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Abstract
Genome resequencing with short reads generated from pyrosequencing generally relies on
mapping the short reads against a single reference genome. However, mapping of reads from
multiple reference genomes is not possible using a pairwise mapping algorithm. In order to align
the reads w.r.t each other and the reference genomes, existing multiple sequence alignment(MSA)
methods cannot be used because they do not take into account the position of these short reads
with respect to the genome, and are highly inefficient for large number of sequences. In this paper,
we develop a highly scalable parallel algorithm based on domain decomposition, referred to as P-
Pyro-Align, to align such large number of reads from single or multiple reference genomes. The
proposed alignment algorithm accurately aligns the erroneous reads, and has been implemented on
a cluster of workstations using MPI library. Experimental results for different problem sizes are
analyzed in terms of execution time, quality of the alignments, and the ability of the algorithm to
handle reads from multiple haplotypes. We report high quality multiple alignment of up to 0.5
million reads. The algorithm is shown to be highly scalable and exhibits super-linear speedups
with increasing number of processors.

1 Introduction
For over a decade, Sanger sequencing has been the cornerstone of genome sequencing
including that of microbial genomes. Improvements in DNA sequencing techniques and
advances in data storage and analysis, as well as developments in bioinformatics have
reduced the cost to a mere $8000 – $10000 per megabase of high quality genome draft
sequence. However, the need of more efficient and cost effective approaches has led to the
development of new sequencing technologies such as the 454 GS20 sequencing platform. It
is a non-cloning pyrosequencing based platform that is capable of generating 1 million
overlapping reads in a single run. However, multitude of factors, such as relatively short
read lengths as compared to Sanger (as of year 2010: an average of 100–400 nt length reads
compared to 800–1000 nt length reads for Sanger sequencing), lack of a paired end protocol,
and limited accuracy of individual reads for repetitive DNA, particularly in the case of
monopolymer repeats, present many computational challenges [1] to make pyrosequencing
useful for biology and bioinformatics applications.

One of the most widely employed pre processing step for many applications, including
haplotype reconstruction [2] [3], analysis of microbial community analysis [4], analysis of
genes for diseases [5], is the alignment of these reads with the wild type. For important
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applications such as viral population estimation or haplotype reconstruction of various
viruses e.g., HIV in a population, scientists usually have the information about the wild type
genome of the virus. To this date, numerous tools have been suggested for mapping short
reads to the single reference genome. These methods include strategies for indexing
substrings of short reads or references with the use of k-mer counts or spaces seeds. The list
of academic tools available for such mapping inlcude Bowtie, BWA, CloudBurst, MAQ,
MOM, MosaikAligner, mrFAST, mrsFAST, Pash, PASS, PatMaN, RazorS, RMAP,
SeqMap, SHRiMP, SliderII, SOAP, SOAP2, ssaha2 [6–23], and commercial tools such as
ZOOM [24]. The current demand in alignment can be met with new indexing strategies and
efficient data processing [25]. However, these strategies are usually at the cost of
simplifying the mapping problem and not allowing complex alignments, including gaps or
alignment with multiple reference genomes.

Natural strains of genomes that have a high level of individual difference, such as natural
inbred strains of Arabidopsis or divergent strains of HIV, pose a considerable alignment
challenge [26]. It has been shown in [27, 28] that several percent of reference genome can
be missing or very divergent in distinct strains of different species. This poses a problem for
pairwise mapping algorithms because the mappings can result in regions that are
inaccessible when aligned to the wildtype of the species. This is particularly true for
algorithms that do not take into account mismatches and gaps. Fig 1 shows an example set
of reads from different strains of genomes from the same species.

Apart from the above mentioned difficulties in using pairwise mapping algorithms for short
reads, aligning against only a single reference has its own shortcomings. Aligning against a
single reference biases the analysis towards a comparison within the sequence space highly
conserved with the reference. Taking into account all the strains of the genome reduces this
bias. Aligning each read individually with each reference genome loses important
information such as variation SNP’s in different strains, besides increasing computation time
and memory. Therefore, to interpret the alignment results some kind of merging and
interpreting strategy is required.

One such strategy was recently introduced by Schneegerber et al. in [26], called
GenomeMapper. It performs simultaneous alignment of short reads against multiple
genomes using a hash-based data structure [26, 29]. However, the accuracy of such
alignments would be limited by the graph structure that captures the information from
different strains of the same species. Also the method has the drawback that the reads are
pairwise aligned to the graph structure and the comparison of reads with each other is not
achieved. In this paper, we present a solution to the problem of aligning pyroreads from
multiple genomes using a multiple alignment methodology on multiprocessor platforms.

