
J. Parallel Distrib. Comput. 72 (2012) 13–26
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Decentralized polling with respectable participants✩,✩✩

Rachid Guerraoui a, Kévin Huguenin b,∗, Anne-Marie Kermarrec c, Maxime Monod a, Ýmir Vigfússon d,e

a EPFL, LPD, School of Computer and Communication Systems, EPFL, 1015 Lausanne, Switzerland
b Université de Rennes I / IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
c INRIA Rennes – Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes Cedex, France
d Reykjavik University, School of Computer Science, Menntavegur 1, 101 Reykjavík, Iceland
e IBM Research, Haifa University Campus, Mount Carmel, 31905 Haifa, Israel

a r t i c l e i n f o

Article history:
Received 17 November 2010
Received in revised form
24 August 2011
Accepted 12 September 2011
Available online 1 October 2011

Keywords:
Distributed polling
Social networks
Overlay networks
Fault tolerance
Security

a b s t r a c t

We consider the polling problem in a social network: participants express support for a given option
and expect an outcome reflecting the opinion of the majority. Individuals in a social network care about
their reputation: they do not want their vote to be disclosed or any potential misbehavior to be publicly
exposed.We exploit this social aspect of users tomodel dishonest behavior, and show that a simple secret
sharing scheme, combined with lightweight verification procedures, enables private and accurate polling
without requiring any central authority or cryptography.

We present DPol, a simple and scalable distributed polling protocol in which misbehaving nodes are
exposedwith positive probability and inwhich the probability of honest participants having their privacy
violated is traded off against the impact of dishonest participants on the accuracy of the polling result. The
trade-off is captured by a generic parameter of the protocol, an integer k called the privacy parameter. In
a system of N nodes with B dishonest participants, the probability of disclosing a participant’s vote is
bounded by (B/N)k+1, whereas the impact on the score of each polling option is at most (3k + 2)B, with
high probabilitywhendishonest users are aminority (i.e., B < N/2), assuming nodes are uniformly spread
across groups used by the system. When dishonest users are few (i.e., B <

√
N), the impact bound holds

deterministically and our protocol is asymptotically accurate: there is negligible difference between the
true result score of the poll and the outcome of our protocol.

To demonstrate the practicality of DPol, we report on its deployment on 400 PlanetLab nodes. The
relative error of the polling result is less than 10% when faced with the message loss, crashes and delays
inherent in PlanetLab. Our experiments show that the impact on the score of each polling option by
dishonest nodes is (2k + 1)B on average, consistently lower that the theoretical bound of (3k + 2)B.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

The past few years have seen explosive interest in on-line social
networks and the number of users of such networks is still growing
regularly by the day, with Facebook alone currently boasting more
than 750 million active users. Many of these users regularly share
images and videos as well as discuss various social and political

✩ This article is a revised and extended version of a paper that appeared in
the Proceedings of the 13th International Conference on Principles of Distributed
Systems (OPODIS 2009) Guerraoui et al. (2009) [14].
✩✩ This work has been partially supported by the ERC Starting Grant GOSSPLE
number 204742.
∗ Corresponding author.

E-mail addresses: rachid.guerraoui@epfl.ch (R. Guerraoui),
kevin.huguenin@irisa.fr (K. Huguenin), anne-marie.kermarrec@inria.fr
(A.-M. Kermarrec), maxime.monod@epfl.ch (M. Monod), ymir@ru.is (Ý. Vigfússon).

0743-7315/$ – see front matter© 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2011.09.003
matters. They do so with close friends, but also with people they
hardly know.

A particularly useful task in social networks is polling, and often
people would want their responses to be private. For instance,
Facebook recently conducted a system-wide poll about their terms
of service [25]. Or, as a hypothetical example, the organizers of a
Saturday night partymay alsowant to ask guests whether partners
should be invited too. In general, a poll seeks to determinewhich of
d ≥ 2 options is preferred by the greatest number of participants,
typically by allowing each participant to submit a single vote
to indicate her preference. To be meaningful, a polling protocol
should tolerate dishonest participants trying to bias the outcome
or discover other participants’ votes.

One can consider different approaches to conduct polling in a
social network.

Centralized. A straightforward solution for polling is to use a central
server (e.g., [11,9]). Each participant sends its vote to a central

http://dx.doi.org/10.1016/j.jpdc.2011.09.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:rachid.guerraoui@epfl.ch
mailto:kevin.huguenin@irisa.fr
mailto:anne-marie.kermarrec@inria.fr
mailto:maxime.monod@epfl.ch
mailto:ymir@ru.is
http://dx.doi.org/10.1016/j.jpdc.2011.09.003

14 R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26
entity, which subsequently aggregates all votes and computes the
outcome. Besides not being scalable, this solution does not ensure
privacy because participants might generally not want their vote
(andmaybe even the subject of the poll and the result) to be known
by a central entity, be it trusted or not [33].
Distributed aggregation. Performing the polling through a dis-
tributed aggregation is a simple, yet naïve, alternative to avoid a
central server. Participants aggregate votes in such a way that it
is impossible to know the vote of a specific participant. Such an
aggregation scheme, however, is vulnerable to attacks. First, par-
ticipants may significantly bias the result by corrupting intermedi-
ate results. Second, even with aggregation, the initial votes needed
for bootstrapping are revealed. To prevent the initial bootstrapping
votes to be known, each vote could be split according to a homo-
morphic secret sharing scheme. However, a dishonest participant
can still create an invalid initial set of shares, for instance by voting
for an arbitrary large value, and thus bias the result.
Secure multi-party computation. Assuming a minority of dishonest
users, the distributed polling problem may be solved with com-
plete privacy and no bias on the outcome by using heavy ma-
chinery from cryptography using protocols for secure multi-party
computation (MPC) between N mutually distrustful users [24].
Following two decades of theoretical advances, MPC protocols to
address efficiency and scalability concerns have only recently been
proposed [6,5]. The line of work is promising, but even the time
and communication complexity of the state-of-the-art protocol
(a polynomial in N) [5] are too large to be practical.

Our solution to the polling problem does not rely on cryptog-
raphy for ensuring privacy or accuracy. This is for three reasons.
First, we are concerned that the practicality and scalability of the
protocol will be impacted by the complexity of cryptographic tech-
niques. Accordingly, we wish to explore the space of protocols
where we give up some bounded degree of privacy and accuracy
without compromising scalability and performance. Second, there
is a small risk that the unproven assumptions underlying mod-
ern cryptographic techniques (e.g., impracticality of factoring large
numbers or inverting higher mathematical functions) may be bro-
ken. To avoid a full dependence on such techniques, it is prudent to
study alternatives. Third, as advocated in [20,26], there is scientific
value in determining if traditional problems in distributed com-
puting (e.g., computation in general and polling in particular) can
be solved without cryptography, and if so, how efficiently. These
investigations help us understand the crux of the individual prob-
lems.

Instead of using cryptography, we exploit the social nature
of the participants involved in the polling protocol, specifically
the one-to-one correspondence between social network identities
and real identities. The key insight is that participants in social
networks care about their reputation: information related to a
user ultimately reflects on the associated real person. Therefore,
their misbehavior is rather restricted and not fully Byzantine. We
leverage this concern and propose an approach which dissuades
dishonest behaviors, instead of masking their impact (e.g., as in
BFT [4]) or preventing them (e.g., by using cryptography [1]). In
addition to running a polling algorithm based on a simple secret
sharing scheme, we execute a distributed verification protocol
which tags the profiles of the participants based on collected
testimonies. A reputation system like EigenTrust [19] can be used
to manage the blames in a robust manner. Social relationships
between users further help preventing colluding users from
submitting wrongful reports.

To illustrate the idea behind tagging, consider a situation
where the testimonies of Alice and Bob demonstrate that Mallory
misbehaved. In this situation, Alice’s and Bob’s profiles are then
taggedwith ‘‘Alice and Bob jointly accusedMallory’’ and the profile
of Mallory is tagged with ‘‘Mallory has been accused by Alice and
Bob’’. In a social network, no participant would like to be tagged as
dishonest by a protocol that does not wrongly accuse participants,
as wewill describe below. Our protocol does not wrongfully blame
participants, but dishonest participants may [36].

Assuming a systemwith a largemajority of honest participants,
the risk for a participant to be caught when wrongly accusing
others is high. For instance, if a participant is accused only by
users that are related in the social network (i.e., friends forming
a coalition), the allegation would be suspicious and thus not
taken into account and the claim would eventually backfire on
the accuser. It is important to note that Sybil identities can be
detected by analyzing the specific characteristics of social graph
(e.g., [39,38]). Without Sybil identities, the problem of dishonesty
boils down to the casewhere a coalition of real users try to affect an
honest user’s profile by wrongfully blaming her, attempt to spam
the systemwith a large number of blames, or blame one another as
a smokescreen. By leveraging the acquaintanceship between users
(e.g., the social graph — be it explicit or inferred), several practical
systems have been proposed and successfully applied to on-line
massivelymulti-player games [13,18], spammitigation [22,32] and
recommendation systems [35,8]. Most of these techniques require
a consensus of an unaffiliated jury to expel a user and renounce
blames originating from friends that are considered suspicious.

In devising our protocol, we have considered a system with
both honest and dishonest participants. The honest ones follow
the protocol assigned to them, whereas the dishonest ones might
not, in order to promote their opinion beyond what is allowed.
Should dishonest nodes deviate from the protocol, we assume
that they never do anything that will jeopardize their reputation
with certainty (i.e., with probability 1). We believe that our model
for dishonest users is more reflective of real human behavior
than e.g. Byzantine users as it accounts for social aspects of the
participants, and is interesting in its own right. It is an intriguing
direction to consider how to solve problems under this model.
Contributions. We present DPol, a scalable polling protocol that
leverages special properties of social networks. In a nutshell, DPol
works as follows. Participants, clustered in fully connected groups
known as offices, make use of a simple secret sharing scheme to
encode their vote. Then they send the shares of their vote to proxies
that belong to another group (an office). In the context of polling,
the shares of a vote are referred to as ballots. The key idea is
that participants can retain privacy by submitting ballots for their
chosen candidate as well as ballots for the candidates they didn’t
vote for, making sure to send one more ballot for the true choice
than the other ones. Each office computes a partial tally that is
further broadcast to all other groups. Each participant eventually
outputs the same tally. DPol is fully decentralized and does not
assign specific roles to any participant. Our scheme results in a
simple and scalable protocol that is easy to deploy.

