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Abstract

Self-organising neural models have the ability to provide a good representation of

the input space. In particular the Growing Neural Gas (GNG) is a suitable model

because of its flexibility, rapid adaptation and excellent quality of representation.

However, this type of learning is time consuming, specially for high-dimensional

input data. Since real applications often work under time constraints, it is nec-

essary to adapt the learning process in order to complete it in a predefined time.

This paper proposes a Graphics Processing Unit (GPU) parallel implementation

of the GNG with Compute Unified Device Architecture (CUDA). In contrast to

existing algorithms, the proposed GPU implementation allows the acceleration of

the learning process keeping a good quality of representation. Comparative ex-

periments using iterative, parallel and hybrid implementation are carried out to

demonstrate the effectiveness of CUDA implementation. The results show that

GNG learning with proposed implementation achieves a speed-up of 6x com-
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pared with single-threaded CPU implementation. GPU implementation has been

also applied to a real application with time constraints: acceleration of 3D scene

reconstruction for egomotion, in order to validate the proposal.

Keywords: Growing Neural Gas, Parallel computing, GPU, CUDA, Multicore,

3D Reconstruction, Egomotion

1. Introduction

Unsupervised classification is also known as data clustering and is defined as

the problem of finding homogeneous groups of data points in a given multidimen-

sional data set. Each of these groups is called a cluster and defined as a region

where the density of data points is locally higher than in others regions. Another

objective of unsupervised learning can be described as topology learning: which

given a high-dimensional data distribution, consists in finding a topological struc-

ture that closely reflects the topology of the data distribution [1].

Self-organising models [2] place their neurons so that their positions within

the network and connectivity between different neurons are optimized to match

the spatial distribution of activations. As a result of this optimization, existing

relationships within the input space will be reproduced as spatial relationships

among activated neurons. In particular, Growing Neural Gas [3] is an incremental

model able to learn the important topological relations in a given set of input

vectors by means of a simple hebb-like learning rule.

Growing models have been widely used in recent years in many applications

due to their attributes of growth, flexibility, rapid adaptation, and excellent quality

of representation of the input space. These features convert the neural networks

in a suitable model to solve problems that deal with dynamic input data. Related

2



works about computer vision and man-machine interaction like image compres-

sion [4], segmentation and representation of objects [5, 6, 7], objects tracking

[8, 9, 10], gestures recognition [11, 12, 13], or 3D reconstruction [14, 15, 16]

have been developed in the last years.

However, in many cases these applications present temporal constraints, that

is why it is necessary to look for mechanisms that accelerate the learning process.

In order to accomplish the acceleration of the neural network learning algorithm,

a redesign of the sequential algorithm executed onto the CPU to exploit the par-

allelism offered by the GPU has been carried out. Current GPUs have a large

number of processors that can be used for general purpose computing. The GPU

is specifically appropiate to solve computationally intensive problems that can be

expressed as data parallel computations [17, 18]. However, implementation on

GPU requires the redesign of the algorithms focused and adapted to its architec-

ture. In addition, the programming of these devices has different restrictions such

as the need for high occupancy in each processor in order to hide latencies pro-

duced by memory access, management and synchronization of different threads

running simultaneously, the proper use of the hierarchy of memories, and other

considerations. Researchers have already successfully applied GPU computing to

problems that were traditionally addressed by the CPU [19, 20, 17].

The GPU implementation used in this work is based on NVIDIA’s CUDA

architecture [21], which is supported by most current NVIDIA graphics chips.

Supercomputers that currently lead the world ranking combine the use of a large

number of CPUs with a high number of GPUs.

Neural networks have been used successfully in previous works to reduce the

dimensionality of 3D input data maintaining a good topology preservation [15],
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[22], [23] and [16].

In particular, 3D scene reconstruction is a time consuming task, that is fun-

damental in most mobile robotic systems [24, 25, 26, 27, 28, 29, 30]. However,

most of these works do not deal with real time restrictions.

To validate our work we have applied our GNG accelerated implementation

to the extraction and model of features from 3D raw data [31, 32, 33, 34]. More-

over, using this method, apart from accelerating the routine, we achieve two other

advantages: a complexity reduction (when comparing with raw data) and an im-

provement of speed-up without decreasing the quality of the representation ob-

tained.

The rest of the paper is organized as follows: Section 2 describes basic con-

cepts of GPGPU architecture and CUDA software. Section 3 provides a descrip-

tion of the topology learning algorithm of the GNG, and how the algorithm is fitted

onto GPGPU architecture. Section 4 presents some experiments and results of the

parallel implementation running onto a GPU compared with the single-threaded

and multi-threaded CPU versions. Finally, section 5 presents a real application

with time constraints to validate our implementation, followed by our main con-

clusions and future work.

