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Abstract

In this paper, we present a new MapReduce framework, called Grex, de-
signed to leverage general purpose graphics processing units (GPUs) for par-
allel data processing. Grex provides several new features. First, it supports a
parallel split method to tokenize input data of variable sizes, such as words in
e-books or URLs in web documents, in parallel using GPU threads. Second,
Grex evenly distributes data to map/reduce tasks to avoid data partitioning
skews. In addition, Grex provides a new memory management scheme to en-
hance the performance by exploiting the GPU memory hierarchy. Notably, all
these capabilities are supported via careful system design without requiring any
locks or atomic operations for thread synchronization. The experimental results
show that our system is up to 12.4x and 4.1x faster than two state-of-the-art
GPU-based MapReduce frameworks for the tested applications.

1. Introduction

As the modern GPUs are becoming more programmable and flexible, their
use for general purpose computation is increasing. NVIDIA’s CUDA [1] and
ATI’s OpenCL [2] support general purpose GPU programming. Generally, a
GPU has a significantly larger number of processing elements than a modern
multicore CPU does, providing massive hardware parallelism. For example, an
NVIDIA GeForce 8800 GPU provides 128 cores and a maximum 768 resident
threads. Also, a more advanced NVIDIA Fermi GPU provides 512 cores that can
accommodate up to 1536 threads.1 Especially, GPUs are designed to support
immense data parallelism; that is, GPU hardware is optimized for threads to
independently process different chunks of data in parallel.

MapReduce [3] is a popular programming model designed to process a large
amount of data in parallel. A user developing a data parallel application via

Email addresses: cbasaran@cs.binghamton.edu (Can Basaran), kang@binghamton.edu
(Kyoung-Don Kang)

1In this paper, we focus on NVIDIA GPUs; however, the principal ideas of our approach
are generally applicable to the GPUs from the other vendors. Hereafter, a GPU refers to an
NVIDIA GPU.
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MapReduce is only required to write two primitive operations, namely map
and reduce functions. A MapReduce application is called a job. Given a job,
the MapReduce runtime partitions the job into smaller units called tasks. It
assigns tasks and data chunks to workers, which have available computational
resources, called slots, to process the data chunks by running the tasks.2 The
workers process different data chunks in parallel independently from each other.
The workers running map tasks process input <key, value> pairs to generate
intermediate <key, value> pairs. The reduce function merges all intermediate
<key, value> pairs associated with the keys that are in the same logical group.
As the runtime handles scheduling and fault tolerance in a transparent manner,
it is easy for a user to write data parallel applications using MapReduce.

Given that both GPUs and MapReduce are designed to support vast data
parallelism, it is natural to attempt to leverage the hardware parallelism pro-
vided by GPUs for MapReduce. Although doing this may seem simple on the
surface, it faces a number of challenges especially to process variable size data
for industrially relevant and highly data parallel applications, such as natural
language processing and web document analysis:

• Most GPUs do not support dynamic memory management. Thus, it is
challenging to process variable size data in GPUs. Furthermore, the max-
imum size of variable length data is often unknown a priori in natural
language processing and web document analysis. Hence, existing tech-
niques developed to deal with variable size data, such as padding, are not
directly applicable.3

• While processing variable size data, MapReduce tasks may suffer from load
imbalance. To process variable size textual data, the MapReduce runtime
sequentially scans the entire input data and assigns the same number of
lines to each map task in a phase called input split. Unfortunately, input
split is not only slow due to the sequential execution but also subject to
potential load imbalance among the map tasks, since the amount of data
may vary from line to line.

• In the reduce phase of MapReduce, an entire group of intermediate data
having the same key is hashed to a single reduce task, incurring severe load
imbalance among the reduce tasks in the presence of data skews [5, 6]. For
example, certain words or URLs tend to appear more frequently than the
others in natural language or web documents. As a result, a reduce task
assigned a popular key group is likely to have a significantly larger number
of intermediate <key, value> pairs to process than the other reducers do.
Load imbalance due to the input split and data skews may adversely affect

2In Hadoop [4], an open source implementation of MapReduce by Yahoo, a slot represents
an available CPU core by default.

3To apply padding, the entire set of the variable size data has to be preprocessed to find
the size of the biggest data item first. After that, actual padding needs to be performed.
These extra steps may introduce a significant overhead when the data set is large.
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the performance, since it is known that the slowest task determines the
speed of a job that consists of multiple tasks executed in parallel.

