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Abstract— Non-uniform memory architectures with cache co- for remote references for a maximum of 8 and 64 processors,
herence (ccNUMA) are becoming increasingly common, not jus respectively [1], depending on the number of hops required i
for large-scale high performance platforms but also in the ontext  thejr crosshar memory interconnect. Relative to localresfees,
of multi-cores architectures. Under ccNUMA, data placemenh we measured latencies of up to 1.6x for a four-socket single ¢

may influence overall application performance significanyy as . .
references resolved locally to a processor/core impose lew AMD Opteron system with a Hypertransport interconnect (see

latencies than remote ones. Section IX).
This work develops a novel hardware-assisted page placemen
paradigm based on automated tracing of the memory reference

TABLE |
ACCESS LATENCIES ON THESGI ALTIX

made by application threads. Two placement schemes, modeg Access Type Average Latency [Cycles] Standard Deviatio
both single-level and multi-level latencies, allocate pap near Local Node Memory 207 121
processors that most frequently access that memory page. €se | Remote Node Memor 430 176

schemes leverage performance monitoring capabilities ofoo- . . .
temporary microprocessors to efficiently extract an approxmate The focus of this work is on multi-threaded OpenMP bench-

trace of memory accesses. This information is used to decigage marks for scientific computing, yet the general paradigmliiepp
affinity, i.e., the node to which the page is bound. The method to any threaded code executed on ccNUMA machines, though
operates entirely in user space, is widely automated, and hales experiments for non-scientific code are beyond the scope of
not only static but also dynamic memory allocation. this paper. OpenMP programs from the domain of scientific
Experiments show that this method, although based on lossy applications are often memory bounde. the overall wall-

tracing, can efficiently and effectively improve page placeent, . . .
leading to an average wall-clock execution time saving of ev clock execution time of the program is significantly affectay

20% for the tested benchmarks on the SGI Altix with a 2x remote  the performance of the memory hierarchy. Any physical page
access penalty and 12% on AMD Opterons with a 1.3-2.0x accessplacement that is sub-optimal may result in significantigger
penalty. This is accompanied by a one-time tracing overheadf wallclock execution time. Thus, if the bulk of the accesses a

2.7% over the overall original program wallclock time. to pages whose physical memory has been allocated on a remote
Index Terms—Hardware performance monitoring, NUMA, hode, considerable performance potential may be unnedgssa
trace-guided optimization, page placement sacrificed. An intelligent page-placement scheme thatcalés

| INTRODUCTION physical memory on nodes closer to the processors with most
. ) ) . frequent accesses to a page, in contrast, can reduce tregaver
Non-uniform memory archl_tectures with cac_he coherence (_Cgccess latency leading to potentially significant redunstion
NUMA,) represent an increasingly popular design for commodi,, . iclock execution time
and high-performance computing systems alike. The cCNUMA 1o gpjective of this work is to steer page placement intel-
paradigm has spread from traditional installations, swdha SGI - |jgenty. vet, this requires us to determine the overall roem
Altix, to AMD's Opteron x86 architecture and is now spreaglin 5cceqs pattern of the program and to do so efficiently since

to hor_noge_neous multi-core arqhitectures _in general. Thterla o ~ost of program analysis needs to be amortized by the
trend, is driven by a need for hlgh-speed interconnects, 8“"Chspeedups that later result from the chosen data layout @gtim
AMD's Hypertransport and Intel's Common System INtercaine g - programmers often find it difficult to reason about the
(CSI) 7 QuickPath. In such systems, processors access M@ Sgogt nage placement for each page and would rather prefer to
global virtual address space but the physical memory isiblised 4o \05ate this task to the operating or runtime system. Etntbre,
across nodes and coherence is maintained using hardwate megqiem_gpecific details are often hard to track. For example
anisms. Accesses to physical memory local to_ a processor m” now, Linux on the SGI Altix utilizes a “first-touch” pag

the same node/attached to the current processing core) i@su o acion policy,i.e. a page is placed in the local memory of

lower latencies than accesses to remote memory (on a differg,; yrocessor that first accessed this page. Hence, campuls
node/core). Similarly, accesses that hit in local cachg®os® a ;. iiqlization of data elementse(g, from a file) in a single

lower Iatency than those resolved by cache accesses to dereni o4 (as often performed by the master thread under OppnMP
node or a dlfferent_ core. can cause the page to be allocated permanently on a particula
An OpenMP micro-benchmark was constructed to evalugi@ye several OpenMP programs were encountered that had not
access latency on an SGI Altix machine, which representsyaq, gpecifically tuned for ccNUMA environments and often
typical ccNUMA platform. The program counts the processqptalized all data elements in the master OpenMP thredds T
cycles required to access physical memory on the local andtee 5,seq the bulk of the data space to be allocated in physical
nodes. The results are shown in Table I. On average, it tal?ﬁ%mory on only a single node, thereby drastically increpsie

more than twice as long to |oaq from remote memory than frog), per of memory load instructions that access remote mgemor
memory on the local node. While this observation genersiltee g+ even when programs specifically initialize (“touch”)talan

ccNUMA machines, actual overheads depend on the intercd)nnﬁar(,ﬂ"eI on multiple threads, sub-optimal page allocatioay be
and the number of nodes (sockets). For instance, HP remts {hqeneq. Such behavior was observed by determining théeum
its Itanium-class servers latencies ranging from 185ns9n8 ¢ - asses to a particular page during the stable exequhiase
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To determine the locality of memory references to page$he policy exploits the fact that remote node access latenci
an efficient whole-program analysis tool is required. Such an NUMA systems, such as the Opteron, are not uniform but
tool monitors the memory accesses during the stable ewecutvary by the distance (hop count) between the source andttarge
phase of an application. The information is subsequentlized nodes. Experimental results from the Opteron platformciaigi
to derive the best page placement in terms of reducing ttieat this scheme results in an average wallclock time sawing
number of remote references to a given page. Depending D2%. This is lower than the wallclock time reduction obsdrve
the interconnection topology, remote accesses amongsiptaul on the SGI Altix. The difference can be attributed to the thett
nodes may incur constant or variable latencies. We handle boemote accesses are relatively less expensive on the @ptiran
of the above cases in our work. on the Altix (depending on the number of hops, 1.3x/1.6x/2x

The general approach is as follows. First, a truncated onen the Opterons but 2x on the Altix). Overall, the developed
timestep version of the target application is executed.Idtipg schemes make automatic page placement a cheap commaodity tha
performance monitoring capabilities in existing micraggssors, is widely transparent to the user. This result is unprecedein its
an approximate trace of the memory accesses from all theeactiow overhead of the scheme, its elegant exploitation of ward
processors during this partial (truncated) run is effidjermix- monitoring, operating system and runtime system suppodt an
tracted. This access information is subsequently useddidel¢the coverage of not only static arrays, as in past work, but aésph
best page placemerite., the physical node on which a particularallocated regions.
virtual page should be allocated. This information is dedot
as the “affinity hint” per page. Finally, the entire applicat is ) )
executed, yet with transparent wrappers that allocatespagehe ~ 1he overall framework for trace-guided page placement is
assigned physical node based on the affinity hints. deplcteq in Fl_gl_Jre 1. I_t _con5|sts of thre_e distinct phasesraee

The first scheme simplifies NUMA systems in that it assum&§neration affinity decisionandtrace-guided page placement
a constant latency for remote references. It leveragesefeud ~ DUring trace generation, a truncated version of the multi-
“first-touch” page allocation policy of operating systenssich thre_aded prog_ram_con3|st|_ng of a single timestep is exdcute
as implemented on SGI IA64 Altix systems. For this approacRUring execution, information about the memory accessepatt
allocation is realized within wrappers by “touching” theget for each thrgad is collected. Eac_h OpenMP thread is _e>de|C|t
page from a processor on the assigned node. Both staticdlRUnd to a different processor using thehed.set af fini ty
defined and dynamically allocated regions of memory are leand primitive for the experiments discussed in Section VI. Rert

by initialization and allocation wrappers, respectivedatically More, dynamic allocation requests issued during exectaien
defined memory regions (in thess segment) defer to page INtércepted and logged. The collected information is usgtihd

touching upon application startup while the page touch iayael the affinity decisio_nphase to choos_,e_ the most favorablg mapp.ing
for dynamically allocated regions to allocation time. Esipeental ©f Pages to nodes.e,, the page affinity. Finally, the entire appli-
results on the first ccNUMA platform, an SGI Altix, show thafCation is re-executed, this time in its non-truncated, veiision,

long-latency loads provide a better indicator for page euiaent 2nd the affinity information is utilized to force allocatiofipages
than TLB misses. Overall, an average wall-clock executioret On the respective nodes derived from the affinity informmatio

