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Abstract

Consider a group of peers, an ideal random peer sampling service should return a peer, which is a uniform independent random
sample of the group. This paper focuses on the implementation and analysis of a peer sampling service based on symmetric view
shuffling, where each peer is equipped with a local view of size c, representing a uniform random sample of size c of the whole
system. To this end, pairs of peers regularly and continuously swap a part of their local views (shuffle operation). The paper provides
the following formal proofs: (i) starting from any non-uniform distribution of peers in the peers’ local views, after a sequence of
pairwise shuffle operations, each local view eventually represents a uniform sample of size c; (ii) once previous property holds, any
successive sequence of shuffle operations does not modify this uniformity property and (iii) a lower bound for convergence speed.
This paper also presents some numerical results concerning the speed of convergence to uniform samples of the local views.
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1. Introduction

Uniform peer sampling service has been shown recently to
be a basic building block for several applications in large-scale
distributed systems [1] as information dissemination [2], count-
ing [3], clock synchronization [4], etc. A peer service is called
uniform if it returns a peer ID of the whole system with the same
probability. Working on the top of a not uniform peer sampling
can affect the performance of the application using the service
and, most importantly its correctness.

There are two main approaches to implement uniform ran-
dom sampling, random walk and gossip-based protocols.

A random walk on a given graph is a sequential process that
consists in visiting the nodes of the graph according to a random
order induced by the way the walker is allowed to move.

The key property of a random walk is that, after a suitable
number of steps, called the mixing-time, the visited node is the
same as drawn from a uniform distribution [5],[3].

Unfortunately, the mixing-time depends on the topological
property of the graph, which is generally unknown. Thus, for
the reached node to be uniformly sampled, the length of the
walk has to be properly tuned. Moreover, this technique may
incur in a long delay to return a sample.

This paper focuses on uniform peer sampling based on gos-
sip protocols. We consider a system formed by n peers (i.e.,
nodes), each provided with a local view of size c ≤ n. Each
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node runs a simple shuffling protocol where pairs of nodes regu-
larly and continuously swap part of their local views (shuffle op-
eration). This protocol is similar to the ones used in [6, 1, 7, 8].
The shuffling protocol aims that local views eventually repre-
sent a uniform random sample of the system. The main results
presented in this paper show formally that:

1. starting from any non-uniform distribution of nodes in
the local views, after a sufficiently long sequence of pair-
wise shuffle operations executed by the shuffling proto-
col, each local view represents a uniform random sample
of size c among the whole system (Theorem 5.4);

2. once the previous property has been established, any se-
quence of successive shuffle operations does not modify
the previous property (Corollary 5.3);

3. using this protocol, optimal setting can be identified in
term of convergence speed (Theorem 5.6).

To the best of our knowledge, these results have never been
formally proved before, despite the fact that there is empirical
evidence shown in many papers [1, 8], that protocols based on
view shuffling can indeed provide uniform sampling.

Let us remark that this result complements two previous
outcomes respectively presented in [9] and [10].

Authors of [9] propose a protocol based on view shuffling
and formally prove that this protocol converges to a uniform
peer sampling also in the presence of byzantine peers. Each
run of their protocol leads, after a sufficiently long sequence of
shuffle operations, to verify the property: “each local view is a
uniform random sample of the system”. However, each time a
user requires to get a new uniform sample, another instance of
this protocol has to be started and it has to converge to a new
uniform random sample. Conversely, the shuffling protocol pre-
sented in this paper shows that once the local view converges
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to represent a uniform sample of the system, then successive
shuffle operations do not modify the property (Corollary 5.3).
Therefore, there is a continuous availability of a uniform ran-
dom sample without the need to start other instances of the base
protocol1, also known as Ergodicity in the literature [11].

Recently, a set of correctness properties for gossip-based
membership protocol and a protocol designed for dealing with
message loss, meeting these requirements, have been defined
in [10]. The analytical framework used in the paper is based on
the idea of graph transformation. A protocol defines a Markov
Chain with states representing the distribution of the member-
ship graphs and state transitions triggered by protocol’s actions.
The properties of the protocol are then deduced by the proper-
ties of an expected membership graph. Although this modeling
approach is very general, it can provide some difficulty when
applied to real protocols. For example, the proposed protocol
is characterized by a dynamic view size and, in order to study
the degree distribution, iterative numerical methods have to be
used.

Our work uses a quite different and simpler modeling strat-
egy, which is more suitable for studying symmetric shuffle op-
erations among nodes equipped with fixed view size. We guess
that such modeling approach is an interesting contribution per
se, which can be generalized for studying membership proto-
cols or used in conjunction with the graph transformation ap-
proach. For example, our model allows to formally proof the
intuitive result that the maximum convergence speed to the uni-
form distribution is reached when nodes exchange a half of their
views. An extended comparison between this paper and ours is
presented in Section 7.

This paper is organized as follows: Section 2 presents the
system model. Two shuffling protocols are presented in Sec-
tion 3 while Section 4 provides an analytical model of these
shuffling protocols. Section 5 proves that the local views shaped
by these shuffling protocols converge to uniform random sam-
ples of the system, and that the convergence speed can be opti-
mized using correct settings. Section 6 provide some stochastic
evaluations in order to illustrate these latter formal outcomes
according to the system parameters. Finally, related works and
conclusion are given respectively in Section 7 and in Section 8.

2. System model

We consider a finite set of n nodes (with n ≥ 2), which are
uniquely identified through a system-wide identifier (ID). Each
node i manages a local partial view of the system, denoted Vi

of size c ≤ n, about all the other nodes in the system, including
itself2. In other word, each node owns a small set of connec-
tions (aka neighbors) corresponding to its vision of the overall
system.

1A simple safe condition for keeping the sample returned by a node uniform
is to “refresh” the returned ID. This requirement ties the sample with the shuffle
rate, as explained in Section 5.5.

2Note that c is the same for all nodes in the system. This fixed value can be
viewed as a parameter of the system.

The view of node i is modeled as a fixed-size set of binary
random variables indicating whenever the identifier k appears
in Vi or not

Xi = (X1i, X2i, . . . , Xni)

where

Xki =

{
1 if k ∈ Vi;
0 otherwise

The vector Xi is referred as the characteristic vector of the
view. A vector Xi is associated with a probability vector

Pi = (p1i, p2i, . . . , pni)

where pki is the probability that k belongs to Vi, i.e.,

pki = P[Xki = 1].