In theory, alignment of multiple sequences can be achieved using pair-wise alignment, each
pair getting alignment score and then maximizing the sum of all the pair-wise alignment
scores. But for optimal alignment the sum of all the pair-wise alignment scores needs to be
maximized, which is an NP complete problem [30]. Towards this end, dynamic
programming based solutions of O(LN) complexity have been pursued, where N is the
number of sequences and L is the average length of a sequence. Such accurate optimizations
are not practical for large number of sequences -as is the case in pyrosequencing, thus
making heuristic algorithms as the only feasible option. The literature on these heuristics is
vast and includes widely used works, such as Notredame et. al. [31], Edgar [32], Thompson
et. al. [33], Do et. al. [34], and Morgenstern et.al. [35].

Recently we introduced a multiple alignment system for pyrosequencing reads, known as
pyroalign [36]. Although, the sequential algorithm is highly efficient compared to the other
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alignment algorithms, it is still not feasible to multiple align large number of reads from
multiple genomes on a single processor. It takes over 7 days to multiple align 200,000
pyroreads on single processor using this best known sequential algorithm [36], and the time
increases drastically with the increase in number of reads.

In this paper, we present a parallel multiple alignment solution for aligning reads from
multiple genomes. The objective of our work is to develop a high performance multiple
alignment system for small error prone reads from multiple genomes strands of the same
species, such that the errors in the alignment are ‘highlighted’ and the system is able to
handle large number of reads, as may be expected from pyrosequencing procedure. We
emphasize that this problem is considerably harder and different compared to mapping of
the reads to a single reference genome.

The multiple sequence alignment algorithm presented, distinct from pairwise mapping or
genome reconstruction, is specifically designed for the alignment of reads from multiple
genomes from different strains of the same species. The proposed algorithm is a
combination of the domain decomposition concept introduced in [37] [38] and the
exploitation of pyroreads characteristics for parallelization, therefore it is capable of aligning
very large number of pyroreads. It takes into account the position of the reads with respect to
the reference genomes, and assigns weight to the leading and trailing gaps for the reads.
After the decomposition, the reads are distributed among multiple processors using a metric
calculated from the reads. The reads are multiple aligned on each processor with respect to
each other and the genome. Then, the aligned reads on the processors are merged by
exploiting the characteristics specific to pyro-reads. We assume that the reads may be
generated from one or many genomes, with ‘forward’ orientation. We also assume that a
wild-type of the species is available, as is generally the case for resequencing experiments.
In our experiments, we have used HIV-pol gene virus as the reference genome (with length
of 1971bp) and simulator Readsim [39] to generate these reads. Since the complexity for
multiple alignments is dominated by the number of reads, the length of the genome has
minimal effect in terms of memory and timings. Please note that the above genome is only
used as a proof of concept for the technique. The importance of aligning reads from multiple
genomes is discussed in the literature [29] [26] and is not stated here in the interest of
brevity. We are able to align 200, 000 reads on a 24 processor system in just 278 minutes.
The alignment of same number of reads takes approximately 7 days on a single node system.

For the sake of completeness, let’s first formally define the multiple sequence alignment
problem in its generic form, without indulging with the issues such as scoring functions. Let

N sequences be presented as a set S = {S1, S2, S3, · · ·, SN} and let 
be the aligned sequence set, such that all the sequences in S′ are of equal length, have
maximum overlap, and the score of the global map is maximum according to some scoring
mechanism suitable for the application. A perfect multiple alignment for pyroreads would
be, that the reads are aligned with each other such that the position of the reads with respect
to the reference genome(s) is conserved; the reads have maximum overlap (for conserved
genome regions) and are of equal lengths after the alignment, including leading and trailing
gaps.

2 Proposed Parallel Multiple Sequence Alignment Algorithm for Pyroreads:
P-Pyro-Align

The intuitive idea behind the proposed P-Pyro-Align algorithm is to first place the reads in
correct orientation with respect to the wildtype and then use progressive alignment to
achieve the final alignment. The starting position of the reads w.r.t the genome is referred to
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as s-rank and is used to redistribute the reads on multiple processors. Regular sampling [40]
based on s-rank is used to achieve load-balancing among multiple processors. The final
alignment is produced by combining the alignment produced on each processor. To produce
the global alignment we exploit the characteristics of the pyroreads and bring in techniques
from data structures and parallel computing such as histogram mapping of indel positions on
each processor, sampling based load-balancing and many-to-many communications to
realize a low complexity, highly scalable solution in terms of time, memory and
communication.