savings of greater than 20% was observed over all benchmarks! e approach has been extensively automated such that user
The average one-time tracing overhead amounted to 2.7%eof ffiteraction is only required in three steps. First, a spewader
wallclock time for the complete original NAS and SPEC OpenMﬁ'e transparentlyvrapsallocation functions like malloc with calls
application benchmarks. to handler functions. Second, a call to an initializationdtion is
The second scheme targets ccNUMA platforms where remdi@ced at the very start of the program. This function esfgrige
memory references depend on the hop count over the intezconnPlacement for statically-defined memory regions duringéra
This is the case for most NUMA platforms, including HPguided runs and initializes the hardware performance ropnit
Integrity line, SGI's IA64 Altix machines and AMD’s Hyper- during the trace collection run. Third, the user must idgritie .
transport for the Opteron architecture. For the latter,@ipteron Stable execution phasef the program and mark the phase with
architecture, a different sampling mechanism was develge Calls to handler functions. For example, in time-steppeg@ms,
AMD has not publicly revealed any hardware sampling suppo‘ﬁe stable execution phase is a single timestep. The idea is t

for memory references yet in contemporary Opteron systen‘FQ.”e_C'[""Sn""lf_’ShOt of the program’s memory access pattermgd
Instead of obtaining traces on the Opteron architectueshtird- & Snippet of its stable execution phase, which becomes tie ba

ware capabilities of Intel's performance monitoring unitrecent fOr guiding page placement decisions. In the following isecta
Pentium4/Xeon processors is utilized. These traces, basete detailed description of the framework is given.

execution of a common application binary for both Intel a2 I1l. TRACE GENERATION

processors, are utilized for deriving page affinity infotima as
before. The page hints are subsequently driving page pkaem
for an application running on an Opteron ccNUMA platform

The intent was to dimonstrats tp;ertab ity olf the dﬁve!oped accesses and misses in data translation-lookaside bOffeirR)
processor-centric scheme and also to evaluate the impact,pl ¢\ her distinguished.

page placement for the benchmark set on the widely use he Itanium-2 performance monitoring unit (PMU) provides

Opteron/Hypertransport architecture, which is Sim"a”mrS hardware support for capturing memory traces [2]. To thig, en
forthcoming Common System Interconnect (CSI) / Qu'CkPatllﬂel i bpf mlibrary is utilized as it provides an interface to access

for larger multi-core arch|t_ectures. In _the course of thisrky the hardware counters of the processor in a convenient manne
a novel and more aggressive page affinity policy was devdlop%t the user level. The details of the Itanium PMU functiayali

Il. OVERVIEW OF THE FRAMEWORK

Two types of trace information need to be captured, namely
memory accesses and calls to dynamic memory allocatiom, eac
on a per-thread basis. For the former, tracing of individual
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are described elsewhere [3]. In this work, the PMU is utdize overflow based sampling on other architectures can giveeadsl|

capture two different types of memory access data — longi¢gte ing instruction addresses for the missing load due to sopkns

loads and data translation lookaside buffer (DTLB) misskes. issue, deep pipelining and out-of-order execution [3].

simplified view of the PMU operation for capturing long-lat§ g capturing Data TLB Misses

loads is shown in Figure 2. When sampling long-latency 10ads p1) g misses can also be captured exploiting PMU function-

the PMU supports selective tr_acking of Ic_)ad instructit_)n_seluh ality, yet there is no support for specifying a latency thad.

on a latency threshold and optionally provides reducedssil 5 jous specific sub-types of the DTLB misses can be captured

sampling and constraints on memory ranges of sampled mes(described in more detail in [3]). In this work, all types of DB

A. Capturing Memory Accesses misses are captured by selecting the correspondiingpf m
One pitfall common for hardware-based sampling on othEYENtDATAEARTLB.ALL. Each captured sample contains the

architectures as well is that the PMU does not capture aj-lon2ddress of the memory access instruction that caused the TLB

latency loads, which exceed the latency threshold, but gfist MiSS anql the accessed data address. This trace sourceesclud

subset of them. There are two reasons for this. First, due [td LB misses caused by both loads and stores. In contrast, the

hardware restrictions, such as the depth of the pipelinetaed '0ng-latency capture mechanism described earlier onlyitmsn
ability to track only one load at a time within the pipelinéet load instructions. Furthermore, once a DTLB miss has oedyrr

PMU can only track one load at a time out of potentially man§uPSequent accesses to the page whose entry was brougfieinto

outstanding loads. Second, in order to prevent the samedate | -B become invisible, irrespective of whether or not theyssni
load miss from always being captured in a regular sequence!dhe L2 cache. Hence, DTLB misses are a means to capture the
overlapped cache misses, the Itanium PMU useslomization flr_st access to a page t_affluently, but this efficiency comethat
to decide whether or not to track an issuing load instructiome  Price Of accuracy. Section VIil evaluates these trade-offs
to these reasons, the load miss trace is consideresly when C. Capturing Dynamic Allocation Information
obtained by hardware tracing. In Section VII, hardwareebas The layout of statically allocated data can be steered taalini
tracing is compared with non-lossy software-instrumentading ization time of the program. Dynamically allocated data gmg
to gauge the trade-offs between accuracy and efficiency. however, cannot be forced onto certain nodes at initiatimattme
The Itanium PMU further allowdiltering for traces. Specifi- as their memory becomes available only during executiocalRe
cally, if a PMU-tracked load exceeds a user-configured atenthe approach of trace-guided page placement. The “firgthtou
threshold value, it qualifies for capture, otherwise it wié allocation policy, used by SGI's Linux version for the Altialso
ignored,i.e., the load will no longer be tracked within the pipelinethe default under contemporary x86 Linux systems, is |gyestdo
Since the access latencies increase monotonically foredagkls allocate physical memory pages on the intended node. Talitou
that are more distant from the processor, the latency thtésha particular virtual page address, the earliest point irptlogram
allows selective capturing of the load miss stream (L1-Dseés needs to be known at which such an address becomes valid. This
L2 data load miss stream, etc.). Due to hardware limitatittns requires the logging of heap memory allocation calls on a per
latency threshold can only be set in in powers of 2 on thedtani thread basis.
A lower bound is given by 4 cycles. During execution of the truncated program, callsn@l | oc,
Each filtered load increments the PMU overflow counter. Byal | oc andfr ee are intercepted and logged. Notice that our
appropriately initializing this counter, the user can virg sam- approach is constrained to heap allocations within thectted
pling rate for the captured long-latency load streaBafnpling. program. Any subsequent allocations will not be represkitte
The Itanium-2 has special support to capture the exacuictstn the trace, which reduces page affinity information. Henbe, t
address (IP) and the corresponding data address beingdloadeproach promoted in this work is more suitable for applbcet
(EA) for the sampled long-latency load. In contrast, countethat pre-allocate large arrays prior to computation, a®mrmon



for most scientific codes — with the exception of dynami- The affinity decisions are generated differently for stdljc
cally changing computational methods, such as adaptiveh metefined and dynamically allocated regions of memory. Silyic
refinement (AMR). This includes calls resulting from Fontra defined memory ife., the bss segment) contains space for
al | ocat e statements. The Itanium and x86 architectures hawainitialized global variables. The starting address axteére of
a high-resolution timer called the “interval timer couritéitc) the static region is determined at link time. The affinity ideam
or “time-stamp counter” (tsc), depending on the architectd module simply generates a per-node list of page addresst®ffs
post-processing tool builds a unified ordering of allocatgalls that have affinity to that node. The first logical processa irode
across all the threads. The ordering is derived from theddggis responsible for using these page offsets to issue thaldfirst-
per-call timestamps and compensates for the clock skeweegtw touch” page placements during the final trace-guided progran.
different processors. A more sophisticated scheme is required for dynamically
IV. AFFINITY DECISION allocated regions. Here, the starting address of the aé#idca

After obtaining per-thread memory traces, the per-nodeepaff9ion can and does change over multiple runs of the same
affinity is determinedi. e, it is decided on which node a physicalProgram. For the benchmarks evaluated, two distinct dyaami
memory page should reside for a particular virtual memoryepa memory allocation patterns were opserved. Many progrands ha

