
Redundant Movements in Autonomous Mobility:

Experimental and Theoretical Analysis

Natalia Chechina1, Peter King, Phil Trinder

Department of Computer Science, Heriot-Watt University, Edinburgh, UK, EH14 4AS

Abstract

Distributed load balancers exhibit thrashing where tasks are repeatedly moved
between locations due to incomplete global load information. This paper
shows that systems of Autonomous Mobile Programs (AMPs) exhibit the
same behaviour, and identifies two types of redundant movement (greedy ef-
fect). AMPs are unusual in that, in place of some external load management
system, each AMP periodically recalculates network and program parame-
ters and may independently move to a better execution environment. Load
management emerges from the behaviour of collections of AMPs.

The paper explores the extent of greedy effects by simulating collections
of AMPs and proposes negotiating AMPs (NAMPs) to ameliorate the prob-
lem. We present the design of AMPs with a competitive negotiation scheme
(cNAMPs), and compare their performance with AMPs by simulation. We
establish new properties of balanced networks of AMPs, and use these to
provide a theoretical analysis of greedy effects.

Keywords: load balancing, autonomous mobile program, mobile agent

1. Introduction

Autonomous mobile programs (AMPs) are mobile agents that improve
execution efficiency by managing load; AMPs are aware of their resource

∗Corresponding author. Fax: +44 (131) 451-3327
Email addresses: nc75@hw.ac.uk (Natalia Chechina), P.J.B.King@hw.ac.uk (Peter

King), P.W.Trinder@hw.ac.uk (Phil Trinder)
URL: http://www.macs.hw.ac.uk/~nc75 (Natalia Chechina),

http://www.macs.hw.ac.uk/~pjbk (Peter King),
http://www.macs.hw.ac.uk/~trinder (Phil Trinder)

Preprint submitted to Journal of Parallel and Distributed Computing June 20, 2011



needs, sensitive to the execution environment and periodically seek a better
location to reduce execution time [1]. To analyse AMP behaviour on local
area networks (LANs) we have constructed a simulation model [2]. Compar-
ing the simulation results and observations of the real system [1] shows that
simulated and real AMPs enter the same stable states (i.e. where no AMP
can reduce its execution time by moving). The differences between simulated
and real AMPs are minor and readily explained.

Like other distributed load balancing systems [3, 4, 5], both real and
simulated collections of AMPs exhibit greedy effects. These greedy effects
are a phenomenon that results in redundant AMP movements during the
balancing of loads between locations, and are a result of locally optimal
choices made by each AMP.

This paper is the first substantial investigation of thrashing behaviour
for collections of distributed agents, and the results of using an agent-based
technique, namely negotiation, to ameliorate them. The paper examines
properties and features of the greedy effects in collections of AMPs and ex-
poses their causes. We further aim to reduce greedy effects using negotiation,
and to estimate the greedy effects in the modified algorithm. The measure-
ment of the greedy effects is implemented both theoretically and by using
simulation.

The paper is organised as follows. We discuss AMP related concepts
(Section 2), and identify two forms of greedy effects (Section 3). The AMP
cost model and simulation are adapted to facilitate an investigation of the
greedy effects. We examine the AMP greedy effects on initial distribution,
rebalancing and AMP execution time (Section 4). Analysis of types of move-
ments shows that the majority of redundant movements occur because an
AMP is unaware of the intentions and movements of other AMPs. So, we
discuss ways to reduce the greedy effects and propose the concept of nego-
tiating AMPs (NAMPs) that communicate their intentions with the view to
reduce redundant moves.

While a number of negotiation schemes are possible, we have designed and
simulated AMPs with a competitive scheme (cNAMPs) (Section 5). cNAMPs
announce their intentions to move and compete with each other for oppor-
tunity to transfer to the new location. An analysis of simulated cNAMP
results shows that even this simple negotiation significantly decreases both
the number of redundant movements and the time to rebalance. For ex-
ample, cNAMPs make no redundant movements during initial distribution
which makes initial balancing in the conducted experiments at least three

2



times faster in comparison with AMPs. We establish the properties of bal-
anced states, i.e. states where no AMP can gain a greater AMP relative speed
by moving [6] (Section 6), and establish the maximum number of redundant
movements after a cNAMP termination using case analysis (Section 7). A
summary of the results and discussion of future work are provided in Sec-
tion 8. We assemble a set of consistent and precise definitions about the
behaviour of collections of AMPs and cNAMPs which appears at the end of
the paper (Glossary).

Novelty. The paper goes beyond [7] by making the following additional re-
search contributions:

1. We establish the properties of balanced states to estimate the signifi-
cance of the greedy effects. We analyse AMPs as the general case and
examine a number of properties, such as independent balance, singleton
optimality, and consecutive optimality (Section 6).

2. We examine the significance of the greedy effects by predicting the
worst case (maximum number) of redundant movements after a cNAMP
termination from a network of q subnetworks (i.e. sets of locations with
identical available speeds) using case analyses (Section 7).

3. We define a consistent terminology for reasoning about the behaviour
of AMPs and cNAMPs. Some definitions are generalisations of, or more
precise versions of, those used in earlier papers [2, 6] (Glossary).

2. Related Work

2.1. Introduction

This section discusses previous work, first exploring the three core AMP
technologies: load balancing (Section 2.2), mobile computing (Section 2.3)
and autonomous systems (Section 2.4), before covering mobile agent load
balancing (Section 2.5).

The novelty of the AMP approach is that it automates the performance
prediction process using compile-time analysis to identify potential migration
points in the code, and devolves to the AMP the decision as to whether to mi-
grate or not as each migration point is executed. Effective load management
results from emergent behaviour of collections of AMPs. AMP behaviour has
previously been investigated using mobile languages like Java Voyager [8] and
using simulation [2].

3



2.2. Distributed Load Management

The problem of load balancing in distributed computer systems has been
widely studied, e.g. [5, 9, 10]. The main difficulties which load balancing
approaches face are minimizing execution time, minimizing communication
delays, and maximizing resource utilization [11]. According to the taxonomy
in [12], AMPs are global dynamic load balancers. According to the detailed
classification of dynamic load balancers [13], AMPs have decentralysed state
estimation scheme that involuntary and periodically collects partial infor-
mation, and decentralised, sender initiated, simple decision making policy.
AMPs take all movement decisions themselves, independently of other AMPs.
They use the information collected by load servers (which only collect net-
work state information and are designed to reduce AMP coordination time)
to estimate their remaining execution time if they executed at other locations.
If the predicted time to complete at the current location is greater than the
predicted time at the best available remote location plus the communication
time to reach the remote location, then the AMP will relocate.

The way AMPs search for a better location may seem similar to iterative
algorithms [14, 15]. Indeed, both approaches aim to distribute load among
nodes, and the load is estimated by the number of tasks (or programs) per
node. There are two distinctions: firstly in iterative algorithms the locations
decide when movement is necessary and which tasks to move, whereas in the
AMP approach it is the program itself that decides to move to improve its
own performance. Secondly, while in iterative algorithms the locations aim
with each iteration to approach some mean load, AMPs seek only to reduce
the program execution time.

In general redundant movements are a result of locally optimal choices.
To reduce the number of redundant movements different techniques are used,
such as limiting any particular task to a maximum number of migrations [16],
calculating the largest difference between the estimated execution time and
the interprocess communication cost [17], applying market mechanisms [4],
etc. These techniques aim to reduce the redundant movements where loca-
tions have a task scheduler or management agents, whereas we aim to reduce
them for independent AMPs without a scheduler.

2.3. Mobility

Mobile computations can move between locations in a network and po-
tentially enable better use of shared computational resources [18]. Basically

4



a mobile program can transport its state and code to another location in a
network, where it resumes execution [19].

Fuggetta et al. distinguish two forms of mobility supported by mobile
languages [20]: weak mobility is the ability to move only code from one
location to another; strong mobility is the ability to move both code and
its current execution state. AMPs were constructed using languages with
weak and strong mobility. However, a substantial subset of experiments was
conducted using Java Voyager [21] which supports only weak mobility.

2.4. Agents and Autonomous Systems

Agent technology is a high-level, implementation independent approach
to developing software as collections of distinct but interacting entities which
cooperate to achieve some common goal [22]. With the continuing decline
in price and increase in speed of both processors and networks, it has be-
come feasible to apply agent technology to problems involving cooperation in
distributed environments. In particular, where agents may change location,
typically to manipulate resources in varying locations [23].