First in Fig. 2 we present an outline of the proposed parallel alignment algorithm, P-Pyro-
Align. This outline is followed by a detailed description of the salient steps of the algorithm.

2.1 Semi-Global Alignment
The first step is to determine the position of each read with respect to the reference genome.
If this step is omitted, there are number of alignments that would be correct, but would be
inaccurate if analyzed in the global context. A read that is not constricted in terms of
genomic position, may give the same score (SP score) for the multiple alignment but would
be incorrect in context of the reference. To accomplish the task of ‘placing’ the reads in the
correct context with respect to the reference genome we employ semi-global alignment
procedure 1.

The semi global alignment is also referred to as overlapping alignment because the
sequences are globally aligned ignoring the start and end gaps. For semi-global alignment
we use a well known modified version of Needleman-Wunsch algorithm [41] described in
[42]. The modification in the basic version of Needleman-Wunsch is required to ignore the
leading and trailing gaps of the reads when aligning to the reference genome. If the leading
and trailing gaps are not ignored, considering the short length of the reads, the alignment
scores would be dominated by these gaps, hence giving an inaccurate alignment with respect
to the genome.

Let the two sequences to be aligned be s and t of length m and n; and M(i, j) presents the
score of the optimal alignment. Since, we do not wish to penalize the starting gaps, we
modify the dynamic programming matrix by initializing the first row and first column to be
zero. The gaps at the end are also not to be penalized. Let M(i, j) represent the optimal score
of s1,· · ·, si and t1, · · ·, tj. Then M (m, j) is the score that represents optimally aligned s with
t1, · · ·,j. The optimal alignment therefore, is now detected as the maximum value on the last
row or column. Therefore the best score is M(i, j) = maxk,l(M (k, n), M (m, l)), and the
alignment can be obtained by tracking the path from M(i, j) to M(0, 0). For additional details
on semi-global alignment we refer the readers to [42].

Once each read has been semi-globally aligned with the wildtype genome on each processor,
we obtain reads with leading and trailing gaps, where the first character after the gaps is the
starting position of the read with respect to the wildtype genome.

2.2 Domain Decomposition of the Reads
After the reads are aligned with respect to the wildtype, on each processor we have the
information of the reads position. This read position, referred to as s-rank, is important for
realizing correct alignment. We also exploit this information to decompose our domain of

1This can be replaced with an indexing methodology for large genomes; for multiprocessors, in favor of simplicity, we employ simple
semi-global alignment which can be enhanced using indexing
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pyro-reads on multi processor platforms. The decomposition is similar to our generic
strategy for multiple alignment [37].

Since we are assuming N/p random sequences on each processor; each processor may have
reads with starting positions from the start to the end of genome. However, we aim to
reallocate the reads for progressive alignment such that the reads that are closer to each other
in terms of s-rank are clustered on a single processor.

Progressive alignments are produced in each processor by combining pairwise alignments of
most similar sequences. All progressive alignment methods require two stages: first stage in
which the relationships between the sequences are represented as a tree, called a guide tree,
and second stage in which multiple sequence alignment(MSA) is built by adding the
sequences sequentially to the growing MSA according to the guide tree.

The method followed by most of the progressive multiple alignment algorithms is that first a
pairwise similarity measure is computed for each pair of sequences and this measure is
organized in a matrix form. A tree is constructed from this distance matrix using
Unweighted Pair Group Method with Arithmetic Mean (UPGMA) or neighboring joining.
The progressive alignment is thus built, following the branching order of the tree, giving a
multiple alignment. These steps require O(N2) time each, where N is the number of reads.

In the case of pyrosequencing, we exploit the fact that the reads are coming from nearly the
same reference in terms of species. This in turn implies that the reads starting from the same
or near same ‘starting’ point with respect to the reference genome are likely to be similar to
each other. Therefore, we already have the ordering information or the ‘guide tree’.