Based on the approximate memory access trace and themall number of calls, each of which allocated a large ctaink
dynamic memory allocation information, the affinity deoisi Contiguous memory. For such cases, we adjust the affinitg pag
module currently supports two metrics, one for uniform reamo Offsets relative to the starting address of the region. Thrity

latencies and one for hop-sensitive remote latencies. offsets will be used to “touch” the pages on the appropriaies
The uniform latency policyallocates a page on the node thafluring the trace-guided run just after the region is alledat
issues the maximum number of accesses to that page. A second dynamic allocation pattern was observed for pro-
grams issuing a large number of calls clustered in time, each
pi — nj & rw; j = mazry(rw;y) (1) allocating a small region of memone.¢, NAS-2.3 MG). The

resulting heap regions are mostly allocated contiguousipace.
. ) However, due to the lossiness of memory access traces, many
local memory of node:; iff the number of read/write references . . o

small allocated regions (“silent regions”) are not repntse by

rw;,; Within pagep; issued from node; is maximal within the single access record in the trace. By inspecting trace
read/write references issued by any node for this page, evher

m is the total number of nodes. Intuitively, the average leyen records for other small regions allocated close by, thekeatsi

of access can be reduced when a page is allocated closer torﬁ?éons are allocated in their vicinity (on the same pagapesi

processor that issues the largest amount of requests. physical memory is allocated gragegranularity.
The page affinity decision process consists of a number of V. TRACE-GUIDED PAGE PLACEMENT
steps. Initially, accesses are grouped by page addressthand Once page affinity decisions have been made, the original
total accesses from all threads to each page are calculBiésl. program is executed again in its entirety. The affinity infation
is depicted asrap2page in Figure 1. Here, accesses are groupegenerated in the earlier phase then drives the page platemen
by processor to calculate the per-node access count forpsagh  decisions. At the time of writing, the SGI's Linux versiorr fihe
In practice, remote access penalties are not uniform bherat Altix, as currently installed by HPC centers, does not supgy-
vary with the distance (number of hops over the intercofnedtamic page migration (even though there is forthcoming stpp
to the target node. Thhop-sensitive latency policgllocates a promised for the next release). Instead, the existing Catie-
page on the node that has the lowest aggregate access cosffirst-touch” policy is leveraged to effect page placem&his
references to this page issued from any node. policy allocates physical memory for the virtual page onribde
that first accesses (“touches”) a data element on that spaoifie.
pi—my e N orwig X wig =ming( X rwig X wrg) (2 A page is “touched” by executing a load followed by a storerto a
I=Lm I=Lm address in the target page from a processor on a particutbr no
This allocation rule requires that page on noden; iff the in order to force page placement on that node.
aggregate number of read/write referenees ; for this page Care must be taken to touch a page on the respective node
issued from all nodes, weighted by the hop-sensitive eggt before any other processor accesses that page, or an diungtn
relative to local allocation on this node, is minimal withal placement may result. For static regions of memory, eacbegro
aggregate weighted costs of any node allocations of thig.pagor reads its static affinity file on program startup and tescél
Intuitively, the average latency of access can be reducezhveh the page address offsets listed in that file, as shown in &igur
page is allocated close to all processors that issue largair@s All processors synchronize at a barrier after the touchimagsp to
of requestsi.e., this metric takes references from multiple nodesnsure that no processor accesses a statically-definecptaye
into account instead of using the winner-takes-all parmadig the affinity hint for the page has been applied. This schense ha
The page affinity decision process consists of again of gngup minimal execution overhead since the static allocation daed
accesses by page address and by thread (node), as indigatedny once, at startup.
map2page in Figure 1. Yet, the page cost for an allocation is A similar approach is employed for page placement of heap
then calculated for a hypothetical allocation to each nddées allocated regions. One difference here is that the pagent@ic
cost is the additive weighted number of accesses issuednfor @lelayed until the target memory region is allocated. In alleg
node for this mapping. The weight, ; denotes the latency (cost) program, no other processor can access the allocated riegory
of resolving a reference from nodg that is locally mapped onto case before the allocation functioa.q., mallo§ has completed.
noden;. Such pair-wise latencies can be experimentally obtainddhis fact is exploited to ensure that the developed firstitou
once and for all for a given architecture (see Section IX). scheme will effect the intended page allocation before ahgro

This allocation rule requires that pageis allocated {) in the



processor touches the memory region. The idea is to insert@uld be simplymigratedto the target processor given by the
wrapperaround the allocation call. The behavior of the wrapper &ffinity hint at the additional cost of dynamic page migratio
controlled by an environment variable. During unoptimizeds overhead. This is another topic of future work.

of the program, the wrapper does no work. During the tracing V]. EVALUATION FRAMEWORK

phase, the wrapper records the allocation request parem{siee
of region, starting address, thread id, timestamp). Thenisffi
generation phase tags each allocation request with affirits.
Finally, the wrapper uses affinity hints to effect page altan
as follows during the trace-guided runs.

The previous section described a scheme for trace-guidgel pa
placement. In the following, a cost versus benefit analysis i
presented as the configurable parameters shown in Figure 1 ar
varied. More specifically, two parameters are subject tongha
o . . . (1) the choice of thd@race sourceand (2) thesampling interval
Upon its invocation, the wrapper first calls the real allgwat for capturing memory access samples. The hardware protsides

function. The dynamic affinity hints provide information calt trace sources, namely long-latency loads and DTLB misses. T

which parts of this dynamically allocated regions should b§ampling interval allows a trade-off of sampling overheadthe
allocated on which target processors. This informationsisia

f 2 list of dentifi d the add feetsribad amount of trace data collected. For each trace source atitfe
ora list of processor 1dentifiers and the address ofise sampling interval values (Sections VIl and VIII) are inigated.

to be touched on these processors. For each such processcgy changing these parameters, the amount and type of trace
the cm_Jrrent thread reschedl_JIe_s itself on the target PrOCeSE tormation collected will change. This poses the questiof
by using thesc_he_d_set affinity function qall. When th? (1) how these traces affect the quality of the affinity hintsla
sched_set af fi ni ty call returns, the thread is now executlngéz) how the affinity hints influence changes in overall walt
?hn th_e tarl_getzt ?ro((j:gssor. ;hetn t?ﬁ totl:Ch me_chanlsm aitloh;Ch Xecution time. To answer these guestions, a comparisarebat

€ given [ist of address OfISets, thereéby causing page the performance of these traces is needed with respect to the

on the physical memory in the targeF processors node. TB‘érformance of affinity hints based onraferencetrace. This
thread_ gvent_ually re-schedules itself on its original PEZO _after reference trace is referred to as the “maximum informatiaoe”.
all affinity hints for all processors for the dynamic regiore a A comparison with the reference trace helps answer theviolip
processed. . . guestion: What affinity hints will be generated given a caoetgpl

To the user level program, this approach is near_ly Comlp'Ieuarnemory access pattern of the program? How much improvement
transparent W'th. the exception of the wrapper function. e_tbe- in performance can be achieved using these hints? By congpari
less, the execution overhead of the wrapper approach caighe hresults obtained from partial hardware traces against eékalts

ror every aIIocatiohn reques; for which t_h(;re are affini_ty:]@in achieved with the maximum information trace, the trade&f b
or N processors, there arer con_text SW_'tC es (one switc tc_’tween trace collection cost and the optimization benefit lban
every target processor, and the final switch back to the raigi clearly attributed

processor). The experl_ments n Sectlon_VI re_ve_za_l that ttesie The maximum information trace was originally obtained by
has substantial execution overhead, which diminishesafredye , ¢4 are memory tracing tool to capture all memory loads

to reduction in remote accesses for several benchmarksovidre owever. this method had too much execution overhead for the
head can be reduced by a less transparent scheme that mvoE’&chma{rks evaluated. Instead, the PMU was configured with
more effort on part of the user. A simple way t_o reduce O_Vedhe%e lowest latency threshold setting (4 cycles) and the dsgh
would be togroup the touching effort for multiple dynamically sampling frequency (1). The resulting trace was utilizecthas
allocated regions. For each group, there would be only onteb maximum information trace. Since the L1 cache hit accesaést

SW'tfg flo ' eacz processor dldn' _the :'St thaﬁ'n'ty _hlnts. TILE]E“JS is 1 cycle, this corresponds to capturing a fraction of atlemses
would also need to insert additional synchronization taled$hat . miss in the L1 data cache. In the discussion below, the

no threao! begins accessing dynamlcglly allocated regiefid “reference results” refer to the affinity hints generatethgghe
the_touchlng has occurred (to prevent inadvertent pageaitm), maximum information trace. Similarly, the “target tracesuks”
an idea left for future work. . clienote the affinity hints generated by the evaluated trace.
The approach for_ page p_Iacement employed fo_r dynamlcaIyThe evaluation has three aspects: (1) tzeing cost (2) the
allocated regions still is subject to one caveat. While thadh- quality of the collected trace, and (3) the resultiegecution

marks of the experimental sections always allocate memoly 0 .o fits The tracing cost is the cost of collecting the access trace,

at the _start ofhtrl;ehprqgra_lm and do not geﬁ it until the elnd %hich is determined by thsize of the tracand by theexecution
execution, such behavior is not guaranteed. If programeateply overheadinflicted on the benchmark during the trace collection

EL”OC&;’FG ?nd free Tehmo”?_/ Itnt thehftabLe execuncl)g bphazz' ! se. As the sampling interval is increased, both the tsame
the effectiveness of the "first-touch”™ scheme wou € reduc 5nd the tracing overhead are expected to decrease.