2. GPGPU architecture

A CUDA compatible GPU is organized in a set of multiprocessors as shown

in figure 1 [35]. These multiprocessors called Streaming Multiprocessors (SMs)

are highly parallel at thread level. However, the number of multiprocessors varies

depending on the generation of the GPU. Each SM consists of a series of Stream-

ing Processors (SPs) that share the control logic and cache memory. Each of these
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SPs can be launched in parallel with a huge amount of threads. For instance, the

GT400 chip family supports up to 1024 threads per SM, with 480 SPs distributed

between 15 SMs. The GT400 chip is capable of performing a computing power

of 1,5 teraflops, launching a total of 15,360 threads simultaneosly. The current

GPUs have up to 12 GBytes of DRAM, referenced in figure 1 as global memory.

The global memory is used and shared by all the multiprocessors, but it has a high

latency.

Figure 1: CUDA compatible GPU Architecture.

CUDA architecture reflects a SIMT model: Single Instruction, Multiple Threads.

These threads are executed simultaneously working onto large data in parallel.

Each of them runs a copy of the kernel1 on the GPU and uses local indexes to be

identified.

Threads are grouped into blocks to be executed. Each of these blocks is allo-

cated on a single multiprocessor, enabling the execution of several blocks within a

1Piece of code that is executed on the GPU.
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multiprocessor. The number of blocks that are executed depends on the resources

available on the multiprocessor, scheduled by a system of priority queues. Within

each of these blocks, the threads are grouped into sets of 32 units in order to carry

out a fully parallel execution onto processors. Each set of 32 threads is called

warp. In the architecture, there are certain restrictions on the maximum number

of blocks, warps and threads on each multiprocessor, but it varies depending on

the generation and model of graphic cards. In addition, these parameters are set

for each execution of a kernel to get the maximum occupancy of hardware re-

sources and obtain the best performance. Experiments section shows how to fit

these parameters to execute our GPU implementation.

CUDA architecture has also a memory hierarchy. Different types of memory

can be found: constant, texture, global, shared and local registries. The shared

memory is useful to implement caches. Texture and constant memory are used

to reduce the computational cost avoiding global memory access which has high

latencies.

In the last years, a large number of applications have used GPUs to speed

up the processing of neural networks algorithms [36, 37, 38, 39, 40, 41] applied

to various computer vision problems such as the representation and tracking of

objects in scenes [42], face representation and tracking [43] or pose estimation

[44].

3. GNG implementation using GPUs

From the Neural Gas model [45] and Growing Cell Structures [46], Fritzke

developed the Growing Neural Gas model [3], with no predefined topology of

union between neurons, in which from an initial number of neurons, new ones are
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added (figure 2).
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Figure 2: GNG learning algorithm remarking the parallel stages.

GNG learning algorithm has a high computational cost, we propose a method

to accelerate it using GPUs and taking advantage of the many-core architecture

provided by these devices, as well as their parallelism at the instruction level.

GPUs are a specialized hardware for computationally intensive high-level paral-

lelism that uses a higher number of transistors to process data and less for flow

control or management of the cache, unlike in CPUs. We have used the architec-

ture and the programming tools (language, compiler, development environment,
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debugger, libraries, etc) provided by NVIDIA to exploit their hardware paral-

lelism.

3.1. GNG Algorithm

GNG is an unsupervised incremental clustering algorithm that given some in-

put distribution in Rn, incrementally creates a graph, or network of nodes, where

each node in the graph has a position in Rn. The model can be used for vector

quantization by finding the code-vectors in clusters. These code-vectors are rep-

resented by the reference vectors (the position) of the nodes. It can also be used

for finding topological structures that closely reflects the structure of the input

distribution. GNG learning is a dynamic algorithm in the sense that if the input

distribution slightly changes over time, it is able to adapt, moving the nodes to the

new input space.

Starting with two nodes, the algorithm constructs a graph in which nodes are

considered neighbours if they are connected by an edge. The neighbourhood in-

formation is maintained throughout the execution by a variant of competitive Heb-

bian learning (CHL).

The graph generated by CHL creates an ”induced Delaunay triangulation” that

is a sub-graph of the Delaunay triangulation corresponding to the set of nodes. The

induced Delaunay triangulation optimally preserves the topology in a very general

sense [47]. CHL is an essential component of the GNG algorithm since it is used

to process the local adaptation of nodes and insertion of new ones.