The whole system is then modeled as the collection

S = (X1, X2, . . . , Xn)

of the characteristic vectors corresponding to the nodes’ view.
The corresponding set of probability vectors is called a config-
uration of the system,

C = (P1, P2, . . . , Pn).

The random process that determines Xi according to Pi is
defined in the following Section 3, which introduces the shuf-
fling operation.

Definition 2.1. A view is uniform if at a given instant of time
all IDs appear in this view with the same probability.

Definition 2.2. A system is called uniform if at a given instant
of time, all views are uniform.

In this paper we use the notion of potential function to deal
with arbitrary configurations, according to the uniform state.

Definition 2.3. The local potential function of given probability
vector P is

h(P) = max
pk∈P

{
pk −

c
n

}
.

Definition 2.4. The potential function of configuration C is

h(C) = max
Pi∈C
{h(Pi)} = max

Pi∈C
max
pki∈Pi

{
pki −

c
n

}
.

The potential function is a sort of distance measure between
a generic configuration and the uniform configuration, namely
the configuration with all probabilities equal to c

n . For such
configuration, let us introduce the following Lemma 2.5.

Lemma 2.5. Let C be a configuration of local views.

h(C) is zero ⇔ C is uniform.

Proof. First of all, consider the following property:

Property 2.6. The expected size of a view Vi is

E
∑

k

Xki

 = n∑
k=1

E[Xki] = c

2



(⇐) Let consider the configuration C as uniform, as pre-
sented in Definition 2.2. As all the views are uniform, all the
probability for a node to appear in any view is the same, so
called p. Thus, from Property 2.6, we have:

∀i, c =
n∑

k=1

E[Xki] = n · p =⇒ p =
c
n
.

and then, for all nodes, the local potential is zero. So, h(C) = 0.
(⇒) On the other hand, if the potential function is zero

(h(C) = 0), then, by definition, the maximum for any proba-
bility vector is c

n . Thus, from Property 2.6, this also implies
that all the probabilities are equals to c

n , which is the definition
of uniformity (cf. Definition 2.2).

For convenience, we finally introduce the notation Mi j that
denotes the expected number of shared elements between i and
j. More formally,

∀i, j, Mi j =
∑

k

P[Xki = 1] · P[Xk j = 1].

3. The shuffling protocol

We now consider a distributed protocol in which nodes man-
age their views by performing elementary pairwise shuffle or
shuffling operation, denoted as �. The notation i � j is used to
denote that i performs a shuffling operation with j. The effect
of an operation is to update the nodes’ view, as detailed later in
this section. We then show that the protocol makes the system
to converge towards a uniform configuration, namely a config-
uration with zero potential value.

We assume that two shuffles involving a common node may
not take place concurrently. Once a node initiates a shuffle, it
will be locked until the operation is terminated.

The shuffling operation
The shuffling operation is the core aspect of the whole pro-

tocol. The shuffling protocol consists of applying the shuffling
operation repeatedly to pairs of nodes i, j taken at random. How
nodes are chosen to do the shuffling operation is discussed in
more details in Section 4.3

This shuffling operation has one parameter, the shuffle length
l, and involves two views, say Vi and V j. For the sake of sim-
plicity, we will also use the shuffle ratio, γ = l

c . The operation
� acts as follows.

The view Vi (resp. V j) is split into two random parts. The
first part, denoted as `i (resp. ` j), is the sent view, which is a
subset of Vi (resp. V j) of size l. The elements in ` j are added to
Vi−`i, and inversely. If the size of this new set, V ′i = (Vi−`i)∪` j

is lower than c (this could happen if ` j and Vi−`i have common
elements), then l′ = c − |V ′i | elements are taken from `i − ` j at
random and added to V ′i . More formally, the shuffling operation
consists of the steps presented in Algorithm 1. In the latter,
UniRand(h,V) returns a subset of h elements taken uniformly
at random from a set V . The shuffle operation is symmetric in
the sense that node j acts exactly as node i. Moreover, the two

nodes make their decisions about which elements to keep from
the sent view, if any, independently from each other. Thus, the
probability of a node k to appear in a view is only determined
by the elements in the interacting nodes before the shuffle3.

Consider the following example. Assume that c = 7 and
l = 3. Consider then a shuffle between the views{

Vi = {0, 12, 1, 5, 3, 7, 8}
V j = {3, 11, 4, 5, 8, 2, 1}

with sent subset `i = {3, 7, 8}, ` j = {8, 2, 1}. We then have that
the first manipulation:

V ′i = (Vi − `i) ∪ ` j

produces

V ′i = {0, 12, 1, 5} ∪ {8, 2, 1} = {0, 12, 1, 5, 8, 2}

As |V ′i | = 6 while c = 7, we need to add some random elements
of the set

`i − ` j = {3, 7, 8} − {8, 2, 1} = {3, 7}

A remark on system partitioning
Unfortunately, the aforementioned operation can lead to a

partition of the system. Indeed, consider a system composed
by two distinct clusters which are linked by two edges (i → j
and j → k, where i, k belongs to the first cluster). Assume that
l = 1. If i makes a shuffle with j, then it may happen that i sends
j to j and j sends k back to i. If node j integrate j in its view
and i replaces j with k, then the system remain partitioned in
two clusters forever, namely none of the node in the first cluster
is aware of nodes in the second cluster and vice versa.

This specific case can be avoided using a tricky mechanism,
as in [8]. To guarantee that the system could not become par-
titioned after a shuffling operation, we drive the choice of the
shuffling partner to be in `i and force the initiator node of the
shuffle to send its own ID by replacing the one of the partner.
This ensures any shuffling operation results into at least to a link
reversal (cf. [8] for more details of the proof).

Our biased shuffling operation uses link swap as a technique
for preserving system connectivity. The new operation is pre-
sented in Algorithm 2. The initiator node chooses l nodes in its
current view to fill `′i . Then, as explained above, it chooses the
partner j at random and replaces it by its own ID to obtain `i,
unless i already appears in `′i (this is required to keep the view
size constant).

A remark on message loss
One could argue that our simple protocol does not take into

account message loss. In fact, since a shuffling operation in-
volves information exchange between two nodes, it takes some
time to proceed. If the amount of information exchange is large
or the nodes are topologically separated by many IP hops, then

3A correlation would arise if, for example, node i decides to add the identi-
fier k received from j only if j promises something else back.
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Algorithm 1: Basic shuffling operation
node i
`i ← UniRand(l,Vi)
V ′i ← (Vi − `i) ∪ ` j

Vi ← V ′i ∪ UniRand(c − |V ′i |, `i − ` j)

node j
` j ← UniRand(l,V j)
V ′j ← (V j − ` j) ∪ `i
V j ← V ′j ∪ UniRand(c − |V ′j |, ` j − `i)

Algorithm 2: Biased shuffling operation

node i
`′i ← UniRand(l,Vi)
j← UniRand(1, `′i )
if i < `′i then
`i ← (`′i − { j}) ∪ {i}

else
`i ← `

′
i

V ′i ← (Vi − `i) ∪ ` j

Vi ← V ′i ∪ UniRand(c − |V ′i |, `i − ` j)

node j
` j ← UniRand(l,V j)

...