;h'f’ occulrsa”bscaﬁse IFI) oruo_ns ?f th_e V'rt;:al qudress SE:;I@G MaThe quality of the trace was evaluated by comparing the targe
e “recycled” by t € a ocation u_nctlon after they weretislly 506 results to the reference results using three differmtrics.
freed, but thephysical memory WI|| only be aIIocatqu once on ) Coverage denotes the fraction of the pages in tiederence
the_ node where_th_e page of ylrtual memory was first touch 'sultsfor which an affinity hint exists in the target trace results.
This presents a limitation of using the first-touch mechanishe The affinity node values for the page do not need to be the
issue i_s being rgsol\(ed as the operating SVS‘e”_‘ (Lin_ux)cs_ PP same between the reference and target trace resuliac¢2yacy
dynamic pagemlgratlon In th_e latest kerne_lsl. With mlgrat_lon denotes the fraction of the pages in ttaeget trace resultshat
support, the virtual pages in the dynamically allocatediareg have the same affinity hint node value as the reference sesult
1Draft APIs for manual page migration have been proposed amdeing (3) The Useful Fraction metric combines the information from

incorporated into future Linux releases for the Altix. T already present these two metrics. It measures the fractiqn of the affinitytshin
in the latest experimental Linux kernels for the x86 aratitee. the target trace that are not only present in the refereace tout



also have thesameaffinity node value. out, as indicated by the latencies in Table I). Then, the nanog
These metrics should be interpreted as follows. A tmverage is run with the affinity-enhanced page placement scheme, and
value indicates that, for a large number of pages, not enoutiie number of accesses exceeding the latency thresholdl iG12
information is embedded in the target trace to generateitgffincounted as before. The difference between the two valuesde®
hints. A high coverage value increases confidence that thetta an approximate measure of the net reduction in remote memory
trace contains affinity hints for almost the same number gkpa accesses. In practice, this value was found to be quite stensi
as the reference trace (though the affinity noddues might across multiple runs.
be different). In contrastaccuracy measures the stand-alone In the experimental evaluation, the wallclock time for the
usefulness of the target trace. It answers the questiohelfarget complete run of the original program is compared to the wall-
trace were to be used to generate affinity hints, what fraatio clock time of the program with trace-guided page placement
the affinity hints are identical to those present in the exfee including the overhead of the page touching mechanism.nguri
results? A high accuracy value indicates that the targeetia the experiments, it was observed that the execution timéef t
as useful as the reference trace (though at a potentialllhmywrogram varied measurably across runs. This may be due to
reduced overhead). A low accuracy value, in contrast, aidi several reasons. First, the difference in scheduler altotaof
that the target trace is potentially misleading in the sehaethe processors for the batch runs affects the degree of bentdined
affinity hints do not match the hints in the reference results  with trace-guided page placemestg, the benefit will be less if
The coverage, accuracy and useful fraction are computedths allocated processors are closer. Second, all opersyistgm

follows. Let calls on the Altix must go through a small collection of CPUs i
Ref = # hints in reference results; the interactive login partition. Thus, the load on the iatdive
Targ = # hints in target trace results; nodes affects the performance of the jobs running on thehbatc

C = # hints in target trace results that are also present fmodes. This is especially significant for the dynamic pageting
the reference results (though the affinity node values mighit mechanism, which potentially involves multiple contextiteives
match); for a single affinity hint.

A = # hints in target trace results that are also present in theTo compensate for this variability in execution time, each
reference results AND the affinity node values match. Then, benchmark was executed six times, except for only five ei@tsit

Coverage= R%f * 100% of BT. Each time, the trace-guided runs and the non-tracdegli
Accuracy= ﬁ * 100% runs were executed on the same scheduler-assigned processo
Useful Fraction= Ri + 100% allocation. The wallclock execution time graphs show therage

e

These three metrics each provide a different understanafingPenefit obtained with each sampling interval. The error higrs
the trace characteristics. For example, a high accuracgvalght Note the confidence interval range for a 95% confidence iaterv
still not indicate areffectivetrace if the coverage is low. This can Benchmarks: Nine OpenMP benchmarks were experimentally
be the case when a large number of pages lacks affinity hows (I€valuated. Th|_s includes seven out of the eight NAS-2.3 !h)enc
coverage), yet the few hints generated are correct (highracy). marks_ (_excludmg EP). '_I'he NAS benchmarks are C versions of
Similarly, a low useful fraction value could be either dueldw the original NAS-2.3 serial benchmarks [4] provided by ther®

coverage or to low accuracy of the hints. Thus, there is a neg@mPpiler group [S]. EP is not evaluated since it does not have
for all three metrics. significant sharing of data [6]. In addition, the 320.equalkel

The metrics discussed so far coveost and trace quality 332.ammp benchmarks from the SPEC OMPM2001 benchmark
For assessingrace benefittwo metrics are utilized: (1) the netSét were assessed in the results. These benchmarks haife sign
reduction inremote accesseand (2) the reduction invaliclock ~icant dynamic memory allocation, thereby putting the dyitam
execution time The net reduction is compared by taking théouching mechanism to the test.
difference between the metric values (remote accesselgjocal ~ All programs were compiled at the -O2 optimization level.
execution time) between the original unmodified programana Al NAS benchmarks use Class C data sets while the SPEC
a run with the new trace-guided page placement scheme. benchmarks use the reference data set. All experiments were

The evaluation process works as follows. First, the targérmied out on a non-interactive (batch) allocation of eigro-
program is run for one time step and trace data is collecthis TC€SSOrs. On the Altix platform, two processors always shaee
trace data is used to compute the affinity hints and the entff@de. A total of four nodes were used. All programs were run
program is re-run using this trace data. Thus,ttaee costis the with eight OpenMP threads. Each thread is bound to a separate
cost to capture the samples over one timestep of the progdam. Processor using theched.set af f i ni ty primitive. OpenMP
the Altix/Itanium and Opteron platforms, there is no easy wahreéad scheduling was set to static. This hardware platfoas
to measure the number of remote memory accesses generate§&jjum-2 processors running at 1.5GHz, each with a 6 MB L3
the program. Instead, ampproximatemeasure of the reduction ¢@che, 256 KB L2 cache and 16 KB L1D cache.
in remote memory accesses is employed on the Altix p|atf0rm_F0r each program, markers were inserted to delineate the sta
To this effect, the PMU latency threshold is set to 512 cyglesand end of the timestep. For 332.ammp, the pre-existingdoun
and the number of accesses that exceeded this thresholtefor™PPin allocation of the “atom” element was disabled for the
original program is counted. The high latency thresholduess trace-related runs. However, the benefit metrics (wallclhme,
that almost all loads that hit in cache or in local memory wiltumber of remote accesses) are still compared againstigisar

be filtered out (though some remote loads may also be filterdgPgram. For the IS benchmark, a one-time dynamic allooatio
for the prv_buf f 1 array is issued since the program failed to
“Due to PMU limitations, the latency threshold can only beisgtowers execute with the default stack allocation for this varial@ert of

of 2. The next lower threshold (256 cycles) would not filtet awsignificant _
fraction of local memory loads, as indicated by the latend@eTable I. the 9 benchmarks, 4 benchmarks MG, 332.ammp, 320.equake,
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- . . . execution overhead at OV-1 is about 20% of the FULL trace
IS — utilize dynamic memory allocation. The remaining bench

marks operate with statically declared global arrays. cost, with the_ e>.<cept|ons &P a_md I. S that hgve lower Savings.
Trace Quality: As the sampling intervals increase, the size of

VIl. EVALUATION WITH LONG-LATENCY LOAD TRACING the trace collected will tend to decrease. This has an effiethe

The performance of the developed page-placement scheme waality of the tracei.e., the coverage, accuracy and useful fraction
assessed for long-latency loads as the trace source ugirgpsh, metrics. The maximum values of all these metrics is 100%.
quality and benefit approach that was described in the latibse Coverage: Figure 5 depicts the coverage results for different
For these experiments, the latency threshold in the PMU whas sampling intervals. At OV-1, the average coverage is 99% ind
to 128 cycles. This filters out most of the load accesses that h cating that affinity hints exist for almost all of the FULL t&
the L1D, L2 and L3 caches. The sampling intervals were safectpages. The OV-10 coverage still remains high at 94%. Aftat,th
as 1, 10, 50, 100, 200 (OV-1 to OV-200 in the graphs). Pages wer noticeable decline in coverage at sampling intervals of50V
allocated to nodes using the uniform latency policy (Eg. 1). and beyond is observed. The average coverage falls from 94% a

Tracing Cost: The graph for cost comparison shows the co€V-10 to 76% at OV-50 and finally to 47% at OV-200. Thus, at
for the “maximum information trace” (denoted &JLL in the OV-50 and higher, the trace data is insufficient to generffitats
graphs) and the results for each of the reduced samplingyatsée hints for page placement for a significant number of pages.

