured, namely
memory accesses and calls to dynamic memory allocation, each
on a per-thread basis. For the former, tracing of individual
accesses and misses in data translation-lookaside buffer (DTLB)
are further distinguished.

The Itanium-2 performance monitoring unit (PMU) provides
hardware support for capturing memory traces [2]. To this end,
thelibpfm library is utilized as it provides an interface to access
the hardware counters of the processor in a convenient manner
at the user level. The details of the Itanium PMU functionality

3

Proc N

PMU

Proc 1

PMU

Proc 0

PMU

Captured
Samples

Trace Dynamic Allocation
Calls

Logger

Ordered
List of Calls

<Thread, Time, Line,
File, Region Size>

A. Trace Generation

Pages at
Proc 1

Proc N

"Touch" dynamically allocated
regions just after allocation

"Touch" Static

Startup

Format:
<IP, EA, latency>: Load misses
<IP, EA>: DTLB misses

Sampling Rate

Latency Threshold

(Load Misses/DTLB Misses)
Trace Source

Configurable Parameters

Proc 0

Decide
Affinity

<PageAddr,

<Page_Address>

Hints

Static Data
Affinity
Hints

<Region_ID,Byte Offset,Affinity_Proc>

 # Accesses>

ProgramProgram
Multi−Threaded

Map2Page

Dynamic
Affinity

Thread−0

Thread−1
Thread−N

Thread−N
Thread−1

Thread−0

B. Affinity Decision C. Trace−guided page placement

Multi−Threaded

Fig. 1. Automatic Trace-guided Page Placement

Issuing Load

Incr. sampling counter,
Ignore Load

Yes

Yes

Yes

No

No

No

Ignored

Ignored

Lossiness

Filtering

Sampling

Track this load ?

Exceed Latency
Threshold ?

Overflow ?
Counter
Sampling

Instruction Address (IP), Data Address (EA), Latency
Capture

Fig. 2. Simplified PMU Operation

are described elsewhere [3]. In this work, the PMU is utilized to
capture two different types of memory access data — long latency
loads and data translation lookaside buffer (DTLB) misses.A
simplified view of the PMU operation for capturing long-latency
loads is shown in Figure 2. When sampling long-latency loads,
the PMU supports selective tracking of load instructions based
on a latency threshold and optionally provides reduced statistical
sampling and constraints on memory ranges of sampled addresses.

A. Capturing Memory Accesses

One pitfall common for hardware-based sampling on other
architectures as well is that the PMU does not capture all long-
latency loads, which exceed the latency threshold, but justof
subset of them. There are two reasons for this. First, due to
hardware restrictions, such as the depth of the pipeline andthe
ability to track only one load at a time within the pipeline, the
PMU can only track one load at a time out of potentially many
outstanding loads. Second, in order to prevent the same datacache
load miss from always being captured in a regular sequence of
overlapped cache misses, the Itanium PMU usesrandomization
to decide whether or not to track an issuing load instruction. Due
to these reasons, the load miss trace is consideredlossy when
obtained by hardware tracing. In Section VII, hardware-based
tracing is compared with non-lossy software-instrumentedtracing
to gauge the trade-offs between accuracy and efficiency.

The Itanium PMU further allowsfiltering for traces. Specifi-
cally, if a PMU-tracked load exceeds a user-configured latency
threshold value, it qualifies for capture, otherwise it willbe
ignored,i.e., the load will no longer be tracked within the pipeline.
Since the access latencies increase monotonically for cache levels
that are more distant from the processor, the latency threshold
allows selective capturing of the load miss stream (L1-D misses,
L2 data load miss stream, etc.). Due to hardware limitations, the
latency threshold can only be set in in powers of 2 on the Itanium.
A lower bound is given by 4 cycles.

Each filtered load increments the PMU overflow counter. By
appropriately initializing this counter, the user can varythe sam-
pling rate for the captured long-latency load stream (Sampling).
The Itanium-2 has special support to capture the exact instruction
address (IP) and the corresponding data address being loaded
(EA) for the sampled long-latency load. In contrast, counter-

overflow based sampling on other architectures can give mislead-
ing instruction addresses for the missing load due to superscalar
issue, deep pipelining and out-of-order execution [3].

B. Capturing Data TLB Misses
DTLB misses can also be captured exploiting PMU function-

ality, yet there is no support for specifying a latency threshold.
Various specific sub-types of the DTLB misses can be captured
(described in more detail in [3]). In this work, all types of DTLB
misses are captured by selecting the correspondinglibpfm
eventDATA EAR TLB ALL. Each captured sample contains the
address of the memory access instruction that caused the TLB
miss and the accessed data address. This trace source includes
DTLB misses caused by both loads and stores. In contrast, the
long-latency capture mechanism described earlier only monitors
load instructions. Furthermore, once a DTLB miss has occurred,
subsequent accesses to the page whose entry was brought intothe
TLB become invisible, irrespective of whether or not they miss
in the L2 cache. Hence, DTLB misses are a means to capture the
first access to a page efficiently, but this efficiency comes atthe
price of accuracy. Section VIII evaluates these trade-offs.

C. Capturing Dynamic Allocation Information
The layout of statically allocated data can be steered at initial-

ization time of the program. Dynamically allocated data pages,
however, cannot be forced onto certain nodes at initialization time
as their memory becomes available only during execution. Recall
the approach of trace-guided page placement. The “first-touch”
allocation policy, used by SGI’s Linux version for the Altix, also
the default under contemporary x86 Linux systems, is leveraged to
allocate physical memory pages on the intended node. To “touch”
a particular virtual page address, the earliest point in theprogram
needs to be known at which such an address becomes valid. This
requires the logging of heap memory allocation calls on a per-
thread basis.

During execution of the truncated program, calls tomalloc,
calloc andfree are intercepted and logged. Notice that our
approach is constrained to heap allocations within the truncated
program. Any subsequent allocations will not be represented in
the trace, which reduces page affinity information. Hence, the
approach promoted in this work is more suitable for applications
that pre-allocate large arrays prior to computation, as is common

4

for most scientific codes — with the exception of dynami-
cally changing computational methods, such as adaptive mesh
refinement (AMR). This includes calls resulting from Fortran
allocate statements. The Itanium and x86 architectures have
a high-resolution timer called the “interval timer counter” (itc)
or “time-stamp counter” (tsc), depending on the architecture. A
post-processing tool builds a unified ordering of allocation calls
across all the threads. The ordering is derived from the logged
per-call timestamps and compensates for the clock skew between
different processors.

IV. A FFINITY DECISION

After obtaining per-thread memory traces, the per-node page
affinity is determined,i. e., it is decided on which node a physical
memory page should reside for a particular virtual memory page.

Based on the approximate memory access trace and the
dynamic memory allocation information, the affinity decision
module currently supports two metrics, one for uniform remote
latencies and one for hop-sensitive remote latencies.

The uniform latency policyallocates a page on the node that
issues the maximum number of accesses to that page.

pi → nj ⇔ rwi,j = maxk(rwi,k) (1)

This allocation rule requires that pagepi is allocated (→) in the
local memory of nodenj iff the number of read/write references
rwi,j within pagepi issued from nodenj is maximal within the
read/write references issued by any node for this page, where
m is the total number of nodes. Intuitively, the average latency
of access can be reduced when a page is allocated closer to the
processor that issues the largest amount of requests.

The page affinity decision process consists of a number of
steps. Initially, accesses are grouped by page address, andthe
total accesses from all threads to each page are calculated.This
is depicted asmap2page in Figure 1. Here, accesses are grouped
by processor to calculate the per-node access count for eachpage.

In practice, remote access penalties are not uniform but rather
vary with the distance (number of hops over the interconnect)
to the target node. Thehop-sensitive latency policyallocates a
page on the node that has the lowest aggregate access cost for
references to this page issued from any node.

pi → nj ⇔ Σ
l=1..m

rwi,l × wj,l = mink(Σ
l=1..m

rwi,l × wk,l) (2)

This allocation rule requires that pagepi on nodenj iff the
aggregate number of read/write referencesrwi,l for this page
issued from all nodes, weighted by the hop-sensitive costwj,l

relative to local allocation on this node, is minimal withinall
aggregate weighted costs of any node allocations of this page.
Intuitively, the average latency of access can be reduced when a
page is allocated close to all processors that issue large amounts
of requests,i.e., this metric takes references from multiple nodes
into account instead of using the winner-takes-all paradigm.