...

...

...
V ′j ← (V j − ` j) ∪ `i
V j ← V ′j ∪ UniRand(c − |V ′j |, ` j − `i)

some shuffling operations might not be able to “finish on time”.
In reality, as c is usually chosen very small, each sent vector is
quite small. Moreover, we can consider a shuffling operation
as a semaphore [12]. An initiated shuffling operation will delay
any following request until the former one is not finished. As
we do not consider node failure, our shuffling operation is able
to perform under message loss using timeout and reemission.

In principle for high message loss probability, the buffer
used for delaying requests might overflow. Moreover, as nodes
will delay new request, a shuffling requester could be blocked
for a while. Recursively, a chain of blocked node can occurs,
implying classical asynchronous issues. How that could affect
our theoretical result remains an open question for future works.

4. Protocol analysis

In this section, we derive an analytical model of the shuf-
fling protocol, which captures the variation of the system con-
figuration over time. The main symbols used in this paper are
reported in Table 1.

4.1. View evolution under the basic shuffling operation

Let consider how the presence of element k in the view of i
varies after a shuffling operation among nodes i and j. A shuf-
fling operation between i and j, denoted i � j, generates two
new characteristic vectors, X′i and X′j, starting from the original
vectors Xi and X j. In other words, after the operation, the view
of node i (resp. j) is described by X′i (resp. X′j).

The evolution of the view over time is then described by a
relationship among X and X′. Before describing this relation-
ship, it is important to understand that X′ki is independent from
the others random variables X′k j. In fact, the elements that are
inserted or removed due to shuffling into the view of node i, are
not influenced by elements inserted/removed into the view of

n Total number of nodes in the system
c Size of each local view
l Size of the sent vector
γ Shuffle ratio (γ = l

c )
Vi Local view of node i
`i Sent view of node i
Xki Indication function
Xi Characteristic vector of view Vi

Pi Probability vector of view Vi

p Expected uniform probability (p = c
n )

Mi j Expected number of shared elements between i and j
i � j Shuffling operation (i shuffles with j)

Table 1: List of main symbols

node j. In other words, as explained above, i and j do not co-
ordinate somehow about their decisions on the way to change
the views. In fact, nodes i and j act locally and then, make any
decision by them-self, independently from each other. Let P1→0
be the probability that, after the shuffle, node k is removed from
Vi and P0→1 the probability that k is inserted (for the sake of
simplicity indexes are omitted), namely{

P1→0 = P[X′ki = 0|Xki = 1]
P0→1 = P[X′ki = 1|Xki = 0]

The probability that k appears in Vi, given that i � j, is then

P[X′ki = 1|i � j] = (1 − P[Xki = 1]) · P0→1
+ P[Xki = 1] · (1 − P1→0) (1)

This expression has the following meaning. The probability
that node k appears in i’s view, after a shuffle between i and j,
is given by the probability that k was not in the view and it has
been added or the probability that k was already in the view and
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Figure 1: Markov chain representing the evolution of Xi j, the presence of ele-
ment i into the view of node j. When the view is uniform, the fraction of time
that the element appears in the view, (i.e., Xi j = 1) is the same for any element.
This condition corresponds to the steady state of the chain.

it has not been deleted. The evolution of a view is best described
as a two states Markov chain, see Figure 1, where state 1 (resp.
state 0) means that k is (resp. not) in the node i’s view.

Node i receives l elements from j. As an element is sent
with probability γ, the expected number of elements that ` j and
Vi have in common is:∑

k P[Xki = 1] · γ · P[Xk j = 1]
= γ ·

∑
k P[Xki = 1]P[Xk j = 1]

= γ · Mi j

Now, the view size must remain constant. The expected
number of elements removed from i must then be equal to the
number of new elements added into Vi, which is equal to l −
γMi j. As all elements have to equally likely be removed, the
probability to remove the element k is l−γMi j

c . From which:

P1→0 = γ ·

(
1 −

∑
k P[Xk j = 1]P[Xki = 1]

c

)
On the other hand, as element k can be added only if it belongs
to ` j, we have:

P0→1 = γ · P[Xk j = 1].

4.2. View evolution under the biased shuffling operation

In this case, we have to distinguish between the initiator and
the partner of the shuffle.

4.2.1. Initiator view change
As the partner of an exchange is not forced to put any ID

into the sent view, the view evolution of the initiator, which
receives the sent view, remains as described above.

4.2.2. Partner point of view
In this case, we have to model the biased part of the shuffle.

We have:

P[X′ki = 1| j � i] =

1 if k = j

(1 − P[Xii = 1]) · γ · P[X j j = 1]
+P[Xii = 1] · (1 − P1→0) if k = i

(1 − P[Xki = 1])P∗0→1
+P[Xki = 1](1 − P∗1→0) otherwise.

(2)

First, as j sends his own identifier in each exchange that it
initiates, we have: P[X′ji = 1| j � i] = 1.

If the identifier j is already in `′j, then the sent vector con-
tains i. Otherwise, i is replaced by j and so i is not sent. Thus,
j sends i with probability γ · P[X j j = 1].

Thus, the probability that after the exchange i contains its
own identifier is the sum of two contributions corresponding to
the following events: (i) i was not present but it was received
from j and (ii) i was present before the exchange and it was not
replaced.

Finally, in all other cases, the value of P[X′ki = 1| j � i ∧ k ,
j ∧ k , i] is given by the expression given in Equation 1 by
adapting P0→1 and P1→0, respectively with P∗0→1 and P∗1→0. In
fact, as one of the slot of Vi and ` j contains the ID j for sure, the
effective size of i’s view and the sent vector has to be reduced
by one unit.

Thus, we have:
P∗0→1 =

l − 1
c − 1

· P[Xk j = 1]

P∗1→0 =
l − 1
c − 1

·

(
1 −

∑
k, j P[Xk j = 1]P[Xki = 1]

c − 1

)
4.3. Evolution of the system

Let now consider how the system evolves. As explained
above, we assume that concurrent operations cannot occur. Thus,
we can serialize parallel shuffles in an arbitrary order and as-
sume that only one shuffling operation may take place at a time.
Let Pex(i, j) be the probability that i and j make the shuffle, i.e.,
Pex(i, j) is the probability that the operation i � j takes place.