The reduced sampling results are normalized to the FULLetrac Accuracy: The accuracy values, depicted in Figure 6, are very
values. close across sampling intervals for each benchmark. Alsty-a

Number of Captured Samples: The number of accessesracy remains uniformly high across increasing samplingrirtls
captured at OV-1, depicted in Figure 3, is about an order @r all benchmarks (except for LU). This is very encouraging
magnitude lower than the FULL trace for most benchmarkas it indicates that even with a reduced number of accedses, t
(except IS). By keeping the latency threshold much high@8 (1 affinity node recommendations match the recommendatio@ngi
cycles instead of 4 cycles for the FULL trace), most of thedtoa by the FULL trace for most of the affinity hints generated. £U’
that hit in cache are filtered out. These loads can be ignaneé s behavior is explored in more detail later.
they do not propagate past the cache to memory. Hence, theyseful Fraction The useful fraction is the fraction of the FULL
will not be affected by page placement. With increasing damgp trace affinity hints that are present and have the same gffinide
intervals, the total number of samples captured decreasssgly. value in the target trace results. A high useful fractionidates
At OV-200, the average number of accesses in the trace has béat almost the same results were obtained as the FULL trace
reduced by 1000 times over the FULL trace. results, albeit with much smaller trace input data.

Tracing Execution Overhead: The absolute execution over- The average useful fraction, depicted in Figure 7, is high fo
head for tracing is extremely low since it is sufficient to @xte OV-1 (93%) and OV-10 (87%). From OV-50 to OV-200, the metric
only a single timestep for a benchmaiike., partial execution degrades from 68% to 40% on average. This trend occurs keecaus
significantly reduces overhead over an execution of thereentthe coveragevalues fall with increasing sampling intervals while
benchmark without any loss in accuracy for the benchmarkise accuracy remains steady. The degradation is much more
studied. On average, over all benchmarks, the executiomead pronounced for benchmarks likeS, FT and M5 whereas there is
for tracing a single timestep at OV-1 was 2.7% of the overadlmost no degradation fa2G
original program execution time. Trace Benefits: The impact of the page placement scheme

The relative tracing execution overhead (comparedROLL) is explored for two metrics: (1) the number of remote accesse
is shown in Figure 4. The overhead flattens out with increpsigenerated by the program and (2) the wallclock executior tim
sampling intervals. This indicates that the trace coltectcost of the program.
does not dominate the time to execute the timestep. Thetsesul Reduction in Remote AccessesFigure 8 shows the net
show that OV-1 or OV-10 are the “sweet spot” values for theeduction in the number of remote accesses for the fullyamog
sampling interval, since increasing sampling intervalgpe that run using automatic trace-guided page placenventhe original
point does not reduce overhead by much. On average, tracprggram. The figure compares the reduction in remote acgesse
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using the FULL tracevs. the reduction achieved at latency "
threshold 128. It also depicts the different sampling waés.
For all but one case (LU:FULL trace), there is a net redudition .
the number of remote accesses. Almost all the remote accfesse W m Wm
CG and MG are eliminated as shown by a 98% and 97% reduction Tm{ + [w |
at OV-1 for CG and MG, respectively. Other benchmarks also ’ W I S
have a significant reduction in remote accesses. The average
reduction at OV-1 is 60% and decreases significantly fromSOV- Fig. 9. Benefit: Time Savings over Original Program & ArithineMean
(48%) to OV-200 (28%). OV-10 appears to be the sweet spot. The
average reduction is, in fact, slightly higher for OV-10¥Bthan benchmark, the affinity hints generated by the full trace db n
OV-1 (54%). Only LU shows a 28%tncreasein remote accesses match the affinity hints generated by the other traces (CVQ\-
when using the full trace. This anomaly of LU is discussed iB00). This causes low accuracy and useful fraction valiesean
more detail later. in Figures 6 and 7. Furthermore, using the full trace leadanto
Reduction in Wallclock Execution Time: This is the most increasein the number of remote accesses (Figure 8) while OV-50
important measure to assess the overall benefit as it iedicaieads to a 10% decrease in remote accesses. The corregpondin
the performance improvement of an application with traceled wallclock time reduction iigher for OV-50 (8% improvement)
placement compared to the original unmodified program. reéiguthan that of the full-trace results (0% improvement).
9 shows the improvement in wallclock time. As described 'efo  The underlying cause is as follows. The affinity node values
the error bars represent the 95% confidence interval ranige. Tiffer between the full trace and the OV-1 trace (and higher
ranges for MG, LU and IS are large indicating that these @nogr sampling interval traces) for parts of the langed global static
have more variable execution times. array. The full trace uses the lowest possible latency of dlesy
Except for IS, every other benchmark shows a reductidn sample the address trace. This captures all possibles,load
in wallclock execution time. The average reduction is 21% atrespective of whether the loads hit in cache or not. Foptoges
OV-1. CG achieves exceptionally large savings with over 734f ther sd array that have different affinity hints in the full and
shorter executions at OV-1. Many other benchmarks (SP, K, MOV-1 traces, most of the accesses on the affinity node givérein
Equake) also achieve greater than 15% reductions. full trace are hits in the local caches. Hence, the affinityislen
With increasing sampling interval, the wallclock improvemis is different from the OV-1 trace-based decision (which fdteut
tend to decrease though the magnitude of decrease is progréme cache hits). First, loads that hit in cache will not beetid
dependent. CG does not show much degradation with inciggasby page placement decisions. Second, the full-trace basgd p
sampling intervals, but there is a noticeable degradatiith 8P placement, in factworsensthe average access latency for cache
between OV-10 and OV-200. misses since the corresponding pages are allocated on ahaide
IS represents an exceptional case where the wallclock g8gacu only has infrequent cache misses for those pages. Thisiegpla
time increaseswith trace-guided page placement. The cause tie increasein the average number of remote accesses for the
the degradation is the cost of the page-touching mecharosm full-trace results compared to the OV-1 based experimenmsT
dynamically allocated regions. Each hint on a dynamically-a the average wallclock time improvement is lower for fulide
cated region potentially represents at least two contedtbes: than for OV-50 in this case.
one to switch to the target processor and “touch” the page andConclusions: Long-Latency Tracing: 1) Overall, the size of
the other to switch back to the processor that originallested the trace data at OV-1 is one-tenth the size of the FULL trace
the allocation. (Note that each OpenMP thread is bound tooa average. With increasing sampling intervals (OV-1 to OV-
different processor. Hence, the discussion refers to pemre 200), the trace size decreases linearly. 2) For most ber&sma
instead of threads here.) With increasing sampling intsyfawer the execution overhead of trace collection decreases Igharp
dynamic hints are generated (as coverage falls). This esduérom FULL to OV-1, yet it does not decrease significantly with
the overall overhead on the target. Thus, less degradationlarger sampling intervals (OV-10 to OV-200). Thus OV-1 or-OV
wallclock execution time is observed for IS with increasind0 appears to be thsweet spotfor trace collection. 3) With
sampling intervals. increasing sampling intervals, the coverage drops sigmifig,
Similar to IS, the potential wallclock savings for other grams which indicates insufficient trace information to generafinity
with dynamic memory allocation (MG, Equake, AMMP) are alsalecisions for many pages. 4) Nevertheless, dbeuracyof the
affected by the overhead of the touching mechanism. Givah thrace information does not degrade significantly with iasiag
over 98% of the remote accesses for MG are eliminated by paggmpling intervals. 5) A significant reduction in the wadlck
placement, the wallclock reductions for MG would increagene execution time and the number of remote accesses is possible
further with a more optimized touch mechanism. with trace-guided page placement. However, for programnts wi
The LU Anomaly: LU represents an anomalous case. For thidynamic allocation, the page touching mechanism is expensi
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and adversely affects wallclock execution time. A more ojed | Coverage: The average coverage at O.V'l (74%) is sharply

touching scheme should lead to even better wallclock red gwer than the average coverage at OV_-1 n the Ioad-pasg_dtsres

tions for these programs. 6) For one benchmark (LU). usi 9%), as depicted in Figure 12. This is due to significantly

the reference traceF(.JLL). actually resulted in adegradat,ion er coverage values for FT, MG, LU, Equake and Ammp,
as compared to the load-based results. With increasing lsemp

of performance. For this benchmark, tfikering effectof the . - L
. intervals, the coverage begins to degrade significant for
high latency threshold used by the target traces (128 chlt?_%_ Coverage falls f?om 73% at OV-gl o 35090 at OV-?%@(

removed loads that hit in the cache and resulted in a more.l_ N~ ) .
accurate picture of which pages are frequently accessechighw he low coverage values indicate that the information to
P pag d y generate page affinity hints is insufficient for a significaninber