Complexity. The time complexity of DPol is O(
√
Nk), the spatial

complexity is O(
√
Nk) and the number of messages sent is

O(
√
Nk), where k is the privacy parameter and N the number

of participants. We point out that other decentralized protocols
have explored the O(

√
N) trade-off between time and message

complexity (e.g., [15,12]).
Privacy and accuracy. The trade-off between privacy and accuracy
arises naturally in our settings: improving accuracy means
verifying the participant’s actions, which in turn compromises
privacy. We bound the impact on the polling result by dishonest
participants and balance this with the level of privacy ensured.
More specifically, in a system of N participants with B colluding
dishonest participants (assuming a social network with a limited
number of Sybil identities), we can choose any integer k such that
the probability for a given participant to have its vote recovered
by dishonest participants is bounded by (B/N)k+1 and their impact

R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26 15
on the outcome of each of the d options is bounded by (3k + 2)B
with high probability when B < N/2 for large N , assuming that
dishonest nodes have no control over the assignment of nodes
to groups (more specifically that nodes are assigned to groups
uniformly at random). For B <

√
N , the accuracy guarantee

of (3k + 2)B always holds for any value of N and for any
assignment of nodes to groups, and the relative error on the
poll outcome is negligible when N is large. This is due to the
ability of our underlying simple secret sharing scheme to expose,
with certainty, dishonest participants that affect the outcome by
more than 3k + 2 with only public verifications, i.e., without
requiring the participants’ votes to be revealed. We also show that
private verifications expose, with positive probability, dishonest
participants who try to affect the outcome below the limit
(i.e., even if their impact on each option is less than 3k + 2),
but require inspection of the contents of a subset of ballots. Our
results also imply that a coalition of a minority of the nodes cannot
influence the outcome of a poll if the most popular option has a
lead of more than (6k + 4)B votes over the runner up.

For illustration, consider a poll with two options, Yes and No
(a binary poll), in a system of 10,000 participants. Further, assume
there are 99 colluding dishonest participants (⌈

√
N⌉ − 1), and

assume that a fraction α of the participants vote Yes. By setting
k = 1, for instance, we ensure privacy with probability 99.99%
and when α > 0.54, every participant computes the right decision
(i.e., Yes). While e-voting requires stronger guarantees, this amply
fits polling applications requirements.
Practicality.DPol is easy to deploy andwe report on its deployment
on 400 PlanetLab nodes. The result of a binary poll suffers an
average relative error of less than 10% in the face of the message
losses, crashes and asynchrony inherent in PlanetLab. In the
presence of dishonest participants, our experiments show that the
impact on the polling result is (4k + 1)B on average, consistently
lower that the theoretical bound of (6k + 4)B. Further, we
back up various theoretical results with experimental evaluation
throughout the paper.
Roadmap. The rest of the paper is organized as follows. Section 2
presents the model and introduces the terms and notation used
throughout the paper. We present DPol in Section 3 and we report
on the deployment of its binary version on PlanetLab. We analyze
the correctness and complexity of the protocol. We derive upper
and lower bounds on the impact of dishonest nodes in Section 4 by
considering worst case scenarios. Section 5 revisits these bounds
in practical scenarios. Probabilistic results are illustrated with
simulations and experiments on PlanetLab. Section 6 reviews
related work and we conclude in Section 7.

2. Systemmodel

We consider a system of N uniquely identified nodes that
represent participants of a social network. Each node p votes for
a value vp ∈ V and the expected output of the polling algorithm is
a vector containing the proportions of nodes voting for each value
inV . The set of possible votesV is {1, . . . , d}, where d is the number
of options. Each participant in the social network has an assigned
profile which may be tagged by DPol.

We assume that nodes are able to communicate by message-
passing, specifically that they can receivemessages from any other
node in the system. To make this assumption work in the real
world, the communication takes place using UDP and efficient NAT
traversal techniques (‘‘hole punching’’) such as STUN [29]. Other
complementary techniques, for instance the Internet Gateway
Device Protocol (through Universal Plug’n’Play), are supported by
modern routers and can be used to allow devices behind the
NAT to dynamically add translation rules, thus allowing them to
receive incoming messages. We used UDP communication in our
implementation and deployment on PlanetLab.

In our model, nodes are either honest or dishonest. Honest
nodes strictly follow the protocol and contribute to the verifica-
tions as long as their privacy is not compromised.More specifically,
honest nodes always collaborate with verification procedures that
donot require them to reveal their ballots (i.e., public verifications).
However, they may refuse to reveal their ballots for a verification
procedure (i.e., private verification). Dishonest nodes may misbe-
have either to promote their opinion or reveal the opinion of hon-
est nodes. They are, however, rational in the sense that they never
behave in such a way that their reputation is tarnished with cer-
tainty, i.e., they do not perform attacks that are guaranteed to be
detected by public verification procedures. As such they are less
powerful than Byzantine users. As motivated in the introduction,
dishonest nodes do not wrongfully blame honest nodes, since it is
rather easy for a human reader or an automatic tool aware of so-
cial relationship between users to distinguish between legitimate
and wrongful accusations. Consider, for example, a single partic-
ipant who blames a large number of nodes and the case where a
group of related participants all blame an identical set of nodes.
Several existing systems manage to filter wrongful blames, or at
least limit their impact. For instance Digg [8] does not allow related
users to rate each other’s articles. SumUp [35] allows nodes to vote
only over the edges of the social network, thus limiting the impact
of coalitions of connected users. Ostra [22] bounds the emission
rate of a node by the number of trust relationships it has. SocialFil-
ter [32] complements trustworthiness by the notion of credibility,
whichweights the reports nodes send. Finally, EigenTrust [19] uses
an iterative algorithm inspired by PageRank to determine node
reputation in a robust way.

We consider participants who collude to form a single coalition
B (|B| = B). When dishonest nodes collaborate to bias the
outcome of the poll, they are assumed to share the same opinion.
While honest nodes vote for one option, dishonest nodesmaywant
to promote a set of options. Still, they act selfishly in the sense that
they prefer to protect their own reputation to covering up their
suspected accomplices. A single coalition represents theworst case
scenario for both discovering a node’s vote and for biasing the
result of the polling.

DPol relies on a structured overlay, independent of the social
graph, which provides scalable dissemination and facilitates
verifications. This overlay could be provided by the social network
infrastructure or be built in a decentralized fashion. The N nodes
are clustered into r ordered groups, from g0 to gr−1. A node p
in group gi maintains two sets of nodes: a set Po of officemates
containing all nodes belonging to the same group (Po = gi \ {p})
and a fixed-size set Pp of proxies, containing nodes in the next
group (Pp ⊆ gi+1 mod r). Therefore, all groups virtually form a ring
with g0 being the successor of gr−1. Each group gi is a clique. We
define the client of a node p to be a node forwhich p acts as a proxy.
Every node maintains a list of its clients in the previous group
(Pc ⊆ gi−1). Each node discards messages that originate in nodes
which are not in the set Pc ∪ Po. Fig. 1 depicts the overlay used
by DPol. Several prominent overlay construction protocols make
use of group-based overlays using gossip, the most commonly
known of which is Kelips [15]. These protocols can further be
made robust to dishonest nodes and provide mechanisms that
we will extend for polling. Fireflies [17], for instance, builds a
randomized intrusion-tolerant overlay on which Byzantine nodes
have only a limited control, and is resilient to the eclipse attack
(i.e., no node has only Byzantine neighbors [36]). Brahms [3]
provides unbiased uniform random peer-sampling in the presence
of Byzantine nodes. Finally, AVMON [23] builds a pseudo-random
overlay based on the hashes of the nodes’ IP addresses (on which
malicious nodes have very little, if any, control) thus reducing the

16 R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26
Fig. 1. The structure of DPol. Node p in gi acts as a proxy for its clients in the
preceding group gi−1 , and has proxies of its own in the successive group gi+1 . It
also communicates with its officemates — the nodes in gi .

chances of colluding nodes being connected. We further discuss
the overlay construction and how to make it resilient to dishonest
nodes in our probabilistic analysis which assumes a uniform
random distribution of nodes among groups (Section 5).

3. The polling protocol

In this section, we present DPol and prove that the protocol is
correct; we then analyze its spatial and message complexity and
present experimental results of a binary poll on PlanetLab. We
complement these experiments with an analysis of DPol in the
presence of crashes and message losses.

3.1. Polling in a nutshell

DPol is composed of three phases: (i) voting, (ii) counting and
(iii) broadcasting. A node’s vote goes to one option vp ∈ {1, . . . , d}.
During the voting phase, a node generates a set of ballots in the
form of binary vectors of size d, b⃗ ∈ {0, 1}d reflecting its vote
(when aggregated) and sends each ballot to one of its proxies. A
ballot with only the first two bits set equally promotes the first two
options over the d − 2 other options. In the counting phase, each
node in a group computes the sum of the votes of the nodes in the
previous group (local tally). This is achieved by having each proxy
summing up the ballots it has received and broadcasting the result
to its officemates. Finally, the local tallies are forwarded along the
ring so that all nodes eventually compute the final outcome. Tallies
are natural numbers vectors of size d, t⃗ ∈ Nd and the component
with the maximum value in the final tally vector determines the
winner of the poll.

3.2. Description

We now give the algorithm details of each phase of the DPol
protocol.
Voting. The ballot generation method is inspired by the simple
secret sharing scheme introduced in [7] and shares similarities
with theVote/Anti–Vote/Vote system [27]. To vote for a given value
v ∈ {1, . . . , d}, a node generates 2k + 1 ballots b1, . . . , b2k+1 ∈

{0, 1}d representing its vote, where k is an integer called the
privacy parameter. To be valid, a ballot must contain at least one 1
and at least one 0.