Autonomous systems are also called autonomic computing systems, and a
definition has been given by IBM: “autonomic computing system can manage
themselves given high-level objectives from administrators” [24]. From four
aspects of self-management, i.e. are self-configuration, self-optimisation, self-
healing, and self-protection, AMPs are primarily self-optimisation systems.

2.5. Mobile Agent Load Balancing

AMPs differ from other mobile agent systems designed to balance load in
that each AMP is both autonomous and self aware, i.e. it knows key infor-
mation like remaining execution time and program size. Another difference
is that the approach does not split a program into subtasks as in [10, 25, 26].
An AMP is the whole program. Thus, AMPs represent a radical point in
distributed decision making when not a location server [27], or a load bal-
ancing coordinator [28], or a cluster manager [25] decide where and when to
move but each agent itself.

3. Greedy Effects

An optimal rebalancing is a sequence of AMP movements that is the
minimum number of AMP movements needed to enter a stable state.

5



The AMP greedy effects are the result of a non-optimal AMP rebalancing
which differs from the optimal rebalancing in having additional redundant
movements, and is a result of the AMP making a locally optimal choice,
i.e. AMPs do not possess sufficient and accurate state information to make
the optimal movement decision. There are two types of the AMP greedy
effects: location thrashing and location blindness. Both location thrashing
and blindness are observed in real [8] and simulated [2] AMP experiments.

3.1. AMP Distribution Scenarios

To illustrate the greedy effects we first introduce the following AMP sce-
narios, each of which specifies the number of AMPs and locations, and types
of locations:

Scenario 1 : 25 AMPs on 15 locations with CPU speeds 3193 MHz (Loc1−
Loc5), 2167 MHz (Loc6− Loc10), and 1793 MHz (Loc11− Loc15).

Scenario 2 : 20 AMPs on 10 locations with CPU speeds 3193 MHz (Loc1−
Loc5), 2168 MHz (Loc6), and 1793 MHz (Loc7− Loc10).

Scenario 3 : 10 AMPs on 3 locations with CPU speeds 3193 MHz.
The scenarios are the same as were used in real experiments. For all

scenarios Loc1 is the root location. By the root location we mean the location
where all AMPs start; it is also called either initiating location or first location
in [1]. In the experiments we use large and small AMPs. Large AMPs are
programs of matrix multiplication of size 1000× 1000, and small AMPs are
programs of matrix multiplication of size 500× 500.

3.2. Location Thrashing

Location thrashing is the greedy effect resulting from an AMP’s lack of
information about other AMPs intending to move to the same location. That
is, two or more AMPs decide to move on the basis of the same information
about the target location which causes further AMP retransmission. Loca-
tion thrashing occurs in dynamic load balancing systems; other terms are
processor thrashing [29], task thrashing [16], task dumping [3, 30], transmit-
ting dilemma [31].

Location thrashing is illustrated in Figure 1(a) which shows AMP move-
ments in the experiments with the real system [1] based on scenario 3 (Sec-
tion 3.1). In Figure 1(a) each icon denotes an AMP. The locations are speci-
fied on the vertical axis and the horizontal divisions represent time intervals.
The time intervals are of different lengths, showing states that the system
enters as it attempts to reach a stable state. Note that location thrashing

6



(a) Redundant rebalancing (b) Optimal rebalancing

Figure 1: Location Thrashing Greedy Effect [8]

incurs two performance penalties, namely the cost of additional communica-
tion and the cost of slower execution. By additional communication cost we
only mean additional AMP movements during a rebalancing and not com-
munication time they may take.

3.3. Location Blindness

Location blindness is the greedy effect resulting from an AMP’s lack of
precise information about the remaining execution time of other AMPs. The
problem is not with poor runtime predictions, but rather an inability to
obtain accurate AMP runtime predictions at distributed locations, i.e. the
more accurate information that is required, the more expensive it becomes
to collect and process the information in a distributed system [32].

Figure 2 shows an example of location blindness in some simulated AMP
experiments. The experiment is undertaken on the basis of scenario 1 (Sec-
tion 3.1). Numbers identify the number of AMPs on a location. After an

7



Figure 2: Location Blindness Greedy Effect [2]

AMP termination on Loc14 in state S1 and the system enters state U1 an
AMP from Loc5 discovers the opportunity for faster execution first and moves
(state U2). Then an AMP from Loc7 discovers the opportunity for faster ex-
ecution on Loc5 and also moves (state S2). In contrast to the location thrash-
ing, location blindness only causes redundant communication and causes no
additional computation cost. Each AMP will have reduced its execution time
by moving. Thus, among two types of the AMP greedy effects the location
thrashing is more harmful, because it causes an increase in AMP execution
time, and hence decreases AMP efficiency.

4. Simulating AMP Greedy Effects

Earlier simulation experiments of AMPs on a LAN showed that the simu-
lation closely models real AMPs on LANs, and is an effective tool to analyse
AMP behaviour [2]. We provide essential calculations and discuss properties
and features of AMPs in Section 4.1. To simulate the greedy effects some
changes to the previous simulation model [2] have been proposed, such as
bounds on information transfer times and delays on the transfer of state in-
formation [33]. We further discuss greedy effect experiments and investigate

8



the redundant movement causes in Section 4.2.

4.1. Cost Model and Parameterisation

The key equations of the AMP cost model defined in [6] are repeated
here, and the parameter values are given in Table 1.

A homogeneous network is a set of locations with the same available
speeds, except the root location which may be different, because of the over-
heads of initiating the remote processes. A heterogeneous network is a set of
locations with different available speeds.

Available speed is the execution speed of a single AMP on a location,
i.e. S = (CPUspeed) · (1 − non AMP load), is used to differentiate the
total resources of a location from the resources available for AMPs. The
current research, like the previous AMP investigations [1, 7, 8], assumes
that all resources of a location are available for AMPs, and the CPU speed
coincides with the available speed, except the case of the root location where
the external load is higher.

An AMP relative speed, R, is available speed equally divided between the
AMPs at the location, xloc, i.e.1

R =
S

xloc

. (1)

An AMP executes for a time Tgran = Tcoord

O
before it tests the relative

speeds of other locations to see if a move will improve its completion time.
The time parameters for our simulation are taken from Java Voyager AMP
measurements on a LAN [6], as validated in [2]. The coordination time, Tcoord,
is determined experimentally to be 0.011s for a load server architecture. The
overhead, O, is 5%.

After executing for Tgran an AMP makes a request to the load server of
the current location about states of other locations in the network. If an
AMP decides to stay on the current location, then it continues execution
for a further Tgran seconds, otherwise it moves to a new location taking
Tsend = 0.029+5.07·10−6 ·d2 seconds. The AMP studied here performs square
matrix multiplication and d is the dimension of the matrix. Experiments with
other programs, e.g. coin counting or ray tracing, show consistent behaviour,
and in the following we use matrix multiplication.

1In [1] the available speed is called relative speed, and the AMP relative speed is called
average relative speed.

9



Table 1: Parameter Definitions
d Dimension of square matrix

gran Fragment of work which must be executed between searches for a better location
N Number of locations in a network
O Overhead
R AMP relative speed
S Available speed

Tcomm Time for single communication
Tcoord Coordination time in the load server architecture
Tgran Execution time of fragment of work gran

Th Execution time on the current location
Tn Execution time on the new location

Trenew Time of total state information renewing by load server
Treq Time to send a request to a remote load server and receive a response
Tsend Time to transmit an AMP to the new location
xloc Number of AMPs on a location

As soon as an AMP makes a decision to move to a new location, the load
server of the current location decreases its number of AMPs. In turn, the new
location increases its number of AMPs after the AMP has completely arrived
and is ready to execute. To obtain state information from other locations
in a network, a load server sends requests to locations in a sequential order
following [6]. Treq, the time taken to send a request to a remote Java process
and receive a response has been measured using Java Voyager, and is equal
to 0.25s [6, p. 80]. Thus, a load server completely renews state information
about the remaining N−1 locations in the network every Trenew = Treq(N−1)
seconds.

The main rule on the basis of which AMPs make a decision to move to a
new location is whether execution time on the current location, Th, exceeds
execution time on the next location, Tn, and communication delay, Tcomm:

Th > Tn + Tcomm. (2)

If condition (2) is satisfied, then an AMP moves. Here, communication time
is time to transfer an AMP, i.e. Tcomm = Tsend.