Pégﬁﬁsiiogi.brut?r'nﬁmg tZe fgl;“;;?%izcrgs:atsrzze E; ?ggf; of pages. The problem is more acute for the DTLB case than for
P page p | . _the load-based results, as indicated by the lower coveralgew.

benchmarks, the ' eference trace almost alw_f_alys had th‘? MBKITY o coverage lessens the effectiveness of the page-plateme
(or close to maximum) performance benefitg,, reduction in h Iting in a reduced potential for performancefiien
remote accesses and wallclock time. scheme res-u 9 uced p ' for p )
Accuracy: The results in Figure 13 indicate that accuracy is
VIIl. EVALUATION WITH DATA TLB MISSESTRACING benchmark-dependent. For most benchmarks (except Equake a
Next, the results based on data TLB misses as the tradmmp), the accuracy values for increasing sampling interva
source obtained with PMU support are presented. Expersneare similar. This indicates that accuracy is less sensitive
are conducted for sampling intervals values of 1, 2, 4, 8 &hd teduction in the size of the trace. Compared to the loadebase
(denoted OV-1 to OV-16 in the graphs). Pages were allocatedresults, a significantly lower accuracy is observed for FT, BJ
nodes using the uniform latency policy (Eq. 1). For the dsstan and AMMP. This indicates that page-affinity decisions based
below, the results presented in the last section using lategpicy DTLB misses do not agree with affinity decisions based on the
loads are refereed to as the trace source asldhd-based FULL trace or long-latency load-based results.
results In the following, the DTLB miss results are described Useful Fraction: Due to the lower coverage (FT, MG, LU,
and contrasted with the load-based results. Equake, Ammp) and lower accuracy (FT, BT, LU), the useful
Trace Cost: As before, the cost metrics are compared againfaction values are also significantly lower than for thedloa
the cost incurred for the “maximum information trace” (det based results. The average value at OV-1 is 58% compared to
asFULL in the graphs). 93% at OV-1 with long-latency loads as the trace source. With
Number of Captured Samples: The average number of increasing sampling intervals, the useful fraction valeleds to
samples captured at OV-1 is less than one-tenth of the nuafbefall significantly for most benchmarks. The average usefdtfon
samples in the full trace, as seen in Figure 10. With increasidegrades from 58% at OV-1 to 22% at OV-16.
sampling intervals (OV-1 to OV-16), the number of captured Trace Benefits: The coverage, accuracy and useful fraction
samples decreases almost linearly. In contrast to thedaadd for DTLB-based results were observed to be significantlyelow
results, the difference between FULL and OV-1 tends to libkan their load-based counterparts for most benchmarks Th
program-dependent. Ammp and MG have more than 1000 tims8l impact the performance benefits obtainable with trgoeded
less trace data at OV-1 compared to FULL while IS has almosage placement. Figures 15 and 16 show the reductions inteemo
the same number of samples as FULL. accesses and overall wallclock execution time, respédgtive
Trace Execution Overhead: The results for the relative trace Reduction in Remote Accessed\s before, the reduction in re-
overhead (Figure 11) are similar to load-based results. Theote accesses using traces obtained at different samptienyals
average execution overhead for trace collection at OV-Bi df is compared to the reduction obtained with results basechen t
the FULL trace’s cost. With increasing sampling interva®/41 full trace (marked FULL) seen in Figure 15. Two benchmarkg, B
to OV-16), the execution overhead is not significantly redc and LU, experience amcreasein remote accesses with DTLB-
Trace Quality: As before, the three quality metrics of cov-guided page placement. The increases are significant (rhare t
erage, accuracy and useful fraction are evaluated as showrB0%) and occur with all sampling intervals. In comparison to
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the load-based results, the reduction in remote accessesads
lower for many benchmarks, especially for MG (98%. 67%)
and Equake (69%vs. 20%). The average reduction of remote
accesses is 29% at OV-1, which is much lower than the 54Fig. 16. Benefit: Time Savings over Original Program andtmietic Mean
average reduction at OV-1 for the load-based results.
Reduction in Wallclock Execution Time: As with remote IX. PAGE PLACEMENT EXPLOITING HARDWARE PEBS
accesses, the DTLB miss-based scheme generally perfornsg wo ) ) TRACES
than the long-latency load-based mechanism. The averatie wa [N the preceding sections, the developed approach was-evalu
clock reduction at OV-1 is 11% for DTLB misses (see Figurgted using Itanium2-specific hardware traces for autompaeg
16) vs. 20.6% for the load-based results. IS, LU and BT show difacement. In this section, a similar approach shall beveved
increase in execution time with DTLB-guided feedback. C@ ha'Sing a completely different hardware tracing mechanismd an
the maximum improvement (67%), while improvements reduddUMA platform. The basic idea of explomngroces_sor-centrlc
sharply for MG (17%vs.7%) and Ammp (18%s.6%) compared hardware supp(_)rt for use_r-level page placement is shqwreto b
to load-based results at OV-1. portable and widely applicable across multiple platforrivse{
Conclusions for DTLB-Tracing: 1) Overall, the cost of trace SPective of interconnect topologies). _
collection is similar for both DTLB misses and long-lateriogd- ~ Instead of the ltanium architecture, the target platfornthis
based schemes. 2) The coverage and accuracy for DTLB-ba¥égely used x86 platform. The objective of this work is tofoem
results are significantly lower compared to the long-lageload- Page placement on a ccNUMA multiprocessor Opteron system
based results. 3) Due to sharply lower coverage and accuradtypilable from AMD [7]. In this system, each processor disec
the useful fraction values are also low. This indicates DietB- accesses (using an on-chip memory controller) a fixed amount
based affinity decisions are not representative of decistbat Of local physical memory. Communication with other process
would be made with the full trace. 4) The performance benef@@'d their attached physical memories is achieved over th-po
(reduction in remote accesses and wallclock time) are alschm [0-POintHyperTransportconnection network [7]. Systems exploit
lower for DTLB-based results. 5) The trace costs for both BTL& Pus-based MOESI coherence protocol instead of the diecto
misses and long-latency loads are similar, but the quafitthe based coherenc_e present in SGI’s NUMALink fabric. _Procmso
trace and the resulting performance benefits are largerfag-| €an access their local memories faster than memories att_ach
latency load-based traces compared to DTLB miss-basedstracl® Other processors, and the access penalty increases heith t
In conclusion, DTLB misses are not a good candidate to decifdmber of hops to reach the remote memory (due the point-
page placement, which can be explained as follows. For tfspoint interconnect). The experiments will assess theetis

considered benchmarks, DTLB misses do not correlate wetl wif intelligent page placement on this system. Though theltes
the relative volume of loads from a processor to a particul¥fere obtained on the AMD Opteron, the developed schemeahoul

memory page. This could occue.g, if the program has few equally work on future ccNUMA systems from Intel tha_lt use the
DTLB misses but a large number of cache misses going too! (Commqn System Interconnect) / Qu!ckPat_h archltec_tgre
memory. Then, the information about tirequencyof accesses to ~ 1he Ppremise of the developed technique is the ability to
each page is lost if only the DTLB misses are considered ésin@Ptain hardware-generated traces that efficiently drie fage
repeated accesses to the same page will tend to hit in the pTLB/@cement policy. Since current AMD Opterons, prior to thad
Another possible scenario is a large number of DTLB misséis wicOré Barcelona chip, have no published hardware trace dipab
few cache misses going to memory. In this case also, the DTLRE performance monitoring unit built into Intel Pentiuxéon/
trace will not be representative of the relative distribotof load SyStéms is exploited for this purpose. This hardware isedall
requests to a page from each processor. In general, TLB snisderécise Event-Based Sampling” (PEBS). PEBS captures the
are not indicative for the number of remote reference isqexd '€9ISter state when a SpeCIflc_ eveetg, an L1 cache miss,
memory page. They only indicate that the page is referenc@dqete‘:ted- By decoding the instruction format and using th
for the first time (cold miss in TLB) or that the number off€dister state, the memory address that was accessed can be
references in the working set exceeds the number of TLBemntrfeéconstructed. Details of PEBS are described later on.