In the binary case, a valid ballot is (1, 0) or (0, 1). In this case,
the intuition is to create k + 1 ballots towards a given target
(first or second option) and k ballots for the other option, such
that when the ballots are summed they result in a vote for the
chosen option vp. In general, we assign the i-th optionwith a vector
ci = (0, . . . , 0, 1, 0 . . . , 0) with 1 in the i-th position and its
complementary vector c i = (1, . . . , 1, 0, 1, . . . , 1) with a 0 at the
i-th position. In the casewhere a node is allowed to vote for a single
option, a valid vote therefore equals ci + k · (1, . . . , 1), where k is
the privacy parameter. The ballots emitted by a node must sum to
a valid vote. For instance, in the case d = 3 and k = 1 the set of
ballots {(1, 0, 0), (0, 1, 1), (1, 0, 0)} is valid and promotes the first
option.

In DPol, a node generates k ballots associated with k random
candidates and their complementary ballots and a single ballot for
the candidate v it wants to promote (lines 11–16 in Algorithm 1).
Such a set of ballots is valid and sums to cv + k · (1, . . . , 1). Once
a node has generated its 2k + 1 ballots, it sends each of them to a
different proxy. The number of proxies is to be chosen accordingly,
|Pp| = 2k + 1. Lines 6–9 in Algorithm 1 detail the voting phase.
Fig. 2(a) depicts a node sending its 2k + 1 ballots (e.g., {(0, 1), (1,
0), (1, 0)}) to its assigned proxies. Once every node in the system
has received one ballot from each of its clients, the voting round is
over.
Intermediate counting. A group acts as a voting office for the pre-
ceding group on the ring. The officemates collect ballots from their
clients (Fig. 2(b)) and share intermediate results (Fig. 2(c)). To this
end, a proxy sums the ballots it received into an individual tally t′′
(line 10 in Algorithm 1). Once a node has received the expected
number of ballots from its clients, it broadcasts the computed indi-
vidual tally to its officemates, as depicted in Fig. 2(b) (lines 17–19 in
Algorithm1). The officemates aggregate the received data, i.e., they
sum each others’ individual tallies (line 14 in Algorithm 1) and
store the result summedwith their individual tally into a local tally
t′, as shown in Fig. 2(c) (line 3 in Algorithm 1).
Local tally forwarding. Once the intermediate counting phase is
over, i.e., all the officemates have computed a local tally, each
node sends the local tally of its group to its proxies (lines 21–23
in Algorithm 1). Upon reception of a message containing a local
tally, a proxy adds it to the set S [i] of possible values for gi (line 18
in Algorithm 1). When a proxy has received the expected number
|Pc | of local tallies for a given group gi, it decides on a local tally by
choosing the most represented value in S [i] and stores it in T [i].
When a local tallyT [i] is assigned, it is further forwarded (Fig. 2(d))
to the next group using the proxies (lines 25–30 in Algorithm 1).
Local tallies are then forwarded in the system along the ring.When
a node receives the local tally corresponding to its own group,
the tally is no longer forwarded (lines 27–29). The global tally is
computed at each node by simply summing the local tallies of all
groups: t̂ =

∑r−1
i=0 T [i] (line 5 of Algorithm 1).

The nodes in group gi assume a special role for the members of
the preceding group gi−1: they collect and count ballots from gi−1
and initiate the dissemination of the resulting local tally over the
ring. Each group has a special role for the preceding one, and all
nodes execute the exact same protocol.

3.3. Analysis

In this section, we analyze the correctness and complexity
of DPol assuming an ideal setting (i.e., reliable channels and
non-faulty nodes) and only honest nodes. We later revisit these
assumptions by measuring the impact of message loss and crashes
both analytically and experimentally in Section 3.4. We will
consider the impact of dishonest nodes on privacy and accuracy
in the worst case in Section 4 and on average in Section 5.

Theorem 1 (Correctness). Consider a system of size N where each
node p votes for the vp-th option. The polling algorithm terminates
and each node eventually outputs N · k(1, . . . , 1) +

∑
p cvp .

Proof (Accuracy). We first prove that the local tally computed in
every group gi reflects the vote of all nodes in gi−1. The local
tally computed in a group is the sum of the ballots received
by its members. Each node p in gi−1 sends each of its ballots
b1,p, . . . , b2k+1,p to distinct proxies in gi. Similarly, each proxy p′

in gi receives a set of ballots Bp′ from its clients. Since all nodes are
honest by assumption, the set of ballots sent by the nodes in gi−1

R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26 17

Algorithm 1 DPol at node p in group gi, i ∈ {0, . . . , r − 1}
Input: a vote v ∈ {1, . . . , d}
Variables: an individual tally t′′ = 0
a local tally t′ = 0
an array of local tally sets S [{0, . . . , r − 1} → ∅]

a local tally array T [{0, . . . , r − 1} → ⊥]

Output: the global tally t̂

Polling Algorithm
1: vote(v, Pp)
2: local_count(t′′ , Pp)
3: t′ = t′ + t′′
4: local_tally_broadcast(i, t′ , Pp)

5: t̂ =
∑

i T [i]

Voting phase
procedure vote(v,Pp) is
6: {b1, . . . , b2k+1} = share(v)
7: for each proxy ∈ Pp do
8: send [Ballot, bi] (proxy)
9: end for
upon event ⟨ receive | [Ballot, b] ⟩ do
10: t′′ = t′′ + b
function share(v) returns a set of ballot B is
11: B = {cv}
12: for each i ∈ {1, . . . , k} do
13: w = random number in {1, . . . , d}
14: B = B ∪ {cw} ∪ {cw}

15: end for
16: return B

Intermediate Counting phase

procedure local_count(t′′,Po) is
17: for each officemate ∈ Po do
18: send [IndividualTally, t′′] (officemate)
19: end for
upon event ⟨ receive | [IndividualTally, t] ⟩ do
20: t′ = t′ + t

Local Tally Broadcasting & Forwarding phase

procedure local_tally_broadcast(i, t′′, Pp) is
21: for each proxy ∈ Pp do
22: send [LocalTally, i, t′] (proxy)
23: end for
upon event ⟨ receive | [LocalTally, igroup, t] ⟩ do
24: S [igroup] = S [igroup] ∪ {t}
25: if (|S [igroup]| = |Pc |) then
26: T [igroup] = choose(S [igroup])
27: if (igroup ≠ (i + 1) mod r) then
28: local_tally_broadcast(igroup ,T [igroup])
29: end if
30: end if
function choose(A) returns local tally is
31: return the most represented local tally in A
(a) Voting. (b) Intermediate counting. (c) Individual tally sharing. (d) Local tally broadcasting &
forwarding.

Fig. 2. Key phases of DPol with d = 2. (a) A node in gi−1 generates 3 (k = 1) ballots {(1, 0), (1, 0), (0, 1)} and sends them to its proxies in gi . (b) A node in gi collects its
received ballots {(1, 0), (1, 0), (1, 0)} and sums them to (3, 0) (individual tally) and shares the tally with its officemates in gi , as depicted in (c). (c) A node receives all expected
individual tallies {(3, 0), (2, 1), (1, 2)}, then computes and sends the local tally ((9, 3)) to its proxies in the next group gi+1 , as depicted in (d). (d) The proxies in gi+1 forward
the local tally to their proxies in gi+2 .
equals the set of ballots received in gi. Therefore, each member of
gi computes the local tally to be:

t′ =

−
p′∈gi

−
b∈Bp′

b

=

−
p∈gi−1

2k+1−
j=1

bj,p

=

−
p∈gi−1

[k · (1, . . . , 1) + cvp]

= |gi−1| · k · (1, . . . , 1) +

−
p∈gi−1

cvp .

Note that this follows from the homomorphic property of the
simple secret sharing scheme. Since nodes do honestly forward
the local tallies along the ring and the messages are eventually
received, each node ends up with the correct values for the local
tallies of every group, and thus the correct global tally.

(Termination) A node knows the number of messages it is
supposed to receive in each phase. Since every node sends the
required number of messages and every message eventually
arrives, each phase completes. Because the algorithm has a finite
number of phases, it is guaranteed to eventually terminate. �
Proposition 1 (Spatial Complexity). The size S of the state main-
tained at each node in group gi is O(r · k + |gi|).

Proof. A node maintains the set of proxies (2k + 1), the set of
its officemates (|gi|) and the list of its clients (at most |gi−1|).
Additionally, a node stores a set of 2k+1possible values (a nodehas
2k + 1 clients on average) for each of the r local tallies to perform
global counting, that is S = O(k)+O(|gi|)+O(|gi−1|)+O(r · k) =

O(r · k + |gi|). �

Proposition 2 (Message Complexity). The average number of mes-
sages M sent by a node in group gi is O(r · k + |gi|).

Proof. A node sends messages during the voting phase (2k + 1
ballots), the intermediate counting phase (|gi| − 1 individual tal-
lies), and the global counting phase which involves the dissemina-
tion of r local tallies along the ring using its 2k + 1 proxies, that is
M = O(k) + O(|gi|) + O(r · k) = O(r · k + |gi|). �

Note that the parameters are not independent: the sizes of the
groups are related and bound to the number of groups by the
relation

∑r−1
i=0 |gi| = N . The two quantitiesM and S are minimized

when r =
√
N/k and |gi| =

√
Nk, and thusM = S = O(

√
Nk).

18 R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26
(a) Outcome of the poll. (b) Fraction of node deciding correctly on the winner.

Fig. 3. Accuracy of the algorithm in the presence of asynchrony, message loss and failures (N = 400 and k = 2). [400 nodes PlanetLab tested].
Proposition 3 (Time Complexity). Under the assumption of a
synchronous system where time evolves in rounds, DPol operates in
O(max |gi| + rk) rounds.

Proof. The voting phase operates in 2k + 1 rounds. The counting
phase requires each node to send its individual tally to its |gi| − 1
officemates. All the nodes in the system send their individual tally
in parallel, therefore the time complexity of this phase is O(|gi|).
The local tally broadcast phase operates in O(kr) rounds as it
requires 2k + 1 rounds for a local tally to be forwarded from one
group to the next one and the ring is composed of r groups. �

Using the values of the parameters r and {gi}ri=1 specified above,
the time complexity of DPol is O(

√
Nk).