Let there be N/p number of reads in each processor R = R1, R2, · · ·, RN/p generated from the
reference genome of length LG. Also, let the length of each read be denoted by L(Rp). After
executing semi-global alignment using the algorithm discussed in the previous section, let
each read be presented by Rpq, where the pth read has q leading gaps and LG−q−L(Rp)
trailing gaps. Then the reordering algorithm would reorder the reads such that the read Rpq
comes ‘before’ R(p+1)(q+x), 1 ≤ q ≤ LG and 1 ≤ x ≤ L(Rp).

In an ideal load-balancing situation the number of reads on each processor would be the
range of the s-ranks divided by the number of processors. However, the coverage of each
position in pyro-sequencing is not constant and can vary considerably which would lead to
unbalanced load on processors. Therefore, we employ regular sampling [40] based
distribution of reads on multiple processors. For the sake of completeness, the analysis of
the distribution of the reads using regular sampling is extensively discussed in section 3.

2.3 Pair-wise and Profile-Profile Alignments
The ordering and the distribution of the reads on multiple processors determined in the
preceding step is now used to conduct the progressive alignment. The procedure described
here is executed on each of the processors independently after the reads have been
distributed according to the s-ranks. Traditional progressive alignment requires that the
sequences most similar to each other are aligned first. Thereafter, sequences are added one
by one to the multiple alignments determined according to some similarity metric. In order
to devise a low complexity system, we presented a hierarchical progressive alignment
procedure in [36]. However, our experiments with extremely large data sets for alignment
suggest that this hierarchical strategy does not work accurately due to weighted leading and
trailing gaps. The parallel progressive alignment procedure is formulated as follows.
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On each processor, pair-wise local alignment using standard Smith-Waterman is executed
on each overlapping pair of reads (the ordering is still the same as discussed in the previous
section). After this stage, the reads are aligned in pairs such that we have  pairs of aligned
reads on each processor. These  pairs of reads are then used for profile alignments as
discussed below.

Profile-profile alignments are used to re-align two or more existing alignments (in our case
the pairs of aligned reads). It is useful for two reasons; one being that the user may want to
add sequences gradually, and second being that the user may want to keep one high quality
profile fixed and keep on adding sequences aligned to that fixed profile [33].

In this stage of the algorithm, the N/2p pairs of aligned reads have to be combined to get a
multiple alignment. The paired profiles are then combined one by one, with reads added in
ascending order of s-ranks.

In order to apply pair-wise alignment functions to profiles, a scoring function must be
defined, similar to the substitution methods defined for pair-wise alignments. Profile sum of
pairs (PSP) is the function used in Clustalw [33], Mafft [43] and Muscle [44] to maximize
Sum of Pairs (SP) score, which in turn maximizes the alignment score such that the columns
in the profiles are preserved. Profile functions have evolved to be quite complex and good
discussion on these can be found at [44–46] and [47]. For our purposes we use the profile
functions from the clustalw system.

2.4 The Merging Strategy
The ordering and alignment of the reads with weighted leading and trailing gaps on each
processor gives a very high quality alignment. The important question is how to merge
independently aligned reads on different processors into a single alignment in an efficient
manner such that the computations required are minimal and communication between
processors is far less than the computational load.

The merging for general multiple alignment on multiple processors has been introduced for
domain decomposition strategy in [37]. We further modify the technique introduced in [37]
to give a low complexity merging solution for pyrosequencing reads in terms of
computational and communication load.

We observe that after the alignment performed in each processor, large columns of gaps are
introduced over the entire range because of the insertions and deletions in pyrosequencing
reads. This is precisely the only information required to merge two high quality alignments.
Since the reads are coming from the same reference species, a large column of indels in one
alignment and absence of any in the other alignment implies that the indels in the first
alignment are due to insertions and/or deletions in those reads. Thus, insertion of large
column of indels in the second alignment would make a perfect global alignment for pyro-
reads. The concept is illustrated in Fig. 3. The important point to note here is, that unlike
traditional profile-profile alignment, the only information that is shared among processors is
the position of the large indels in the alignment on individual processors. This small amount
of data is communicated among the processors involved in the merging. An example final
alignment from the P-Pyro-Align algorithm can be seen in Fig. 4.

3 Analysis of Computation and Communication Costs
For the computation and communication analysis we use a coarse grained computing model
such as C3-model [48] and [49]. Also, for analysis purposes, we assume that the Clustalw
System [33] is being used at each processor as the underlying profile-profile alignment
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system. It must be noted that the computation complexity of the alignment step will vary
depending on the sequential MSA system used for alignment within each processor.