As all the nodes ideally initiates an exchange at the same
rate, we can consider that the initiator node is selected at ran-
dom among all the n nodes. The target node j is taken at random
from `i. Hence

Pex(i, j) =
1
n
· P[X ji = 1] · γ ·

1
l
=

1
n
· P[X ji = 1] ·

1
c
.

We can describe the global evolution of the system with the
following expression:
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P[X′ki = 1] =∑
j

Pex(i, j) · P[X′ki = 1|i � j] (3a)

+
∑

j

Pex( j, i) · P[X′ki = 1| j � i] (3b)

+

1 −∑
j

(Pex(i, j) + Pex( j, i))

 · P[Xki = 1] (3c)

This last equation means that the probability vector of a
node follows the view evolution presented in Equation 1 if it
is involved in a view shuffle (Equation 3a and 3b) and remains
the same if it is not involved in the last shuffle (Equation 3c).

5. Convergence property of the protocol

Let now consider the converge property of both shuffling
protocols. In particular, we show that if any of the two shuffling
protocol is executed by a system with arbitrary view distribu-
tion, then eventually the system converges towards a uniform
configuration, i.e., a system in which all the local views repre-
sent uniform random samples of the system. In order to show
this result, we exploit the notion of potential function, intro-
duced in Section 2. We will show that if the potential func-
tion of a configuration is greater than zero, then after a shuf-
fling operation the potential function of the configuration is re-
duced. Roughly speaking, this means that a shuffling operation
moves the system towards a “more” uniform system, or, in other
words, makes the system closer to the uniform configuration.

5.1. Basic shuffling operation
Formally, using the first protocol described in Algorithm 1,

we have:

Lemma 5.1 (Operator � reduces the potential). Let C and C′

respectively the configuration of the system before and after a
basic shuffling operation. If C is not the uniform configuration
(i.e., h(C) , 0), then h(C′) < h(C).

Proof. Let P and Q be two probability vectors of nodes i and j
and let P′,Q′ be these vectors after a shuffling operation i � j.
For the sake of simplicity, we denote the maximum probability
before the shuffle as pmax = h(C)+ c

n . We prove below that ∀k ∈
[1..n], (1) ∆pk = p′k− pmax < 0, and that (2) ∆qk = q′k− pmax < 0
where pk, qk, p′k and q′k denote respectively P[k],Q[k], P′[k] and
Q′[k]. This means that the highest probability decreases and no
other probabilities can become greater than the previous maxi-
mum.

(1) We want to prove that ∆pk < 0. From equation 1, we have:

p′k = (1 − pk) · γ · qk + pk ·

(
1 − γ + γ

Mi j

c

)
=⇒ ∆pk =p′k − pmax

=pk + γ

(
qk − qk · pk − pk + pk ·

Mi j

c

)
− pmax

We distinguish two cases:

1. If
(
qk − qk · pk − pk + pk ·

Mi j

c

)
< 0, as pk ≤ pmax and

γ ≥ 0, we obtain ∆pk < 0.
2. If

(
qk − qk · pk − pk + pk ·

Mi j

c

)
≥ 0:

As Mi j =
∑

k pk · qk <
∑

k pmax · qk = pmax · c and γ ≤ 1, we
have:

∆pk ≤ qk − qk · pk + pk ·
Mi j

c
− pmax

< qk − qk · pk + pk · pmax − pmax

= qk(1 − pk) − pmax(1 − pk) = (qk − pmax) · (1 − pk)
≤ 0 as ∀i, pk ≤ pmax ≤ 1 and qk ≤ pmax.

(2) It remains to prove the same upper bound for Q′, i.e.

∀i,∆qk = q′k − pmax < 0.

According to the Equation 1, by symmetry, we have:

P[X′ki = 1| j � i] = qk + γ

(
pk − pk · qk − qk + qk ·

Mi j

c

)
.

Thus, following the same reasoning, we obtain that

∀i,∆qk < 0.

Therefore, we can conclude that

max{h(P′), h(Q′)} < max{h(P), h(Q)} ≤ pmax.

Let us denote Si =
∑

j Pex(i, j) and S′i =
∑

j Pex( j, i). Then,
according to the Equation 3, we obtain:

∀i, k, P[X′ki = 1] < Si·pmax+S′i ·p
max+(1−Si−S

′
i)·p

max = pmax.

Then, h(C′) = maxPi∈C
′ h(Pi) < pmax− c

n = h(C) as claimed.

5.2. Biased shuffling operation

We are now proving the same lemma for the second opera-
tion described in Algorithm 2:

Lemma 5.2 (Operator � reduces the potential). Let C and C′

respectively the configuration of the system before and after a
biased shuffling operation. If C is not the uniform configuration
(i.e., h(C) , 0), then h(C′) < h(C).

Proof. Let P and Q be two probability vectors of nodes i and j
and let P′,Q′ be these vectors after a shuffling operation. More-
over, pk, qk, p′k and q′k denote respectively P[k], Q[k], P′[k] and
Q′[k].

For the sake of simplicity, we also denote in this proof the
maximum probability before the shuffle as pmax = h(C) + c

n .
Let split the study according to the three members of Equa-

tion 3. We prove below that the highest probability decreases
and no other probabilities can become greater than the previous
maximum.

(1) Consider the Equation 3a. Section 4.2.1 presents the view
evolution from the initiator point of view. As the view evolution
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in this case is exactly the same as in the basic shuffle, lemma 5.1
gives us, for all k:

P[X′ki = 1|i � j] < pmax

(2) Consider now the Equation 3b. As explicitly denoted in
Section 4.2.2, we have to split the analysis in 2 cases: (2a) k , i
and (2b) k = i.