(for capacity misses). A sufficiently accurate costberefidel ~ 1his work makes the following contributions:

for page placement cannot be derived from such coarsedgranu « The capabilities of PEBS tracing for extracting L1 and
information. Lossy reference traces or long-latency asme®re L2 load miss traces is assessed. The PEBS mechanism is
a much better indicator, as demonstrated in Section VII. first evaluated with a micro-benchmark, and the degree of

T EQIJLKE AMMP___AVRG
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lossiness is characterized. Figure 17 shows the number of samples collected for L1 and

« A novel cross-platform page placement scheme is demdr2 load misses with increasing sampling intervals averames
strated that uses these traces obtained on the Intel ptatfatO runs with a standard deviation of less than 1%. The foligwi
for automated page placement on Opteron systems. 600000 -

« The hop-sensitive page affinity policy from Section IlI-Gth
takes into account theaultiple NUMA penalties is discussed
in terms of its implementation and evaluation on Opteron
systems that incur distance-dependent latencies.

o The wallclock performance benefit of the developed ap- X
proach is assessed on Opteron systems by comparing it to 200000
the original program runtime and the runtime achieved with
an alternative approach that uses the newly availabheactl o e
library [8] for round-robin page placement. 1 2 3 4 5 6 7 8 9 10

. ) Sampling Interval

A. Precise Event-Based Sampling (PEBS) . ) . )

. L . . Fig. 17. Evaluation of load miss tracing by PEBS: Intel Xeon
PEBS is a performance monitoring feature available in Intei

Pentium4/Xeon/ processors. It works as follows. The premes ghservations were made:

can be configured to monitor certain instructichas they flow

through the pipeline. If a certain evert g, a cache miss) occurs,

the causal instruction imgged When a tagged instruction reaches

the head of the retirement queue, PEBS captures the state of

the registers immediately before (Xeon) the tagged insbmds

retired. This information (register state) is automaticalritten

to a previously set up buffer in virtual memory. When the nemb

of records in this buffer reaches a configurable threshold, a

interrupt is triggered. The interrupt service routine saike

content of the buffer to stable storage before tracing ismesl.

A sampling mechanism is available to avoid capturing thésteg

state for all tagged instructions. PEBS is described in ndetail Instead of the uniform latency page placement policy evatia
elsewhere [9], [10]. y page p policy

The saved register state also contains the value of the B far.’ this section focuses on the implementa_t lon of th? hop
(instruction pointer) at the monitored (cache miss) evBgtin- sensitive page placement policy (Eq. 2). As briefly mentibne

X . T remote access penalties are not uniform but vary with thamie
specting the content of the event-triggering instructtbe format
. . . . to the target node. To measure the load access latencipthe
of the instruction can be deciphered and used for calcgatie . - .
. L microbenchmark [11] is utilized with threads and memoryrizbu
virtual memory address generated (for load/store insoms}. In

this work, PEBS is utilized to capture L1 and L2 cache Ioatc? different nodes. The measurements were performed onra fou

misses. PEBS allowpreciseknowledge of the exact instruction socket Opteron system with one processor core per node.

that caused the cache miss and the memory location that Wa;’able Il shows the reported latencies. The values are the

L . average of 10 runs, and the standard deviation was less than
accessed, similar to the hardware support for Iltanium2 west _ .
discussed earlier. 5%. As can be expected, access to node-local memory is always

The capabilities of PEBS are evaluated with a microbenchma?heaper' But notice that accesses to non-local nodes tisrd

- . ounts of timeE.g, consider the access latencies for CPU on
to assess the degree of lossiness. The microbenchmarkesstri -
. S node 1. Normalizing to local node access on the 4-node system
over a large array with a 12KB stride in order to defeat th

0 :
hardware stride prefetcher of the Pentium architecture. perf- Etakes about 30% more time to access memory on nodes 0 and

i 0,
mon2framework is utilized to access the hardware counters ar21d but it takes 60% longer to access memory on node 3. The

to collect the PEBS-generated trace [2].
Based on the data size, access pattern and cache pararheters,

—&—L1 misses

& —=— L2 misses

\\;Pweded Reciprocal [

500000

400000

300000

# Samples

100000 —

o Both L1 and L2 traces are quite lossy. At the smallest
sampling interval (1), less than 10% of the expected L1 or
L2 misses are collected.

The L1 and L2 curves are very close. This is expected

because each L1 miss is almost always an L2 miss in the

microbenchmark.

o The number of samples does not decrease in linear pro-
portion to the increase in the sampling interval. This is in
contrast to an expected decrease in the number of samples
depicted by the “Projected Reciprocal” curve.

B. Hop-Sensitive Page Placement

TABLE I
LATENCIES4-NODE OPTERONS[NANOSECY

program is estimated to contain approximately 6 million litla CPU Memory on Node
L2 load misses. On a different x86 machine, hardware cosinter on
reported 6.71 L1 and 6.72 million L2 load misses. Due to the Node| O 1 2 3
software constraints, these values could not be assesséteon 0 |102]| 138|172 140
primary machine with PEBS support. For this experiment, the 1 143|107 141} 172
primary machine had an L2 cache of 2MB while the hardware ‘ 179 1411 102 141
. . 3 141 | 175 | 142 | 108
counters were measured on a machine with 1IMB L2 cache.

However, the measurements on the two machines should be

similar because of the inherent structure of the memoryssesg Hypertransport interconnect is laid out in a ring (4-nodaasg)

namely widely spaced strides to memory lines that are selddapology for a maximum of two hops.

re-accessed over an area of memory 80MB in size.

so that we are actually referring feops here (technically speaking).

In the hop-sensitive page placement policy, the latendiews
in Table Il provide the weightsy; ; for placement on node;

3Complex instructions are broken down int@ps on the x86 architecture and referencg from node; (see Eq. 2). TO implement the cost-
based selection of page placement, a histogram of accasses f
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every node is again constructed for each page. Considemeaeh but this depends in large on the algorithmic properties @ th
as the candidate affinity node. The values in the latencyetalthrget applications. With MG, the program runtime is vergrsh
and the histogram values are used to computevbightedscore (< 30 seconds for original program). Apparently, the devetope
that represents the cost of allocating the page on that nidue. trace-guided scheme is unable to recoup the overhead afdorc
candidate node with thewestcost wins, and the page is assignegage placement within this short time so that interleaviagpgens

to that node. This approach is portable becausedbi&ervation- to provide a larger relative improvement. On the other hand,
based i.e, it uses only themeasuredatencies between different interleaving performs badly for equake while the tracedgdi
nodes without requiring knowledge of the exact architectamd scheme shows no net impact. Here, the benefits of page plateme
interconnect topology. seem to be balanced by the overhead of the page touching
mechanism. Overall, long latency misses (L2 in this case) pr

C. Evaluation vided a uniformly reliable indicator for page placementidiens

The same benchmarks as in the previous experiments were Uggfle interleaved memory allocation occasionally resiilte a
for evaluation, except for 332.ammp. Due to memory resource sjgnjficant performance penalty.

limitations, all benchmarks except IS and LU used the smalle g interleaving still prove as competitive with larger ae