In the following analysis we assume that each processor has w = N/p pyro-reads, where N is
the total number of reads to be aligned, and p is the number of processors. The average
length of a read is LR and the length of the genome is LG. In Table 1, we outline the
computation cost of each step of the algorithm.

3.1 Communication Cost
The communication overhead is an important factor that dictates the performance of a
distributed message passing parallel system. If the communication overhead is much higher
than the computation cost, the performance of the system is limited. Fortunately, the
communication cost of our system is much less than the cost of the alignment. Essentially,
the proposed P-Pyro-Align algorithm has three rounds of communication. In the first round,
a small set of samples is collected at the root processor and a set of pivots based on s-ranks
is broadcast from the root processor. In the second round, reads are redistributed to achieve
better alignments and balanced load distribution. In the third round, the location of large
indel columns from each processor are broadcast to all the other processors. For the analysis
of the communication costs we have adopted the coarse grained computation model [48]
[50] and domain decomposition communication cost analysis [37]. However, we ignore the
message start up costs and assume unit time to transmit each data byte.

We have assumed the Regular Sampling strategy [40] because of its suitability to our
problem domain. Some of the reasons are:

1. The strategy is independent of the distribution of original data, compared to some
other strategies such as Huang and Chow [51].

2. It helps in partitioning of data into ordered subsets of approx. equal size. This
presents an efficient strategy for load balancing as unequal number of sequences on
different processors would mean unequal computation load, leading to poor
performance. In the presence of data skew, regular sampling guarantees that no
processor computes more than ( ) sequences [40].

It has been shown in [40] that regular sampling yields optimal partitioning results
as long as N > p3, i.e., the number of data items N is much larger than the number
of processors p, which would be a normal case in the MSA application.

The partitioning of data can also be achieved by dividing the length of the genome
with the number of processors and distributing the reads according to the pivot
from the division. However, distributing randomly positioned reads w.r.t the
genome from pyrosequencing can create unbalanced computational loads on
multiprocessors. Hence partitioning the data trivially does not give any theoretical
guarantees for load distribution making the process more random and unreliable.

3.1.1 First Communication Round—Assuming k = p − 1, i.e., each processor chooses p
− 1 samples, the complexity of the first phase is O(p2LR)+ O(p log p) + O(k × p log p),
where O(p2LR) is the time to collect p(p−1) samples of average length LR at the root
processor, O(p log p) is the time required to broadcast p−1 pivots to all the processor and (k
× p log p) is the time required to broadcast k×p sequences to all the processors.

3.1.2 Second Communication Round—In the second round each processor sends the
sequences having s-rank in the range of bucket i to processor i. Each processor partitions its
block of reads into p sub-blocks using pivots as bucket boundaries, and sends sub-block i to
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processor i.. The sizes of these sub-blocks can vary from 0 to  sequences depending on the
initial data distribution. Taking the average case where the elements in the processor are

distributed uniformly, each sub-block will have  sequences. Thus this step would require
 time assuming an all-to-all personalized broadcast communication primitive [49].

However, in the following we show that based on regular sampling no processor will receive
more than  elements in total in the worst case. Therefore still the overall communication

cost will be .

Let’s denote the pivots chosen in the first phase by the array: y1, y2, y3, · · ·, yp−1. Consider
any processors i, where 1 < i < p. All the sequences to be processed by processor i must
have s-rank > yi−1 and ≤ yi. There are  sequences of the regular sample which are ≤

yi−1, implying that there are at least  sequences in the entire data that have
s-rank ≤ yi−1. On the other hand, there are  sequences in the regular sample that

have s-rank > yi. Thus, there are  sequences of N which are > yi. Since the
total number of sequences is N, at most N − ub − lb sequences will get assigned to processor
i. It is easy to show that this expression is upper bounded by . The cases for i = 1 and i = p
are special because the pivot interval for these two processors is . The load for these
processors will always be less than . Due to page limitations, we refer to [40] for further
details of the analysis.

3.1.3 Third Communication Round—In the third round each processor sends the
position of long column indels in the alignments. In the analysis we assume a worst case
scenario where a long column of indels is encountered at each alternating position i.e. after
each column of DNA nucleotides a column of indels is encountered in the alignment. We
will assume that the columns from each processors are broadcasted to every other processor.
The length of the columns are equal to the number of reads N because of obvious reasons
and the number of columns would be equal to LG as an upper bound. Then the
communication cost would be equal to O(NLG log p).