The page affinity decision process consists of again of grouping
accesses by page address and by thread (node), as indicated by
map2page in Figure 1. Yet, the page cost for an allocation is
then calculated for a hypothetical allocation to each node.This
cost is the additive weighted number of accesses issued for any
node for this mapping. The weightwi,l denotes the latency (cost)
of resolving a reference from nodenl that is locally mapped onto
nodeni. Such pair-wise latencies can be experimentally obtained
once and for all for a given architecture (see Section IX).

The affinity decisions are generated differently for statically
defined and dynamically allocated regions of memory. Statically
defined memory (i.e., the bss segment) contains space for
uninitialized global variables. The starting address and extent of
the static region is determined at link time. The affinity decision
module simply generates a per-node list of page address offsets
that have affinity to that node. The first logical processor ina node
is responsible for using these page offsets to issue the actual “first-
touch” page placements during the final trace-guided program run.

A more sophisticated scheme is required for dynamically
allocated regions. Here, the starting address of the allocated
region can and does change over multiple runs of the same
program. For the benchmarks evaluated, two distinct dynamic
memory allocation patterns were observed. Many programs had
a small number of calls, each of which allocated a large chunkof
contiguous memory. For such cases, we adjust the affinity page
offsets relative to the starting address of the region. The affinity
offsets will be used to “touch” the pages on the appropriate nodes
during the trace-guided run just after the region is allocated.

A second dynamic allocation pattern was observed for pro-
grams issuing a large number of calls clustered in time, each
allocating a small region of memory (e.g., NAS-2.3 MG). The
resulting heap regions are mostly allocated contiguously in space.
However, due to the lossiness of memory access traces, many
small allocated regions (“silent regions”) are not represented by
even a single access record in the trace. By inspecting trace
records for other small regions allocated close by, these silent
regions are allocated in their vicinity (on the same page) since
physical memory is allocated onpagegranularity.

V. TRACE-GUIDED PAGE PLACEMENT

Once page affinity decisions have been made, the original
program is executed again in its entirety. The affinity information
generated in the earlier phase then drives the page placement
decisions. At the time of writing, the SGI’s Linux version for the
Altix, as currently installed by HPC centers, does not support dy-
namic page migration (even though there is forthcoming support
promised for the next release). Instead, the existing “allocate-
on-first-touch” policy is leveraged to effect page placement. This
policy allocates physical memory for the virtual page on thenode
that first accesses (“touches”) a data element on that specific node.
A page is “touched” by executing a load followed by a store to an
address in the target page from a processor on a particular node
in order to force page placement on that node.

Care must be taken to touch a page on the respective node
before any other processor accesses that page, or an unintentional
placement may result. For static regions of memory, each proces-
sor reads its static affinity file on program startup and touches all
the page address offsets listed in that file, as shown in Figure 1.
All processors synchronize at a barrier after the touching phase to
ensure that no processor accesses a statically-defined pagebefore
the affinity hint for the page has been applied. This scheme has
minimal execution overhead since the static allocation is done
only once, at startup.

A similar approach is employed for page placement of heap
allocated regions. One difference here is that the page touch is
delayed until the target memory region is allocated. In a legal
program, no other processor can access the allocated regionin any
case before the allocation function (e.g., malloc) has completed.
This fact is exploited to ensure that the developed first-touch
scheme will effect the intended page allocation before any other

5

processor touches the memory region. The idea is to insert a
wrapperaround the allocation call. The behavior of the wrapper is
controlled by an environment variable. During unoptimizedruns
of the program, the wrapper does no work. During the tracing
phase, the wrapper records the allocation request parameters (size
of region, starting address, thread id, timestamp). The affinity
generation phase tags each allocation request with affinityhints.
Finally, the wrapper uses affinity hints to effect page allocation
as follows during the trace-guided runs.

Upon its invocation, the wrapper first calls the real allocation
function. The dynamic affinity hints provide information about
which parts of this dynamically allocated regions should be
allocated on which target processors. This information consists
of a list of processor identifiers and the address offsets that need
to be touched on these processors. For each such processor,
the current thread reschedules itself on the target processor
by using thesched setaffinity function call. When the
sched setaffinity call returns, the thread is now executing
on the target processor. Then the touch mechanism “touches”
the given list of address offsets, thereby causing page allocation
on the physical memory in the target processor’s node. The
thread eventually re-schedules itself on its original processor after
all affinity hints for all processors for the dynamic region are
processed.

To the user-level program, this approach is nearly completely
transparent with the exception of the wrapper function. Nonethe-
less, the execution overhead of the wrapper approach can be high.
For every allocation request for which there are affinity hints
for n processors, there aren+1 context switches (one switch to
every target processor, and the final switch back to the original
processor). The experiments in Section VI reveal that this scheme
has substantial execution overhead, which diminishes the gain due
to reduction in remote accesses for several benchmarks. Theover-
head can be reduced by a less transparent scheme that involves
more effort on part of the user. A simple way to reduce overhead
would be togroup the touching effort for multiple dynamically
allocated regions. For each group, there would be only one context
switch for each processor in the list of affinity hints. The user
would also need to insert additional synchronization to ensure that
no thread begins accessing dynamically allocated regions before
the touching has occurred (to prevent inadvertent page allocation),
an idea left for future work.

The approach for page placement employed for dynamically
allocated regions still is subject to one caveat. While the bench-
marks of the experimental sections always allocate memory only
at the start of the program and do not free it until the end of
execution, such behavior is not guaranteed. If programs repeatedly
allocate and free memory in the stable execution phase, then
the effectiveness of the “first-touch” scheme would be reduced.
This occurs because portions of the virtual address space may
be “recycled” by the allocation function after they were initially
freed, but thephysical memory will only be allocated once on
the node where the page of virtual memory was first touched.
This presents a limitation of using the first-touch mechanism. The
issue is being resolved as the operating system (Linux) supports
dynamic pagemigration in the latest kernels.1 With migration
support, the virtual pages in the dynamically allocated region

1Draft APIs for manual page migration have been proposed and are being
incorporated into future Linux releases for the Altix. Theyare already present
in the latest experimental Linux kernels for the x86 architecture.

could be simplymigrated to the target processor given by the
affinity hint at the additional cost of dynamic page migration
overhead. This is another topic of future work.

VI. EVALUATION FRAMEWORK

The previous section described a scheme for trace-guided page
placement. In the following, a cost versus benefit analysis is
presented as the configurable parameters shown in Figure 1 are
varied. More specifically, two parameters are subject to change,
(1) the choice of thetrace sourceand (2) thesampling interval
for capturing memory access samples. The hardware providestwo
trace sources, namely long-latency loads and DTLB misses. The
sampling interval allows a trade-off of sampling overheadvs. the
amount of trace data collected. For each trace source, different
sampling interval values (Sections VII and VIII) are investigated.

By changing these parameters, the amount and type of trace
information collected will change. This poses the questions of
(1) how these traces affect the quality of the affinity hints and
(2) how the affinity hints influence changes in overall wallclock
execution time. To answer these questions, a comparison between
the performance of these traces is needed with respect to the
performance of affinity hints based on areferencetrace. This
reference trace is referred to as the “maximum information trace”.
A comparison with the reference trace helps answer the following
question: What affinity hints will be generated given a complete
memory access pattern of the program? How much improvement
in performance can be achieved using these hints? By comparing
results obtained from partial hardware traces against the results
achieved with the maximum information trace, the tradeoff be-
tween trace collection cost and the optimization benefit canbe
clearly attributed.

The maximum information trace was originally obtained by
a software memory tracing tool to capture all memory loads.
However, this method had too much execution overhead for the
benchmarks evaluated. Instead, the PMU was configured with
the lowest latency threshold setting (4 cycles) and the highest
sampling frequency (1). The resulting trace was utilized asthe
maximum information trace. Since the L1 cache hit access latency
is 1 cycle, this corresponds to capturing a fraction of all accesses
that miss in the L1 data cache. In the discussion below, the
“reference results” refer to the affinity hints generated using the
maximum information trace. Similarly, the “target trace results”
denote the affinity hints generated by the evaluated trace.