4.2. Analysing Greedy Effects

The analysis investigates frequency and significance of greedy effects in
the three scenarios from Section 3.1 on homogeneous and heterogeneous net-
works. We further classify the redundant movements and identify the pri-
mary cause.

10



Table 2: AMP Greedy Effect Experiment Summary
E1: Initial distribution E2: Rebalancing after E3: Large AMP

an AMP termination execution time, sec
Config. Mean No. of Mean time, Mean No. of Mean time, Mean Standard

redun. moves sec redun. moves sec deviation
Scenario 1 64 60.4 6 22.5 173.8 7.66
Scenario 2 43 50.5 11 28.2 182.1 11.5
Scenario 3 13 26.8 6 14.1 232.6 9.91

Experiment 1 (E1): Initial distribution. This experiment investigates
the greedy effects as large AMPs distribute over the network from a single
location in each scenario. Column Initial distribution in Table 2 shows the
mean number of redundant movements and the time required for the system
to enter a stable state.

Experiment 2 (E2): Rebalancing after an AMP termination. The exper-
iment measures the number of movements and time required for a system to
rebalance after an AMP termination in each scenario. Column Rebalancing
after an AMP termination in Table 2 shows the mean number of redundant
movements and rebalancing time.

Experiment 3 (E3): Large AMP execution time. This experiment esti-

Figure 3: AMP Movements During Initial Distribution (Scenario 1)

11



mates large AMP execution time and measures its variability in each sce-
nario. The total number of AMPs corresponds to the relevant scenario. All
AMPs, two of which are small and the rest are large, start on the root lo-
cation. The results are presented in column Large AMP execution time in
Table 2.

Figure 3 shows the initial AMP distribution between locations as the
system rebalances from initial (unstable) state U1 to stable state S. As all
AMPs move from Loc1 in state U1 to Loc2 − Loc5 in state U2, we do not
indicate them with lines. There are 88 movements in total, but there would
only be 24, if each AMP moved directly to the location it reaches in state S,
i.e. the system makes 64 redundant movements.

The analysis of AMP movements allows them to be classified into the
following main types of redundant movements: 1) two or more AMPs move
from one location to another, and then some of them rebalance; 2) two or
more AMPs move from a location, and then some AMPs move back to the
location; 3) two or more AMPs move from different locations to one location,
and then some of them immediately move again. Therefore, we conclude
that redundant AMP movements are mainly caused by AMP ignorance of
intentions and actions of other AMPs in the network and, hence, lack of
information to make an efficient decision, i.e. location thrashing.

5. Negotiating AMPs and cNAMPs

As the main reason for poor AMP movement decisions is a lack of com-
munication between AMPs via the load servers, we propose to use negotia-
tion to reduce the greedy effects. Possible methods of negotiation between
AMPs and/or load servers are discussed in Section 5.1. We introduce a sim-
ple negotiation scheme in which AMPs announce their movement intentions
and compete for opportunity to transfer. AMPs using this scheme are called
cNAMPs. The modifications to AMP algorithm to provide this behaviour are
described in Section 5.2. The comparative cNAMP and AMP performance
is presented in Section 5.3.

5.1. Negotiating AMPs

The analysis of the greedy effects in the simulated AMP experiments in
Section 4.2 shows that the majority of redundant movements occur because
an AMP makes a decision on the basis of currently available information and
is unaware of impending movements of other AMPs.

12



Table 3: cNAMP and Load Server Pseudocode
cNAMP Load Server
while work remains to execute forever do

{if outstanding request & positive response case local cNAMP sent a request to Loci:

{inform local load server about movement lock information about Loci

move to target location } case local cNAMP received response from Loci:

else if no local cNAMP awaits a response {renew and unlock information about Loci

{for n from 1 to total number of loc-s if positive response

find minimum of Tn + Tcomm reduce actual and committed loads }
if Th > minimum case arrival notification from remote cNAMP:

{send request to Ln increase committed load

inform local load server about case cNAMP arrived:

request sent } } increase actual load

continue execution }

To analyse and understand AMPs better we draw an analogy between
AMPs and human society, where an AMP acts as an individual. Then AMP
behaviour corresponds to autistic behaviour. Such an AMP does not request
information about other AMPs, does not provide information itself, and does
not communicate with other locations to make efficient movement decision.
To make a movement decision AMPs only rely on the current information
and are not concerned about actions of other AMPs on the same information
about the target location.

In order to reduce the greedy effects AMPs must negotiate with each
other, i.e. communicate more information. There can be different types of
negotiation, such as malicious, honest, etc. A malicious strategy would be for
a load server to misrepresent the load so that other AMPs were deterred from
moving to a location. An honest strategy requires AMPs and load servers
to share information to reduce wasted movements and is more effective for
load balancing. A range of honest AMP negotiation tactics are possible,
e.g. competitive where AMPs compete with each other to move to the target
location, queuing where each AMP has a sequence number in a queue, and
moves to the new location only if an earlier AMP in the queue rejected to
move, probabilistic where an AMP makes a decision to move on the basis
of calculating the probability of simultaneous AMP movements from other
locations, relationship where a network is logically divided into groups, loca-
tions first share information within their group, a location can be a member
of more than one group, thus information is spread like a rumour.

13



5.2. The Design of cNAMPs

cNAMPs are negotiating AMPs with a competitive scheme which an-
nounce their intentions to move and compete with each other for opportunity
to transfer to the new location. In the context of cNAMPs the negotiation
is a simple coordination among competitive and self-interested agents [35].
cNAMPs do not negotiate directly with each other, but only by means of a
load server.

cNAMPs are designed only to reduce location thrashing. Eradicating lo-
cation thrashing eliminates redundant movements during initial distribution
and significantly reduces the number of redundant movements during rebal-
ancing (Table 4 in Section 5.3). In addition, reduction of location blindness
requires that cNAMPs and load servers possess even more information about
locations and cNAMPs of the network. In Section 7 we show that both the
probability of redundant movements and their number are very small.

Unlike an AMP, a cNAMP first sends a request to the selected target
location declaring the intentions to move. The request is also an agent which
can be seen as a cNAMP representative. On arrival to the target location the
representative recalculates parameters, informs the target load server if the

Figure 4: Initial Distribution and Rebalancing after a cNAMP
Termination (Scenario 1)

14



Table 4: Comparative Summary of AMP and cNAMP Greedy Effects
Rebalancing after Large AMP/cNAMP

Initial distribution an AMP/cNAMP execution
Configuration termination time, sec
and type of Mean Mean
experiment Time, number of Time, number of Mean Standard

sec redundant sec redundant deviation
movements movements

Scenario 1
AMPs 60.4 64 22.5 6 173.8 7.66

cNAMPs 14.7 - 5.9 - 104.8 12.9
Reduction 4.11 64 moves 3.81 6 moves 1.65

Scenario 2
AMPs 50.5 43 28.2 11 182.1 11.5

cNAMPs 12.4 - 7.8 1 113.6 9.43
Reduction 4.07 43 moves 3.62 10 moves 1.6

Scenario 3
AMPs 26.8 13 14.1 6 232.6 9.91

cNAMPs 8.5 - 5.6 - 142.2 4.97
Reduction 3.15 13 moves 2.52 6 moves 1.64

decision is positive and moves back. Only if the representative confirms the
movement decision does the cNAMP actually move; otherwise the cNAMP
continues execution locally. When a request informs the target load server
about a cNAMP movement the load server reports the load as if the transfer-
ring cNAMP had already arrived. Each load server maintains two values for
the load: 1) the actual load which is the number of executing cNAMPs and is
used for local cNAMP calculations; 2) the committed load which represents
the actual load of a location together with the cNAMPs that confirmed their
transferring to the location, and is used by remote load servers. Pseudocode
for cNAMP and load server implementations are presented in Table 3. The
way cNAMPs confirm a movement decision with the target location has some
small similarities to a two-phase commit protocol [36].

5.3. Comparative cNAMP and AMP Performance

We compare the greedy effects exhibited by AMPs and cNAMPs in Ta-
ble 4 using the experiment design presented in Section 3.1. For each scenario
the first and the second rows show results of AMP and cNAMP experiments
respectively.