2a First consider the case k , i. In this case, we have:∑
j

Pex( j, i) ·
(
P[X′ki = 1| j � i] − pmax

)
=

∑
j,k

Pex( j, i) ·
(
P[X′ki = 1| j � i] − pmax

)
+ Pex(k, i) ·

(
P[X′ki = 1|k � i] − pmax

)
=

1
n
·

1
c
·
∑
j,k

p j ·
(
(1 − pk) · P∗0→1 + pk · (1 − P∗1→0) − pmax

)
+

1
n
· pk ·

1
c
· (1 − pmax)

<
1
n
· pk ·

1
c
· (1 − pmax)

+
n − 1

n
·

1
c
· pmax ·

(
(1 − pk) ·

l − 1
c − 1

· qk

+pk ·

(
1 +

l − 1
c − 1

·

(
Mi j

c − 1
− 1

))
− pmax

)
As in the previous proof, with here

Mi j < pmax · (c − 1) and
l − 1
c − 1

≤ 1, we have:

<
1
n
· pk ·

1
c
· (1 − pmax)

+

(
1
n

)
·

1
c
· pmax ·

(
qk − pk · qk + pk · pmax − pmax)

<
1
n
· (1 − pmax) +

(
1
n

)
·
(
qk − pmax) · (1 − pk)

Thus, the latter expression is lower than 0 if 1
n +

(
1 − 1

n

)
·

(pi − pmax) ≤ 0. This inequality is equivalent to 1
n · (1 +

pmax − pi) ≤ pmax − pi ⇔
1
n ≤ 1 − 1

1+pmax−pi
≤ 1 − 1

2 =
1
2 .

Hence, as n ≥ 2 by definition, we obtain that:

k , i⇒
∑

j

Pex( j, i) ·
(
P[X′ki = 1| j � i] − pmax

)
< 0.

2b Let consider the case k = i. Here, we have:

P[X′ii = 1| j � i] − pmax

= (1 − pi) · γ · q j + pi ·

(
1 − γ ·

(
1 −

Mi j

c

))
− pmax

< q j + pi · q j + pi − pi − pi · pmax − pmax as γ ≤ 1
= (q j − pmax) · (1 − pi) < 0

Then, we obtain that, for all k:∑
j

Pex( j, i) · P[X′ki = 1| j � i] <
∑

j

Pex( j, i) · pmax

(3) Finally, consider now the Equation 3c. In this part, we sim-
ply have to apply the assumption:

P[Xki = 1] < pmax

Let us denote Si =
∑

j Pex(i, j) and S′i =
∑

j Pex( j, i). Then,
according to the Equation 3, we obtain:

∀i, k, P[X′ki = 1] < Si·pmax+S′i ·p
max+(1−Si−S

′
i)·p

max = pmax.

Then, h(C′) = max
Pi∈C

′
h(Pi) < pmax −

c
n
= h(C) as claimed.

5.3. Convergence of both protocols

Let us now show a corollary stating that once local views
represent uniform samples of the system, the shuffling protocol
keeps this property true forever.

Lemma 5.3 (Operator � preserves uniformity). Let C be a uni-
form unpartitioned configuration of local views. A shuffling op-
eration executed by the shuffling protocol presented in Section
3 between any pair of two local views Xi and X j belonging to C
produces a configuration C′ that is uniform.

Proof. Lemmata 5.1 and 5.2 give us that the potential of two
views involved in a shuffling operation can only decrease. Given
the fact that C corresponds to the uniform configuration, Xi and
X j are uniform and Pi = P j are vectors with all elements equal
to p = c

n . Thus, due to Lemma 2.5 and Definition 2.4, the po-
tential of Xi and X j are h(Pi) = h(P j) = 0. From Lemma 5.1
or 5.2, after the shuffle, h(Pi) and h(P j) cannot increase and
thus, remain to 0. Then, C′ is the uniform configuration.

More formally, it is possible to compute analytically the
evolution of each probability vector. From the hypothesis on
C, we have ∀k,P[Xki = 1] = c

n . Hence:
P0→1 =

l
c
×

c
n
=

l
n

P1→0 =
l
c
·

(
1 −

∑
j

c
n

c
n

c

)
=

l
c
·

(
1 −

c
n

)
With these values, from Equation 1, we have:

P[X′ki = 1|i � j] =
(
1 −

c
n

) l
n
+

c
n

(
1 −

l
c
·

(
1 −

c
n

))
=

c
n
.

We are now in the position to state the following theorem,
independently of the shuffling operation considered:

Theorem 5.4 (Convergence to uniformity).
Let t be the number of shuffling operations executed on a system
of n nodes, C0 be any initial unpartitioned configuration of local
views and Ct be the configuration of the system after those t
shuffling operations. Local views built by the shuffling protocol
presented in Section 3 will converge to uniform random samples
of the system, i.e.,

∀C0, lim
t→∞

h(Ct) = 0.
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Proof. First, the claim comes from Lemmata 5.1 and 5.2, as
a shuffling operation strictly reduce the global potential, inde-
pendently of the pair involved in the shuffle, while h(Ct) , 0.
Thus, the distance of the current distribution of sample with the
uniformity could only monotonically reduce. So, we have:

∃m ∈ [0, h(C0)], lim
t→∞

h(Ct) = m.

On the other hand , it remains to prove that m = 0. Consider
a given t ∈ N in the following. Let split the rest of the proof in
two parts:

1. If h(Ct) = 0: given Lemma 5.3, ∀t′ > t, h(Ct′ ) = 0 and
then, limt→∞ h(Ct) = 0.

2. If h(Ct) > 0: we proof in the last part of the proof that

h(Ct+1) < h(Ct) ·
(
1 −

l
n2

)
(4)

=⇒ h(Ct) ≤ f (t) =
(
1 −

l
n2

)t

.

As 0 ≤ h(Ct) ≤ f (t) and limt→∞ f (t) = 0, we obtain that:

∀C0, lim
t→∞

h(Ct) = 0.

Finally, let us prove Equation 4. For the sake of simplicity,
we also denote in this proof the maximum probability before
the shuffle as pmax = h(Ct) + c

n . Given the global evolution of
the system, Equation 3 for any node i and k gives us:

P[Xt+1
ki = 1] =∑

j

Pex(i, j) · P[Xt+1
ki = 1|i � j] (5a)

+
∑

j

Pex( j, i) · P[Xt+1
ki = 1| j � i] (5b)

+

1 −∑
j

(Pex(i, j) + Pex( j, i))

 · P[Xt
ki = 1] (5c)

Due to Lemmata 5.1 and 5.2, we have:

(5b) ≤
∑

j

Pex( j, i) · pmax

By definition of pmax, we also have:

(5c) ≤

1 −∑
j

(Pex(i, j) + Pex( j, i))

 · pmax

Then:

(5b) + (5c) ≤

1 −∑
j

(Pex(i, j))

 · pmax

≤

1 −∑
j

(
1
c
·

1
n
· pmax

) · pmax

≤

(
1 −

pmax

c

)
· pmax

On the other hand, by definition:

P[Xt+1
ki = 1|i� j] = (1−P[Xki = 1])·P0→1+P[Xki = 1]·(1−P1→0).