• GPU memory hierarchy is significantly different from the host (i.e., CPU
side) memory hierarchy. Since the number of the cycles consumed by the
fastes and slowest memory in the hierarchy is different by several orders of
magnitude, it is challenging but important to efficiently utilize the GPU
memory hierarchy.

To tackle these challenges, we design, implement, and evaluate a new GPU-
based MapReduce framework called Grex (meaning a herd in Greek). Our goal
is to efficiently process variable size data for the entire MapReduce phases be-
ginning from input split to reduction, while minimizing potential load imbalance
in MapReduce. At the same time, we aim to efficiently utilize the GPU mem-
ory hierarchy, which is important for general MapReduce applications executed
in GPUs to process either variable or fixed size data. A summary of the key
contributions made by Grex towards achieving these goals follows:

• To efficiently handle variable size data, Grex replaces the sequential split
phase in MapReduce with a new parallel split step. In parallel split, Grex
evenly distributes input data in terms of the number of bytes to the threads
that tokenize input data in parallel.4 Notably, Grex does not need to know
the size of any token in advance to do parallel split.

• After parallel split, each thread executes the user-specified map() function
to process the tokens found as a result of parallel split. After finishing to
execute the map() function, each thread that has found the beginning of a
token computes a unique address to which an intermediate data item will
be written without communicating with the other threads. Therefore, no
locks or atomics for synchronization are needed. Similarly, the output of
the reduce phase is written without requiring any locks or atomic opera-
tions.

• Grex assigns an equal number of intermediate <key, value> pairs to the

reduce tasks to execute the user-specified reduce() function in a parallel,
load-balanced manner even if the keys are skewed.

• Although MapReduce deals with <key, value> pairs, only keys are needed
for a considerable part of data processing in a number of MapReduce
applications. In word count, for example, keys can be processed by map
tasks and sorted and grouped together with no values. After grouping the
same keys together, the frequency of each unique key has to be computed.

4In this paper, a meaningful unit of variable size data, e.g., an English word or URL, is
called a token. Converting raw data, e.g., natural language or web documents, into tokens is
called tokenization. For fixed size input data such as integers or floats, Grex simply assigns
the same number of data items to the map tasks and skips the parallel split step.
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Thus, it is not necessary to generate values in an earlier stage in certain
applications. Based on this observation, Grex supports a new feature
called lazy emit. Grex provides an API to let a user specify the MapReduce
phase of a specific application where Grex needs to create values and emit
complete <key, value> pairs to the GPU DRAM, called global memory.
Before the user-specified phase begins, Grex does not generate or store any
values but only deals with keys. By doing this, Grex intends to decrease
the overhead to handle intermediate data in terms of computation and
memory usage.

• Through all the MapReduce phases, Grex takes advantage of the GPU

memory hierarchy to decrease the delay for memory access. To this end,
Grex provides an API by which a user (i.e., a MapReduce application
developer) can specify the size and type (read-only or read/write) of a
buffer that will be stored in global memory and cached by Grex using
faster memory of the GPU in a transparent manner.

Although a number of GPU-based MapReduce systems have previously been
developed [3, 4, 7, 8, 9, 10, 11, 12], we are not aware of any other GPU-based
MapReduce framework that supports all these features.

We have implemented Grex and tested our implementation on a PC with
an AMD quad-core CPU using two different generations of NVIDIA GPUs. We
have compared the performance of Grex to that of Mars [7] and MapCG [8],
which are open source GPU-based MapReduce frameworks. For performance
evaluation, we have used six common applications with different needs in terms
of MapReduce computations, i.e., string match, page view count, word count,
inverted index, similarity score, and matrix multiplication. The first four appli-
cations deal with variable size data, while the last two applications process fixed
size data. By considering a diverse set of applications, we thoroughly evaluate
the performance of Grex in comparisons to Mars and MapCG. Our performance
evaluation results indicate up to 12.4x speedup over Mars and up to 4.1x speedup
over MapCG using the GeForce GTX 8800 GPU and GeForce GTX 460 GPU
that supports atomic operations needed by MapCG, respectively.

The remainder of this paper is organized as follows. Related work is dis-
cussed in Section 2. A brief description of MapReduce and the general GPU
architecture is given in Section 3. The design of Grex is described in Section 4.
Grex code snippets are discussed in Section 5 to further illustrate the key con-
cepts introduced in this paper. The performance evaluation results are discussed
in Section 6. Finally, Section 7 concludes the paper and discusses future work.