The evaluation has three aspects: (1) thetracing cost, (2) the
quality of the collected trace, and (3) the resultingexecution
benefits. The tracing cost is the cost of collecting the access trace,
which is determined by thesize of the traceand by theexecution
overheadinflicted on the benchmark during the trace collection
phase. As the sampling interval is increased, both the tracesize
and the tracing overhead are expected to decrease.

The quality of the trace was evaluated by comparing the target
trace results to the reference results using three different metrics.
(1) Coveragedenotes the fraction of the pages in thereference
resultsfor which an affinity hint exists in the target trace results.
The affinity node values for the page do not need to be the
same between the reference and target trace results. (2)Accuracy
denotes the fraction of the pages in thetarget trace resultsthat
have the same affinity hint node value as the reference results.
(3) The Useful Fraction metric combines the information from
these two metrics. It measures the fraction of the affinity hints in
the target trace that are not only present in the reference trace but

6

also have thesameaffinity node value.
These metrics should be interpreted as follows. A lowcoverage

value indicates that, for a large number of pages, not enough
information is embedded in the target trace to generate affinity
hints. A high coverage value increases confidence that the target
trace contains affinity hints for almost the same number of pages
as the reference trace (though the affinity nodevalues might
be different). In contrast,accuracy measures the stand-alone
usefulness of the target trace. It answers the question: If the target
trace were to be used to generate affinity hints, what fraction of
the affinity hints are identical to those present in the reference
results? A high accuracy value indicates that the target trace is
as useful as the reference trace (though at a potentially much
reduced overhead). A low accuracy value, in contrast, indicates
that the target trace is potentially misleading in the sensethat the
affinity hints do not match the hints in the reference results.

The coverage, accuracy and useful fraction are computed as
follows. Let

Ref = # hints in reference results;
Targ = # hints in target trace results;
C = # hints in target trace results that are also present in

the reference results (though the affinity node values mightnot
match);

A = # hints in target trace results that are also present in the
reference results AND the affinity node values match. Then,

Coverage= C
Ref

∗ 100%

Accuracy= A
Targ ∗ 100%

UsefulFraction= A
Ref

∗ 100%

These three metrics each provide a different understandingof
the trace characteristics. For example, a high accuracy value might
still not indicate aneffectivetrace if the coverage is low. This can
be the case when a large number of pages lacks affinity hints (low
coverage), yet the few hints generated are correct (high accuracy).
Similarly, a low useful fraction value could be either due tolow
coverage or to low accuracy of the hints. Thus, there is a need
for all three metrics.

The metrics discussed so far covercost and trace quality.
For assessingtrace benefit, two metrics are utilized: (1) the net
reduction inremote accessesand (2) the reduction inwallclock
execution time. The net reduction is compared by taking the
difference between the metric values (remote accesses, wallclock
execution time) between the original unmodified program runand
a run with the new trace-guided page placement scheme.

The evaluation process works as follows. First, the target
program is run for one time step and trace data is collected. This
trace data is used to compute the affinity hints and the entire
program is re-run using this trace data. Thus, thetrace costis the
cost to capture the samples over one timestep of the program.On
the Altix/Itanium and Opteron platforms, there is no easy way
to measure the number of remote memory accesses generated by
the program. Instead, anapproximatemeasure of the reduction
in remote memory accesses is employed on the Altix platform.
To this effect, the PMU latency threshold is set to 512 cycles,2

and the number of accesses that exceeded this threshold for the
original program is counted. The high latency threshold ensures
that almost all loads that hit in cache or in local memory will
be filtered out (though some remote loads may also be filtered

2Due to PMU limitations, the latency threshold can only be setin powers
of 2. The next lower threshold (256 cycles) would not filter out a significant
fraction of local memory loads, as indicated by the latencies in Table I.

out, as indicated by the latencies in Table I). Then, the program
is run with the affinity-enhanced page placement scheme, and
the number of accesses exceeding the latency threshold (512) is
counted as before. The difference between the two values provides
an approximate measure of the net reduction in remote memory
accesses. In practice, this value was found to be quite consistent
across multiple runs.

In the experimental evaluation, the wallclock time for the
complete run of the original program is compared to the wall-
clock time of the program with trace-guided page placement
including the overhead of the page touching mechanism. During
the experiments, it was observed that the execution time of the
program varied measurably across runs. This may be due to
several reasons. First, the difference in scheduler allocation of
processors for the batch runs affects the degree of benefit obtained
with trace-guided page placement,e.g., the benefit will be less if
the allocated processors are closer. Second, all operatingsystem
calls on the Altix must go through a small collection of CPUs in
the interactive login partition. Thus, the load on the interactive
nodes affects the performance of the jobs running on the batch
nodes. This is especially significant for the dynamic page touching
mechanism, which potentially involves multiple context switches
for a single affinity hint.

To compensate for this variability in execution time, each
benchmark was executed six times, except for only five executions
of BT. Each time, the trace-guided runs and the non-trace guided
runs were executed on the same scheduler-assigned processor
allocation. The wallclock execution time graphs show the average
benefit obtained with each sampling interval. The error barsde-
note the confidence interval range for a 95% confidence interval.

Benchmarks: Nine OpenMP benchmarks were experimentally
evaluated. This includes seven out of the eight NAS-2.3 bench-
marks (excluding EP). The NAS benchmarks are C versions of
the original NAS-2.3 serial benchmarks [4] provided by the Omni
Compiler group [5]. EP is not evaluated since it does not have
significant sharing of data [6]. In addition, the 320.equakeand
332.ammp benchmarks from the SPEC OMPM2001 benchmark
set were assessed in the results. These benchmarks have signif-
icant dynamic memory allocation, thereby putting the dynamic
touching mechanism to the test.

All programs were compiled at the -O2 optimization level.
All NAS benchmarks use Class C data sets while the SPEC
benchmarks use the reference data set. All experiments were
carried out on a non-interactive (batch) allocation of eight pro-
cessors. On the Altix platform, two processors always shareone
node. A total of four nodes were used. All programs were run
with eight OpenMP threads. Each thread is bound to a separate
processor using thesched setaffinity primitive. OpenMP
thread scheduling was set to static. This hardware platformhas
Itanium-2 processors running at 1.5GHz, each with a 6 MB L3
cache, 256 KB L2 cache and 16 KB L1D cache.

For each program, markers were inserted to delineate the start
and end of the timestep. For 332.ammp, the pre-existing round-
robin allocation of the “atom” element was disabled for the
trace-related runs. However, the benefit metrics (wallclock time,
number of remote accesses) are still compared against the original
program. For the IS benchmark, a one-time dynamic allocation
for the prv buff1 array is issued since the program failed to
execute with the default stack allocation for this variable. Out of
the 9 benchmarks, 4 benchmarks — MG, 332.ammp, 320.equake,

7

�������

������

�����

����

���

�

���� ���� ����� ���	� ������ ���
��

��

�
���
��
��

��
���

���
��
�

���
��
�

�� �
�! "#
�# $!
�� %&�'(%
'"" '�)#

Fig. 3. Cost: Number of Captured Samples

�

��

��*

��+

��,

�

���� ���� ����� ���	� ������ ���
��

!�

-
�./

�!�
��

���
��
�

���
��
�

�� �
�! "#
�# $!
�� %&�'(%
'"" '�)#

Fig. 4. Cost: Trace Time

IS — utilize dynamic memory allocation. The remaining bench-
marks operate with statically declared global arrays.

VII. E VALUATION WITH LONG-LATENCY LOAD TRACING

The performance of the developed page-placement scheme was
assessed for long-latency loads as the trace source using the cost,
quality and benefit approach that was described in the last section.
For these experiments, the latency threshold in the PMU was set
to 128 cycles. This filters out most of the load accesses that hit in
the L1D, L2 and L3 caches. The sampling intervals were selected
as 1, 10, 50, 100, 200 (OV-1 to OV-200 in the graphs). Pages were
allocated to nodes using the uniform latency policy (Eq. 1).

Tracing Cost: The graph for cost comparison shows the cost
for the “maximum information trace” (denoted asFULL in the
graphs) and the results for each of the reduced sampling intervals.
The reduced sampling results are normalized to the FULL trace
values.