3.4. Evaluation

We report on the deployment of DPol, in the case of binary
polling, on a PlanetLab testbed of 400 nodes and analyze the
practical performance of DPol. The message loss rates, crashes and
asynchrony inherent to PlanetLab allow us to experiment with the
algorithm in tough real-world settings. We evaluate our algorithm
with two different privacy parameter values k = 1 and k = 2.
Overlay. The cluster-ring-based overlay is built using a centralized
bootstrapping entity which keeps track of the whole set of nodes,
assigning each node to a random group. Nodes have exactly 2k+ 1
proxies in the next group and the number of clients of a node is
(2k + 1)|gi−1|/|gi| on average.
Communication and Asynchrony. Nodes communicate by UDP,
which may suffer message loss on the communication channels.
For instance, we observed loss rates on PlanetLab ranging from
5% to 15%. In addition, PlanetLab nodes are unreliable, causing
expected messages to be lost due to sender crashes. Therefore,
phase terminations cannot be detected by simply counting the
number of received messages. In the local tally forwarding phase,
when the number of possible values for a local tally grows beyond
a given threshold γ · |Pc |, the node gets 1t seconds to make the
decision for this particular local tally. The two other phases are
simply bounded in time. In our implementation, γ is set to 0.5 and
1t to 5 s.
Experimental results. Fig. 3 shows the accuracy of DPol among 400
PlanetLab nodes with k = 2. Fig. 3(a) considers the value of the
outcome while Fig. 3(b) considers the sign of the outcome. By
outcome we mean the difference between the number of votes
for the first option (i.e., corresponding to the first component of
the tally) and the number of votes for the second option. More
specifically, the outcome equals (1, −1)T · t′′. Without loss of
generality, we vary the proportion α of node voting for the first
option between 0.5 and 1. In Fig. 3(a), we plot the standard
deviation on the computed outcome for α in that range. For each
run, we compute the average of the error when computing the
outcome (this is the difference between the outcome on each node
and the real one) over all nodes. Each point represents the average
of this value over 20 independent runs. Note that the accuracy
increases when α is close to 0.5. This is because the closer the tally
is to 0.5, the lower the impact of message losses on the outcome.
Effectively, the two components of the individual and local tallies
are close and therefore their impact on the outcome is close to zero.

Fig. 3(b) displays the fraction of nodes deciding on the winning
option (among the nodes that were able to decide on a global
tally) as a function of α. Effectively, even if the standard deviation
is relatively small, some nodes may decide incorrectly on the
winning option. Consider the organizers of a Saturday night party
asking their friends in a social networkwhether partners should be
excluded or not. As depicted in Fig. 3(b), forα = 52.5%, somenodes
would compute a different answer to the majority. This means
that a minority of participants who compute negative outcome
would come with their partners. Fig. 3(b) (solid line) also shows
the proportion of nodes that are unable to decide on a global tally
(because their set of possible values never reach the threshold γ).
We observe that this fraction remains very low (less than 4%) and
is independent of α.

Analysis. Crashes and message loss do arise and affect the correct-
ness and termination of the protocol. Crashes can impact the sys-
tem in two different ways. First, nodes may crash independently
before sending unique information. The information refers to data
they received that have not yet been replicated, typically initial
shares of votes (i.e., ballots). Losing such data affects the global
tally. Second, several nodesmay be crashed at given time. Thismay
result in other nodes being unable to decide on a local tally and
thus on the global tally due to a lack of corroborating pieces of in-
formation. In the following, we analyze the impact of the first type
of crash on the outcome. Finally, by relaxing the decision condi-
tion from |S [igroup]| = |Pc | to |S [igroup]| ≥ γ · |Pc | (as described
above), we compute the probability of a node failing to decide on
the global tally.

Proposition 4 (Impact of Crashes on Accuracy). An individual crash
can affect the score of an option up to 3k + 2.

Proof. Consider a node that crashes before broadcasting its
individual tally to its officemates. This individual tally is lost, and
represents the sum of the |Pc | = 2k + 1 ballots sent by its
clients. The impact of such a crash on each option score is bounded
by 2k + 1, since ballots are binary vectors. Moreover, if a node
crashes while sending its ballots, it affects each option score by
up to k + 1. The maximum impact of an individual crash is thus
2k + 1 + k + 1 = 3k + 2. �

R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26 19
We assume that nodes crash with probability c and never
recover from a crash. There is a probability di for a node p ∈ gi
not to decide on the local tally of group r . This can happen if more
than (1−γ)|Pc | = (1−γ)(2k+1) clients fail to forward the local
tally because they either crashed or have themselves not decided
on the local tally. We define ei as the probability for a node in gi to
fail to forward a local tally. We have ei = c + (1 − c)di, where

di =

γ (2k+1)−1−
j=0


2k + 1

j


(1 − ei−1)

je2k+1−j
i−1 and d0 = 0.

A node does not decide on the global tally if it has not has decided
on at least one local tally, that is dr .
Discussion. DPol is a decentralized peer-to-peer protocol deployed
on the Internet, where nodes may leave and join the system
dynamically. This behavior, referred to as churn, is both common
and widespread, and may further disrupt the function of the
protocol beyond message loss and node crashes. Fortunately,
because our protocol is lightweight and executes quickly, the
impact of churn is at the samemanageable level as we observed in
our PlanetLab experiments (i.e., only a few nodes among the 400
nodes participating in the poll crashed or left during the course of
the protocol) as we detail below.

As we explained at the beginning of this Section, the phases
of DPol are bounded in time for fault-tolerance. During our
experiments with 400 nodes, we set the time-out δ to 5 s, thus
giving an execution time of less than 20 s. Using Proposition 3,
which states that the time complexity ofDPol grows as

√
N , we can

make a projection for a poll involving 100,000 participants (recall
thatDPol targets pollswithin groups rather than in the entire social
network): the algorithm is expected to complete in approximately
five minutes.

To put this duration into perspective, several trace-driven
analysis of churn in various peer-to-peer systems and applications,
including file-sharing (BitTorrent, eDonkey [34]), Voice over IP
[37] and on-line social networks (Facebook, HiFive [30]), report
an average session time of at least a few minutes. They further
show that this duration is significantly increasedwhen considering
peers who have already spent some time in the system, and initial
durations of 5 min are typical for social networks. For instance,
it is shown in [34] that more than 95% of the peers who have
already spent an hour in the system stay at least one more hour in
the system. Therefore, by assuming (or even requiring) that peers
have spent a reasonable time on-line to participate in the poll, the
impact of churn is brought down to a level in which we ensure
stability for a correct execution of the protocol. This corresponds to
the outcome of our experiments, in which only a handful of nodes
were unable to determine the outcome of the poll due to crashes.

4. Impact of dishonest nodes

In this section, we analyze the maximum impact of dishonest
nodes on DPol. For the sake of the analysis, we assume an overlay
with

√
N groups of size

√
N (

√
N ∈ N), such as Kelips [15], and

that each node has exactly the same number (2k + 1) of clients
and proxies. We consider a polling scheme based on secret sharing
to preserve privacy and we assume auxiliary verification schemes
to detect attacks and identify dishonest nodes. We distinguish
between two types of verifications: (i) public verifications that
leverage only information which does not compromise the nodes’
privacy (i.e., the content of the ballots), such as the individual tallies
received from their officemates, and (ii) private verifications that
may leverage all information including the content of the ballots.

To dissuade nodes from misbehaving, verifications affect the
user profiles of the involved nodes. When an attack is detected
and reported, the neighbors of the accused nodes, i.e., the nodes
it communicates with (typically clients and proxies), are asked
for the messages they exchanged. If the testimonies of p1 and p2
demonstrate that p0 misbehaved, their profiles are taggedwith ‘‘p1
and p2 jointly accused p0’’ and the profile of p0 is tagged with ‘‘p0
has been accused by p1 and p2’’. These tags can then be used to
determine abnormal behaviors.

4.1. Preserving privacy in the presence of dishonest nodes

Wederive a theoretical upper boundon the impact of a coalition
of dishonest nodes on the nodes’ privacy, that is the maximum
number of votes the dishonest coalition can disclose.

Theorem 2. A coalition of B malicious nodes can disclose the votes of
at most ⌊B ·

2k+1
k+1 ⌋ ≤ 2B honest users.

Proof. This theorem follows from the secret sharing scheme used
in DPol, which is to divide a node’s vote into 2k+ 1 ballots. Among
them, k + 1 ballots have the bit corresponding to the node’s vote
set and only k ballots have the bit corresponding to each competing
candidate set. We first prove that a node’s vote is disclosed by
dishonest nodes if and only if its k + 1 proxies that received the
ballots corresponding to its vote (i.e., the ballots in which the
vp-th bit is set) belong to the coalition. It is clear that if k + 1
ballots received by the dishonest nodes have a bit set at the vp-
position, the vote is recovered with certainty. We now prove the
contrapositive statement by contradiction. Let b⃗ be the sum of the
ballots sent by p to dishonest proxies. We suppose that all the
components of b⃗ are strictly lower than k + 1 and assume that the
dishonest coalition recovers the client’s vote. Not all of the 2k + 1
proxies can be dishonest, otherwise, b⃗would simply have been the
vote of p, that is cvp + k · (1, . . . , 1) (whose vp-th component is
equal to k+1). The best case (from the standpoint of the coalition)
is when 2k proxies are dishonest. In that case, the components
of b⃗ are either equal to k − 1 or k. The vote of p is recovered
with certainty if and only if a single component of b⃗ is equal to k.
This implies that the missing ballot contains only ones, which is in
contradiction to the definition of a valid ballot.

Since all nodes, including dishonest ones, have exactly 2k + 1
clients, the dishonest coalition collects a total of B ·(2k+1) ballots,
which in turn may recover at most ⌊B ·

2k+1
k+1 ⌋ votes. �

4.2. Confining the impact of dishonest nodes

First, we assume that honest nodes do not want to disclose any
of the ballots they sent or received (i.e., public verifications). In this
context, we study the impact of colluding dishonest nodes.

Next, we assume that honest nodes are willing to sacrifice
privacy for accuracy by revealing some of their ballots (i.e., private
verification) and we explore how this information can be used to
catch dishonest nodes that cheat without being detected by public
verifications.

4.2.1. Impact of a dishonest coalition under public verifications
To anthropomorphize the discussion, suppose that votes are

being cast for d distinct candidates representing the different
options of the poll. Recall that the global tally is the d-ary vector∑

p cvp + N · k · (1, . . . , 1), whose components correspond to the
tallies for each candidate in the poll.