The results show that even simple negotiation in cNAMPs significantly
reduces the number of movements and time to rebalance. During rebalanc-
ing after an AMP/cNAMP termination, cNAMPs make far fewer redundant
movements. cNAMPs require less execution time than AMPs. Figure 4 shows

15



Table 5: AMP/cNAMP and Request/Response Messages
AMPs cNAMPs

Conf. No. Size, No. Req/ No. Moves Total Req/Resp cNAMP Total
Moves Mb Resp cNAMPs No. Msg Size, Mb Size, Mb Size, Mb

Sc. 1 106 954 78 35 113 36 315 351
Sc. 2 77 693 66 28 94 30 252 282
Sc. 3 28 252 26 11 37 12 99 111

initial cNAMP distribution and system rebalancing after a cNAMP termi-
nation. Arrows show cNAMP movements, and as before we do not show the
cNAMP movements from state U1 to state S1. Figure 4 should be compared
with Figure 3 in Section 4.2. More examples of cNAMP movements are pro-
vided in [34]. The results show that cNAMPs only display location blindness
(Section 3) which does not increase cNAMP execution time.

Table 5 presents the overhead of cNAMPs compared with AMPs, and we
see that although cNAMPs send more messages (columns 2 and 6), most of
them are small request/response messages. Therefore, overall AMP commu-
nication is larger than overall cNAMP communication (columns 3 and 9). As
a consequence cNAMPs execute faster than AMPs (column 7 in Table 4).

6. Properties of Balanced Networks

To analyse the significance of greedy effects we establish the properties
of balanced states. The properties and definitions developed in this section
are essential for the proofs in Section 7, and are summarised in the Glos-
sary. Note that the properties of balanced states apply to all AMPs, not
only cNAMPs. The balanced state are investigated using a balanced state
checker, i.e. a special program to explore the state space the system enters.
The balanced state checker uses identical logic to the simulated and to real
AMPs. Hence, it is not surprising that the predicted balanced states exactly
reproduce simulated results for all scenarios considered. A homogeneous
network is analysed as a special case of a heterogeneous network where the
root location is taken as a singleton subnetwork, i.e. a subnetwork with one
location.

There is a similarity between AMP’s balanced states and Nash equilib-
ria [37]. Participants in both Nash equilibrium and AMPs aim to get as
much profit as possible. However, in game theory participants have a choice
to play cooperatively or not, whereas AMPs/cNAMPs have no such choice.
Though cNAMPs communicate more information than AMPs, cNAMPs are

16



still selfish, and they never care about others’ profit but only about decreas-
ing their own execution time. Another difference is that AMPs/cNAMPs
do not predict or estimate other AMP/cNAMP behaviour, i.e. as soon as
an AMP/cNAMP finds a location where it can reduce its execution time it
moves.

We first discuss empirical balanced state checker in Section 6.1 which
is used to investigate balanced states, then present the independent balance
property in Section 6.2, and discuss optimal and near-optimal balanced states
in Sections 6.3 and 6.4 respectively. Furthermore, we characterise balanced
states for homogeneous networks in Section 6.5 and heterogeneous networks
in Section 6.6.

6.1. Balanced State Checker

The properties of balanced states were investigated using a program to
explore the states entered as AMPs are added to the system one by one.
The program assumes that communication time is negligibly small relative
to computation time, i.e. Tcomm ¿ Tcomp. The sequence of stable states that
are entered are all balanced.

The algorithm of the balanced state checker is as follows. To allocate a
new AMP when a distribution of x AMPs is given (0 6 x 6 ∞), we add
one AMP to each location. Then AMP relative speeds are calculated, and
one AMP is removed from each location except those with the highest AMP
relative speed. The resulting distribution is the distribution x + 1 AMPs
where this one AMP can be on one of locations with the highest AMP relative
speed. More detailed description and pseudocode are given in [33].

6.2. Independent Balance Property

The analysis of balanced states shows the following property.

Property 1 (independent balance). For a balanced state, the relationship
between the number of AMPs xi and xj on locations in any two subnetworks
i and j is independent of the number of locations in those subnetworks and
independent of the presence or absence of other subnetworks, subject only to
the sum x = xi + xj being constant. The only exception to this rule is the
case when distribution of x′ = xi+xj +1 AMPs results in all x′ AMPs having
the same relative speed. In this case the partition may have two variants.

Independent balance property holds in all scenarios investigated and can
be observed in the following experiments.

17



Table 6: AMP Distribution in a Pair of Subnetworks for a Given
Sum of AMPs

(a) Scenario A
Available Number
speed of of
locations AMPs

S1 8
S2 3

(b) Scenario B
Available Number
speed of of
locations AMPs

S1 8
S2 3

..

.
..
.

Si xi

(c) Scenario C
Available Number
speed of of
locations AMPs

8

S1

.

..
8
3

S2

.

..
3

..

.
..
.

Si xi

Experiment 1.
1) Distribute 11 AMPs over a heterogeneous network of two singleton

subnetworks. Without loss of generality, assume that the distribution places
8 AMPs on the location of subnetwork 1 and 3 AMPs on the location of
subnetwork 2 as Table 6(a) shows.

2) Add further singleton subnetworks to the system and also add enough
AMPs to the new system so that balanced state is achieved and there are 11
AMPs distributed between singleton subnetworks 1 and 2. The distribution
between singleton subnetworks 1 and 2 will always be 8 AMPs in subnetwork
1 and 3 AMPs in subnetwork 2 (Table 6(b)). It will never be distributed 7
AMPs in subnetwork 1 and 4 AMPs in subnetwork 2, or 9 AMPs in subnet-
work 1 and 2 AMPs in subnetwork 2.

3) Adding any number of locations to a subnetwork will not change the
distribution between a pair of locations from subnetworks 1 and 2 so long as
the system is in a balanced state and a sum of AMPs in the pair of locations
from subnetworks 1 and 2 is 11 (Table 6(c)).

Experiment 2.
Assume that distribution of 12 AMPs between subnetworks 1 and 2 would

result in all AMPs having the same relative speed, and the distribution would
be 8 AMPs in subnetwork 1 and 4 AMPs in subnetwork 2. Then distribution
of 11 AMPs has two alternatives: 8 AMPs in subnetwork 1 and 3 AMPs in
subnetwork 2, and 7 AMPs in subnetwork 1 and 4 AMPs in subnetwork 2.

18



The distribution of 11 AMPs may result only in these two partitions inde-
pendently of presence or absence of other locations and subnetworks.

Let there be two subnetworks, with the available speeds S1 and S2, and
let each location of subnetworks 1 and 2 have x1 and x2 AMPs in a balanced
state respectively. Then the following inequalities hold in any balanced state:





S1

x1

> S2

x2 + 1

S2

x2

> S1

x1 + 1
.

(3)

We distinguish two balanced states which a system can enter: optimal
and near-optimal balanced states. In Sections 6.3 and 6.4 we investigate their
properties and generalise some of the definitions given in [6].

6.3. Optimal Balance

An optimal balanced state is a state when locations with the same available
speed have equal numbers of AMPs. The total number of AMPs x in an
optimally balanced network with q subnetworks is: x =

∑q
i=1 xiNi, where

there are Ni locations in subnetwork i and each location has xi AMPs.

Property 2 (singleton optimality). All balanced states which a network of
singleton subnetworks enters are optimally balanced.

The singleton optimal property is a direct corollary of the optimal bal-
anced state definition. Furthermore, from optimal balanced state definition
and independent balance property it follows that:

1) finding optimal balance states of arbitrary heterogeneous networks only
requires the finding of the optimal balance states for networks with the same
number of singleton subnetworks:

k =

q∑
i=1

xi, k ∈ [1; +∞). (4)

2) any optimally balanced network is a composition of optimally balanced
pairs of subnetworks.

Solving inequations (3) for a heterogeneous network of two subnetworks
with available speeds S1 and S2, and k = x1 + x2, each location has the

19



following number of AMPs:

xi ≈ Si(k + 1)

S1 + S2

− 1

2
, i = 1, 2. (5)

Here, by ≈ we mean rounding to the nearest value. If the fraction part of xi

is exactly .5, then either xi is rounded up and xj is rounded down, or xi is
rounded down and xj is rounded up. To indicate the rounding to the nearest
value in the paper we use double square brackets, [[]]. These brackets also
imply that both adjacent integer values should be considered if the fractional
part of the contents is exactly .5.

This analysis of balanced and optimal balanced states enables testing of
an assumption made in [6], i.e. it is said that AMPs tend to have equal
AMP relative speed in optimal balance. However, the observations show the
following results:

Lemma 3. An AMP relative speed on a faster location tends to be slightly
lower than the mean AMP relative speed; and an AMP relative speed on a
slower location tends to be slightly higher than the mean AMP relative speed.