Number of Captured Samples: The number of accesses
captured at OV-1, depicted in Figure 3, is about an order of
magnitude lower than the FULL trace for most benchmarks
(except IS). By keeping the latency threshold much higher (128
cycles instead of 4 cycles for the FULL trace), most of the loads
that hit in cache are filtered out. These loads can be ignored since
they do not propagate past the cache to memory. Hence, they
will not be affected by page placement. With increasing sampling
intervals, the total number of samples captured decreases linearly.
At OV-200, the average number of accesses in the trace has been
reduced by 1000 times over the FULL trace.

Tracing Execution Overhead: The absolute execution over-
head for tracing is extremely low since it is sufficient to execute
only a single timestep for a benchmark,i.e., partial execution
significantly reduces overhead over an execution of the entire
benchmark without any loss in accuracy for the benchmarks
studied. On average, over all benchmarks, the execution overhead
for tracing a single timestep at OV-1 was 2.7% of the overall
original program execution time.

The relative tracing execution overhead (compared toFULL)
is shown in Figure 4. The overhead flattens out with increasing
sampling intervals. This indicates that the trace collection cost
does not dominate the time to execute the timestep. The results
show that OV-1 or OV-10 are the “sweet spot” values for the
sampling interval, since increasing sampling intervals beyond that
point does not reduce overhead by much. On average, tracing

�
��

�
0�
*�
	�
+�
1�
,�
2�
���

�� � �! "# �# $! �� %&�'(% '"" '�)#

3�
��
4�
�
/

�

���� ����� ���	� ������ ���
��

Fig. 5. Quality: Coverage

�
��

�
0�
*�
	�
+�
1�
,�
2�
���

�� � �! "# �# $! �� %&�'(% '"" '�)#

3�
'-
-�
�
-

5

���� ����� ���	� ������ ���
��

Fig. 6. Quality: Accuracy

execution overhead at OV-1 is about 20% of the FULL trace
cost, with the exceptions ofSP andIS that have lower savings.

Trace Quality: As the sampling intervals increase, the size of
the trace collected will tend to decrease. This has an effecton the
quality of the trace,i.e., the coverage, accuracy and useful fraction
metrics. The maximum values of all these metrics is 100%.

Coverage: Figure 5 depicts the coverage results for different
sampling intervals. At OV-1, the average coverage is 99% indi-
cating that affinity hints exist for almost all of the FULL trace
pages. The OV-10 coverage still remains high at 94%. After that,
a noticeable decline in coverage at sampling intervals of OV-50
and beyond is observed. The average coverage falls from 94% at
OV-10 to 76% at OV-50 and finally to 47% at OV-200. Thus, at
OV-50 and higher, the trace data is insufficient to generate affinity
hints for page placement for a significant number of pages.

Accuracy: The accuracy values, depicted in Figure 6, are very
close across sampling intervals for each benchmark. Also, accu-
racy remains uniformly high across increasing sampling intervals
for all benchmarks (except for LU). This is very encouraging
as it indicates that even with a reduced number of accesses, the
affinity node recommendations match the recommendations given
by the FULL trace for most of the affinity hints generated. LU’s
behavior is explored in more detail later.

Useful Fraction The useful fraction is the fraction of the FULL
trace affinity hints that are present and have the same affinity node
value in the target trace results. A high useful fraction indicates
that almost the same results were obtained as the FULL trace
results, albeit with much smaller trace input data.

The average useful fraction, depicted in Figure 7, is high for
OV-1 (93%) and OV-10 (87%). From OV-50 to OV-200, the metric
degrades from 68% to 40% on average. This trend occurs because
the coveragevalues fall with increasing sampling intervals while
the accuracy remains steady. The degradation is much more
pronounced for benchmarks likeIS, FT andMG whereas there is
almost no degradation forCG.

Trace Benefits: The impact of the page placement scheme
is explored for two metrics: (1) the number of remote accesses
generated by the program and (2) the wallclock execution time
of the program.

Reduction in Remote Accesses:Figure 8 shows the net
reduction in the number of remote accesses for the full-program
run using automatic trace-guided page placementvs. the original
program. The figure compares the reduction in remote accesses

8

�
��

�
0�
*�
	�
+�
1�
,�
2�
���

�� � �! "# �# $! �� %&�'(% '"" '�)#

3�
��
�6�

���
�
-

���
.

���� ����� ���	� ������ ���
��

Fig. 7. Quality: Useful Fraction

using the FULL tracevs. the reduction achieved at latency
threshold 128. It also depicts the different sampling intervals.

For all but one case (LU:FULL trace), there is a net reductionin
the number of remote accesses. Almost all the remote accesses for
CG and MG are eliminated as shown by a 98% and 97% reduction
at OV-1 for CG and MG, respectively. Other benchmarks also
have a significant reduction in remote accesses. The average
reduction at OV-1 is 60% and decreases significantly from OV-50
(48%) to OV-200 (28%). OV-10 appears to be the sweet spot. The
average reduction is, in fact, slightly higher for OV-10 (55%) than
OV-1 (54%). Only LU shows a 28%increasein remote accesses
when using the full trace. This anomaly of LU is discussed in
more detail later.

Reduction in Wallclock Execution Time: This is the most
important measure to assess the overall benefit as it indicates
the performance improvement of an application with trace-guided
placement compared to the original unmodified program. Figure
9 shows the improvement in wallclock time. As described before,
the error bars represent the 95% confidence interval range. The
ranges for MG, LU and IS are large indicating that these programs
have more variable execution times.

Except for IS, every other benchmark shows a reduction
in wallclock execution time. The average reduction is 21% at
OV-1. CG achieves exceptionally large savings with over 73%
shorter executions at OV-1. Many other benchmarks (SP, FT, MG,
Equake) also achieve greater than 15% reductions.

With increasing sampling interval, the wallclock improvements
tend to decrease though the magnitude of decrease is program-
dependent. CG does not show much degradation with increasing
sampling intervals, but there is a noticeable degradation with SP
between OV-10 and OV-200.

IS represents an exceptional case where the wallclock execution
time increaseswith trace-guided page placement. The cause of
the degradation is the cost of the page-touching mechanism for
dynamically allocated regions. Each hint on a dynamically allo-
cated region potentially represents at least two context switches:
one to switch to the target processor and “touch” the page and
the other to switch back to the processor that originally requested
the allocation. (Note that each OpenMP thread is bound to a
different processor. Hence, the discussion refers to processors
instead of threads here.) With increasing sampling intervals, fewer
dynamic hints are generated (as coverage falls). This reduces
the overall overhead on the target. Thus, less degradation in
wallclock execution time is observed for IS with increasing
sampling intervals.

Similar to IS, the potential wallclock savings for other programs
with dynamic memory allocation (MG, Equake, AMMP) are also
affected by the overhead of the touching mechanism. Given that
over 98% of the remote accesses for MG are eliminated by page
placement, the wallclock reductions for MG would increase even
further with a more optimized touch mechanism.

The LU Anomaly: LU represents an anomalous case. For this

������
�
�

�

�

*�

+�

,�

���

�� � �! "# �# $! �� %&�'(% '"" '�)#3�
)�
��
-��
�.
��.
�)
��

���
�'
--
��
��
� ���� ���� ����� ���	� ������ ���
��

Fig. 8. Benefit: Reduction in Remote Accesses over Original Program

�0�

���

��

0�

	�

1�

�� � �! "# �# $! �� %&�'(% '"" '�)#3�
)�
��
-��
�.
��.
�7

��
-��

-8
����

�

���� ���� ����� ���	� ������ ���
��

Fig. 9. Benefit: Time Savings over Original Program & Arithmetic Mean

benchmark, the affinity hints generated by the full trace do not
match the affinity hints generated by the other traces (OV-1 to OV-
200). This causes low accuracy and useful fraction values, as seen
in Figures 6 and 7. Furthermore, using the full trace leads toan
increasein the number of remote accesses (Figure 8) while OV-50
leads to a 10% decrease in remote accesses. The corresponding
wallclock time reduction ishigher for OV-50 (8% improvement)
than that of the full-trace results (0% improvement).

The underlying cause is as follows. The affinity node values
differ between the full trace and the OV-1 trace (and higher
sampling interval traces) for parts of the largersd global static
array. The full trace uses the lowest possible latency of 4 cycles
to sample the address trace. This captures all possible loads,
irrespective of whether the loads hit in cache or not. For thepages
of the rsd array that have different affinity hints in the full and
OV-1 traces, most of the accesses on the affinity node given inthe
full trace are hits in the local caches. Hence, the affinity decision
is different from the OV-1 trace-based decision (which filters out
the cache hits). First, loads that hit in cache will not be affected
by page placement decisions. Second, the full-trace based page
placement, in fact,worsensthe average access latency for cache
misses since the corresponding pages are allocated on a nodethat
only has infrequent cache misses for those pages. This explains
the increasein the average number of remote accesses for the
full-trace results compared to the OV-1 based experiment. Thus,
the average wallclock time improvement is lower for full-trace
than for OV-50 in this case.