Theorem 3. For B <
√
N, everymember of a dishonest coalitionmay

affect each candidate score up to 3k + 2 without being detected by
public verifications.

Proof (Structure). The proof relies on the facts that (i) honest nodes
always tell the truth and strictly follow the protocol (including
verifications), and (ii) dishonest nodes do not behave in such a

20 R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26
way that their reputation is tarnished with certainty. Effectively,
showing that the attacks with an impact greater than 3k + 2 are
detected by the honest nodes with certainty proves the theorem.
A dishonest node may bias the protocol at all three phases.
Lemmas 4–7 encompass all possible attacks, propose a detection
scheme relying on honest nodes, and bound the impact of those
that cannot be detected with certainty. In addition, if an attack is
detected,weprove that the dishonest node is exposedby thepublic
verification. Summing the impacts of all these attacks (Lemmas 4
and 5) for each dishonest node gives a maximum impact of k+1+

(2k + 1) = 3k + 2 on each component of the global tally.
Note that the proof relies on the assumption B <

√
N , where N

is the size of the systemand the size of a group is
√
N , to ensure that

the dishonest coalition can neither ‘‘control’’ (there is at least one
honest node to report a misbehavior inside each group) nor ‘‘fool’’
an entire group without being detected (there are not enough
dishonest nodes to both perform and cover dishonest actions). This
security property holds deterministically under the assumption
B <

√
N irrespective of how dishonest nodes are distributed

among the groups. Indeed, in the worst case scenario where
all dishonest nodes are concentrated in one or two consecutive
groups, the fact that the number of dishonest nodes is strictly
smaller than the size of a group guarantees that there is at least one
honest node in each group and that there is a majority of honest
nodes in every pair of successive groups.

Theweakest assumption needed is that two consecutive groups
contain less than

√
N dishonest nodes, formally that |gi ∩ B| +

|gi+1 ∩ B| <
√
N for all i. In Section 5, we provide probabilistic

analysis of this bound in a setting where dishonest nodes are
distributed randomly among the groups and prove that the system
is not compromised (dishonest nodes do not form amajority in any
pair of consecutive groups) with high probability when N tends to
infinity for B < N/2. �

Corollary 1. When the margin of the leading candidate over the next
candidate is more than (6k + 4)B, a coalition of B <

√
N dishonest

nodes cannot influence the outcome of the poll.

Proof. By Theorem 3, colluding dishonest users may decrease the
score of the leading candidate by at most (3k + 2)B and boost
the score of some other candidates by at most (3k + 2)B. This
decreases the lead of the top candidate over the runner up by at
most (6k + 4)B, which is not sufficient to change the outcome of
the poll. �

Note that one can infer a relation between the margin by which
the leading candidatewins and themaximumnumber of dishonest
nodes the system can tolerate (i.e., to output the correct winner).
Consider the binary case for instance where a proportion α > 0.5
of nodes promote the first candidate. Then themargin isN(2α−1)
and the maximum number of dishonest nodes the system can
tolerate is N(2α − 1)/(6k + 4).

Corollary 2. If the proportions of nodes voting for each candidates
are nonzero, DPol is asymptotically accurate for B = o(N) dishonest
nodes.

Proof. Let (α1, . . . , αd) be the proportions of nodes voting for the
respective candidates. It can be inferred from Theorem 3 that the
relative error on the score of the i-th candidate is bounded by
(3k + 2)B/(αiN). Using the fact that B is a sub-linear function of
N proves that the relative error on the vector of scores computed
by DPol tends to 0 when N tends to infinity, which concludes the
proof. �

Lemma 4 (Voting). When voting, a dishonest node can affect each
candidate score by at most k + 1.
Proof. Due to the overlay structure, a node can only send ballots
to the proxies it is assigned (otherwise the ballots are discarded),
which is a maximum of 2k + 1 ballots. Therefore a dishonest node
may affect each component of the global tally by either (i) sending
less ballots than it is supposed to or (ii) by sending less than k or
more than k + 1 positive ballots for a given candidate (i.e., the bit
corresponding to that candidate is set in the considered ballot).
In the worst case, the dishonest node sends either 2k + 1 or 0
positive ballots for a candidate. Since the node should send either
k or k+ 1 positive ballots for that candidate, the maximum impact
is |(2k + 1) − k| = |0 − (k + 1)| = k + 1. Note that if the node
sends 2k + 1 positive ballots for the candidate it is voting for, or 0
positive ballots for a candidate that it is not voting for, the impact
is k. �

Lemma 5 (Computing Individual Tallies). Assuming B <
√
N, there

exists a public verification scheme such that if a dishonest node
modifies the individual tally for a candidate by more than 2k+1, then
the attack is detected with certainty and the node is exposed.

Proof. The overlay structure we consider ensures that any node
has exactly 2k + 1 clients and thus receives 2k + 1 ballots during
the voting phase. A dishonest node canmodify the candidate score
by pretending that it received some other number of positive
ballots for that candidate, thus affecting the candidate score in
its individual tally. If the dishonest node tries to forge too many
ballots, specifically by reporting a candidate score outside the
range [0, 2k + 1], then the attack is identified by its honest
officemates (the assumption B <

√
N ensures that at least one

such node exists in each voting office). Therefore, in order to not to
be publicly detected with certainty, a node that corrupts or forges
ballotsmust output an individual tally in that range. Consequently,
the worst case occurs when a dishonest node receives 2k +

1 positive ballots for a candidate and discards them all while
summing them, leading to a maximum impact of 2k + 1 on that
candidate’s score. �

We stress that the verification schemes described in the
proof succeed in detecting misbehavior even in case of collusion.
Consider the following situation: a client sends an erroneous ballot
(e.g., with value 2 for the first candidate) to a colluding proxy
who will aggregate it with its individual tally without reporting
the misbehavior. If the dishonest proxy has received only positive
ballots for the first candidate (or already turned all the negative
ballots into positive ones), the first component in its individual
tally will become 2k + 2, which is larger than 2k + 1. This range
violation will be detected with certainty. If the dishonest proxy
received at least one ballot negative for the first candidate, then
covering up for its co-conspirator comes down to turning this
negative ballot into a positive one, and the impact will therefore
be bounded by 2k + 1. Finally, the assumption that at most

√
N −

1 nodes are dishonest ensures that there is at least one honest
node in each group to report individual tallies outside the range
[0, 2k + 1].

Lemma 6 (Broadcasting Individual Tallies). There exists a public ver-
ification scheme so that a dishonest node that broadcasts inconsistent
copies of its individual tally to honest nodes, i.e., sending different val-
ues to its honest officemates, is detected with certainty and the node
is exposed.

Proof. Before deciding on a local tally, every node broadcasts
the set of individual tallies it received to its officemates. This
way, an honest officemate will trivially detect the inconsistency.
Dishonest nodes are exposed when their neighbors are asked for
the individual tallies they received from these nodes. �

R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26 21
Fig. 4. Corrupt local tally that remains undetected.

Note that broadcasting different individual tallies can help a
dishonest node to impose an arbitrary value for the local tally.
For instance, suppose that k = 2 and that some proxy has 2k +

1 = 5 clients of which only two are dishonest. In this case, there
is a majority of honest nodes. Consequently, if the honest nodes
send the same local tally, it will be the one chosen by the proxy.
However, if the dishonest nodes send different values as their
individual tallies then honest nodes will compute different local
tallies. The proxy will then decide on the arbitrary local tally sent
by the dishonest nodes because it is the most represented.

Lemma 7 (Forwarding Local Tallies). There exists a public verification
scheme to detect with certainty if a group forwards inconsistent copies
of a local tally, i.e., nodes sending different values to their proxies, and
to expose the dishonest nodes.

Proof. Inconsistency in local tally forwarding is detected assuming
the following: before deciding on a local tally, a node broadcasts
the set of received local tallies to its officemates. An inconsistency
is detected if at least one of the following conditions is satisfied:
(C1) an honest node received different local tallies from its
clients, (C2) an honest node received different local tallies than its
officemates. Consider j dishonest nodes concentrated in a group gi
forwarding an incorrect local tally to their proxies. Because of (C1),
the clients of an honest node in gi+1 must all be dishonest. Since
the number of clients of all nodes equals their number of proxies
(2k + 1), j colluding dishonest nodes can corrupt a maximum of
j proxies. Therefore, the

√
N − j remaining proxies in gi+1 must

colludewith the coalition in gi to circumvent (C2). This is illustrated
in Fig. 4. To conclude, in order not to be detected, such an attack
requires j dishonest nodes in gi and

√
N − j dishonest nodes in

gi+1, that is aminimumnumber of
√
N dishonest nodes in gi∪gi+1.

Assuming B <
√
N , either a dishonest node in gi is exposed by

a public verification scheme (since it broadcast a local tally that
does not correspond to the sum of individual tallies it received)
or a dishonest node in gi+1 is exposed by a public verification
scheme (since it has broadcast a different local tally from the
one it received). The proof holds for every hop of the forwarding,
including the initial hop, which is conducted by the nodes who
actually computed the local tally being forwarded. �

4.2.2. Leveraging private verifications
So far we have only considered public verifications in which

the contents of the ballots are never disclosed. Now assume that
the nodes accept, with nonzero probability, to relax privacy for the
sake of verifications and reveal a subset of the ballots they sent or
received or both. This partial information can then be leveraged to
detect the dishonest behaviors described in Lemmas 4 and 5.

Consider as a first step, for the sake of simplicity, the case of
binary polling. During the voting phase, a dishonest node that sent
k+1+jballots (1, 0) and only k−jballots (0, 1) (1 ≤ j ≤ k) is unable
to provide the identifier of k− j+1 proxies to which it sent a (0, 1)
ballot. Therefore, a simple verification is to ask the suspected node
a b

Fig. 5. Dishonest nodes (p1 and p2) do not benefit from covering up for each other
(illustrated in the binary case).

to provide a list of proxieswho can testify that the node sent at least
j′ ballots of each kind, for a randomvalue j′ ranging from1 to k. Note
that an inspected node can disclose up to j′ = k ballots without
revealing its vote. For d > 2, the components of an inspected
node’s vote may be verified independently. Effectively, to check
that the vote of a node for the i-th candidate is in [j′, 2k+ 1− j′] (j′
ranging from 1 to k), the verifier asks the inspected node to provide
the address of j′ proxies to which it sent a ballot with a 0 at the i-th
position and k proxies to which it sent a ballot with a bit set in the
i-th position.