Proof. This can be observed from the following analysis. First, it is important
to recall that though a system is equilibrium in an optimal balanced state,
AMP relative speeds on locations from different subnetworks are not the
same, because the number of AMPs on a location is integer.

According to the assumption in [6], i.e. S1

x1
≈ S2

x2
, and the optimal balance

property a location of subnetwork 1 must have
[[

S1k
S1+S2

]]
AMPs. Hence, AMP

relative speed on the basis of (1) must be

R
′
1 =

S1[[
S1k

S1+S2

]] . (6)

However, the number of AMPs on a location is given by (5), and an AMP
relative speed on a location of subnetwork 1 is

R1 =
S1[[

S1k
S1+S2

+ S1−S2

2(S1+S2)

]] . (7)

As S1 > S2 > 0 and S1−S2

S1+S2
< 1, then 0 < S1−S2

2(S1+S2)
< 0.5. Thus, S1−S2

2(S1+S2)

increases the number of AMPs assumed in [6] by nought or one during the

20



rounding. Therefore, an AMP relative speed on a location of subnetwork 1
either coincides with the AMP relative speed assumed in [6] or is slightly
slower. The same analysis sequence is made to investigate AMP relative
speed in subnetwork 2.

The difference between AMP relative speeds on locations from different
subnetworks is less when the difference in the available speeds of locations is
small; and it decreases with the increase of the total number of AMPs.

6.4. Near-Optimal Balance

For any optimal balanced state, the optimal number of AMPs for a sub-
network is the number of AMPs on each location in the subnetwork. Nearest
upper (lower) optimal balanced state is the optimal balanced state which the
system enters by adding (removing) the minimum number of AMPs.

We define a near-optimal balanced network be the network where some
subnetworks have near-optimal number of AMPs. The locations of these
underloaded subnetworks have either the optimal number of AMPs or one
less than the optimal number. The underloaded subnetworks are determined
by being the subnetworks with the slowest AMP relative speed in the nearest
upper optimal balanced state.

Property 4 (consecutive optimality). If a system with a total of x AMPs is
optimally balanced, and the subnetwork with the highest AMP relative speed
is a singleton, then the system with a total of x + 1 AMPs is also optimally
balanced.

The consecutive optimal property is derived from the near-optimal bal-
ance definition as a corollary.

From the independent balance property (Section 6.2) we conclude that a
system has no balanced states other than optimal and near-optimal balanced
states. That is, only subnetworks that have the slowest AMP relative speed in
the nearest upper optimal balanced state can be in a near-optimal balanced
state. If other networks were simultaneously in a near-optimal balance state,
then there would be an immediate transfer of AMPs from the slower to the
faster subnetwork (in terms of AMP relative speed).

As the near-optimally balanced subnetworks are determined for each op-
timally balanced state, we can identify a subnetwork which may change its
number of AMPs when we add/remove an AMP:

21



1) when an AMP is added to an optimally balanced network, the number
of AMPs in the subnetwork which would have the highest AMP relative speed
if one AMP is added to each location increases by one.

2) when an AMP is removed from an optimally balanced network, the
number of AMPs in the subnetwork with the slowest AMP relative speed
decreases by one.

6.5. Characterizing Balanced States in a Homogeneous Network

Let a homogeneous network have N locations, the available speed of non-
root locations be S. As only a part of the root location capacity is available
for an AMP execution, let the load factor, 0 < f < 1, define available
resources for AMPs on the root location, i.e. available speed of the root
location is f · S.

In an optimal balanced state on the basis of (5) the system has the fol-
lowing numbers of AMPs on the root, xrt, and non-root, xnrt, locations:

xrt ≈ f(2k + 1)− 1

2(f + 1)
, (8)

xnrt ≈ 2k − f + 1

2(f + 1)
. (9)

In a near-optimal balanced state the root location has
[[

f(2k+1)−1
2(f+1)

]]
AMPs

and non-root locations have either
[[

2k−f+1
2(f+1)

]]
or

[[
2k−3f−1
2(f+1)

]]
AMPs. For

further distinguishing non-root locations with a different number of AMPs,

those which have an optimal number of AMPs, i.e.
[[

2k−f+1
2(f+1)

]]
, we call heavy

locations, and those which have one or two AMPs less than a heavy loca-

tion, i.e.
[[

2k−3f−1
2(f+1)

]]
and

[[
2k−5f−3
2(f+1)

]]
, we call light and very light locations

respectively.

6.6. Characterizing Balanced States in a Heterogeneous Network

Let ki,j be the sum of AMPs in singleton subnetworks i and j, i.e.

ki,j = xi + xj, i, j = 1, 2..., q, i < j. (10)

To calculate AMP distribution in optimally balanced heterogeneous net-
works the following algorithm is used.

22



1) We calculate ki,j for all i and j denoted in (10) using the following
equation:

ki,j =

[[
(2k + q)(Si + Sj)

2
∑q

m=1 Sm

− 1

]]
. (11)

2) Then for each ki,j we find xi and xj using (5), i.e.




xi =

[[
Si(ki,j + 1)

Si + Sj

− 1

2

]]
,

xj =

[[
Sj(ki,j + 1)

Si + Sj

− 1

2

]]
.

(12)

3) Using results from (12) we make a list of all possible distributions, and
delete distributions where k 6= ∑q

m=1 xm.
4) In the remaining distributions we check inequality (3). The inequality

is strictly larger for all pairs i and j, i.e.

Si

xi

>
Sj

xj + 1
, i, j = 1, 2, ...q. (13)

The only exception is for pairs where xi and xj result in .5. In this case
(3) is as follows: 




Si

dxie =
Sj

bxjc+ 1
,

Sj

dxje =
Si

bxic+ 1
.

(14)

These distributions are the only distributions of k AMPs on the network
of q singleton subnetworks. According to discussion in Section 6.4, numbers
of AMPs on locations in a near-optimal balanced state coincides with the
numbers in the nearest upper optimal balanced state, except the subnetworks
with the slowest AMP relative speed. Locations of these subnetworks have
number of AMPs given in the algorithm or one AMP less.

7. cNAMP Greedy Effect Analysis

This section examines the cost of cNAMP location blindness, by pre-
dicting the maximum number of redundant movements in homogeneous net-
works (Section 7.1) and heterogeneous networks (Section 7.2). To estimate

23



Cost Model Components:

Th =
Wr

Rh

(15)

Tn =
Wr

Rn

(16)

f - the load factor on the root location;
Rh - the current location relative speed;
Rn - the new location relative speed.
Th - execution time on the current location;
Tn - execution time on the new location;
Wr - the work remaining;
x - the total number of cNAMPs;
xnrt - the number of cNAMPs on a non-root location;
xrt - the number of cNAMPs on the root location;

Figure 5: cNAMP Cost Model Components

the number of redundant movements, we analyze the conditions under which
cNAMPs transfer. Figure 5 shows the cNAMP cost model. A network with
AMPs, and hence with cNAMPs, enters one of two balanced states: optimal
and near-optimal balance. We analyse the maximum number of movements
and its probability after a cNAMP termination from optimally and near-
optimally balanced homogeneous and heterogeneous networks.

7.1. Homogeneous Network

cNAMP Termination in an Optimally Balanced Network. From

(8) and (9), in an optimal balanced state the root location has
[[

f(2k+1)−1
2(f+1)

]]

cNAMPs and every non-root location has
[[

2k−f+1
2(f+1)

]]
cNAMPs.

Theorem 5. There is no greedy effect when a cNAMP terminates in an
optimally balanced homogeneous network.

Proof. The proof proceeds by case analysis on the location where termination
occurs, and where the first movement is initiated.

24



1) Termination at a Non-root Location. From (8) and (9) after the cNAMP

termination, the system has
[[

f(2k+1)−1
2(f+1)

]]
cNAMPs on the root location,[[

2k−3f−1
2(f+1)

]]
cNAMPs on the non-root location where termination occurred

(the light location), and
[[

2k−f+1
2(f+1)

]]
cNAMPs on the remaining non-root lo-

cations (heavy locations). Hence, the system is in the near-optimal balanced
state. We analyse possible movements which may occur from the root and
heavy locations to the light location.