Conclusions: Long-Latency Tracing: 1) Overall, the size of
the trace data at OV-1 is one-tenth the size of the FULL trace
on average. With increasing sampling intervals (OV-1 to OV-
200), the trace size decreases linearly. 2) For most benchmarks,
the execution overhead of trace collection decreases sharply
from FULL to OV-1, yet it does not decrease significantly with
larger sampling intervals (OV-10 to OV-200). Thus OV-1 or OV-
10 appears to be thesweet spotfor trace collection. 3) With
increasing sampling intervals, the coverage drops significantly,
which indicates insufficient trace information to generateaffinity
decisions for many pages. 4) Nevertheless, theaccuracyof the
trace information does not degrade significantly with increasing
sampling intervals. 5) A significant reduction in the wallclock
execution time and the number of remote accesses is possible
with trace-guided page placement. However, for programs with
dynamic allocation, the page touching mechanism is expensive

9

�������

������

�����

����

���

�

���� ���� ���
 ���* ���, ����+

��

�
���
��
��

��
���

���
��
�

���
��
�

�� �
�! "#
�# $!
�� %&�'(%
'"" '�)#

Fig. 10. Cost: Number of Captured Samples

�

��

��*

��+

��,

�

���� ���� ���
 ���* ���, ����+

!�

-
�./

�!�
��

���
��
�

���
��
�

�� �
�! "#
�# $!
�� %&�'(%
'"" '�)#

Fig. 11. Cost: Trace Time

and adversely affects wallclock execution time. A more optimized
touching scheme should lead to even better wallclock reduc-
tions for these programs. 6) For one benchmark (LU), using
the reference trace (FULL) actually resulted in adegradation
of performance. For this benchmark, thefiltering effectof the
high latency threshold used by the target traces (128 cycles)
removed loads that hit in the cache and resulted in a more
accurate picture of which pages are frequently accessed by which
processors. Thus, using the full memory access trace may actually
result in sub-optimal page placement in rare cases. For all other
benchmarks, the reference trace almost always had the maximum
(or close to maximum) performance benefits,i.e., reduction in
remote accesses and wallclock time.

VIII. E VALUATION WITH DATA TLB M ISSESTRACING

Next, the results based on data TLB misses as the trace
source obtained with PMU support are presented. Experiments
are conducted for sampling intervals values of 1, 2, 4, 8 and 16
(denoted OV-1 to OV-16 in the graphs). Pages were allocated to
nodes using the uniform latency policy (Eq. 1). For the discussion
below, the results presented in the last section using long-latency
loads are refereed to as the trace source as theload-based
results. In the following, the DTLB miss results are described
and contrasted with the load-based results.

Trace Cost: As before, the cost metrics are compared against
the cost incurred for the “maximum information trace” (denoted
asFULL in the graphs).

Number of Captured Samples: The average number of
samples captured at OV-1 is less than one-tenth of the numberof
samples in the full trace, as seen in Figure 10. With increasing
sampling intervals (OV-1 to OV-16), the number of captured
samples decreases almost linearly. In contrast to the load-based
results, the difference between FULL and OV-1 tends to be
program-dependent. Ammp and MG have more than 1000 times
less trace data at OV-1 compared to FULL while IS has almost
the same number of samples as FULL.

Trace Execution Overhead:The results for the relative trace
overhead (Figure 11) are similar to load-based results. The
average execution overhead for trace collection at OV-1 is 18% of
the FULL trace’s cost. With increasing sampling intervals (OV-1
to OV-16), the execution overhead is not significantly reduced.

Trace Quality: As before, the three quality metrics of cov-
erage, accuracy and useful fraction are evaluated as shown in

�
��

�
0�
*�
	�
+�
1�
,�
2�
���

�� � �! "# �# $! �� %&�'(% '"" '�)#

3�
��
4�
�
/

�

���� ���
 ���* ���, ����+

Fig. 12. Quality: Coverage

�
��

�
0�
*�
	�
+�
1�
,�
2�
���

�� � �! "# �# $! �� %&�'(% '"" '�)#

3�
'-
-�
�
-

5

���� ���
 ���* ���, ����+

Fig. 13. Quality: Accuracy

Figures 12, 13 and 14, respectively.
Coverage: The average coverage at OV-1 (74%) is sharply

lower than the average coverage at OV-1 in the load-based results
(99%), as depicted in Figure 12. This is due to significantly
lower coverage values for FT, MG, LU, Equake and Ammp,
as compared to the load-based results. With increasing sampling
intervals, the coverage begins to degrade significantly, except for
LU. Coverage falls from 74% at OV-1 to 35% at OV-16.

The low coverage values indicate that the information to
generate page affinity hints is insufficient for a significantnumber
of pages. The problem is more acute for the DTLB case than for
the load-based results, as indicated by the lower coverage values.
Low coverage lessens the effectiveness of the page-placement
scheme resulting in a reduced potential for performance benefits.

Accuracy: The results in Figure 13 indicate that accuracy is
benchmark-dependent. For most benchmarks (except Equake and
Ammp), the accuracy values for increasing sampling intervals
are similar. This indicates that accuracy is less sensitiveto
reduction in the size of the trace. Compared to the load-based
results, a significantly lower accuracy is observed for FT, BT, LU
and AMMP. This indicates that page-affinity decisions basedon
DTLB misses do not agree with affinity decisions based on the
FULL trace or long-latency load-based results.

Useful Fraction: Due to the lower coverage (FT, MG, LU,
Equake, Ammp) and lower accuracy (FT, BT, LU), the useful
fraction values are also significantly lower than for the load-
based results. The average value at OV-1 is 58% compared to
93% at OV-1 with long-latency loads as the trace source. With
increasing sampling intervals, the useful fraction value tends to
fall significantly for most benchmarks. The average useful fraction
degrades from 58% at OV-1 to 22% at OV-16.

Trace Benefits: The coverage, accuracy and useful fraction
for DTLB-based results were observed to be significantly lower
than their load-based counterparts for most benchmarks. This
will impact the performance benefits obtainable with trace-guided
page placement. Figures 15 and 16 show the reductions in remote
accesses and overall wallclock execution time, respectively.

Reduction in Remote Accesses:As before, the reduction in re-
mote accesses using traces obtained at different sampling intervals
is compared to the reduction obtained with results based on the
full trace (marked FULL) seen in Figure 15. Two benchmarks, BT
and LU, experience anincreasein remote accesses with DTLB-
guided page placement. The increases are significant (more than
30%) and occur with all sampling intervals. In comparison to

10

�
��

�
0�
*�
	�
+�
1�
,�
2�
���

�� � �! "# �# $! �� %&�'(% '"" '�)#

3�
��
�6�

���
�
-

���
.

���� ���
 ���* ���, ����+

Fig. 14. Quality: Useful Fraction

the load-based results, the reduction in remote accesses ismuch
lower for many benchmarks, especially for MG (98%vs. 67%)
and Equake (69%vs. 20%). The average reduction of remote
accesses is 29% at OV-1, which is much lower than the 54%
average reduction at OV-1 for the load-based results.

Reduction in Wallclock Execution Time: As with remote
accesses, the DTLB miss-based scheme generally performs worse
than the long-latency load-based mechanism. The average wall-
clock reduction at OV-1 is 11% for DTLB misses (see Figure
16) vs.20.6% for the load-based results. IS, LU and BT show an
increase in execution time with DTLB-guided feedback. CG has
the maximum improvement (67%), while improvements reduce
sharply for MG (17%vs.7%) and Ammp (18%vs.6%) compared
to load-based results at OV-1.