During a ballot corruption attack (Lemma 5), partial informa-
tion about the ballots received by the inspected node can be
leveraged to refine the bound on its individual tally: suppose the
inspected node received nb ballots (i.e., under the perfect client-
proxy matching assumption nb = 2k + 1), if we further know that
it received at least n+

b ballots (1, 0) and n−

b ballots (0, 1), then the
bound on the score of the first candidate can be refined from [0, nb]

to [n+

b , nb −n−

b]. Similarly, the score of the second candidate in the
individual tallymust be in the range [n−

b , nb−n+

b]. This verification
scheme extends naturally to the cases where d > 2.

In both of the aforementioned verification schemes, dishonest
nodes have no interest in covering up for one another. Consider
the examples depicted in Fig. 5, where a dishonest node p1 is the
client of a dishonest node p2. In Fig. 5(a), if p1’s vote is verified
and p2 covers p1 up, i.e., it testifies that p1 sent a ballot (0, 1),
then it exposes itself to a private verification on its individual tally.
Note that a node’s statement has to be consistent across different
verifications, thus if the vote of p2 is further verified, p2 must stick
to its first version about the ballots it received. The same situation
occurs in Fig. 5(b): if p2’s individual tally is verified and p2 covers
up for p1, i.e., it testifies it sent a ballot (0, 1) to p2, it puts itself at
risk should it be subject to a private verification on its vote. Since
we assume that dishonest nodes are selfish, they never cover each
other up when privately verified. In conclusion, relaxing privacy
ensures that every dishonest node has nonzero probability to be
exposed. A lower bound on this probability is given in Section 5.5.

5. Polling in practice

So far we evaluated the impact of a coalition of dishonest
nodes in a worst case scenario. In this section, we revisit
the results and assumptions of the previous section for the
average case. More specifically, we assume a random uniform
distribution of nodes across the r groups and that nodes in the
next groups are distributed uniformly at random as proxies in
the preceding groups. We justify this assumption by sketching
an overlay construction protocol, inspired by various techniques
found in the literature, which guarantees a uniform pseudo-
random distribution of nodes in groups on which nodes will have
no or very little control (Section 5.1). We then study the average
impact of dishonest nodes on privacy (Section 5.2) and accuracy
(Section 5.3). Then we refine the security condition that prevents

22 R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26
dishonest nodes from biasing local tallies in an unbounded way
during forwarding (i.e., controlling two consecutive groups as
explained in Lemma7) (Section 5.4). Finally, we give a lower bound
on the probability of detecting a dishonest nodewho cheats within
the bounds (i.e., 3k + 2) by means of private verifications as a
function of the willingness of honest nodes to compromise their
privacy (i.e., disclose their vote) (Section 5.5). The results presented
in this section are consistent with simulations and experiments on
a 400-node PlanetLab testbed.

5.1. Overlay construction

The overlay driving DPol organizes the nodes into
√
N groups

arranged on a ring. Each node is connected to all the nodes in
its group (i.e., its officemates), as well as exactly 2k + 1 proxy
nodes in the next group on the ring, and to 2k + 1 client nodes
in the previous group on the ring. A node is assigned to the group
hash(IP) mod

√
N . Note that this assignment may be verified

locally by any node. Nodes can discover the nodes in their own
group (and thus connect to their officemates) and in the next one
using a (robust) peer sampling service. By making each node sort
the list of the nodes in its own group and in the next one by
increasing hashes andmaking the j-th node in group i choose node
number j + 1, . . . , j + k in group i + 1 as proxies, we obtain the
overlay required by DPol, with the desired uniformity property,
in a scalable and decentralized fashion. The overlay construction
protocol, while being deterministic in its initial design, can be
randomized by concatenating a random value shared by all nodes
to the nodes’ IP addresses when computing the hashes.

5.2. Privacy

We now assess the privacy guarantees provided by DPol when
the dishonest nodes are placed (i.e., the groups they belong to and
their set of clients and proxies) uniformly at random.

Theorem 8 (Privacy). The probability for a given node to have its
vote recovered by a coalition of B dishonest nodes is bounded by
(B/N)k+1.

Proof. We proved in Theorem 2 that the vote of a node is
recovered with certainty by the dishonest nodes if and only if
the k + 1 proxies who received the k + 1 ballots containing
a vote for the chosen candidate collude. This event occurs with
probability


B

k+1


/


N
k+1


when nodes are randomly distributed

in the overlay. For all k, B and N , this probability is bounded by
(B/N)k+1. �

In order to link the average level of privacy guaranteed by
the protocol to the parameter k, the system administrator needs
to estimate the proportion of dishonest nodes. However, it is
important to note that DPol is oblivious of this proportion: be the
proportion of dishonest nodes higher than the estimation, the level
of privacy offered would be lower than expected but DPol would
still function properly.

5.3. Accuracy

Wenow report on the evaluation ofDPol in the binary case over
the PlanetLab testbed. The goal of the evaluation is to compare
DPol against the presented theoretical bounds. Our experiments
focus on binary polling. These experiments show that, in a practical
setting, DPol suffers an average impact of dishonest nodes of
around (4k + 2)B on the outcome of the poll (i.e., the score of the
first candidate minus the score of the second candidate). With a
proportion α of nodes voting for the first candidate, the outcome
is αN − (1 − α)N = N(2α − 1).
We consider the worst case: dishonest nodes perform every
possible attack that does not compromise their reputation with
probability 1 to promote the second candidate, i.e., each dishonest
node (i) sends 2k + 1 ballots (0, 1), and (ii) inverts every ballot (1,
0) it receives into a ballot (0, 1). Fig. 6 displays for k = 1 and k = 2
the resulting tally (sign on the upper part of the figure and value on
the lower part), compared to the real one (dashed line), for B = 19
dishonest nodes (B = ⌈

√
N⌉ − 1) in a system of N = 400 nodes.

We observe that the dishonest coalition affects the outcome
of the poll within the theoretical bound derived in the analysis
(dotted lines in Fig. 6). Since a dishonest node can impact the
score of each candidate by up to 3k + 2, its maximum impact
on the outcome is 6k + 4. However, the average impact of the
coalition is less than 6k + 4 (considering the worst case where the
dishonest proxy receives only ballots (1, 0) and inverts them all).
The theoretical bound is never reached as the average impact of
a dishonest node depends on the actual number of ballots it can
invert; this, in turn, depends on the proportion α of nodes voting
for the first candidate.

Effectively, a voting node sends k+ 1 ballots (1, 0) out of 2k+ 1
if it votes for the first candidate and k otherwise. Therefore, the
number of ballots (1, 0) received by a proxy is (2k + 1)[α k+1

2k+1 +

(1 − α) k
2k+1] = k + α on average. The impact of a dishonest user

who turns ballots (1, 0) into ballots (0, 1) is 2(k + α) on average.
In addition, dishonest nodes impact the outcome by another 2k by
sending 2k + 1 ballots (0, 1) during the voting phase. Their total
impact is therefore around 4k + 1.

Considering a system with B such dishonest users, the biased
outcome can be expressed as N(2α − 1) − B(4k + 2α) = 2(N −

B)(α−
1
2)−B(4k+1). For k = 2, fitting our 55-data point cloudwith

a least-squares regression line (plain line in Fig. 6) a(α−
1
2)+b gives

a = 791 and b = −163. This is close to the expected parameter
values a = 2(N − B) = 760 and b = −B(4k + 1) = −180.
We use this analysis to make a projection on larger scale systems.
For k = 1 (Fig. 6(a)), every node of the poll outputs a valid binary
results when α > 0.62, which is to be compared to α > 0.55
observed in Fig. 3(b) (without dishonest nodes). On average, we
can derive analytically that with N = 10,000 and B = 99, the
proportion α for which all nodes decide correctly is α > 0.52.

5.4. Security

Assuming that dishonest nodes are able to choose their proxies
and clients, we have shown in Lemma 7 that they can both perform
and cover dishonest actions as soon as the number of dishonest
nodes in two consecutive groups is greater than

√
N . In other

words, the protocol is secure against this attackwhen the condition
∀i, |gi∩B|+|gi+1∩B| <

√
N holds. If B <

√
N , this condition holds

with certainty, regardless of the distribution of dishonest nodes
among groups. Otherwise, there is a nonzero probability that the
condition is violated.

Theorem 9 (Tolerance to Dishonest Nodes). The probability that B
dishonest nodes compromise the system (i.e., control two consecutive
groups as defined in Lemma 7) is 1 when B ≥

N
2 , and converges

to 0 exponentially fast in
√
N when B < N

2 .

Proof. As defined in Lemma 7, groups i and i + 1 have been
compromised if |gi ∩ B| + |gi+1 ∩ B| ≥

√
N . Since gi and gi+1

are disjoint, this event is equivalent to |Gi ∩ B| ≥
√
N where

Gi = gi ∪ gi+1 for all i.
We first show that if B ≥

N
2 then dishonest nodes will

compromise the system regardless of their allocation to groups.
We prove the contrapositive statement, so suppose no groups are
compromised. Then |gi ∩ B| <

√
N for all groups i. Summing the

R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26 23
(a) k = 1. (b) k = 2.

Fig. 6. Accuracy of the poll in the presence of dishonest nodes: with N = 400 and B = 19, dishonest nodes manage to confuse the majority of the nodes for (a) α < 0.62
when k = 1, and (b) α < 0.73 when k = 2. [400 nodes PlanetLab tested].
(a) Probability of ring being compromised as the
fraction of dishonest nodes grows.

(b) Number of dishonest nodes tolerated to keep probability
of compromise below 1%.