As (1 − P[Xki = 1]) ≤ 1 and P0→1 ≤ γ · pmax, we have:

(5a) ≤
∑

j

Pex( j, i) ·
(
γ · pmax + pmax ·

(
1 − γ

(
1 −

Mi j

c

)))
Moreover, Mi j < c · pmax (cf. Proof of Lemma 5.1) implies:

(5a) <
∑

j

Pex( j, i) · (γ · pmax + pmax · (1 − γ + γ · pmax))

As
∑

j Pex( j, i) =
∑

j( 1
c ·

1
n · P[X ji = 1]) = 1

n , we obtain:

(5a) <
pmax

n
· (1 − γ · pmax)

Finally, we have:

P[Xt+1
ki = 1] < pmax ·

(
1 −

pmax

c
+

1
n
− γ ·

pmax

n

)
As pmax ≥ c

n and c
n ≥ (1 − l

n2 ) · c
n , we obtain:

h(Ct+1) = max
Pi∈Ct+1

h(Pi)

< pmax ·

(
1 −

1
c
·

(
c
n
+

c · l
n2

)
+

1
n

)
−

(
1 −

l
n2

)
·

c
n

= h(Ct) ·
(
1 −

l
n2

)
.

5.4. Convergence speed lower bound

Experimental approaches [13, 1, 6, 7, 8] point out that, in
the design of a gossip-based protocol, l has to be set to the half
of c in order to obtain the highest efficiency in term of con-
vergence speed. This conjecture can be intuitively shown as
sketched below.

A shuffle operation with a sent vector ` between two nodes
is equivalent to a shuffle with the complementary of ` (i.e. V −
`), followed by swapping the ID of these two nodes (cf. Fig-
ure 2). Indeed, in this figure, the content of Vi after the shuffle
on the left side is equivalent to the content of Vi on the right
side after (1) a shuffle with the sent vector `′i = Vi − `i and (2)
swapping the node’s ID (i becomes k and vice versa).

Now, consider l ≤ c
2 . It is obvious that the higher the size of

the sent vector, the greater the effectiveness of a shuffle. More-
over, according to the above equivalence, a shuffle with l is
equivalent to a shuffle with c − l. Thus, for l ≥ c

2 , the lesser
the size of the sent vector, the greater the effectiveness of a
shuffle. So, the greatest effectiveness is reached for l =

⌊
c
2

⌋
,

as confirmed numerically in Figure 8.
A formal proof is now given in Theorem 5.6 below. First,

we have to express in a measure of the effectiveness:
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Vi

l
c

Vk

ℓi

ℓk

Vi

c

Vk

ℓ'i

ℓ'k

Vk

Vi

ℓ'k

ℓ'i

(1)

(2)

≅

c-l

Figure 2: Intuitive equivalence between a small ` value and the opposite c − `
ones.

Definition 5.5 (Shuffling Effectiveness). The effectiveness of
a shuffle operation correspond to the magnitude of difference
between an update view and both of the views before the shuffle,
i.e.:

E(P′) = min{P · P′,Q · P′}

where P · P′ represent the scalar product between the vectors P
and P′.

Indeed, according to the reasoning above, the core idea of
a shuffling operation is to mix as much as possible both views
involved in the shuffle. Thus, having a high difference between
P′ and its initial state P (nor partner state Q) is a good metric.

Starting from this definition, we should maximize the effec-
tiveness of each operation. We prove below that this maximiza-
tion is achieved for γ = 0.5.

Theorem 5.6 (Greatest Effectiveness of a Shuffle). Given two
probability vectors P and Q. The maximum value of the ex-
pected effectiveness is reached for γ = 1

2 .

Proof. Consider that P (resp. Q) is the probability vector of
node i (resp. j). Let us remark that P · Q =

∑
k pk · qk =

Mi j. Then, P ·Q represents the expected number of elements in
common in Vi and V j.

Moreover, the number of new elements added in Vi after a
shuffle corresponds to the size of of the partner’s sent view ` j,
minus the number of elements in this sent view which was yet
in Vi. As we show in Section 4 that |Vi ∩ ` j| = γ · Mi j, this
number of new elements inserted is given by:

l −
l
c

P · Q

Thus, we can infer an expression of P · P′ and Q · P′. In
first hand, P ·P′ corresponds to the number of elements in com-
mon between P and P′, which is the size of the view minus the
number of new element inserted. On the other hand, Q · P′ cor-
responds to the number of common elements between Q and
P′, which is the size of the sent view (inserted for sure in Vi

after the shuffle) plus the unsent elements that were in common

0 c
l

E

½·c

Q·P'
P·P'

P·Q

½·c+ ½·P·Q

Figure 3: Effectiveness E(P′) according to l for a fixed view size c.

with P and Q. Then, we obtain:

P · P′ = c − l +
l
c
× P · Q

= l
(P · Q

c
− 1

)
+ c

Q · P′ = l +
(
1 −

l
c

)
P · Q

= l
(
1 −

P · Q
c

)
+ P · Q

In the proof of Lemma 5.1, we have proved that Mi j ≤ c. So,
we have P·Q

c ≤ 1. Given a fixed view size c, P·P′ (resp. Q·P′) is
then a linear function of l with a negative (resp. positive) slope,
and a range from 0 to P · Q (resp. from P · Q to 0) cf. Figure 3.
Then, the effectiveness is equal to P ·P′ for small value of l and
to Q · P′ for large value of l. Thus, the greatest value of E is
obtained for:

P · P′ = Q · P′

⇐⇒ l
(P · Q

c
− 1

)
+ c = l

(
1 −

P · Q
c

)
+ P · Q

⇐⇒ l
(
2 ·

P · Q
c
− 2

)
= P · Q − c

⇐⇒ 2 · l ·
P · Q − c

c
= P · Q − c

⇐⇒ l =
c
2
.

The greatest effectiveness is then reached for γ =
1
2
.

5.5. Providing a sample stream
Until now, we have proved that the shuffle protocol makes

the local view of all nodes to converge to the uniform distribu-
tion, that is all IDs appear in any view with the same probabil-
ity. We want now elaborate about the ability of the protocol to
provide a continuous stream of independent samples4, contrary
to [9] that ever provide the same one after convergence.

Let S and S ′ be two consecutive samples returned by the
same node. By definition, for the new sample to be independent
from the previous one, for any pair s, s′, it must be

P[S ′ = s′|S = s] = P[S ′ = s].