Conclusions for DTLB-Tracing: 1) Overall, the cost of trace
collection is similar for both DTLB misses and long-latencyload-
based schemes. 2) The coverage and accuracy for DTLB-based
results are significantly lower compared to the long-latency load-
based results. 3) Due to sharply lower coverage and accuracy,
the useful fraction values are also low. This indicates thatDTLB-
based affinity decisions are not representative of decisions that
would be made with the full trace. 4) The performance benefits
(reduction in remote accesses and wallclock time) are also much
lower for DTLB-based results. 5) The trace costs for both DTLB
misses and long-latency loads are similar, but the quality of the
trace and the resulting performance benefits are larger for long-
latency load-based traces compared to DTLB miss-based traces.

In conclusion, DTLB misses are not a good candidate to decide
page placement, which can be explained as follows. For the
considered benchmarks, DTLB misses do not correlate well with
the relative volume of loads from a processor to a particular
memory page. This could occur,e.g., if the program has few
DTLB misses but a large number of cache misses going to
memory. Then, the information about thefrequencyof accesses to
each page is lost if only the DTLB misses are considered (since
repeated accesses to the same page will tend to hit in the DTLB).
Another possible scenario is a large number of DTLB misses with
few cache misses going to memory. In this case also, the DTLB
trace will not be representative of the relative distribution of load
requests to a page from each processor. In general, TLB misses
are not indicative for the number of remote reference issuedper
memory page. They only indicate that the page is referenced
for the first time (cold miss in TLB) or that the number of
references in the working set exceeds the number of TLB entries
(for capacity misses). A sufficiently accurate cost/benefitmodel
for page placement cannot be derived from such coarse-granular
information. Lossy reference traces or long-latency accesses are
a much better indicator, as demonstrated in Section VII.

�*	

�
	

�	

�	

0	

		

1	

2	

�� � �! "# �# $! �� %&�'(% '"" '�)#

3�
)�
��
-��
�.
��.
�)
��

���
�'
--
��
��
� ���� ���� ���
 ���* ���, ����+

Fig. 15. Benefit: Reduction in Remote Accesses over OriginalProgram

������ �������0�

���

��

0�

	�

1�

�� � �! "# �# $! �� %&�'(% '"" '�)#3�
)�
��
-��
�.
��.
�7

��
-��

-8
����

�

���� ���� ���
 ���* ���, ����+

Fig. 16. Benefit: Time Savings over Original Program and Arithmetic Mean

IX. PAGE PLACEMENT EXPLOITING HARDWARE PEBS
TRACES

In the preceding sections, the developed approach was evalu-
ated using Itanium2-specific hardware traces for automatedpage
placement. In this section, a similar approach shall be evaluated
using a completely different hardware tracing mechanism and
NUMA platform. The basic idea of exploitingprocessor-centric
hardware support for user-level page placement is shown to be
portable and widely applicable across multiple platforms (irre-
spective of interconnect topologies).

Instead of the Itanium architecture, the target platform isthe
widely used x86 platform. The objective of this work is to perform
page placement on a ccNUMA multiprocessor Opteron system
available from AMD [7]. In this system, each processor directly
accesses (using an on-chip memory controller) a fixed amount
of local physical memory. Communication with other processors
and their attached physical memories is achieved over the point-
to-point HyperTransportconnection network [7]. Systems exploit
a bus-based MOESI coherence protocol instead of the directory-
based coherence present in SGI’s NUMALink fabric. Processors
can access their local memories faster than memories attached
to other processors, and the access penalty increases with the
number of hops to reach the remote memory (due the point-
to-point interconnect). The experiments will assess the benefits
of intelligent page placement on this system. Though the results
were obtained on the AMD Opteron, the developed scheme should
equally work on future ccNUMA systems from Intel that use the
CSI (Common System Interconnect) / QuickPath architecture.

The premise of the developed technique is the ability to
obtain hardware-generated traces that efficiently drive the page
placement policy. Since current AMD Opterons, prior to the quad-
core Barcelona chip, have no published hardware trace capability,
the performance monitoring unit built into Intel Pentium4/Xeon/
systems is exploited for this purpose. This hardware is called
“Precise Event-Based Sampling” (PEBS). PEBS captures the
register state when a specific event,e.g., an L1 cache miss,
is detected. By decoding the instruction format and using this
register state, the memory address that was accessed can be
reconstructed. Details of PEBS are described later on.

This work makes the following contributions:

• The capabilities of PEBS tracing for extracting L1 and
L2 load miss traces is assessed. The PEBS mechanism is
first evaluated with a micro-benchmark, and the degree of

11

lossiness is characterized.
• A novel cross-platform page placement scheme is demon-

strated that uses these traces obtained on the Intel platform
for automated page placement on Opteron systems.

• The hop-sensitive page affinity policy from Section III-C that
takes into account themultipleNUMA penalties is discussed
in terms of its implementation and evaluation on Opteron
systems that incur distance-dependent latencies.

• The wallclock performance benefit of the developed ap-
proach is assessed on Opteron systems by comparing it to
the original program runtime and the runtime achieved with
an alternative approach that uses the newly availablenumactl
library [8] for round-robin page placement.

A. Precise Event-Based Sampling (PEBS)
PEBS is a performance monitoring feature available in Intel

Pentium4/Xeon/ processors. It works as follows. The processor
can be configured to monitor certain instructions3 as they flow
through the pipeline. If a certain event (e.g., a cache miss) occurs,
the causal instruction istagged. When a tagged instruction reaches
the head of the retirement queue, PEBS captures the state of
the registers immediately before (Xeon) the tagged instruction is
retired. This information (register state) is automatically written
to a previously set up buffer in virtual memory. When the number
of records in this buffer reaches a configurable threshold, an
interrupt is triggered. The interrupt service routine saves the
content of the buffer to stable storage before tracing is resumed.
A sampling mechanism is available to avoid capturing the register
state for all tagged instructions. PEBS is described in moredetail
elsewhere [9], [10].

The saved register state also contains the value of the IP
(instruction pointer) at the monitored (cache miss) event.By in-
specting the content of the event-triggering instruction,the format
of the instruction can be deciphered and used for calculating the
virtual memory address generated (for load/store instructions). In
this work, PEBS is utilized to capture L1 and L2 cache load
misses. PEBS allowspreciseknowledge of the exact instruction
that caused the cache miss and the memory location that was
accessed, similar to the hardware support for Itanium2 thatwas
discussed earlier.

The capabilities of PEBS are evaluated with a microbenchmark
to assess the degree of lossiness. The microbenchmark strides
over a large array with a 12KB stride in order to defeat the
hardware stride prefetcher of the Pentium architecture. The perf-
mon2framework is utilized to access the hardware counters and
to collect the PEBS-generated trace [2].

Based on the data size, access pattern and cache parameters,the
program is estimated to contain approximately 6 million L1 and
L2 load misses. On a different x86 machine, hardware counters
reported 6.71 L1 and 6.72 million L2 load misses. Due to the
software constraints, these values could not be assessed onthe
primary machine with PEBS support. For this experiment, the
primary machine had an L2 cache of 2MB while the hardware
counters were measured on a machine with 1MB L2 cache.
However, the measurements on the two machines should be
similar because of the inherent structure of the memory accesses,
namely widely spaced strides to memory lines that are seldom
re-accessed over an area of memory 80MB in size.

3Complex instructions are broken down intoµops on the x86 architecture
so that we are actually referring toµops here (technically speaking).

Figure 17 shows the number of samples collected for L1 and
L2 load misses with increasing sampling intervals averagedover
10 runs with a standard deviation of less than 1%. The following

�

������

������

������

������

������

������

� � � � � � � � � ��
�
����./��.���4
�

���

�

���
�

���������
���������
	
���
������
��
�
��

Fig. 17. Evaluation of load miss tracing by PEBS: Intel Xeon

observations were made:
• Both L1 and L2 traces are quite lossy. At the smallest

sampling interval (1), less than 10% of the expected L1 or
L2 misses are collected.

• The L1 and L2 curves are very close. This is expected
because each L1 miss is almost always an L2 miss in the
microbenchmark.

• The number of samples does not decrease in linear pro-
portion to the increase in the sampling interval. This is in
contrast to an expected decrease in the number of samples
depicted by the “Projected Reciprocal” curve.

B. Hop-Sensitive Page Placement
Instead of the uniform latency page placement policy evaluated

so far, this section focuses on the implementation of the hop-
sensitive page placement policy (Eq. 2). As briefly mentioned,
remote access penalties are not uniform but vary with the distance
to the target node. To measure the load access latency, thebplat
microbenchmark [11] is utilized with threads and memory bound
to different nodes. The measurements were performed on a four-
socket Opteron system with one processor core per node.