Fig. 7. Average tolerance to dishonest nodes.
inequalities up for all the
√
N groups, we get

∑
i |gi ∩ B| + |gi+1 ∩

B| < N , that is, 2
∑

i |gi ∩ B| < N , which implies that 2B < N
and finally B < N/2. Thus if B ≥

N
2 , then some pair of consecutive

groups is compromised.
We now consider the case where B < N

2 . Let β =
B
N <

1
2 be the proportion of dishonest nodes in the system. By the
standard Hoeffding bounds for sampling from a finite population
without replacement, the probability that groups i and i + 1 are
compromised is:

pi = P[|Gi ∩ B| ≥
√
N]

= P
[
|Gi ∩ B| − 2

√
Nβ ≥ 2

√
N

1
2

− β

]
≤ exp


−4

√
N

1
2

− β

2


.

The right-hand function converges to zero exponentially fast in
√
N

since β < 1
2 . Using the union bound, the probability that some pair

of consecutive groups have been compromised is:

p = P


i

{|Gi ∩ B| ≥
√
N}



≤

√
N−

i=1

[|Gi ∩ B| ≥
√
N]

≤
√
N exp(−

√
N(1 − 2β)2),

which also converges to zero as N grows to infinity if β < 1
2 .
We can conclude that the probability of a compromise incurs
a phase transition when half of the nodes in the system are
dishonest. The asymptotic number of dishonest nodes that DPol
can tolerate is therefore N/2. �

We now evaluate the probability of the system being compro-
mised by simulation.We first assume that dishonest nodes are ran-
domly distributed among the groups. For example, groups could be
built consecutively, i.e., the first group is built by picking

√
N nodes

uniformly at random, the second is built by picking uniformly at
random

√
N nodes from the remaining nodes, and so forth. Under

this assumption, the probability of violating the condition of con-
secutive groups being compromised can easily be computed. In
Fig. 7(a), we plot this probability as a function of B in a 10,000-
node network. It can be seen that for B < 2900 the probability is
less than 1%. Therefore, if the deterministic bound is relaxed by us-
ing a probabilistic bound instead, the number of dishonest nodes
that the system can tolerate is consistently higher. In Fig. 7(b), we
plot the maximum number of dishonest nodes that the system can
tolerate, that is themaximumnumber of dishonest nodes tolerated
to keep the probability of violating the above condition below 1%.

5.5. Detecting dishonest nodes with private verifications

We now evaluate the probability of detecting a dishonest node
cheating within the bounds derived in Section 4.2 when honest
nodes agree to disclose private information with a nonzero proba-
bility.

Theorem 10. There is nonzero probability of detecting a dishonest
node which misbehaves, even if its impact on each candidate score
is less than 3k + 2.

24 R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26
Proof. Consider as a first step the binary case (as shown in
Section 4.2.2, the results obtained in the binary case can be easily
extended to for d > 2). Assume that each node iswilling to disclose
each of the ballots it sent or received with probability pd > 0. Now
suppose a dishonest node sends k′ > k+1 ballots of the same kind,
say k′ ballots (0, 1). This node is detected by a private verification
if at least k + 2 of its proxies who received a ballot (0, 1) disclose
it. Therefore, the probability for the dishonest node to be detected
is:

k′−
j=k+2


k′

j


pjd(1 − pd)k

′
−j.

Similarly, consider a dishonest node that receives n+

b ballots (1,
0) and turns n of them into ballots (0, 1). The dishonest node is
detected by a private verification if at least n+

b − n+ 1 of its clients
disclose the ballots they sent to it. Therefore, the probability for the
dishonest node to be detected is:

n+

b−
j=n+

b −n+1


n+

b

j


pjd(1 − pd)n

+

b −j. �

6. Related work

We now discuss related distributed voting protocols with par-
ticular attention on those that do not depend on the intractability
of mathematical computations. Like most non-cryptographic vot-
ing protocols, DPol ensures privacy via secret sharing techniques.
DPol distinguishes itself from relatedwork in the sense that no par-
ticipant has a special role, following the peer-to-peer paradigm,
which results in increased scalability and robustness.

A large amount of work on secret sharing schemes (introduced
by Rivest et al. in [31]) was published in the late 80’s. Benaloh [2]
proposed a scheme for privately sharing secrets based on polyno-
mials. Since this scheme is homomorphic with respect to addition,
it may be used for polling. However, a dishonest participant can
easily corrupt the initial shares in the protocol, thus potentially im-
pacting the final outcome to a significant degree.

Assuming a majority of honest participants, Rabin and Ben-Or
extended Benaloh’s secret sharing and proposed verifiable secret
sharing scheme (VSS) [24]. Based on VSS, they proposed a secure
multi-party computation (MPC) protocol to privately compute the
sum of the participants’ inputs with an exponentially small error
on the output. Beyond the fact that these techniques assume a fully
connected network, synchronous links and broadcast channels,
they involve higher mathematics. Moreover, since there is no
control over the input itself (in contrast to DPol where the ballots
are in {0, 1} for each candidate and therefore the vote is at most
±(2k + 1)), a dishonest participant may still share an arbitrarily
high value and thus affect the outcome in a potentially unbounded
way. Series of follow-up work on MPC have improved various
aspects of the scheme, but have only recently begun thinking
about making it scalable and usable in practice [6,5]. The appeal
of this class of protocols lies in the strong privacy guarantees to
participants, including the dishonest ones, but it also makes such
schemes less suitable for polling applications. Note that the same
issues also apply to complex secret sharing schemes and private
multiparty computation such as AMPC [21].

In [20], Malkhi et al. proposed an e-voting protocol based on
AMPC and enhanced check vectors. While powerful, participants
of this protocol have distinct and predefined roles (dealers, talliers,
and receivers). This may result in decreased scalability as the
load of distributing initial ballots to voters falls on a small set of
nodes that are not part of the system (i.e., dealers) and robustness
if specific nodes fail. Nonetheless, these design choices are fully
justified by the requirements inherent in e-voting applications,
such as democracy, verifiability, and unconditional accuracy.
Instead, polling applications can relax such constraints for the sake
of simplicity. Another related distributed voting protocol is the
one proposed by Baudron et al. [1], however it uses asymmetric
cryptography.

At a high level,DPol also relates to distributed ranking schemes.
The principle of ranking is similar to polling, in that a participant
evaluates the quality of one of her peers by (i) locally grading
its behavior (input value), and (ii) collecting the local grades
assigned by the rest of the system. However, to the best of
our knowledge, most published work [16,28] has focused on
designing accurate grading mechanism rather than providing
efficient polling schemes. Dutta et al. [10] consider grading free
riders and take into account potential collusion. Nevertheless,
none of the proposed ranking schemes provide a global polling
mechanism, as grading generally relies on polling only a subset of
nodes (peers usually collaborate with a small part of the network).
In addition, privacy is generally not addressed in these schemes.

7. Conclusion

We considered the distributed polling problem in a social
network where participants are concerned about their reputation.
To address this, we presented DPol, a simple fully decentralized
polling protocol and proved that it can ensure privacy and
accuracy, despite the presence of dishonest participants, by means
of verification procedures. Our contribution is therefore twofold.
First, we define a newmodel of faulty nodes in distributed systems
which incorporates the human and social nature of participants
through privacy and reputation concerns. Second, we provide
a combination of secret sharing and verification techniques to
ensure privacy and accuracy under this model. We find our model
of adversaries to be compelling for various non-critical (i.e., not
sensitive to small deviations on their outcome) private and secure
distributed computation problems in social settings and that DPol
thus paves the way for a new area of research in distributed
computing. In this spirit, a natural extension of our protocol is to
support arbitrary aggregation functions and revisit the traditional
problems of distributed computing. For instance, can distributed
consensus be reached under this model?

Turning our model and DPol into a solution that can be adopted
in practice will require some effort. First, our model of adversaries
in social networks asserts that honest participants will always
report misbehaviors, and that dishonest participants do not blame
honest participants because this may eventually be detected, thus
tarnishing the reputation of the dishonest participants. To make
these assumptions more realistic in practice, the challenge is
to design an automated tool to help users of a social network
evaluate and quantify the reputation of a participant by cross-
checking information such as tags and social connectivity. Given
the selectivity and specificity of such a tool, it would be interesting,
within the framework of game theory, to study equilibria and
optimal strategies for non-cooperating participants who attach
different values to their privacy, their reputation, the outcome
of the poll and the accuracy of the tally. Second, DPol relies
on a number of assumptions to provide privacy and accuracy
guarantees, including the uniform assignment of nodes to groups,
synchronization betweendifferent phases of the protocol, a limited
rate of churn, and that the number of nodes is a perfect square.
We intend to address each of these assumptions to make DPol a
practical peer-to-peer protocol.

Acknowledgment

MaximeMonod has been partially funded by the Swiss National
Science Foundation with grant 20021-113825.

R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26 25
References

[1] O. Baudron, P.A. Fouque, D. Pointcheval, J. Stern, G. Poupard, Practical
multi-candidate election system, in: PODC’01: Proceedings of the Twentieth
Annual ACM Symposium on Principles of Distributed Computing, ACM, 2001,
pp. 274–283.

[2] J. Benaloh, Secret sharing homomorphisms: keeping shares of a secret secret,
in: CRYPTO’86: Proceedings of the 6th Annual International Conference on
Advances in Cryptology, in: LectureNotes in Computer Science, Springer, 1986,
pp. 251–260.

[3] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, A. Shraer, Brahms: Byzantine
resilient random membership sampling, Computer Networks 53 (2009)
2340–2359.

[4] M. Castro, B. Liskov, Practical Byzantine fault tolerance and proactive recovery,
ACM Transactions on Computer Systems 20 (2002) 398–461.

[5] I. Damgård, Y. Ishai, M. Krøigaard, J.B. Nielsen, A. Smith, Scalable multiparty
computation with nearly optimal work and resilience, in: CRYPTO’08:
Proceedings of the 28th Annual International Conference on Advances in
Cryptology, in: Lecture Notes in Computer Science, 2008, pp. 241–261.

[6] I. Damgård, J.B. Nielsen, Scalable and unconditionally secure multiparty
computation, in: CRYPTO’07: Proceedings of the 27th Annual International
Conference on Advances in Cryptology, in: Lecture Notes in Computer Science,
Springer, 2007, pp. 572–590.

[7] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, E. Ruppert, Secretive birds:
privacy in population protocols, in: OPODIS’07: Proceedings of the 11th
International Conference on Principles of Distributed Systems, in: Lecture
Notes in Computer Science, Springer, 2007, pp. 329–342.