The total asymptotic time complexity T of the algorithm is shown in equation 3.

4 Performance Analysis
The performance evaluation process has been divided into two parts: the first part deals with
the quality assessment, and the second part deals with traditional HPC metrics such as
execution time, scalability, memory requirements, etc. The performance evaluation of the P-
Pyro-Align algorithm is carried out on a Beowulf Cluster consisting of 24 Intel Xeon
processors, each running at 3.0GHz, with 512KB cache and 2GB DRAM memory. As for
the interconnection network, the system uses Intel Gigabit network interface cards on each
cluster node. The operating system on each node is RedHat Linux 4.2 (Kernel level:
2.6.9-22.ELsmp).

4.1 Experimental Setup and Quality Assessment
As discussed earlier in the paper, the exact solution for multiple alignment is not feasible
and heuristics are employed. Most of these heuristics perform well in practice but there is
generally no theoretical justification possible for these heuristics [52]. For P-Pyro-Align it
can be shown that the semi-global alignment of the reads with the reference genome is
analogous to center star alignment. The center star alignment is shown to give results within
2-approx of the optimal alignment [52] in worst case and same can be expected from the
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semi-global alignment of reads with reference genome. The accuracy of the later stages is
confirmed by rigorous quality assessment procedure described in the section below.

The assessment of the quality is done in the spirit of determining how good the multiple
alignment of the reads is. Aligning reads from multiple genomes have been shown to
increase the number of recovered SNP’s by 15%, of deletions by 22.6% and insertions by
37.2% [26]. However, our quality assessment is to determine how good the multiple
alignment is. Clearly, the advantages discussed for using multiple genomes over single
reference would be evident if the alignment quality obtained is good [26].

To investigate the quality of the alignment produced by the algorithm we have used
Readsim simulator [39] to generate the reads. The quality assessment of multiple alignment
is generally carried out using benchmarks such as Prefab [32] or BaliBase [53]. However,
these benchmarks are not designed to assess the quality of the aligned reads produced from
pyrosequencing, and there are no benchmarks available specifically for these reads.
Therefore, a system has to be developed to assess the quality of the aligned reads. The
experimental setup for the quality assessment of the alignment procedure is shown in Fig. 5
and is explained below.

Our quality assessment has two objectives: (1) to assess the quality of the alignment
produced by P-Pyro-Align with respect to the original genome, and (2) to ensure that the
system is able to handle reads from multiple genomes for alignment.

We used a HIV pol gene virus with length of 1971bp as the wildtype for the experiments.
The wildtype is then used to produce 6 sets of genomes, randomly mutated at different rates.
The six sets of genomes are Dist-003, Dist-005, Dist-007, Dist-010, Dist-013 and Dist-015,
with mutations of 3%, 5%,7%, 10%, 13%, 15%, respectively2. Now using the mutated
genomes, 5000 reads were generated using standard ReadSim simulator parameters with
forward orientation.

(1)

(2)

(3)

The generated reads from these mutated genomes were then aligned with the wildtype using
the proposed P-Pyro-Align Algorithm. This procedure is adopted because generally
scientists only have a wildtype of the microbial genomes available and therefore it depicts a
more practical scenario.

After the alignment, a majority consensus of the reads is obtained. A metric referred to as
quality score is defined that is equal to the percentage of the correct consensus obtained
from the alignment with respect to the true genome. The quality score is then calculated for

2Random mutations at distinct positions as well as inserting rows of mutations from 2bp to 17bp were used
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the consensus obtained from the aligned reads with the original genome from which the
reads were generated.

We compare the accuracy of the algorithm with two different methods. First we compare
with the methods that use simple pair-wise alignment of the reads with the reference
genome. Simple pairwise alignment is used to show how bad the alignment can be with
respect to the original when multiple genomes are used. Second, we compare it with a gap
propagation method, proposed in [2]. For this, we have used ShoRAH software package [3]
which uses a pairwise gap propagation method to mimic multiple sequence alignment and is
similar to mapping algorithm such as Bowtie, MAQ etc. Simply put, gap propagation
method builds multiple alignment from pairwise alignments by ‘propagating’ the gaps.
Propagation of gaps is accomplished for every position where at least one read has an
inserted base, a gap is inserted in the reference genome and, consequently, in all reads that
overlap the genome at that position. The complexity of the procedure is at least O(N2), and it
overestimates the gaps. However, it mimics multiple alignment and thus is a good
comparison with our system. A majority consensus is obtained from each type of alignments
discussed above. Our experiments suggest that in the event of multiple genomes mapping
algorithms such as Bowtie perform close to gap propagation method, if the genetic
difference in the genomes is not large.