4aka the ergodic property defined in [11]
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As the returned sample is taken from the node view, it is
clear there that is a high probability that the previous sample
is returned back again, i.e., s′ = s. One possible solution for
the independency property to hold is to force the sampler to
provide a new sample, only after the previously returned one
has been selected for being sent out during a shuffle operation (s
in our example). In this way, s is replaced by another uniformly
chosen ID. Note that this doesn’t mean that s cannot be returned
two consecutive times. In fact, the partner node for one of these
shuffle operations can send s back again.

In order to estimate the independence of two consecutive
samples, we consider the notion of ε-independent view: the
view obtained after a sequence of shuffle operations is ε-inde-
pendent from the initial one if the probability that the former
returned sample s has not been sent out once, is at most ε.

We now seek for the minimum number κ of shuffling opera-
tions required to obtain ε-independence. The following lemma
provides a lower-bound of κ, given a ε:

Lemma 5.7. Given ε, the minimum number of shuffling opera-
tions κ required to obtain a ε-independent view is

κ ≥
log ε

log(1 − γ)

Proof. As shuffling operations are pairwise independent in term
of sent vector selection, the probability that after κ shuffle oper-
ations s has been refreshed is given by

κ∑
k=1

γ (1 − γ)k−1 .

In fact, the probability to send s exactly at the k-th operation
is γ (1 − γ)k−1, as γ corresponds to the probability that s is se-
lected in the sent view.

Then, the minimum number κ of shuffle operations such that∑κ
k=1 γ (1 − γ)k−1 ≥ 1 − ε (i.e., s has been sent out at least once

during κ operations with a probability greater than 1− ε) can be
obtained exploiting a geometric series. Recall that γ < 1 and
ε < 1. We thus obtain:

γ
1 − (1 − γ)κ

1 − (1 − γ)
≥ 1 − ε⇔ (1 − γ)κ ≤ ε⇔ κ ≥

log ε
log(1 − γ)

that concluded the proof.

For instance, given γ = 1/4 and ε = 0.0005, we obtain that
sample independence again after 5, 5 operations. In practical
terms, after 6 operations the returned sample is refreshed with
probability at least 0.9995.

That speaks about temporal independence of samples un-
der a local point of view. In order to provide a global analy-
sis, based on correlated spatial and temporal independence, we
should also consider the global evolution of the system config-
uration (cf. [10] for more details). How the shuffling operations
affect the spatial dependency remains an open question for fu-
ture works.
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Figure 4: Evolution of P[X ji = 1] for i fixed according to the gossip cycle
iteration.

Settings: n = 100, c = 20 and l = 4 for 50 iterations.
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Figure 5: Evolution of P[X ji = 1] for i fixed according to the gossip cycle
iteration (Planar view).

Settings: n = 100, c = 20 and l = 4 for 50 iterations.

6. Numerical results

In this section, we apply the analytical model (cf. Equa-
tion 3) in order to numerically derive some representative evo-
lutions of a system, in which shuffles are organized into cycles.
One cycle corresponds to all nodes initiate exactly one shuffle
with a random partner chosen from its own view5.

Consider a system with view size c = 20. Initially, the
views of nodes are set to [1..20]. This corresponds to one of
the worst cases of starting state. Indeed, among a population
of 100 nodes, the identifiers [21..100] do not appeared in any
view at starting point. They will be introduced progressively by
the initiator using the biased shuffling operation, as explained
in Section 3.

Figure 4 shows the view evolution of one node. The z-axis
shows the probability that an ID appears in the view of this
node. At the beginning of an execution, the overlay is then

5This cycle-based behavior is well-known in gossip-based protocols [1, 6,
7, 8, 13].
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Figure 6: Duration of presence in a view V of a node, initially located or not in
all views, for different ` size.

fixed: c nodes have a probability equals to 1 to appear in a
view and the other nodes a probability equals to 0. When the
protocol runs, all nodes are proceeding to theirs shuffles during
each cycle. Figures 4 shows the evolution of each probability
P[X ji = 1] according to the node identifier j and the iteration of
the algorithm, where one iteration corresponds to one gossip cy-
cle. Figures 5 represents the same data but in a planar view (all
the probabilities of each time are mapped vertically). Thus, the
latter figure shows the evolution of the maximum (and a fortiori
the minimum) probability value at a given time. It is possible to
observe that, as expected, all the probabilities converge to the
average value ( c

n = 0.2) in less than 40 gossip cycles.
On the other hand , we want to focus on another metric

which must reach also uniformity. In fact, by simulate the bi-
ased algorithm from the same initial system state, we observed
the duration of each inter-inview time (IIT); this correspond to
the length of the period between two times a given node belongs
to the view of a specific node. In a uniformly random behavior,
this IIT must be equal to c

n . Figure 6 presents, for a view equals
to 10 and different sent view sizes, the evolution of the IIT ac-
cording to time. One can observe on this figure that the IIT
oscillate around very different values just after the starting time
(due to the unbalanced representation of each node in all view,
in the aforementioned initial state). However, we could observe
that the protocol makes these IIT converge to 0.1, which is ex-
actly c

n in our settings.
For the comparison purpose, we model the evolution of the

system according to Equation 3, for both basic and biased shuf-
fling operation. As in Figure 5, but according to time and not
to cycle iteration, we present the probability vector evolution of
one view, in Figure 7. The latter speaks of the equivalence of
both approaches in term of convergence speed. Moreover, we
can observe that the biased operation could lead to decrease a
bit faster the very high probability. This is due to the fact that
each shuffle initiator node input its own ID in the sent view,
and then, refresh the knowledge of its ID faster than the basic
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approach.
Last but not least, in order to evaluate the impact of the

system parameters, Figure 8 presents the average convergence
time required to reach the uniform sampling, according to the
ratio γ = l

c , for different settings of the system (from 100 to
1,000 nodes with a view size varying from 10 to 20), starting
from the same aforementioned worst case. This figure speaks
about how to obtain the best convergence time according to γ.
Independently of the size of the network, the size of the view
c and the initial state, the fastest convergence is obtained with
a ratio γ = 0.5 (represented by a vertical line on Figure 8).
Thus, in the design of a gossip-based protocol, l has to be set to
the half of c in order to obtain the highest efficiency in term of
convergence speed, as formally shown in section 5.4 above.

Note that this is not an end in itself. Actually, one could
suffice with a convergence speed that is marginally slower than
the optimal one but with γ = 0.25. In fact, the advantage is
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that a smaller lambda means smaller messages and bandwidth
consumed.