The network is specified as:

• A setN of nodes (neurons). Each neuron c ∈ N has its associated reference

vector wc ∈ Rn. The reference vectors can be regarded as positions in the

input space of their corresponding neurons.
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• A set of edges (connections) between pairs of neurons. These connections

are not weighted, and its purpose is to define the topological structure. An

edge aging scheme is used to remove connections that are invalid due to the

motion of the neurons during the adaptation process.

GNG uses parameters that are constant with time. Furthermore, it is not nec-

essary to decide a priori the number of nodes to use since nodes are added incre-

mentally during execution. Insertion of new nodes stops when an user defined per-

formance criteria is fulfilled or when a maximum network size has been reached.

The adaptation of the network to the input space vectors is produced in step

6. The insertion of connections (step 4) between the winning neuron and the

second closest to the input signal provides the topological relationship between

the neurons (figure 2).

The elimination of connections (step 8) removes the edges that are no longer

part of that topology. This is done by removing the connections between neurons

that are no longer near or that have other neurons located closer, so that the age of

these connections exceeds a threshold.

The accumulation of the error (step 5) can identify those areas of the input

space of vectors where it is necessary to increase the number of neurons to im-

prove the mapping.

3.2. Estimating the upper bound of acceleration factor

After presenting the different stages of the algorithm, and before tackling the

parallel implementation of these stages, it is necessary to know what percentage

of instructions is executed at each step in respect to the total number. In order to

achieve this, we use a profiler so that depending on the values of the parameters
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with which we have adjusted the algorithm (number of neurons and number of

input patterns) we obtain the percentage of instructions executed at each stage.

It can be seen that most of the execution time of the algorithm is consumed in

the winning neurons search stage, which also calculates the Euclidean distances.

Table 1 shows the percentage of instructions occupied at each stage of the

algorithm for different values of the number of neurons N and input patterns λ. It

is also shown how stage 3 increases its percentage in respect to the total, when N

and λ are increased.

Neurons Patterns Stage 2 Stage 3 Stage 4,5,6,7 Stage 8 Stage 9

1000 500 1,8 73,30 15 1,2 0,8

5000 500 0,7 88,80 5,8 0,9 1

10000 500 0,4 93,20 3,3 0,6 0,8

20000 500 0,3 97,60 1,9 0,5 0,9

1000 1000 1,8 69,60 21,3 0,6 0,3

5000 1000 0,7 90 5,6 0,5 0,5

10000 1000 0,4 94,3 3,2 0,3 0,4

20000 1000 0,3 96,5 1,9 0,2 0,4

Table 1: Percentage of executed instructions at each stage of GNG presented in figure 2

Once this information has been obtained we apply different metrics of parallel

computing to estimate which would be the overall maximum acceleration that we

can obtain assuming that we can accelerate these stages by a factor S. The metrics

used are widely known: Amdahl’s Law [48] and other performance metrics of

parallel computing [49, 50, 51].

In particular, we focus our study on the modern version of Amdahl’s Law,
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which states that if a fraction f is accelerated by a factor S, the overall acceleration

is:

Speedup(f, S) =
1

(1− f) + f
S

(1)

This is the equation that better estimates the theoretical maximum acceleration

that can be obtained using parallel implementations on GPUs as it applies the

achieved improvement on a fraction of the code instead of applying it to the total

number of cores. The number of cores can be used to measure the acceleration

in the case of the execution onto a single GPU core, but in our case and in most

of the cases, the acceleration that we get is related to the execution onto one CPU

core. So S is defined as the speed-up obtained in respect to a fraction of the CPU

code.

As shown in table 2, applying the Amdahl’s law, we can estimate the maxi-

mum acceleration we could get in the algorithm after accelerating a fraction of the

algorithm by a factor S. Other implicit latencies exist in the architecture that will

be discussed in the following sections. The acceleration of the winning neurons

search and Euclidean distance stages offers the highest overall acceleration.

In the experiments section, real values for speed-up of winning neuron search

stage will be obtained. Then we will apply Amdahl’s law again to compare the-

oretical values with real overall speed-up obtained using the GNG algorithm.

Thereby we will be able to measure how much time is consumed by other la-

tencies like data transfers or device initialization and what is the speed-up upper

bound for GNG algorithm.

3.3. GPU Implementation

In order to accelerate the GNG algorithm on GPUs using CUDA, it is neces-

sary to redesign it so that it fits within the GPU architecture. Many of the oper-
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Neurons Patterns λ s p Overall speed-up

1000 500 0,28 0,73 3,29

5000 500 0,11 0,89 6,39

10000 500 0,07 0,93 8,73

20000 500 0,02 0,98 13,74

1000 1000 0,30 0,67 2,95

5000 1000 0,1 0,9 6,89

10000 1000 0,06 0,94 9,60

20000 1000 0,04 0,97 12,01

Table 2: Overall maximum acceleration estimated using Amdahl’s law and assuming a factor 20

of speed-up in respect to a fraction p of the algorithm

ations performed in the GNG algorithm can be parallelized because they act on

all the neurons of the network simultaneously. That is possible because there is

no direct dependence between neurons at the operational level. However, there

exists a dependence in the adjustment of the network, which makes necessary the

synchronization of various parallel execution operations each iteration. Figure 2

describes GNG algorithm steps that have been accelerated onto the GPU using

kernels.