• cNAMP movement from the root to the light location. The main rule
on the basis of which cNAMPs make the decision about a movement
is presented in (2), i.e. Th > Tn + Tcomm. According to it, to make
the decision the cNAMP needs to know its execution time on the cur-
rent location, Th, and its execution time on the new location after the
cNAMP arrival, Tn.

First, on the basis of (15) and (1) cNAMP execution time on the root
location before a cNAMP movement is calculated:

Th =
Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
. (17)

The light location becomes a heavy location after a cNAMP arrival, and

has
[[

2k−f+1
2(f+1)

]]
cNAMPs. According to (16) and (1) execution time is

Tn =
Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
. (18)

Substituting (17) and (18) in (2) gives

Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
>

Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
+ Tcomm. (19)

If condition (19) holds then the cNAMP moves from the root to the
light location. The system enters another optimal balanced state and
cannot have any more movements.

25



• cNAMP movement from a heavy to the light location. cNAMP execu-
tion time on a heavy location is

Th =
Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
. (20)

After a cNAMP movement to the light location, the light location be-
comes heavy and execution time on it is (18). Substituting (18) and
(20) in (2) gives the following cNAMP movement condition:

Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
>

Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
+ Tcomm

or
Tcomm < 0. (21)

In fact, (21) shows that the number of cNAMPs on locations with the
same available speed must differ by at least two before cNAMPs will
move between them. We call this condition the minimum difference
criterion.

2) cNAMP Termination at the Root Location. After the termination the root

location has
[[

f(2k−1)−3
2(f+1)

]]
cNAMPs, and non-root locations have

[[
2k−f+1
2(f+1)

]]

cNAMPs, again from (8) and (9). Applying a similar analysis we find that
only one movement may occur, and hence there is no greedy effect.

cNAMP Termination in a Near-Optimally Balanced Network. In

near-optimal balance a system has
[[

f(2k+1)−1
2(f+1)

]]
cNAMPs on a root location,

and either
[[

2k−3f−1
2(f+1)

]]
or

[[
2k−f+1
2(f+1)

]]
cNAMPs on non-root locations (Sec-

tion 6.5).

Theorem 6. The greedy effect causes at most one redundant movement,
when a cNAMP terminates in a near-optimally balanced homogeneous net-
work.

Proof of Theorem 6 follows directly from Lemma 7.

Lemma 7. A redundant movement occurs only in two cases: of a cNAMP
termination in near-optimal balance on the root location which is discovered
first by a cNAMP from a light location, and of a cNAMP termination in near-
optimal balance on a light location which is discovered first by a cNAMP from
the root location.

26



Recall that a light location has one cNAMP less than the optimal num-
ber (Glossary). The proof of Lemma 7 again proceeds by case analysis on
the location where termination occurs, and where the first movement is ini-
tiated [34].

Probability of the Greedy Effect after a cNAMP termination. In
a homogeneous network the greedy effect occurs only in two cases after a
cNAMP termination from a near-optimal balanced state:

• a cNAMP terminates at the root location, and then a cNAMP from a
light location discovers the opportunity to move first, i.e. the following
condition must hold:

Wr

S
·
[[

2k − 3f − 1

2(f + 1)

]]
>

Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
+ Tcomm.

• a cNAMP terminates at a light location, and then a cNAMP from the
root location discovers the opportunity to move first, i.e. the following
condition must hold:

Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
>

Wr

S
·
[[

2k − 3f − 1

2(f + 1)

]]
+ Tcomm.

Thus, the greedy effect probability, P , in a near-optimally balanced ho-
mogeneous network is the sum of probabilities of these two events:

P = P1 + P2. (22)

Probability P1 that a cNAMP terminates from the root location, and then
a cNAMP from a light location discovers the opportunity to move first is a
product of the probability of a cNAMP termination from the root location,
PtermR, and the probability of the discovery of the better opportunity for
execution first by a cNAMP from a light location, Pl:

P1 = PtermR·Pl. (23)

To calculate the probability of a cNAMP termination at the root loca-
tion, assume that cNAMP execution time on locations follows an exponential
distribution. The mean cNAMP execution time on the root, heavy and light
locations is given by:

Tloc =
W · xloc

Sloc

=
W

Rloc

. (24)

27



Hence, the rate of cNAMP terminations at the root, heavy and light
locations is:

νloc =
Rloc

W
.

Assume, that there are Nl light locations and Nh heavy locations in the
system. Then probability that a cNAMP terminates at the root location is:

PtermR =
νroot

νroot + Nh · νh + Nl · νl

or

PtermR =
Rroot

Rroot + NhRh + NlRl

. (25)

cNAMPs from non-root locations have an equal probability of discovering
a better opportunity for execution first. The total number of cNAMPs on
non-root locations, xnonroot, is

xnonroot = Nhxh + Nlxl.

The probability that a cNAMP from a light location is the first to discover
a better opportunity for execution is the ratio of the total number of cNAMPs
on light locations to the total number of cNAMPs on non-root locations:

Pl =
Nlxl

Nlxl + Nhxh

. (26)

Thus, substituting (25) and (26) in (23), gives the following probability,
P1, of cNAMP termination on the root location and further discovery of the
opportunity to move by a cNAMP from a light location first:

P1 =
Rroot

Rroot + NhRh + NlRl

· Nlxl

Nlxl + Nhxh

. (27)

Applying the same principle results in the following probability, P2, of
cNAMP termination on a light location and further discovery of the oppor-
tunity to move by a cNAMP from the root location first:

P2 =
NlRl

Rroot + NhRh + NlRl

· xroot

xroot + Nhxh

. (28)

Substituting (27) and (28) in (22) gives the following probability of the
greedy effect after a cNAMP termination from a near-optimally balanced
homogeneous network:

P =
Nl

Rroot + NhRh + NlRl

·
(

Rrootxl

Nlxl + Nhxh

+
Rlxroot

xroot + Nhxh

)
. (29)

28



The range of values that P can take is calculated for homogeneous net-
works of locations (3193 MHz) by changing the total number of locations
from 3 to 50, the number of light locations from 1 to N − 2, the load factor,
0.05 6 f 6 0.95, and the number of cNAMPs, k, from 1 to 200. The calcula-
tion considers only cases when Nh·Nl 6= 0, because a system must have both
heavy and light locations in order the greedy effect can occur. The root and
light locations must have at least one cNAMP.

In total the probability is calculated for 3,100,872 states. The analysis
shows that the number of cNAMPs, k, has no significant effect on the prob-
ability. The total number of locations, N , the number of light locations,
Nl, and the load factor of the root location, f , have a direct impact on the
probability. The maximum probability in the conducted calculations is 32%.
It occurs in a homogeneous network of 50 locations where 47 locations are
light, load factor of the root location f = 0.95 and k = 195 cNAMPs, i.e. the
total number of cNAMPs is 4948. The mean probability is 4%.

Summary. In the analysis of a cNAMP movement on homogeneous net-
works, we have defined dependence between number of cNAMPs and loca-
tions in optimal and near-optimal balanced states. The analysis shows the
following results of cNAMP behaviour after a cNAMP termination in an
optimal balanced network:

1) there is no greedy effect (Theorem 5);
2) cNAMPs do not move, when a system is in a near-optimal balanced

state (minimum difference criterion).
When a cNAMP terminates in a near-optimal balanced network the

greedy effect only occurs in two case and causes only one redundant move-
ment (Theorem 6). The mean probability of this movement in the conducted
experiments is 4%.

7.2. Heterogeneous Network

cNAMP Termination in Optimally and Near-Optimally Balanced
Networks. The analysis is made for a heterogeneous network of q subnet-
works one of which is the root location singleton subnetwork.

Theorem 8. The number of redundant movements in a heterogeneous net-
work after a cNAMP termination does not exceed q − 1.

Lemma 9. A system makes at most q − 2 redundant movements after a
cNAMP termination from an optimally balanced heterogeneous network.

29



Lemma 10. A system makes at most q − 1 redundant movements after a
cNAMP termination from a near-optimally balanced heterogeneous network.

The proofs of Theorem 8, Lemma 9 and Lemma 10 again proceed by case
analysis on the state (i.e. optimal or near-optimal balanced) and location
where termination occurs, and then where the first movement is initiated [34].

Probability of the Greedy Effect after a cNAMP Termination.
The probability of the maximum number of redundant movements after a
cNAMP termination from optimally balanced heterogeneous network is cal-
culated using the same principle as in Section 7.2 (the detailed discussion is
presented in [34]). The calculation shows that the median probability of q−2
redundant movements after a cNAMP termination from optimally balanced
heterogeneous network does not exceed 1%.