Table II shows the reported latencies. The values are the
average of 10 runs, and the standard deviation was less than
5%. As can be expected, access to node-local memory is always
cheaper. But notice that accesses to non-local nodes take differing
amounts of time.E.g., consider the access latencies for CPU on
node 1. Normalizing to local node access on the 4-node system,
it takes about 30% more time to access memory on nodes 0 and
2, but it takes 60% longer to access memory on node 3. The

TABLE II

LATENCIES4-NODE OPTERONS[NANOSECS]

CPU Memory on Node
on

Node 0 1 2 3
0 102 138 172 140
1 143 107 141 172
2 179 141 102 141
3 141 175 142 108

Hypertransport interconnect is laid out in a ring (4-node square)
topology for a maximum of two hops.

In the hop-sensitive page placement policy, the latencies shown
in Table II provide the weightswi,j for placement on nodeni

and reference from nodenj (see Eq. 2). To implement the cost-
based selection of page placement, a histogram of accesses from

12

every node is again constructed for each page. Consider eachnode
as the candidate affinity node. The values in the latency table
and the histogram values are used to compute theweightedscore
that represents the cost of allocating the page on that node.The
candidate node with thelowestcost wins, and the page is assigned
to that node. This approach is portable because it isobservation-
based, i.e., it uses only themeasuredlatencies between different
nodes without requiring knowledge of the exact architecture and
interconnect topology.

C. Evaluation

The same benchmarks as in the previous experiments were used
for evaluation, except for 332.ammpm. Due to memory resource
limitations, all benchmarks except IS and LU used the smaller
Class B data set instead of the Class C set used before. PEBS-
based L1 and L2 load misses were obtained for each benchmark
for a truncated program run on a Xeon machine with a sampling
interval of ten. (For these experiments, the truncated programs
ran longer than the earlier Itanium2-based experiments to allow
collection of more trace data.) The traces were processed as
described earlier, and affinity hints were generated using the hop-
sensitive affinity decision mechanism.

For each program, the wallclock time was measured with trace-
guided page placement and compared to the original program’s
runtime on the 4-node Opteron system. The system was shared
but only lightly loaded. Furthermore, around-robin interleaving
of the memory pages across the nodes was evaluated, which was
obtained through thenumactl library interface [8].

Figure 18 shows the improvement in wallclock time compared
to the original program. The values are an average of 8 runs, and
the positive and negative error bars represent one standarddevia-
tion each. “L1” and “L2” represent trace-guided page placement
with L1 and L2 cache miss traces, respectively. The following
observations can be made. The developed trace-guided schemes
perform well for 5 benchmarks (SP, FT, MG, CG, BT). Wallclock
improvements for the L2 miss trace range from -7% to 30%
with an average improvement of 12.2%. Wallclock improvements
for the L1 miss trace range are similar, except for LU where a
performance loss of 21% is observed. Intuitively, the L2 miss
trace filters out loads that hit in L2. Therefore, L2 misses are a
better indicator of the true distribution of load requests to a page
in memory compared to the L1 miss trace.

The performance improvements obtained with memory inter-
leaving (depicted in Figure 18) indicated that simple round-robin
interleaving works almost as well as trace-guided page placement
on the small-scale ccNUMA system subject to experimentation,

�0�
�
�
���
�
��

�
0�
*�
	�
+�

�� � �! "# �# $! ��
%9�

8�
'4�
�
/
�

�.�����
4�� �� �

Fig. 18. Time Savings over Original Program and Arithmetic Mean

but this depends in large on the algorithmic properties of the
target applications. With MG, the program runtime is very short
(< 30 seconds for original program). Apparently, the developed
trace-guided scheme is unable to recoup the overhead of forcing
page placement within this short time so that interleaving happens
to provide a larger relative improvement. On the other hand,
interleaving performs badly for equake while the trace-guided
scheme shows no net impact. Here, the benefits of page placement
seem to be balanced by the overhead of the page touching
mechanism. Overall, long latency misses (L2 in this case) pro-
vided a uniformly reliable indicator for page placement decisions
while interleaved memory allocation occasionally resulted in a
significant performance penalty.

Will interleaving still prove as competitive with larger scale
ccNUMA systems, where the remote access penalties will be
larger? Will it work with benchmarks with larger data sets (instead
of class B used in the experiments here)? These questions remain
open as input sizes were constrained by the amount of available
memory of the test platform.

X. RELATED WORK

Tikir and Hollingsworth describe a dynamic user-level page
migration scheme based on an approximate trace of memory
accesses obtained by sampling the network interconnect [12].
This is the closest related work. The trace is used for deciding
page affinity. Pages are dynamically migrated using themadvise
system call. In contrast, we focus on trace-guided page placement
leveraging the simpler “first-touch” page allocation policy of the
operating system. In the future, our approach can be refined to
eliminate the need for a separate tracing run bymigrating pages.
Linux recently added support for dynamic page migration user
control [13] building on prior NUMA capabilities and scaling
considerations [14], [15], [16].

Our method uses a different trace source (long-latency loads
or DTLB misses) with varying sampling intervals. Our method
is simpler in that it isprocessor-centric. More specifically, we
not require special network instrumentation support, we only
rely on the ability of the PMU totime load accesses. Because
their approach isnetwork-centric, i.e., the hardware counters are
embedded in the network interconnect and do not distinguish
between different processes, only one application can use them at
a time. In contrast, there is no such restriction with our approach.
In addition, our mechanism is interrupt-driven,i.e., the PMU
raises an interrupt only when the sampling counter overflows
and generates virtual addresses directly. In contrast, their method
mustpoll the network interconnect counters to collect a trace of
physical addresses, which must subsequently be mapped to virtual
addresses using a separate system call.

Finally, our page hints areabstracted, i.e., they are relative to
the starting address of the region (static or dynamic). Touching is
deferred until the region is actually allocated. Thus, the affinity
hints are potentiallyportable across platformsin that hints
generated on one platform can be used on another if it supports
first-touch page placement. We intend to explore this potential in
future work.

Nikolopoulos et al. describe a user-level dynamic page mi-
gration scheme that uses per-page hardware reference counters
that capture the frequency of accesses from each node to a
particular page [17], [18]. The method depends on the compiler
for identifying the pages of virtual memory using whole program
analysis. In contrast to our method, they do not handle dynamic

13

memory allocation. In addition, we do not require any compiler
or operating system support, and our page-placement mechanism
is completely transparent to the target program (i.e., no explicit
calls are necessary for page placement).

Chandraet al. evaluated a page migration policy based on TLB
misses on the Stanford DASH machine [19]. Later, Vergheseet
al. described a simulation-based kernel-level implementation of
dynamic page migration [20]. They considered both the number
of load-misses to a page and the number of data TLB misses
as trace sources. In our work, we found data TLB misses to be
less effective for deciding the best page placement, which is in
contrast to Chandra’s results but confirms results presented in the
latter work by Verghese. Yet, our work is neither simulationnor
kernel based, it is implemented on contemporary hardware within
user space. It focuses on page placement rather than migration and
shows that partial, lossy traces are sufficient for page placement.

Other approaches to kernel-level dynamic page migration and
replication are discussed in Noordergraafet al. [21] and in
Boloskyet al. [22]. Bolosky’s approach is based on a count-down
register in the TLB triggering a trap afterk remote reference
have been issued. This scheme is compared with others triggered
by TLB-misses with freezing of placed pages and optional
unfreezing. In other work, Bolosky and Scott provided optimal
page placement policies with and without replication basedon
dynamic programming and derived from complete traces, which
were obtained offline through single stepping at the kernel level at
a slow-down of over 200x [23]. These policies were subsequently
compared to contemporary kernel-based policies. In contrast, we
operate completely in user-space, do not propose any hardware
extensions, focus on partial traces with a small cost (2.7% of the
overall execution time) and leverage the simpler first-touch page
allocation policy to steer page placement at region initialization.

Bull and Johnson study the tradeoffs between page migration,
replication and data distribution for OpenMP applicationson the
Sun WildFire system [24]. In their study, they find that page
replication performs better than page migration and staticdata
distribution.