3.3.1. Euclidean distance calculation

The first stage of the algorithm that has been accelerated is the calculation

of Euclidean distances performed at each iteration. This stage calculates the Eu-

clidean distance between a random pattern and each of the neurons. This task may

take place in parallel by running the calculation of each neuron distance onto as

many threads as neurons the network contains. It is possible to calculate more
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than one distance per thread, but this is efficient only for large vectors where the

number of blocks executed on the GPU is also very high.

3.3.2. Parallel reduction

The second task parallelized was the search of the winning neuron: the one

with the lowest Euclidean distance to the pattern generated and the second closest.

For this search, we use a parallel reduction technique described in [52]. This tech-

nique accelerates parallel operations such as the search for the minimum in large

data sets. For our work, we modified the original algorithm, so that with a single

reduction we not only obtained the minimum, but also the two smallest values of

the entire data set. This new version has been called 2MinParallelReduction.

Figure 3 shows how Parallel Reduction can be described as a binary tree where at

the end of the log2 (n) steps we obtain the final result of the operation onto a set

of N elements.

3.3.3. Complexity

To perform the calculation of the complexity of this approach comparing it

with the sequential version that has a complexity of O(N), it should be noted

that, in parallel processing, we identified three types of complexity: complexity

in the number of execution steps, complexity of the work performed and time

complexity. These complexities in the parallel reduction algorithm are:

• The execution steps complexity is O(log2 (N)) since it is necessary to per-

form log2 (N) iterations to reach the final result. Also within each execution

step s, N
2s

operations are performed.

• The complexity of the work performed is: If forN = 2d elements,
∑S

i=1 2
(d−i) =
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Figure 3: Example Parallel Reduction Algorithm execution.

N − 1 operations are performed, the complexity of the work done is O(N),

where S is the total number of steps.

• The time complexity is O(N/P + log2 (N)), where P is the number of

processors.

Therefore, since in each block t threads are executed, each of them processing

each element of the set N , we have a number of threads equal to the number

of elements. Considering this to calculate the time complexity of each of these

threads as processors, the time complexity is reduced to log2 (N) in respect to the

complexity O(N) in the sequential version.
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Despite this difference in complexity between the parallel and the sequential

versions, the preparation and execution of programs on the GPU involves a time

penalty, as well as the GPU memory transfer of data processing that causes a

new penalty that begins to be compensated from a number X of elements to be

processed. This issue also affects the cost of the operation to be performed onto

the data.

3.3.4. Other optimizations

To speed-up the remaining steps we have followed the same strategy used dur-

ing the first phase. Each thread is responsible in different cases to perform an

operation on a neuron: check edges connections age and in the case a certain

threshold was exceded delete them, update local error of the neuron or adjust neu-

ron weights. At the stage of finding the neuron with maximum error the strategy

followed was the same as the one used in finding the winning neuron, but in this

case the reduction is looking only for the neuron with the highest error.

Regardless of the parallelism of the algorithm, we have followed some good

practices on the CUDA architecture to get more performance. First, the use of the

constant memory to store the neural network parameters εw, εn, α, γ, amax. By

storing these parameters in this memory, the access is faster than working with

values stored in the global memory.

Our GNG implementation onto GPU architecture is also limited by the mem-

ory bandwidth available. In the experiments section we show specification reports

for each CUDA capable device used and its memory bandwidth. However, this

bandwidth is only achievable under highly idealized memory access patterns. It

does, however, provide us with an upper limit of memory performance. Never-

theless, some memory access patterns, like moving data from the global memory
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into shared memories and registers, provide better coalesced access. The shared

memory within each multiprocessor has been used to get the highest advantage of

memory bandwidth. So that, it acts as a cache to avoid frequent access to global

memory in operations with neurons and allows the threads to achieve coalesced

reads when accessing neurons data.

For instance, a GNG network composed of 20,000 neurons and auxiliary struc-

tures requires only 17 megabytes. Therefore, GPU implementation in terms of

size does not present problems as current GPU devices have enough memory to

store it.