[8] Digg, 2010. http://digg.com/.
[9] A.G. Doodle, Facebook Doodle, 2010.

http://www.facebook.com/apps/application.php?id=6314677796.
[10] D. Dutta, A. Goel, R. Govindan, H. Zhang, The design of a distributed rating

scheme for peer-to-peer systems, in: P2P Econ’03: Proceedings of the 1st
Workshop on the Economics of Peer-to-Peer Systems, pp. 1–6.

[11] Kremsa design, facebook Poll, 2010. http://www.facebook.com/apps/
application.php?id=20678178440.

[12] Z. Galil, M. Yung, Partitioned encryption and achieving simultaneity by
partitioning, Information Processing Letters 26 (1987) 81–88.

[13] J. Goodman, C. Verbrugge, A peer auditing scheme for cheat elimination
in MMOGs, in: NetGames’08: Proceedings of the 7th Annual Workshop on
Network and Systems Support for Games, ACM, 2008, pp. 9–14.

[14] R. Guerraoui, K. Huguenin, A.M. Kermarrec, M. Monod, Decentralized polling
with respectable participants, in: OPODIS’09: Proceedings of the 12th
International Conference on Principles of Distributed Systems, in: Lecture
Notes in Computer Science, Springer, 2009, pp. 144–158.

[15] I. Gupta, K. Birman, P. Linga, A. Demers, R. van Renesse, Kelips: building an
efficient and stable P2P DHT through increased memory and background
overhead, in: IPTPS’03: Proceedings of the Second International Workshop on
Peer-to-Peer Systems, in: Lecture Notes in Computer Science, Springer, 2003,
pp. 160–169.

[16] M. Gupta, P. Judge, M. Ammar, A reputation system for peer-to-peer networks,
in: NOSSDAV’03: Proceedings of the 13rd InternationalWorkshop onNetwork
and Operating Systems Support for Digital Audio and Video, ACM, 2003,
pp. 144–152.

[17] H.D. Johansen, A. Allavena, R. van Renesse, Fireflies: scalable support for
intrusion-tolerant network overlays, in: EUROSYS’06: Proceedings of the 2006
EuroSys Conference, ACM, 2006, pp. 3–13.

[18] P. Kabus, W.W. Terpstra, M. Cilia, A. Buchmann, Addressing cheating
in distributed MMOGs, in: NetGames’05: Proceedings of the 4th Annual
Workshop on Network and Systems Support for Games, ACM, 2005,
pp. 1–6.

[19] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The eigentrust algorithm for
reputation management in P2P networks, in: WWW’03: Proceedings of the
12th International World Wide Web Conference, ACM, 2003, pp. 640–651.

[20] D. Malkhi, O. Margo, E. Pavlov, E-voting without ‘cryptography’, in: FC’02:
Proceedings of the Sixth International Financial Cryptography Conference,
in: Lecture Notes in Computer Science, Springer, 2002, pp. 1–15.

[21] D.Malkhi, E. Pavlov, Anonymitywithout ‘cryptography’, in: FC’01: Proceedings
of the Fifth International Financial Cryptography Conference, in: Lecture Notes
in Computer Science, Springer, 2001, pp. 108–126.

[22] A. Mislove, A. Post, K.P. Gummadi, P. Druschel, Ostra: leverging trust to
thwart unwanted communication, in: NSDI’08: Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation, USENIX
Association, 2008, pp. 15–30.

[23] R. Morales, I. Gupta, AVMON: optimal and scalable discovery of consistent
availability monitoring overlays for distributed systems, IEEE Transactions on
Parallel and Distributed Systems 20 (2009) 446–459.

[24] T. Rabin, M. Ben-Or, Verifiable secret sharing and multi-party protocols with
honest majority, in: STOC’89: Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, ACM, 1989, pp. 73–85.
[25] R. Richmond, Facebook tests the power of democracy, 2009.
[26] R. Rivest, Chaffing and winnowing: confidentiality without encryption, RSA

Laboratories CryptoBytes 4 (1998).
[27] R. Rivest, W. Smith, Three voting protocols: threeballot, VAV, and twin,

in: EVT’07: Proceedings of the 2007 USENIX/ACCURATE Electronic Voting
Workshop, USENIX Association, 2007, p. 16.

[28] M. Rodriguez-Perez, O. Esparza, J.L. Muñoz, Analysis of peer-to-peer dis-
tributed reputation schemes, in: COLCOM’05: Proceedings of the 1st Interna-
tional Conference on Collaborative Computing: Networking, Applications and
Worksharing, IEEE, 2005, pp. 1–6.

[29] J. Rosenberg, R.Mahy, P.Matthews, D.Wing, Session traversal utilities for NATs
(STUN), technical report RFC 5389, IETF, 2008.

[30] F. Schneider, A. Feldmann, B. Krishnamurthy, W. Willinger, Understanding
online social network usage from a network perspective, in: IMC’09:
Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement
Conference, ACM, 2009, pp. 35–48.

[31] A. Shamir, How to share a secret, Communications of the ACM 22 (1979)
612–613.

[32] M. Sirivianos, K. Kim, X. Yang, SocialFilter: introducing social trust to
collaborative spam mitigation, in: INFOCOM’11: Proceedings of the 30th
IEEE International Conference on Computer Communications, IEEE, 2011,
pp. 2300–2308.

[33] B. Stelter, Facebook’s users ask who owns information, 2009.
[34] D. Stutzbach, R. Rejaie, Understanding churn in peer-to-peer networks,

in: IMC’06: Proceedings of the 6th ACM SIGCOMM conference on Internet
Measurement Conference, ACM, 2006, pp. 189–202.

[35] N. Tran, B. Min, J. Li, L. Subramanian, Sybil-resilient online content voting,
in: NSDI’09: Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, USENIX Association, 2009, pp. 15–28.

[36] G. Urdaneta, G. Pierre, M. van Steen, A survey of DHT security techniques, ACM
Computing Surveys 43 (2011) 8:1–8:49.

[37] H. Xie, Y.R. Yang, A measurement-based study of the skype peer-to-peer voip
performance, in: IPTPS’07: Proceedings of the Sixth International Workshop
on Peer-to-Peer Systems, in: Lecture Notes in Computer Science, Springer,
2007, pp. 1–6.

[38] H. Yu, P. Gibbons, M. Kaminsky, F. Xiao, SybilLimit: a near-optimal social
network defense against sybil attacks, in: SP’08: Proceedings of the 2008 IEEE
Symposium on Security and Privacy, IEEE, 2008, pp. 3–17.

[39] H. Yu, M. Kaminsky, P. Gibbons, A. Flaxman, SybilGuard: defending against
sybil attacks via social networks, IEEE/ACM Transactions on Networking 16
(2008) 576–589.

Rachid Guerraoui is a Professor of computer science
at the School of Computer and Communication Sciences
of the Ecole Polytechnique Fédérale de Lausanne (EPFL),
Switzerland, where he leads the Distributed Programming
Laboratory. Prior to that, Rachid has been affiliated
respectively with the Centre de Recherche de l’Ecole des
Mines de Paris, the Commissariat à l’Energie Atomique
Paris, HP Labs Palo Alto and the Massachusetts Institute of
Technology.

Kévin Huguenin is a Post-Doctoral Researcher at Ecole
Polytechnique Fédérale de Lausanne (EPFL), Switzerland,
in the Laboratory for Communications and Applications.
He received his M.Sc. from Ecole Normale Supérieure
(ENS) de Cachan and the Université de Nice — Sophia
Antipolis, France, in 2007 and his Ph.D. in computer
science from the Université of Rennes, France, in 2010.
His research interests include security and privacy in
distributed systems.

Anne-Marie Kermarrec is a Senior Researcher at INRIA,
France, where she leads the ASAP research group. Her re-
search interests are in peer-to-peer networks, large-scale
information management, epidemic protocols and social
networks. Before that, Anne-Marie was with Microsoft
Research in Cambridge. She obtained her Ph.D. from the
Université de Rennes, France, in 1996. Anne-Marie has
been awarded a European Research Council Starting Grant
for her five-year GOSSPLE project.

http://digg.com/
http://www.facebook.com/apps/application.php?id%3D6314677796
http://www.facebook.com/apps/application.php?id=20678178440
http://www.facebook.com/apps/application.php?id=20678178440
http://www.facebook.com/apps/application.php?id=20678178440
http://www.facebook.com/apps/application.php?id=20678178440
http://www.facebook.com/apps/application.php?id=20678178440
http://www.facebook.com/apps/application.php?id=20678178440
http://www.facebook.com/apps/application.php?id=20678178440
http://www.facebook.com/apps/application.php?id=20678178440

26 R. Guerraoui et al. / J. Parallel Distrib. Comput. 72 (2012) 13–26
Maxime Monod is a Chief Technology Officer (CTO) at
Klewel, Switzerland, where he works on an advanced
webcasting solution, both for live and on-demand, by
capturing, indexing and broadcasting events such as
conferences and lectures. He received his M.Sc. and
his Ph.D. in computer science from Ecole Polytechnique
Fédérale de Lausanne (EPFL), Switzerland, in 2004 and
2010. His research interests include gossip protocols, peer-
to-peer architectures and live streaming in large-scale
distributed systems.
Ymir Vigfusson is an Assistant Professor in the School of
Computer Science at Reykjavik University. He received a
Ph.D. in computer science from Cornell University in 2009
and was a Post-Doctoral Researcher at IBM Research in
Haifa from 2009–2011. His dissertation was nominated
by the department for the ACM Dissertation Award.
Ymir’s research projects include distributed systems,
optimization and multicast. His work has been partially
supported by a Fulbright Scholarship and a Yahoo!
Research grant.

	Decentralized polling with respectable participants
	Introduction
	System model
	The polling protocol
	Polling in a nutshell
	Description
	Analysis
	Evaluation

	Impact of dishonest nodes
	Preserving privacy in the presence of dishonest nodes
	Confining the impact of dishonest nodes
	Impact of a dishonest coalition under public verifications
	Leveraging private verifications

	Polling in practice
	Overlay construction
	Privacy
	Accuracy
	Security
	Detecting dishonest nodes with private verifications

	Related work
	Conclusion
	Acknowledgment
	References