The results of the alignments obtained and the accuracy of the consensus are shown in Fig. 6
for 5000 reads. The accuracy of the consensus obtained using just the pairwise alignment is
less than 58% for 3% mutations and continues to decrease with 42% accuracy for 15%
mutations. The quality obtained from the P-Pyro-Align is always greater than 93% and
exhibits a sustained quality with increasing mutations. The accuracy of the gap propagation
procedure is comparable to P-Pyro-Align for small mutations, but as the mutations increase
the accuracy of gap propagation decreases and is also not feasible for large number of reads.

To illustrate that the alignment system works with reads from multiple genomes, we have
used a mixture of mutated reads from Dist-003, Dist-005, Dist-007, Dist-010, Dist-013 and
Dist-015 to get a new set of reads. The new set contains reads (2500 from each genome)
from the mutated sets of genomes. The reads are then aligned by the P-Pyro-Align algorithm
using wildtype as the reference genome. The results of alignment for this mixture set are
shown in Fig. 7 for Dist-003/Dist-005, Dist-005/Dist-007, Dist-007/Dist010, Dist-010/
Dist-013 and Dist-013/Dist-015 mixtures. It must be noted here that we don’t have a ‘ground
truth’ genome in these cases and hence no genome is available to compare the consensus
obtained from the alignment.

However, we do know the mutation rates for the genomes from which the mixture sets were
generated. Therefore, if an optimal alignment of these reads is obtained, the ‘mutation’ in
the consensus should not be greater than the combined mutations of the genomes. For
example consider the case of Dist-003/Dist-005 mixture. We know the mutation rates for the
genomes from which the reads generated were 3% and 5% with respect to the wildtype.
Therefore, for accurate alignment, the consensus of the alignment should not vary more than
8%, in the worst case, when compared to the wildtype. Same would be true for the other
cases considered according to the mutation rates of the genomes. As can be seen that the
results of the alignment compared with the wildtype are well within the expected limits. The
accuracy of the pairwise alignment of the reads with the reference genome (in this case the
wildtype), and that obtained using propagation method is also shown for comparison.

The quality of the alignment produced using P-Pyro-Align also had to be tested for various
other parameters such as number of reads and the length of the reads. We present the results
for our algorithm with increasing average length of the reads and with increasing number of

Saeed et al. Page 10

J Parallel Distrib Comput. Author manuscript; available in PMC 2012 November 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



reads. The quality of the alignment for 100bp to 400bp reads using P-Pyro-Align on 8
processors is shown in Figure 8. As can be seen from the figure that with increasing length
of the read the quality of the alignment is always greater than 99.6%.

The quality of the alignment produced with increasing number of reads for upto 100, 000 is
reported in Fig 9. As can be seen that with increasing number of reads, the quality does not
deteriorate and is always greater than 99%. Some decrease in the quality can be attributed to
the merge strategy that may introduce additional indels for large number of reads.

If the parallel alignment algorithm does not sustain quality with increasing number of
processors, then the scalability of the system is limited. We have tested the quality produced
by P-Pyro-Align with increasing number of reads upto 100, 000 and 24 processors. As can
be seen in Fig 10 the alignment produced with increasing decomposition granularity has no
significant effect on the quality. With increasing number of processors of upto 24 processors
and 100, 000 reads is never less than 98%.

4.2 Performance in terms of High Performance Computing Parameters
In this section we analyze the performance of our algorithm in terms of traditional HPC
parameters such as execution time, speedups and scalability. The objective of the evaluation
is to determine the advantages of the proposed P-Pyro-Align algorithm in terms of speedups
and reduction in execution time.

For the sake of coherence we generated similar kinds of sets for execution time evaluation as
were selected for quality assessment. We report results for up to 0.5 million reads. To the
best of authors knowledge, there are no published reports of multiple aligning of such large
number of reads in the literature.

As can be seen in Fig. 11 that the execution time decreases sharply with increasing number
of processors. We are able to align 100, 000 reads on a 24 processor system in just 139
minutes. The timing for aligning 200, 000 reads on a 24 processor system is 278 minutes.
The same number of reads would take approximately 7 days on a single processor. The
number of days to get alignment on single processor system increases drastically with
increasing number of reads.