Class B data set instead of the Class C set used before. PEBjUMA systems, where the remote access penalties will be
based L1 and L2 load misses were obtained for each benchmgglyer> will it work with benchmarks with larger data setsstead
for a truncated program run on a Xeon machine with a sampligg class B used in the experiments here)? These questiorsrem
interval of ten. (For these experiments, the truncated 0§  open as input sizes were constrained by the amount of aleilab
ran longer than the earlier Itanium2-based experimentslo®/a memory of the test platform.
collection of more trace data.) The traces were processed as
described earlier, and affinity hints were generated udieghbp- - . X. RELATED_WORK .
sensitive affinity decision mechanism. _T|k|r_ and Hollingsworth describe a dy_namlc user-level page
For each program, the wallclock time was measured with racgigration scheme based on an approximate trace of memory
guided page placement and compared to the original prograficCeSses obtained by sampling the network interconneqt [12
runtime on the 4-node Opteron system. The system was shaf¢if iS the closest related work. The trace is used for degidi
but only lightly loaded. Furthermore, mund-robin interleaving P29e affinity. Pages are dynamically migrated usingtihevi se
of the memory pages across the nodes was evaluated, which faxem call. In contrast, we focus on trace-guided pageepiaat
obtained through theumactllibrary interface [8]. Ieveragmg the simpler “first-touch” page allocation pypliaf the
Figure 18 shows the improvement in wallclock time compare@P€rating system. In the future, our approach can be refioed t
to the original program. The values are an average of 8 rurs, &Iminate the need for a separate tracing rumigrating pages.
the positive and negative error bars represent one staogaid- -NUX recently added support for dynamic page migrationr use
tion each. “L1” and “L2" represent trace-guided page plagemn contr_ol [13_.] building on prior NUMA capabilities and scadin
with L1 and L2 cache miss traces, respectively. The follgwinconsiderations [14], [15], [16].
observations can be made. The developed trace-guided sshem OUr method uses a different trace source (long-latencysload
perform well for 5 benchmarks (SP, FT, MG, CG, BT). Wallcloci” DTLB misses) with varying sampling intervals. Our method
improvements for the L2 miss trace range from -7% to 3098 3|mple_r in that_ it |sprocesspr-centrchqre specifically, we
with an average improvement of 12.2%. Wallclock improvetx;uennOt require sp_e_ual network |nstr_umentat|0n support, wéy on
for the L1 miss trace range are similar, except for LU where Y on the ability of the PMU tdime load accesses. Because
performance loss of 21% is observed. Intuitively, the L2 gnidh€lr approach isietwork-centrici.e, the hardware counters are
trace filters out loads that hit in L2. Therefore, L2 misses ar embedded in the network interconnect and do not distinguish

better indicator of the true distribution of load requestatpage Petween different processes, only one application canhese at

in memory compared to the L1 miss trace. a time. In contrast, there is no such restriction with ourrapph.
The performance improvements obtained with memory intef?_ 2ddition, our mechanism is interrupt-driveng., the PMU

leaving (depicted in Figure 18) indicated that simple rouplin  '@iS€s an interrupt only when the sampling counter overflows

interleaving works almost as well as trace-guided pagespient and generates virtual addresses directly. In contrast, iiethod

on the small-scale ccNUMA system subject to experimematiomUStpou the network interconnect counters to collect a trace of
physical addresses, which must subsequently be mappedualvi

addresses using a separate system call.

50 - Dinterleaved  mL1 0Lz ‘ Finally, our page hints arebstracted i.e. they are relative to

40 | the starting address of the region (static or dynamic). fiogcis
deferred until the region is actually allocated. Thus, tHenisy
hints are potentiallyportable across platformdn that hints
generated on one platform can be used on another if it support
first-touch page placement. We intend to explore this piteint
future work.

Nikolopoulos et al. describe a user-level dynamic page mi-
gration scheme that uses per-page hardware referenceec®unt
that capture the frequency of accesses from each node to a
particular page [17], [18]. The method depends on the canpil
-30 for identifying the pages of virtual memory using whole ag
Fig. 18. Time Savings over Original Program and Arithmetieav! analysis. In contrast to our method, they do not handle dimam
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memory allocation. In addition, we do not require any coepil The approach is evaluated with a set of multi-threaded sfien
or operating system support, and our page-placement mischanbenchmarks from the NAS and SPEC OpenMP suites. Two
is completely transparent to the target prograra.,(no explicit different hardware trace sources are investigated withesto
calls are necessary for page placement). the cost €.g.,time to trace, number of records per trace).

Chandreet al. evaluated a page migration policy based on TLBhe accuracy of the trace and the corresponding savings lin wa
misses on the Stanford DASH machine [19]. Later, Verghsise clock execution time. It is shown that just a small subset of
al. described a simulation-based kernel-level implemematib traced long-latency loads provides a better indicator fagep
dynamic page migration [20]. They considered both the numbglacement than TLB misses. More specifically, the approach
of load-misses to a page and the number of data TLB missen efficiently improve page placement leading to an average
as trace sources. In our work, we found data TLB misses to ball-clock execution time saving of more than 20% (SGI Altix
less effective for deciding the best page placement, whscimi and 12% (AMD Opteron) for the benchmark set with a one-
contrast to Chandra’s results but confirms results predentthe time tracing overhead of 2.7% over the overall original pang
latter work by Verghese. Yet, our work is neither simulatimor ~ wallclock time.
kernel based, it is implemented on contemporary hardwattg@rwi  In addition, the framework is extended to a different preoes
user space. It focuses on page placement rather than roigeatd and ccNUMA architecture. In this new framework, the traces
shows that partial, lossy traces are sufficient for pageeptent. were obtained on a Xeon processor using the PEBS hardware

Other approaches to kernel-level dynamic page migratiah amechanism available in Intel's Pentium4/Xeon/Core preces
replication are discussed in Noordergraetf al. [21] and in The traces were used as before for page placement decisions,
Boloskyet al. [22]. Bolosky's approach is based on a count-dowand the page affinity hints were applied to programs running
register in the TLB triggering a trap aftér remote reference on an Opteron system. This effort targeted three goalst, Firs
have been issued. This scheme is compared with others redjgethe processor-centric instrumentation-based approastdemon-
by TLB-misses with freezing of placed pages and optionatrated to be portable across NUMA platforms and processors
unfreezing. In other work, Bolosky and Scott provided optim i.e., it exploits long-latency traces without knowledge of the
page placement policies with and without replication based interconnect topology. Second, the impact of page placemen
dynamic programming and derived from complete traces, lwhigvas evaluated on the widely used Opteron architecture, &and i
were obtained offline through single stepping at the keenadllat was demonstrated that significant wallclock improvements a
a slow-down of over 200x [23]. These policies were subsettyienpossible with hardware-derived traces on this architecttihird,
compared to contemporary kernel-based policies. In ceitree the experiments revealed that simple page-level memomsr-int
operate completely in user-space, do not propose any heedwi@aving worked almost as well as trace-based page placement
extensions, focus on partial traces with a small cost (2.7%he on the small-scale Opteron system and small inputs subject t
overall execution time) and leverage the simpler first-topage experimentation. Yet, occasionally, interleaved memdigcation
allocation policy to steer page placement at region iniigdlon. may result in a significant performance penalty while lorigiiay

Bull and Johnson study the tradeoffs between page migrationisses (L2 in this case) provided a uniformly reliable iador
replication and data distribution for OpenMP applicati@msthe for page placement decisions.
Sun WildFire system [24]. In their study, they find that page To the best of knowledge, this is the first evaluation on a
replication performs better than page migration and stdéita real machine of a completely user-mode interrupt-drivexcedr
distribution. guided page placement scheme that requires no special leompi

Lastly, the hardware mechanism for capturing long-laten@perating system or network interconnect support, supgovt-
loads and DTLB misses is described in the Itanium-2 manuabst lossy tracing and covers not only static arrays, as 8t pa
[3]. In previous work, we used this facility in conjunctionittv  work, but also heap-allocated regions.
software rewriting to efficiently obtain a lossy load/stdrace The approach is currently relying on the “first-touch” page
and exploit its information to analyze the coherence beafiaai placement policy since dynamic page migration is just now
OpenMP programs [6]. The Intel Pentium4/Xeon/Core platfor entering stable Linux kernels. Hence, programs whose mgemor
support the PEBS mechanism that we also used in this papercess patternshange over timee.g, adaptive mesh refinement
PEBS allows capture of the architecture register state whenAMR) codes and programs with multiple execution phases,
tagged eventg.g, a cache miss) is detected. The register state gannot exploit their full potential under the current patiecation
saved to a reserved portion of physical memory without séw scheme. Even though none of the test programs in this study
intervention. PEBS is described in more detail in [9], [10]. frequently allocated and freed memory during the stableugi@n

X|. CONCLUSION phase, the first-touch scheme would lose effectiveness tiead t

ne so. With the availability of page migration in the opiea
tem kernels, both these limitations can be overcomejtab
the cost of migration overhead that first needs to be amaktize
The merits of such a dynamic framework is subject to ongoing
work beyond the scope of this paper.

This paper introduces a novel hardware-assisted page-pla%%
ment scheme based on lossy tracing. The placement sch
allocates pages near processors that most frequently satitats
page. The scheme leverages performance monitoring caigabil
of contemporary microprocessors to efficiently extract gpraxi-
mate trace of memory accesses. This information is usedcidele ACKNOWLEDGMENTS
page affinity,i.e, the node to which the page is bound. The This work was supported in part by NSF grants CAREER
method is low cost as a lossy trace is obtained just for tHelesta CCR-0237570, CNS-0410203, CCF-0429653 and the Humboldt
execution phase, not for the entire program run. The approdéoundation. This research used resources of NCSA, UNC Chape
operates entirely in user space, is widely automated, andlém Hill, LRZ Munich, the University of Graz, the Zuse Institute
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