As it is difficult to estimate mean and maximum values of the probability
for a near-optimally balanced subnetwork, the results of conducted experi-
ments show that the probability is less than 30%, and it rapidly decreases as
the number of subnetworks increases.

Summary. The analysis of cNAMP movements after a cNAMP termina-
tion from optimally balanced heterogeneous network shows that: 1) cNAMPs
never move from locations which in optimal balance have higher cNAMP rel-
ative speed to locations which in optimal balance have lower cNAMP relative
speed; 2) a system makes at most q − 2 redundant movements to rebalance
(Lemma 9); 3) the probability median value of maximum number of redun-
dant movements does not exceed 1%.

Results of analysis after a cNAMP termination from near-optimal bal-
ance are as follows: 1) to rebalance a system makes at most q− 1 redundant
movements (Theorem 8); 2) in the experiments the probability of the maxi-
mum number of movements does not exceed 30% and rapidly decreases with
the increase of a number of subnetworks.

8. Conclusion and Future Work

8.1. Summary

We have undertaken the first substantial investigation of thrashing, or
greedy effects, in distributed collections of autonomous mobile agents. We

30



have identified two types of greedy effects in AMP systems: location thrash-
ing causes additional movements and increase in AMP execution time; lo-
cation blindness causes only additional movements, as all transferred AMPs
improve their execution environment. Both greedy effects appear in the load
balancing literature (Section 3).

We have simulated the greedy effects in an AMP implementation, and
shown that each AMP makes on average two redundant movements during
execution for the scenarios considered. Although greedy effects have limited
impact on networks with a small number of AMPs, few locations, or small
AMPs, their effects increase as any of these factors scale. The analysis of
the redundant movement types and the reasons they occur have showed that
redundant movements are mainly caused by location thrashing (Section 4).

To reduce location thrashing we have introduced the agent-oriented con-
cept of negotiating AMPs, described and implemented AMPs that negoti-
ate with a competitive scheme, so called cNAMPs. By negotiation we only
mean a coordination among competitive and self-interested agents. cNAMP
simulation results show that cNAMPs exhibit only the location blindness.
cNAMPs do not make redundant movements during initial distribution, and
all scenarios show at least three times faster initial balancing in compari-
son with AMPs, e.g. dropping from 60.4s to 14.7s in Scenario 1. During
rebalancing after an AMP/cNAMP termination, cNAMPs make far fewer
redundant movements, and the cNAMP rebalancing takes less than half of
the time of AMP rebalancing, e.g. to rebalance 19 AMPs take 28.2s, and 19
cNAMPs take 7.8s in Scenario 2. cNAMPs require less execution time than
AMPs. Mean cNAMP execution time is at least 1.6 times less than mean
AMP execution time, e.g. mean execution times of 10 AMPs and 10 cNAMPs
in Scenario 3 are 232s and 142s respectively (Section 5).

To analyse the significance of the greedy effect we have established the
properties of balanced states. Here, we have analysed AMPs as the general
case and described properties including independent balance, singleton opti-
mality, consecutive optimality, and characterised optimal and near-optimal
balanced states for homogeneous and heterogeneous networks (Section 6).

We have established the significance of the greedy effect by predicting
the worst case (maximum number) of redundant movements after a cNAMP
termination from a network of q subnetworks. The results show that a dif-
ference in the number of cNAMPs needs to be at least two before a move-
ment will occur between locations of a same subnetwork. A system with
q subnetworks makes at most q − 2 redundant movements after a cNAMP

31



termination from optimally balanced network with median probability less
than 1% (Lemma 9). The number of movements after a cNAMP termination
in a network of q subnetworks does not exceed q − 1 (Section 7).

We have assembled a set of consistent and precise definitions about the
behaviour of collections of AMPs and cNAMPs. These definitions are essen-
tial for reasoning about AMP/cNAMP behaviour, and often generalise the
definitions given in earlier papers [2, 6] (Glossary).

8.2. Future Work

The current paper assumes that the network is totally reliable, and has
a flat structure, i.e. all location are equidistant from one another in a fully
connected graph (a LAN). The available speed at a location is constant, and is
shared equally by the AMPs or cNAMPs at that location. Other directions
include relaxing the assumptions, e.g. network reliability, and using game
theoretic techniques to analyse AMP behaviour. As AMPs and cNAMPs
have been constructed and analysed only on LANs we also plan to adapt the
cNAMP cost model and investigate cNAMP properties in wide area networks.

Glossary

Table 7 gives rigorous definitions for the concepts defined and used in
the paper and associated proofs. In column Source ’1’ denotes a definition
from [6], ’2’ a generalisation of a definition from [6], and ’3’ a more precise
definition than in [6]. In column Related Concept we provide lists of related
concepts to clarify the difference and similarity of the concepts. Column
Section gives the numbers of the sections where the notions are introduced
in the paper.

Table 7: Glossary
Term & Definition Sou- Related Sec-

rce Concept tion
The actual load is the number of executing cNAMPs committed 5.2

on a location. It is used by local cNAMPs. load
An AMP relative speed1, R, is an available speed, S, 3 available 4.1

equally divided between the AMPs at a location, xloc, speed

i.e. R =
S

xloc
.

1 Termed average relative speed in [6].

32



Autonomous mobile programs (AMPs) are mobile agents
that improve execution efficiency by managing load bal-
ancing; AMPs are aware of their resource needs, sensi-
tive to the execution environment and periodically seek
a better location to reduce execution time.

1 cNAMP, load server 1

The available speed2of a location is the execution speed
of a single AMP on that location, i.e. S = (CPUspeed) ·
(1− non AMP load).

3 AMP relative 4.1

In a balanced state no AMP can gain a greater AMP
relative speed by moving.

1 near-opt. balance,
optimal balance,
stable state

1

cNAMPs are negotiating AMPs with a competitive
scheme which announce their intentions to move and
compete with each other for opportunity to transfer to
the new location.

AMP, load server 5.2

The committed load represents the actual load of a lo-
cation, together with the cNAMPs that have received
confirmation to transfer to the location. It is used by
remote load servers.

actual load 5.2

A communication cost is the number of AMP movements
during a rebalancing.

greedy effects, opt.
rebalancing

3.2

Consecutive optimal property. If a system with a total
of x AMPs is optimally balanced, and the subnetwork
with the highest AMP relative speed is singleton, then
the system with a total of x + 1 AMPs is also optimally
balanced.

optimal balance,
singleton subnet-
work

6.4

Greedy effects are the result of a non-optimal AMP re-
balancing which differs from the optimal rebalancing in
having additional redundant movements, and is a result
the AMP making a locally optimal choice.

location blindness,
location thrashing,
optimal rebalancing

3

A heavy location is a location with the optimal number
of AMPs.

light location,
optimal number of
AMPs, root location

6.5

A heterogeneous network is a set of locations with differ-
ent available speeds.

2 homogeneous net-
work, subnetwork

4.1

A homogeneous network is a set of locations with the
same available speed, except the root location, which
may have different, because of the communication with
the remote processes shipping from it.

2 heterogeneous net-
work, subnetwork

4.1

2 Termed relative speed in [6].

References

[1] X. Y. Deng, G. J. Michaelson, P. W. Trinder, Cost-driven autonomous
mobility, Computer Languages Systems and Structures 36 (1) (2010)

33



Independent balance property. For a balanced state, the
relationship between the number of AMPs xi and xj on
locations in any two subnetworks i and j is independent
of the number of locations in those subnetworks and inde-
pendent of the presence or absence of other subnetworks,
subject only to the sum x = xi +xj being constant. The
only exception to this rule is the case when distribution
of x′ = xi + xj + 1 AMPs results in all x′ AMPs having
the same relative speed. In this case the partition may
have two variants.

balanced state, sub-
network

6.2

A light location is a location which has one AMP less
than the optimal number of AMPs in a heavy location.

heavy location, very
light location

6.5

A load server on a location collects network state infor-
mation to reduce AMP coordination time.