3.3.5. Minimizing transfers approach

Memory transfers between CPU and GPU are the main bottleneck to obtain

speed-up, so these transfers have been avoided as much as possible. Initial ver-

sions of the algorithm failed to obtain performance over the CPU version because

the complete neural network was copied from GPU memory to CPU memory and

vice versa for each input pattern generated. This penalty, introduced due to the

bottleneck of the transfer through the PCI-Express bus, was so high that we did

not improve CPU version. After careful consideration of the flow of execution, we

decided to move the inner loop of pattern generation to the GPU, although some

tasks are not parallelizable and have to be run on a single GPU thread.

The workflow of our first approach using CUDA is shown in figure 4. First,

GNG network is created in the CPU and CUDA device is initialized. Then, the

necessary space is allocated in the GPU memory to perform processing. Once the

GNG network structure has been copied to the GPU memory, the learning algo-

rithm begins: first, a random input pattern is generated and the Euclidean distance

is calculated from each of the neurons. Second, these distances are calculated in
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Figure 4: First approach, CUDA workflow.

parallel taking advantage of the massively parallel computing on the GPU and, the

two neurons with the lowest distance (winning neurons) are also obtained using a

parallel reduction. Then, the indexes of winning neurons are copied to the CPU

memory and adjustment is performed (sequential). This step is repeated λ times.

This first approach did not obtain improvement regarding of the CPU version be-

cause the entire neural network were copied from the CPU memory to the GPU λ

times at each new neuron insertion, including significant latencies.

Figure 5 shows the approach used to avoid this large number of transfers be-

tween GPU and CPU memory. The inner loop has been moved to the GPU, so

it is not necessary to copy the network structure back to the memory of the CPU

and make the adjustment. In this case, the adjustment is performed in a single

thread onto the GPU because the task set is sequential and can not be parallelized.
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Figure 5: Approach that minimize transfers. CUDA workflow.

Performing this task in a single thread in the GPU is better due to the high latency

of transfers between GPU and CPU. It is also clear that reducing the number of

memory transactions from the device memory results in a significant increase of

the processing throughput.

Figure 6 shows that, for 500 patterns, the percentage of time spent in the exe-

cution of the algorithm for memory transfers between CPU and GPU is drastically

reduced. Thus we can increase the number of input patterns without increasing

the number of transfers between memories.

The use of CUDA in this algorithm provides better performance for a large

number of neurons due to the time needed to prepare some specific guidelines

for the architecture implementation as kernels execution or GPU memory alloca-

tion. Performing these operations on small vectors of 50-500 neurons is almost
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Figure 6: Percentage of time spent in execution of the algorithm for memory transfers.

immediate on the CPU, while the GPU cannot hide these inherent latencies in the

architecture if a large number of neurons is not reached. Therefore, we considered

the idea of applying hybrid techniques according to the restriction that the GNG

is an incremental network that initially works with a small number of neurons,

which grows progressively. This hybrid technique begins by running the GNG

onto the CPU, but when it is detected that the runtime of the sequential version

is higher than the runtime of the parallelized one, the network is copied to GPU

memory and the remaining calculation is performed onto the GPU.

4. Experiments

The accelerated version of GNG algorithm has been developed and tested on a

machine with an Intel Core i3 540 3.07Ghz and different CUDA capable devices.

Table 3 shows different models that we have used and their features.
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The multi-core CPU implementation of the GNG algorithm has been devel-

oped using Intel Threading Building Blocks (TBB) library [53], taking advantage

of the multi-core processor capabilities and avoiding the existing overhead [54].

The number of threads used in the multi-core CPU implementation is the maxi-

mum defined in the specifications of Intel i3 540 processor.

Device Model Capability SMs cores per SM Global Mem Bandwidth Mem

Quadro 2000 2.1 4 192 1 GB 41.6 GB/s

GeForce GTX 480 2.0 15 480 1.5 GB 177.4 GB/s

Tesla C2070 2.0 14 448 6 GB 144 GB/s

Table 3: CUDA capable devices used in experiments

First, we have performed some experiments to obtain the best parameters to

launch kernels in our application, obtaining the maximum occupancy of CUDA

multiprocessors. Once we obtained the best parameters we used them to test the

2minimum Parallel Reduction implementation obtaining different performance

depending on the graphic card used and its number of cores. Finally, we have done

some experiments to obtain the speed-up regarding single threaded and multi-

threaded CPU versions.

4.1. Number of threads per block

As mentioned in section 2, threads are organized into blocks to carry out their

execution onto multiprocessors. Depending on the application developed, a differ-

ent number of threads per block should be used to obtain the best performance. We

tested different kernels running on the NVIDIA GTX 480 with different numbers

of threads per block. The better performance is obtained when using a number of
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threads between 128 and 256 to perform this test (figure 7). This is because us-

ing these parameters, we obtain maximum occupancy of CUDA multiprocessors.