2. Related Work

MapReduce is developed by Google [3]. Hadoop [4] is an open-source imple-
mentation of MapReduce developed by Yahoo. Both MapReduce and Hadoop
are designed for commodity servers. Phoenix [9] and its extensions [10, 13]
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are one of the first projects to implement a MapReduce framework for a multi-
core architecture with shared memory. Ostrich [14] intends to improve Phoenix
by implementing an iterative map phase. Similarly, Grex iteratively processes
input data by applying the tiling technique [15]. There is also a MapReduce
implementation for the IBM Cell architecture [16].

Property Grex Mars MapCG [11] [17] Mithra GPMR

Single pass execution yes no yes yes yes yes yes

Locks or atomics no no yes yes yes no no

Parallel split yes no no no no no no

Load balancing yes no no no no no yes

Lazy emit yes no no no no no no

GPU caching yes no no yes yes no no

GPU cluster no no no no no yes yes

Table 1: Comparisons of the GPU-based MapReduce frameworks

Several GPU-based MapReduce frameworks have been developed by differ-
ent researchers. A GPU-based MapReduce framework developed by Catanzaro
et al. [18] supports a constrained MapReduce model that assumes that the keys
are known in advance and a map function produces only one output. Due to
these assumptions, the applicability of [18] is limited. Especially, it is not di-
rectly applicable to process raw (i.e., not tokenized) variable size data. Table 1
summarizes the key features provided by several GPU-based MapReduce frame-
works that support full MapReduce functionalities. Mars [7] is a GPU-based
MapReduce framework. It shows up to 10x speedup over Phoenix [9]; however,
it is not optimized for the GPU architecture. To overcome the lack of dynamic
memory management in many GPUs, Mars computes the precise amount of
GPU memory required for processing a MapReduce job in the first pass. It
does actual data modification and generation in the second pass. Since the first
pass performs every MapReduce task except for producing actual output, Mars
essentially executes a MapReduce job twice. Neither does it utilize the GPU
memory hierarchy.

MapCG [8] uses atomic operations to support dynamic memory manage-
ment in global memory. In this way, MapCG avoids two pass execution of
Mars. However, atomic operations require sequential processing of dynamic
memory allocation or deallocation requests, incurring performance penalties. Ji
and Ma [11] enhance the performance of MapReduce applications using shared
memory in a GPU. However, in their approach, half the threads are used to
support synchronization based on atomic operations, incurring potentially non-
trivial overheads. Chen and Agrawal [17] efficiently utilize shared memory to
support partial reduction of <key, value> pairs. However, their approach is
only applicable to communicative and associate MapReduce operations. Dif-
ferent from these GPU-based MapReduce frameworks [18, 7, 8, 11], Grex 1)
processes a MapReduce job in a single pass, 2) supports parallel split, 3) fa-
cilitates load-balanced data partitioning among the map and reduce tasks of a
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job, 4) supports lazy emit, and 5) efficiently utilizes the GPU memory hierarchy
for performance enhancement. Further, it is not limited to specific operators.
It takes advantage of not only shared memory but also constant memory and
texture cache, while requiring no atomic operations or locks.

Mithra [19] uses Hadoop as a backbone to cluster GPU nodes for MapRe-
duce applications. By building a GPU cluster on top of Hadoop, Mithra takes
advantage of powerful features of Hadoop such as fault tolerance, while leverag-
ing a large number of GPU threads. As a result, it significantly outperforms a
CPU-only Hadoop cluster. However, it does not support the key optimizations
of Grex described before. GPMR [12] is an open source MapReduce frame-
work designed for a GPU cluster. It relies on simple clustering of GPU nodes
without supporting a distributed file system or fault tolerance. Instead, it fo-
cuses on providing novel features for partial data aggregation to decrease the
I/O between the CPU and GPU in a node as well as network I/O between the
map and reduce tasks. However, GPMR does not consider to support the main
features of Grex. Also, the current GPMR implementation processes already
tokenized data only. Thus, variable size data have to be tokenized using the
sequential input split phase in Hadoop or by any other means before being pro-
cessed by GPMR. Mithra [19] and GPMR [12] are complementary to Grex in
the sense that the current version of Grex uses a single GPU, similar to Mars
[7], MapCG [8], and [11]. Grex could be combined with Hadoop or GPMR to
support MapReduce applications in a GPU cluster. A thorough investigation is
reserved for future work.