1 AMP, cNAMP 2.2

Location blindness is the greedy effect resulting from an
AMP’s lack of precise information about the remaining
execution time of other AMPs.

greedy effects, loca-
tion thrashing, opt.
rebalancing

3.3

Location thrashing is the greedy effect resulting from an
AMP’s lack of information about other AMPs intending
to move to the same location.

greedy effects, loca-
tion blindness, opt.
rebalancing

3.2

Minimum difference criterion. The number of cNAMPs
on locations with the same available speed must differ by
at least two before cNAMPs will move between them.

balanced state, sta-
ble state

7.1

In near-optimal balance some subnetworks have near-
optimal number of AMPs. The locations of these un-
derloaded subnetworks have either the optimal number
of AMPs or one less than the optimal number. The
underloaded subnetworks are determined by being the
subnetworks with the slowest AMP relative speed in the
nearest upper optimal balanced state.

3 balanced state,
nearest upper
(lower) optimal bal-
anced state, optimal
balance, subnetwork

6.4

Nearest upper (lower) optimal balanced state is the op-
timal balanced state which the system enters by adding
(removing) the minimum number of AMPs.

near-opt. balance,
optimal balance

6.4

In optimal balance locations with the same available
speed have equal numbers of AMPs.

2 balanced state,
near-opt. balance

6.3

For any optimal balanced state, the optimal number of
AMPs for a subnetwork is the number of AMPs on each
location in the subnetwork.

heavy location, op-
timal balance, sub-
network

6.4

An optimal rebalancing is a sequence of AMP move-
ments that are the minimum number of AMP movements
needed to enter a stable state.

greedy effects 3

34–59.

34



The root location3is the location where all AMPs start. heavy location,
light location

3.1

Singleton optimal property. All balanced states which a
network of singleton subnetworks enters are optimally bal-
anced.

balanced state,
optimal bal-
ance, singleton
subnetwork

6.3

A singleton subnetwork is a subnetwork with one location. subnetwork 6
In a stable state no AMP can reduce its execution time by
moving.

balanced state 1

A subnetwork is a set of locations with identical available
speeds.

heterogen. net-
work, homogen.
network

1

A very light location is a location which has two AMPs less
than the corresponding heavy location.

heavy location,
light location

6.5

3 It is either called initiating location or first location in [6]

[2] N. Chechina, P. King, R. Pooley, P. Trinder, Simulating autonomous
mobile programs on networks, in: PGNet’09, Liverpool, UK, 2009, pp.
201–206.

[3] L. M. Ni, C.-W. Xu, T. B. Gendreau, A distributed drafting algorithm
for load balancing, IEEE Trans. Softw. Eng. 11 (10) (1985) 1153–1161.

[4] C. Georgousopoulos, O. F. Rana, Combining state and model-based
approaches for mobile agent load balancing, in: SAC’03, ACM, New
York, NY, USA, 2003, pp. 878–885.

[5] T. Schlegel, P. Braun, R. Kowalczyk, Towards autonomous mobile
agents with emergent migration behaviour, in: AAMAS’06, ACM, New
York, NY, USA, 2006, pp. 585–592.

[6] X. Y. Deng, Cost Driven Autonomous Mobility, Ph.D. thesis, School
of Mathematical and Computer Sciences, Heriot-Watt University, Edin-
burgh, UK (June 2007).

[7] N. Chechina, P. King, P. Trinder, Using negotiation to reduce redundant
autonomous mobile program movements, in: IAT’10, IEEE Computer
Society, Toronto, Canada, 2010, pp. 343–346.

[8] X. Y. Deng, P. W. Trinder, G. J. Michaelson, Autonomous mobile pro-
grams, in: IAT’06, IEEE Computer Society, Washington, DC, USA,
2006, pp. 177–186.

35



[9] F. C. H. Lin, R. M. Keller, The gradient model load balancing method,
IEEE Trans. Softw. Eng. 13 (1) (1987) 32–38.

[10] N. Miyata, T. Ishida, Community-based load balancing for massively
multi-agent systems (2008) 28–42.

[11] B. A. Shirazi, K. M. Kavi, A. R. Hurson, Scheduling and Load Balancing
in Parallel and Distributed Systems, IEEE Computer Society Press, Los
Alamitos, CA, USA, 1995.

[12] T. L. Casavant, J. G. Kuhl, A taxonomy of scheduling in general-purpose
distributed computing systems, IEEE Trans. Softw. Eng. 14 (2) (1988)
141–154.

[13] H. G. Rotithor, Taxonomy of dynamic task scheduling schemes in dis-
tributed computing systems, IEE Proceedings Computers & Digital
Techniques 141 (1) (1994) 1–10.

[14] G. Cybenko, Dynamic load balancing for distributed memory multipro-
cessors, J. Parallel Distrib. Comput. 7 (2) (1989) 279–301.

[15] A. Legrand, H. Renard, Y. Robert, F. Vivien, Mapping and load-
balancing iterative computations, IEEE Trans. Parallel Distrib. Syst.
15 (6) (2004) 546–558.

[16] A. Ghafoor, I. Ahmad, An efficient model of dynamic task scheduling for
distributed systems, in: COMPSAC’90, IEEE Computer Society Press,
1991, pp. 442–447.

[17] A. E. El-Abd, M. I. El-Bendary, A neural network approach for dynamic
load balancing in homogeneous distributed systems, in: HICSS’97, IEEE
Computer Society, Washington, DC, USA, 1997, p. 628.

[18] Z. D. Kirli, Mobile Computations with Functions, Kluwer Academic
Publishers, Norwell, MA, USA, 2002.

[19] D. B. Lange, M. Oshima, Seven good reasons for mobile agents, Com-
mun. ACM 42 (3) (1999) 88–89.

[20] A. Fuggetta, G. P. Picco, G. Vigna, Understanding code mobility, IEEE
Trans. Softw. Eng. 24 (5) (1998) 342–361.

36



[21] Recursion Software, Inc., Voyager Technical Documentation
http://www.recursionsw.com/Products/voyager.html (2010).

[22] M. Wooldridge, Agent-based software engineering 144 (1) (1997) 26–37.

[23] D. Milojic̆ić, F. Douglis, R. Wheeler, Mobility: Processes, Computers
and Agents, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1999.

[24] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Com-
puter 36 (1) (2003) 41–50.

[25] L. V. Kale, S. Kumar, M. Potnuru, J. DeSouza, S. Bandhakavi, Faucets:
Efficient resource allocation on the computational grid, in: ICPP’04,
IEEE Computer Society, Washington, DC, USA, 2004, pp. 396–405.

[26] A. J. Chakravarti, G. Baumgartner, Self-organizing scheduling on the
organic grid, Int. Journal of High Performance Computing Applications
20 (2004) 130.

[27] M. Backschat, A. Pfaffinger, C. Zenger, Economic-based dynamic load
distribution in large workstation networks, in: Euro-Par ’96, Vol. 2,
Springer-Verlag, London, UK, 1996, pp. 631–634.

[28] J. Stender, S. Kaiser, S. Albayrak, Mobility-based runtime load balanc-
ing in multi-agent systems, in: SEKE ’06, Reedwood City, CA, USA,
2006.

[29] H. Kuolin, Allocation of processors and files for load balancing in dis-
tributed systems, Ph.D. thesis, University of California at Berkeley, USA
(1985).

[30] A. Ross, B. McMillin, Experimental comparison of bidding and drafting
load sharing protocols, in: DMC ’90, Vol. 2, IEEE Computer Society
Press, 1990, pp. 968–974.

[31] M. Livny, M. Melman, Load balancing in homogeneous broadcast dis-
tributed systems, in: CNP ’82, ACM, New York, NY, USA, 1982, pp.
47–55.

37



[32] T. L. Casavant, J. G. Kuhl, Analysis of three dynamic distributed load-
balancing strategies with varying global information requirements, in:
DCS ’87, IEEE Press, New York, USA, 1987, pp. 185–192.

[33] N. Chechina, Autonomous Mobility in Multilevel Networks, (Expected)
Ph.D. thesis, School of Mathematical and Computer Sciences, Heriot-
Watt University, Edinburgh, UK (2011).

[34] N. Chechina, P. King, P. Trinder, Complete experimental and theoreti-
cal analysis of greedy effects in autonomous mobility, Tech. Rep. 0073,
Heriot-Watt University, Edinburgh, UK (2010).

[35] G. Weiss (Ed.), Multiagent Systems. A Modern Approach to Distributed
Artificial Intelligence, The MIT Press, Massachusetts, USA, 1999.

[36] J. Gray, Notes on data base operating systems, in: Operating Systems,
An Advanced Course, Springer-Verlag, London, UK, 1978, pp. 393–481.

[37] D. Fudenberg, J. Tirole, Game Theory, The MIT Press, USA, 1991.

38