These results are directly applied to the other cards since the number of threads

per block depends on the kind of application designed.
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Figure 7: Execution time depending on the number of threads per block.

4.2. Speed-up 2 Min Parallel Reduction

We have made some experiments of 2Min Parallel Reduction implementation

with different graphics boards using 256 threads per block configuration for ker-

nels launch. We obtained a speed-up factor up to 43x faster regarding a single-core

CPU and 40x faster regarding multi-core CPU, in the task of taking adjustments

of the network with a number of neurons close to 100k. As we can see in figure 8

(bottom), the speed-up factor depends on the device on which we execute the al-

gorithm and the number of cores it has. Figure 8 (top) shows the evolution of the

execution time in sequential Reduction operation regarding the parallel version. It
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can be also appreciated how it improves the acceleration provided by the parallel

version as the number of elements grows.

0.0078125

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

2

500 10500 20500 30500 40500 75500 88000

R
u

n
ti

m
e

 (
m

s)

Number of Neurons

Runtime 2Min Parallel Reduction

CPU

QUADRO 2000

GTX480

TESLA C2070

Multi-core CPU

0

5

10

15

20

25

30

35

40

45

500 10500 20500 30500 40500 75500 88000

Sp
p

e
d

-u
p

 f
ac

to
r 

Number of Neurons

Speed-up 2Min Parallel Reduction 

Speed-up Quadro2000

Speed-up. GTX480

Speed-up TESLA C2070

Speed-up Multi-core CPU10x

34x

3x

43x

Figure 8: Speed-up of Parallel Reduction with different graphic cards.

Best results were obtained with the most powerful graphic card tested, in our

case the NVIDIA GTX 480 with 480 cores and 1,5 GBytes of Memory. Using

conventional GPUs such as the Quadro 2000 model, which are found in desktop

computers, we can also obtain a good speed-up, 10x-15x faster than CPU.
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If we apply these values to Amdahl’s law that we previously analyzed, replac-

ing speed-up factor of fraction f by these values, we can estimate what will be

the upper limit of speed-up we can obtain for applying the whole GNG algorithm.

Thereby, the current acceleration will be compared with the calculated upper limit

and we can extract what percentage of time is consumed by other latencies implied

in the CUDA architecture.

Table 4 shows overall speed-up obtained for different parameters of GNG us-

ing the speed-up we obtained accelerating stage 3 of algorithm.

Neurons Patterns λ s p Speed-up Overall speed-up

1000 500 0,27 0,73 0,78 0,83

5000 500 0,11 0,89 2,95 2,42

10000 500 0,07 0,93 5,61 4,27

20000 500 0,02 0,98 10,60 8,62

1000 1000 0,30 0,70 0,69 0,761

5000 1000 0,1 0,9 2,9 2,44

10000 1000 0,05 0,94 5,65 4,47

20000 1000 0,03 0,96 10,68 7,98

Table 4: Theoretical overall speed-up obtained for GNG algorithm using speed-up obtained in

stage 3. Device GTX 480.

4.3. 2D representation and 3D reconstruction

To test our parallel version of the GNG algorithm, we have done experiments

using the GNG for 2D representation and 3D reconstruction. To solve the problem

of 3D reconstruction, the number of neurons necessary to adapt the input space is
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high which benefits the use of the GPU. Therefore, an increase in speed over the

CPU version can be achieved.

Based on a previous work [55], it has been chosen a number of neurons N of

1000 / 5000 / 10000 / 200000 and a number of input patterns λ of 500/1000. Other

parameters have been also fixed based on our previous experience: εw = 0.1,

εn = 0.001, α = 0.5, γ = 0.95, amax = 250.

GNG learning speed-up factor

Figure 9 shows an experiment using GNG to reconstruct a 3D object with

20000 neurons and 1000 input patterns where CPU solution takes more and more

time as the number of neurons in the network grows. However, the parallel CUDA

version increases the size of the array of neurons without degrading significantly

the performance. For a number of 20k neurons, we obtain 6x speed-up factor us-

ing a NVIDIA GTX 480 GPU. This speed-up is lower than the theoretical overall

speed-up that we estimated in the previous section. This is due to the implicit la-

tencies of the GPU architecture. Table 5 shows differences between the theoretical

overall speed-up and the obtained overall speed-up.

Neurons Patterns Theoretical overall speed-up Real overall speed-up

1000 1000 0,76 0,68

5000 1000 2,44 2,36

10000 1000 4,47 4,23

20000 1000 7,98 6,11

Table 5: Theoretical overall speed-up and obtained overall speed-up using the device GTX480.