7. Related works

The most relevant papers related to our work are [9, 10].
Our work differs from the one described in [9] in that while
in that work a random sample request triggers a new shuffling
protocol, our protocol allows for obtaining a continuous flow
of random samples (more precisely, a safe condition for keep-
ing uniform the sample returned by a node is to engage a new
shuffle operation for this node that includes the ID returned by
the last sample, so that the ID is “refreshed”. As the optimal
number of IDs exchanged in a shuffle operation is proved to
be an half of the local view, the returned ID is refreshed after
just two shuffle operations, in expectation. Hence, continuous
uniformity is sustained by simply setting the shuffle rate to at
least twice the sample rate). This ergodicity of the returned
samples has recently been characterized in presence of Byzan-
tine nodes [11]. This paper shows the intrinsic limitation of any
sampling method in presence of malicious node, and defines
some required assumptions on the system to make it possible.
The work described in [10] uses ergodic view sample with du-
plicate nodes allowed to appear in a view. Moreover, the system
model is different from our as it is based on asymmetric one-
way communication among peers. We extend the comparison
with this paper below.

Apart of the paper presented in [9, 10], several contribu-
tions have been proposed in the context of gossip-based peer
sampling service [1, 8]. In these works, authors have studied
the same framework used in this paper (as known as gossip-
based protocol). However, they only provide empirical results.
Using the same experimental approach, PuppetCast [14] is a
protocol for ergodic and uniform peer sampling in large-scale
distributed systems that tolerates up to 50 % of the nodes are
acting maliciously. To the best of our knowledge, no fully the-
oretical analysis of the shuffling protocol with respect to sam-
pling uniformity has been proposed so far.

It is worth remarking the key differences with the work de-
scribed in [10]. The analysis provided in that paper is based
on a simple push operation that sends one link endpoint and
reverses the another one. On the contrary, we consider two-
way symmetric exchange operations. The view model of [10]
is based on a multiset where empty slots are allowed, whereas
we consider fully filled views with no duplications.

Furthermore, in order to obtain the spatial independence,
study of [10] restricts the range of possible initial state, whereas
we proof that we converge to the uniformity from any initial
state.

Finally, although the one-way communication paradigm in-
herently faces message loss, we could deal with losses as out-
lined in Section 3.

Several contributions provided some fully theoretical anal-
ysis of gossip-based protocols as [13, 1, 15, 16, 17]. However,
those analysis aims to provide some theoretical outcomes on a
specific characteristic of these protocols as convergence speed

of dissemination protocols, by defining precise lower and upper
bound of the mixing time, degree balancing, etc. Nevertheless,
in these works, except for [13], authors do not consider the local
view as the information to analyze. In their works, the network
is modeled as a probabilistic matrix, which represents the meet-
ing probability of any pair of peers, and this matrix is used as
a building block of their analyses. Our study can then be used
to provide this specific matrix and/or to confirm that the matrix
used in these related works are consistent with the real behavior
of gossip-based protocols.

On the other hand , Bakhshi et al. propose in [13] an ana-
lytical model of shuffling protocols. However, as they are inter-
ested in the characteristics of the dissemination of data items,
they investigate two other properties than ours that character-
ized these protocols : (i) the number of replicas of an item in
the network, and (ii) the coverage achieved by an item over
time. Nevertheless, we can parallel our work by considering
node IDs as the disseminated data. Despite the fact that their
analysis relies on a close approximation scale down by a cor-
rection factor, it is interesting to note that authors of [13] found
the same optimum value of γ ∼ 0.5.

Another set of theoretical approaches has to be raised [18,
19, 20]. These works provides some decentralized method to
generates random graphs, based on edge-flipping. Initially, Mahl-
mann and Schindelhauer have proposed Random k-Flipper [18],
a graph transformation algorithm that creates random regular
connected undirected graphs, asymptotically almost surely uni-
form. They have analyzed the cost of maintenance operation
for a P2P network, based on random regular connected graphs.
Following the same approach, Cooper et al. show in [19] that
performing random flip operations on a regular graph samples
almost uniformly at random, in time polynomial in graph size
and error value. Both contributions present interesting theoret-
ical results according the convergence time of such decentral-
ized sampling method, that could draw a parallel between our
contribution. Additionally, in the context of weakly connected
multi-digraphs with regular out-degree, authors of [18] has pro-
posed a local graph transformation, namely Pointer-Push&Pull
operation [20] that produces any of these graphs uniformly at
random after a series of random operations. The latter’s defini-
tion is attractive because, as in [10], it consists in exchanging
only two neighboring edges. Their analysis fits with our work,
in the specific (l = 1)-case.

Finally, as remarked in Section 1, random walks have been
also used to provide uniform peer sampling [3, 21]. These con-
tributions proposed how to bias the simple random walks model
in the way to extract uniform sampling. Both of them provide
a theoretical analysis of their protocols. Finally, a solution of
the peer sampling service, based on a structured P2P system,
has been proposed in [22]. Authors propose an algorithm based
on Chord [23] and proved that it provides nodes with uniform
random samples of the system.

8. Concluding Remarks

The paper has provided a theoretical ground to the fact that a
shuffling protocol provides eventually nodes with uniform ran-
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dom samples of a system. Before this was only an empirical ev-
idence. Differently from [9], our analysis shows that the same
instance of the shuffling protocol can provide permanently a
node with uniform sample of the system. Corollary 1 formally
grasps this difference.

On the other hand , future works consist in a deeper analy-
sis of our shuffling operation, as the impact of the topological
distribution, or thorough proofs of properties as spatial and tem-
poral independence (as done in [10] for a different model).

The paper also presented a numerical evaluation of the shuf-
fling algorithm on its convergence speed of the local views to
uniform random samples. We also formally proved what is the
best fraction of the local views to swap in a shuffling operation
to get best convergence speed.

Acknowledgments

The authors would like to warmly thank Leonardo Querzoni
for his help with the simulations. The authors are indebted with
the reviewers for their comments and suggestions that greatly
improved presentation and content of the paper. A short and
preliminary version of this paper [24] appeared at the 10th In-
ternational Conference on Parallel and Distributed Computing
Applications and Technologies.

References

[1] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, M. van Steen,
Gossip-based peer sampling, ACM Transaction on Computer System
25 (3) (2007) 8.

[2] R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, S. Tucci-Piergiovanni,
TERA: topic-based event routing for peer-to-peer architectures, in: the
2007 inaugural international conference on Distributed Event-Based Sys-
tems (DEBS ’07), ACM, Toronto, Ontario, Canada, 2007, pp. 2–13.
doi:http://doi.acm.org/10.1145/1266894.1266898.
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