Kwon et al. [6] investigate several causes of skews in Hadoop applications.
Grex evenly distributes data to the map and reduce tasks. This approach will
alleviate partitioning skews; however, we do not claim Grex completely solves
skew problems. For example, a certain <key, value> pair can be computa-
tionally more expensive to process than the others [6]. Efficiently dealing with
potential skews in a GPU-based MapReduce framework is an important yet
rarely explored research problem. Other GPU-based MapReduce frameworks
including [7, 8, 11, 12, 19] do not consider this problem.

There have been many recent applications of GPU computing to differ-
ent problem domains such as Fast Fourier Transform [20], matrix operations
[21], encryption and decryption [22], genetics [23], intrusion detection [24], and
databases [25]. Using GPUs, these research efforts have achieved significant
performance improvement [26, 27]. These results call for a general GPU-based
parallel programming framework to make the architectural advantages of GPUs
available with reduced complexity compared to manual architectural optimiza-
tions.

3. Preliminaries

In this section, backgrounds of MapReduce and GPUs needed for the rest
of the paper are given. Through the paper, word count is used as a running
example to explain key concepts of MapReduce and Grex especially in terms
of dealing with variable size data. Although word count is conceptually simple,
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it requires all the MapReduce phases and deals with variable-size textual data
challenging to handle in a GPU.

3.1. MapReduce

A MapReduce framework executes an application as a set of sequential
phases such as split, map, group, and reduce. Each phase is executed by a
set of tasks that run in parallel. A task is sequentially processed by a single
processing element called a worker. In the split phase, the input is split into
smaller subproblems called records and distributed among the workers. For ex-
ample, a text file such as a web document can be split at new lines in the word
count application. In the map phase, the input data is mapped to intermediate
<key, value> pairs by a user defined map() function. In word count, a map
task can be designed to process a user-specified number of text lines to emit
<word, 1> pairs for each word in the lines. In the group phase, intermediate
<key, value> pairs are sorted and grouped based on their keys. Finally, the
intermediate pairs are reduced to the final set of <key, value> pairs by a user
defined reduce() function. As an example, for 10 <’the’, 1> intermediate <key,

value> pairs produced by the map tasks, one new pair, <’the’, 10> is emitted
as the final output. (Some applications, e.g., string match, do not need grouping
or reduction.)

Generally, a user is required to implement the map() and reduce() func-
tions and the grouping logic, which are often specific to applications. Since a
map/reduce task or grouping is executed sequentially in MapReduce, a user
is only required to specify sequential logic. The rest of the problem, such as
data distribution to tasks, collection of results, and error recovery for parallel
processing, is handled by the MapReduce runtime system. Thus, developing a
parallel application via MapReduce does not impose undue complexity of par-
allel programming on users.

3.2. General Purpose Graphics Processing Units

Graphics processors have architectural advantages that can be harnessed
to solve computational problems in domains beyond graphics [27]. Further,
the introduction of general purpose programming languages such as CUDA [1],
Stream [28], and OpenCL [2] has promoted their use as general purpose proces-
sors [27].

GPU code has an entry function called a kernel. A kernel can invoke other
(non-kernel) device functions. Once a kernel is submitted for execution, the
host has to wait for its completion. No interaction is possible with a running
kernel. A GPU has a number of SIMT (Single Instruction Multiple Threads)
multiprocessors as shown in Figure 1. Threads are temporarily bound to these
SIMT elements. Thus, a GPU can accommodate thousands or even more live
threads. The number of processing elements and maximum number of active
threads vary among GPUs [27, 29]. Threads are grouped into blocks. A (thread)
block is scheduled dynamically to run on one of the available multiprocessors.
All the threads of one block execute the same code because the underlying
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architecture is SIMT. When the threads in a block branch to different code
segments, branches are executed sequentially. This phenomenon, called control
divergence, can result in dramatic performance degradation. Thus, the threads
in Grex are designed to execute the same logic at a time to avoid divergence.

To support efficient memory access, GPUs employ a sophisticated memory
hierarchy [30]. Specifically, there are five types of memory as shown in Figure 1:
1) a set of general propose registers per thread; 2) shared memory that is shared
by all the threads in a block. It can be used as a software managed cache to cache
data in the off-chip global memory; 3) a read-only constant memory that can
be used as software managed cache for the global memory or to store frequently
accessed constant data that is small in size; 4) read-only hardware managed
texture cache that caches global memory; and 5) global memory. The size and
access delay generally increases from 1) to 5). General purpose registers are
several orders of magnitude faster than global memory whose access latency is
hundreds of cycles. Global memory is the largest memory in the GPU. It can be
accessed by any thread and even from the host CPU. However, it is the slowest
memory.