In figure 9, it can also be appreciated that the CPU version is faster during

the first iterations, so a hybrid version would be faster than separate CPU and
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GPU versions. Multi-core CPU implementation is also slower during the first

iterations compared with single-core CPU due to the existing overhead caused by

the management of threads and by the subdivision of the problem.
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4.4. GNG hybrid version

As we discussed in the previous experiments, GPU version has low perfor-

mance in the first iterations of the learning algorithm, where the GPU can not

hide the latencies due to the small number of processing elements. To achieve

even bigger acceleration of the GNG algorithm, we propose the use of the CPU

in the first iterations of the algorithm, and then start processing data in the GPU

only when there is an acceleration regarding CPU, thus achieving a bigger over-

all acceleration of the algorithm (see figure 10). To determine the number of

neurons necessary to start computing at GPU we have analyzed in detail the ex-

ecution times for each new insertion, and concluded that each device, depending

on its computing power starts being efficient at a different number of neurons.

After several tests, we have determined the threshold at which each device starts

accelerating regarding the CPU version. As it can be seen in figure 9 (top), thresh-

old values for different devices are set to 1500, 1700, 2100 for GTX 480, Tesla

C2070 and Quadro 2000 models respectively. The hybrid version is proposed as

some applications need to operate under time constraints obtaining a solution of a

specified quality within certain period of time. In cases when the objective is the

disruption of learning due to the application requirements, it is important to insert

the maximum number of neurons and perform the maximum number of adjust-

ments to achieve the highest quality in a limited time. The hybrid version ensures

a maximum performance in this kind of applications using the computational ca-

pabilities of the CPU or the GPU depending on the situation. For example, our

proposal has been validated on 3D scene reconstruction performed by a mobile

robot. In this application it is necessary to obtain a reconstruction of the scene in

a limited time.
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4.5. Rate of adjustments per second

We have performed several experiments that show how the accelerated ver-

sion of the GNG is not only capable of learning faster than CPU, bu also obtains

more adjustments per second than the single-threaded and multi-threaded CPU
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implementations. For instance, after learning a network of 20000 neurons we can

perform 17 adjustments per second using the GPU while the single-core CPU gets

2.8 adjustments per second and the multi-core CPU gets 8 adjustments per second.

This means that GPU implementation can obtain a good topological representa-

tion with time constraints. Figure 11 shows the different adjustments rates per

second performed by different GPU devices compared to CPU. It is also shown

that when increasing the number of neurons in the CPU, it can not handle a high

rate of adjustments per second.

4.6. Discussion

From the experiments described above we can conclude that the number of

threads per block that best fits in our implementation is 256 due to the following

reasons: First, the amount of computation the algorithm performs in parallel. Sec-

ond, the number of resources that each device has and finally the use that we have

made of shared memories and registries. It is also demonstrated that in compar-

ison to CPU implementation, the 2MinParallelReduction achieves a speed-up

of more than 40x to find out a neuron at a minimum distance to the generated input

pattern. Theoretical values obtained applying Amdahl’s law and its comparison

with real values obtained from the experiments indicates that GPGPU architec-

ture has some implicit latencies: initialization time, data transfers time, memory

access time, etc.

Experiments on the complete GNG algorithm showed that using the GPU,

small networks under-utilize the device, since only one or a few multiprocessors

are used. Our implementation has a better performance for large networks than

for small ones. To get better results for small networks we propose a hybrid im-

plementation. These results show that GNG learning with the proposed hybrid
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implementation achieves a speed-up 6 times higher than the single threaded CPU

implementation.

Finally, it is shown how our GPU implementation can process up to 17 adjust-

ments of the network per second while single threaded CPU implementation only

can manage 2.8, getting a speed-up factor of more than 6 times.

5. Accelerating 6DoF egomotion using GNG

In this section, we show an application where the use of the accelerated GNG

improves its solution. The main goal of this application is to perform six degrees

of freedom (6DoF) pose registration in semi-structured environments, i.e., man-

made indoor and outdoor environments. This registration can provide a good start-

ing point for Simultaneous Location and Mapping (SLAM). We use the method

proposed in [31]. This method is developed for managing 3D point sets collected

by any kind of sensor. For our experiments, we have used data from an infrared

time-of-flight camera SR4000, but in [31] there are examples of this method ap-

plied to other 3D devices, like a sweeping unit with a 2D laser Sick and a Digiclops

stereo camera, mounted on a mobile robot. We are also interested in dealing with

outliers, i.e., environments with people or non-modeled objects. This task is hard

to overcome as classic algorithms, like ICP and its variants, are very sensitive to

outliers. Furthermore, we do not use odometry information. Finally, the huge

amount of data makes necessary the acceleration of the overall process in order to

obtain the results in real time.