Lastly, the hardware mechanism for capturing long-latency
loads and DTLB misses is described in the Itanium-2 manual
[3]. In previous work, we used this facility in conjunction with
software rewriting to efficiently obtain a lossy load/storetrace
and exploit its information to analyze the coherence behavior of
OpenMP programs [6]. The Intel Pentium4/Xeon/Core platforms
support the PEBS mechanism that we also used in this paper.
PEBS allows capture of the architecture register state whena
tagged event (e.g., a cache miss) is detected. The register state is
saved to a reserved portion of physical memory without software
intervention. PEBS is described in more detail in [9], [10].

XI. CONCLUSION

This paper introduces a novel hardware-assisted page place-
ment scheme based on lossy tracing. The placement scheme
allocates pages near processors that most frequently access that
page. The scheme leverages performance monitoring capabilities
of contemporary microprocessors to efficiently extract an approxi-
mate trace of memory accesses. This information is used to decide
page affinity, i.e., the node to which the page is bound. The
method is low cost as a lossy trace is obtained just for the stable
execution phase, not for the entire program run. The approach
operates entirely in user space, is widely automated, and handles
not only static but also dynamic memory allocation.

The approach is evaluated with a set of multi-threaded scientific
benchmarks from the NAS and SPEC OpenMP suites. Two
different hardware trace sources are investigated with respect to
the cost (e.g., time to trace, number of records per trace)vs.
the accuracy of the trace and the corresponding savings in wall-
clock execution time. It is shown that just a small subset of
traced long-latency loads provides a better indicator for page
placement than TLB misses. More specifically, the approach
can efficiently improve page placement leading to an average
wall-clock execution time saving of more than 20% (SGI Altix)
and 12% (AMD Opteron) for the benchmark set with a one-
time tracing overhead of 2.7% over the overall original program
wallclock time.

In addition, the framework is extended to a different processor
and ccNUMA architecture. In this new framework, the traces
were obtained on a Xeon processor using the PEBS hardware
mechanism available in Intel’s Pentium4/Xeon/Core processors.
The traces were used as before for page placement decisions,
and the page affinity hints were applied to programs running
on an Opteron system. This effort targeted three goals. First,
the processor-centric instrumentation-based approach was demon-
strated to be portable across NUMA platforms and processors,
i.e., it exploits long-latency traces without knowledge of the
interconnect topology. Second, the impact of page placement
was evaluated on the widely used Opteron architecture, and it
was demonstrated that significant wallclock improvements are
possible with hardware-derived traces on this architecture. Third,
the experiments revealed that simple page-level memory inter-
leaving worked almost as well as trace-based page placement
on the small-scale Opteron system and small inputs subject to
experimentation. Yet, occasionally, interleaved memory allocation
may result in a significant performance penalty while long latency
misses (L2 in this case) provided a uniformly reliable indicator
for page placement decisions.

To the best of knowledge, this is the first evaluation on a
real machine of a completely user-mode interrupt-driven trace-
guided page placement scheme that requires no special compiler,
operating system or network interconnect support, supports low-
cost lossy tracing and covers not only static arrays, as in past
work, but also heap-allocated regions.

The approach is currently relying on the “first-touch” page
placement policy since dynamic page migration is just now
entering stable Linux kernels. Hence, programs whose memory
access patternschange over time, e.g., adaptive mesh refinement
(AMR) codes and programs with multiple execution phases,
cannot exploit their full potential under the current page allocation
scheme. Even though none of the test programs in this study
frequently allocated and freed memory during the stable execution
phase, the first-touch scheme would lose effectiveness had they
done so. With the availability of page migration in the operating
system kernels, both these limitations can be overcome, albeit at
the cost of migration overhead that first needs to be amortized.
The merits of such a dynamic framework is subject to ongoing
work beyond the scope of this paper.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CAREER
CCR-0237570, CNS-0410203, CCF-0429653 and the Humboldt
Foundation. This research used resources of NCSA, UNC Chapel
Hill, LRZ Munich, the University of Graz, the Zuse Institute
Berlin, and the Center for Computational Sciences at Oak Ridge

14

National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

REFERENCES

[1] Meet the HP Integrity Superdome with the new HP Super-
Scalable Processor Chipset sx2000, HP, 2006. [Online]. Available:
http://h71028.www7.hp.com/ERC/downloads/5982-9836EN.pdf

[2] Hewlett-Packard, “Perfmon project,”
http://www.hpl.hp.com/research/linux/perfmon/.

[3] Intel, Intel Itanium2 Processor Reference Manual for Software Devel-
opment and Optimization. Intel, 2004, vol. 1.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,and
S. K. Weeratunga, “The NAS Parallel Benchmarks,”The International
Journal of Supercomputer Applications, vol. 5, no. 3, pp. 63–73, Fall
1991. [Online]. Available: citeseer.ist.psu.edu/article/bailey94nas.html

[5] “C versions of nas-2.3 serial programs,” 2003,
http://phase.hpcc.jp/Omni/benchmarks/NPB.

[6] J. Marathe, F. Mueller, and B. R. de Supinski, “A hybrid hard-
ware/software approach to efficiently determine cache coherence bot-
tlenecks,” in International Conference on Supercomputing, June 2005,
pp. 21–30.

[7] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway, “The amd
opteron processor for multiprocessor servers,”IEEE Micro, vol. 23,
no. 2, pp. 66–76, 2003.

[8] A. Kleen, A NUMA API for Linux. [Online]. Available:
http://www.novell.com/collateral/4621437/4621437.pdf

[9] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3B: System Programming Guide. Intel, 2007.

[10] B. Sprunt, “The basics of performance-monitoring hardware,” IEEE
Micro, vol. 22, no. 4, pp. 64–71, 2002.

[11] A. Ertl and B. Paysan, “Bplat: A memory latency benchmark,” 2004,
http://www.complang.tuwien.ac.at/anton/bplat/.

[12] J. H. Mustafa M. Tikir, “Using hardware counters to automatically
improve memory performance,” inSupercomputing, ACM, Ed., 2004.

[13] L. Schermerhorn, “A matter of hygiene: Automatic page migration for
linux,” in linux.conf.au, Jan. 2007.

[14] M. Dobson, P. Gaughen, M. Hohnbaum, and E. Focht, “Linuxsupport
for numa hardware,” inLinux Symposium, July 2003.

[15] R. Bryant and J. Hawkes, “Linux scalability for large numa systems,”
in Linux Symposium, July 2003.

[16] R. Bryant, J. Barnes, J. Hawkes, J. Higdon, and J. Steiner, “Scaling linux
to the extreme,” inLinux Symposium, July 2004.

[17] D. Nikolopoulos, T. Papatheodorou, C. Polychronopoulos, J. Labarta,
and E. Ayguade, “User-level dynamic page migration for multipro-
grammed shared-memory multiprocessors,” inInternational Conference
on Parallel Programming, Aug. 2000, pp. 95–103.

[18] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos,
J. Labarta, and E. Ayguade, “UPMLIB: A runtime system for tuning the
memory performance of openmp programs on scalable shared-memory
multiprocessors,” inLanguages, Compilers, and Run-Time Systems for
Scalable Computers, 2000, pp. 85–99.

[19] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum,
“Scheduling and page migration for multiprocessor computeservers,”
in Architectural Support for Programming Languages and Operating
Systems, 1994, pp. 12–24.

[20] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating sys-
tem support for improving data locality on ccNUMA compute servers,”
in Architectural Support for Programming Languages and Operating
Systems, 1996, pp. 279–289.

[21] L. Noordergraaf and R. Zak, “Performance experiences on Sun’s Wildfire
prototype,” inSupercomputing, 1999.

[22] W. Bolosky, M. Scott, R. Fitzgerald, R. Fowler, and A. Cox, “NUMA
policies and their relation to memory architecture,” inArchitectural
Support for Programming Languages and Operating Systems, 1991, pp.
212–221.

[23] W. J. Bolosky and M. L. Scott, “Evaluation of multiprocessor memory
systems using off-line optimal behavior,”Journal of Parallel Distributed
Computing, vol. 15, no. 4, pp. 382–398, 1992.

[24] J. Bull and C. Johnson, “Data Distribution, Migration and Replication
on a ccNUMA Architecture,” inProceedings of the Fourth European
Workshop on OpenMP, 2002.

[25] J. Marathe and F. Mueller, “Hardware profile-guided automatic page
placement for ccnuma systems,” inACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Mar. 2006, pp. 90–99.