As shown in Fig. 12, P-Pyro-Align exhibits linear speedup on a 24 processor system. For
less number of reads, the speedups initially obtained are near-linear e.g. for 20, 000 reads the
speedup obtained for 8 processor nodes is approximately factor 7; but with increasing
processors the speedup decreases. This is due to the fact that with smaller number of reads
and more processors, the amount of communication overhead is comparatively more
compared to the computation costs. However, it can be seen that with increasing number of
reads, e.g. 0.5 million, super-linear speedups can be observed. This is because (1/p)2 factor
decrease becomes dominant as the number of reads on each processor increases, and it is in
agreement with the complexity analysis in Section 3. It is safe to assume that the same
behavior would be exhibited with increasing number of reads and processors.

5 Conclusion
With rapidly increasing knowledge of variants, alignment of reads from multiple genomes
would be of increasing importance. We have demonstrated that multiple alignment for large
number of error-prone reads is not only possible but it can also produce meaningful results.
It gives access to regions that are highly divergent from the first reference or wildtype and
would be rendered useless with mapping/pairwise alignments with the reference genome.
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To this end, we have presented a highly scalable data parallel algorithm to multiple align
large number of short reads from the pyrosequencing procedure. The proposed multiple
alignment can take advantage of data decomposition to get results in a reasonable time. We
also presented the quality assessment results and compared those with the results obtained
by simple pair-wise alignment procedure and ‘propagation’ methods.

We emphasize here, as of today there are no multiple alignment methods currently available
to align short error prone pyrosequencing reads upto 0.5 million with a potential to align
even larger number of reads on large parallel systems. We believe that the parallel alignment
method presented in the paper would find its uses in a multitude of computational biology
and bioinformatics problems requiring alignments of large number of reads.
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Figure 1.
Reads from four different divergent strains of genomes of the same species
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Figure 2.
A visually represented summary of the proposed algorithm
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Figure 3.
The Merging strategy for alignments
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Figure 4.
The final Alignment of the reads
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Figure 5.
The experimental setup for the quality assessment of the multiple alignment program
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Figure 6.
The quality of alignment with different mutation rates for P-Pyro-Align, pairwise and gap
propagation methods
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Figure 7.
The quality of alignment with different mixture of mutation rates for P-Pyro-Align, pairwise
and gap propagation methods
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Figure 8.
The quality of alignment produced using P-Pyro-Align with increasing average length of the
reads

Saeed et al. Page 22

J Parallel Distrib Comput. Author manuscript; available in PMC 2012 November 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 9.
The quality of alignment produced using P-Pyro-Align with increasing number of reads
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Figure 10.
The quality of alignment produced using P-Pyro-Align with increasing number of processors
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Figure 11.
Scalability of the execution time w.r.t. the number of processors
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Figure 12.
Speedup for P-Pyro-Align with increasing number of processors
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Table 1

Computation Costs:

STEP O(Time)

Semi-global alignment of (w = N/p) reads with reference genome w × LR × LG

Sorting of N/p sequences based on s-rank w log w

Sample k = p − 1 sequences w

Sorting of k × p sample s-ranks (k × p)log(k × p)

Clustalw executed on (w = N/p) sequences in parallel w2 + LR2

Computations for merging 2 × w × LG

TOTAL Computation Cost (for )
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Algorithm 1

P-Pyro-Align

Require: p processor for computation
Require: N pyrosequencing reads and reference-genome/wildtype, such that a distinct block of N/p reads is assigned to each processor.
Ensure: Gaps are inserted in each of the reads so that

• All reads have the same length (including trailing and leading gaps)

• Score of the global map is maximum and the error insertions and deletions are ‘highlighted’ after the alignment.

1 Locally compute a semi-global alignment of all the sequences with the reference genome in each processor (This will place each
read in the correct position w.r.t genome).

2 Use parallel Sample sort to sort the reads based on s-ranks

3 Align sequences in each processor using progressive alignment system with trailing and leading gaps. The gaps are assigned
different weights based on the position of the reads. The leading and trailing gaps are assigned weights different than the indels that
are encountered in between base pairs of the reads.

4 Merge the aligned reads on each processor using a customized merging tree.

5 Continue the merging till all sequences are merged to produce a global multiple alignment.

6 Output the final alignment.
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