We briefly describe the method proposed in [31] to manage 3D data and to

use it for 6DoF egomotion calculation. GNG produces a Delaunay Triangulation

which can be used as a representation of the points neighbourhood. GNG can be
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applied directly to 3D data. Figure 12 shows the result of applying GNG to 3D

points from a SR4000.

Figure 12: Applying GNG to SR4000 data.

On the other hand, in [31] a feature extraction process is applied to the raw 3D

data in order to obtain a complexity reduction. These features are planar patches

which are models representing surfaces from the 3D data. This feature extraction

method is based on neighbour searching. We can improve and accelerate the

neighbour searching using the GNG structure as it produces a more detailed and

accurate planar patches descriptions. Figure 13 shows planar patches extraction

from a 3D image obtained by a SR4000 camera. The right image shows the results

of combining GNG with the features extraction procedure. It can be compared

with the left image in which no GNG has been used. The more number of planar

patches we have, the more accurate result we obtain.
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Figure 13: Left, planar patches extracted from SR4000 camera. Right, use of GNG to improve

planar patches extraction.

For this reason, we would like to use these models to achieve further mobile

robot applications in real 3D environments. The basic idea is to take advantage

of the extra knowledge that can be found in 3D models such as surfaces and its

orientations. This information is introduced in a modified version of an ICP-like

algorithm in order to reduce the outliers incidence in the results. ICP [56] is

widely used for geometric alignment of a pair of three-dimensional points sets.

From an initial approximate transformation, ICP iterates the next three steps until

convergence is achieved: first, closest points between sets are stated; then, best

fitting transformation is computed from paired points; finally, transformation is

applied. In mobile robotics area, the initial transformation usually comes from

odometry data.

Nevertheless, our approach does not need an initial approximate transforma-

tion as ICP based methods do. We can use the global model structure to recover
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the correct transformation. This feature is useful for those situations where no

odometry is available, or it is not accurate enough, such as legged robots. In our

case, we exploit both the information given by the normal vector of the planar

patches and its geometric position. Whereas original ICP computes both orien-

tation and position at each iteration of the algorithm, we can take an advantage

of the knowledge about planar patches orientation for decoupling the computa-

tion of rotation and translation. We first register the orientation of planar patches

sets and when the two planar patches sets are aligned we address the translation

registration.

Figure 14: Planar based 6DoF egomotion results. Left image shows map building results without

using GNG while the results shown on the right are obtained after computing a GNG mesh.

In figure 14, we show an example of 3D map building using this 6DoF egomo-
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tion approach. For this experiment, 100 3D images from a 5 meter range SR4000

camera were used. The image on the left shows a 3D view of the reconstructed

environment using 6DoF egomotion from planar patches. In the right image, the

same scene is reconstructed but GNG was used to improve feature extraction.

While in the first experiment the registration of the sequence was almost impossi-

ble, in the second one the reconstruction was reasonably good. Computing time

for obtaining planar patches descriptions after applying GNG is almost the same

as without GNG and is about 300 ms per image. Application of GPU accelera-

tion provides a lower reconstruction time per each data acquisition, 50 ms for an

adjustment of a neural network composed by 20.000 neurons and 1000 λ input

patterns as it can be seen in figure 11. This makes our system suitable to deal with

time constraints.

6. Conclusions and future work

This paper proposes the modification and acceleration of the GNG algorithm

in order to obtain a more efficient version suitable for operations with time con-

straints. As demonstrated in the experiments, the runtime of sequential GNG

algorithm grows with the number of neurons as the network increases. In con-

trast, in the parallel version implemented onto GPU architecture, as we increase

the number of neurons, we obtain a greater acceleration over the sequential ver-

sion. Experimental results show that the GPU implementation significantly re-

duces learning time compared with single-threaded and multi-threaded CPU im-

plementations for GNG.

GNG algorithm can be accelerated using the GPU and allows better perfor-

mance than the CPU implementations. It has also been demonstrated how 3D

33



scene reconstruction for mobile robotics can be accelerated using GPUs in order

to deal with time constraints.

The parallel solution implemented on GPU can be still improved carefully

analyzing all aspects offered by the CUDA architecture and making a better use of

them: multiprocessors occupancy, memory hierarchy use, transfer between CPU

and GPU memory, and other.

Further work will include other improvements on the GPU implementation:

generating random patterns using GPU and using multi-GPU computation to im-

prove performance and to manage several neural networks learning different fea-

tures simultaneously. More applications of the accelerated GNG will be studied

in the future.
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