Shared memory is almost as fast as the registers. Every thread of one thread
block shares the shared memory; therefore, the threads in one thread block can
communicate easily with each other. However, a thread in one thread block
cannot access the shared memory of a different thread block. Constant and
texture memory have short access latency upon a cache hit. Upon a miss, they
have the same latency as global memory. Constant and texture memory can
be used to store read-only data. Any thread can access any data stored in
constant or texture memory. Since constant memory allocation is static, the
amount of constant memory to be used must be known at compile time. As
a result, constant data have to be copied to the fixed address before it can be
accessed. Hence, in Grex, constant memory is used to keep fixed-size read-only
data, such as a translation table used to convert upper case characters to lower

Input/Output Data

Figure 1: General Purpose GPU Architecture. (SP: Streaming Multi-Processor)
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Algorithm 1 Control flow of Grex for processing variable size data

1. Read data blocks from global memory and cache them evenly in shared
memory across the thread blocks. Execute the parallel split phase. (Skip
this step if the data size is fixed.)

2. Execute the map phase. Compute a unique address for each intermediate
key found after finishing the map phase. Using the unique addresses, write
the keys to global memory in parallel without relying on locks or atomics.

3. Perform boundary merge in global memory to combine a key divided be-
tween two adjacent thread blocks, if any. (Skip this step if the data size
is fixed.)

4. Group the intermediate keys via parallel sorting.

5. Read the intermediate keys from global memory and cache them evenly
in shared memory across the thread blocks. Execute the reduce phase.
Merge the results of the reduce phase performed by two adjacent thread
blocks if necessary. (Skip this step if the data size is fixed.)

6. Perform lazy emit. Write the results to global memory. (Lazy emit is
optional. If lazy emit is not used, the keys in the previous steps in this
pseudo code should be replaced with <key, value> pairs.)

case ones in word count. If the size of a user specified data structure exceeds
the amount of constant memory, a compile time error is issued by Grex. Unlike
shared memory and constant memory, texture cache is managed by hardware.
It does not require static allocation and provides good performance for random
access of read-only data.

4. System Design

This section describes the MapReduce phases and buffer management scheme
of Grex.

4.1. MapReduce Phases in Grex

Grex has five stages of execution: 1) parallel split, 2) map, 3) boundary
merge, 4) group, and 5) reduce. A pseudo code that summarizes these stages is
given in Algorithm 1. Note that the parallel split phase replaces the sequential
input split phase of MapReduce [3, 4]. Also, lazy emit is not an additional
phase but it postpones emitting values until the end of the entire MapReduce
computation. Hence, only the boundary merge is added to the MapReduce
control flow. Moreover, the parallel split and boundary merge phases are only
needed to handle variable size data. If the size of data is fixed, Grex distributes
the same number of data items, e.g., integers or floats, to each task for load

9



balancing. Therefore, no parallel split or boundary merge is needed for fixed
size data. A detailed description of the MapReduce phases of Grex follows.

1. Parallel split phase: In the parallel-split step, Grex initially assigns one
unit of data to each thread. For example, it can assign a single character in
the input documents to a thread to compute the starting position and length of
each string in the input as shown in Figure 2. For variable size data, a token is
a key. For example, a word or URL in word counting or web document analysis
is a key. Thus, in the rest of this paper, we use keys and tokens interchangeably.

The jth thread in the ith thread block, Ti,j , is associated with a unique thread
identifier: TID(i, j) = i×BS+ j where BS is the size of the data unit handled
by a thread block, which is equal to the number of the threads in a block in the
word count example given in this paper. Ti,j writes 1 (or 0) to vec[TID(i, j)]

in Step 1 of Figure 2, if the assigned byte, i.e., input[TID(i, j)], is a token (or
non-token) byte using the user-specified istoken() function such as ischar()
in word count. (Bit sting vec is a temporary data structure allocated in shared
memory.)

t h e d o g i n s i d e t h e

1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1

1 2 3 4 5 0 1 2 31 2 3 0 1 2 3 0 1

Blo c k 0 Blo c k 1

km[0] = {0, 3, T} km[0] = {9+0, 5, T}

km[4] = {4, 3, T} km[6] = {9+6, 3, T}

km[8] = {8, 1, T}

vec

1. if ischar (  input[TID(i,j)] ), vec[TID(i,j)] = 1

2. compute segmented prefix sum of vec

input

vec

3. find the beginning and length of each key

Figure 2: Kernel 1 - Parallel Split (Steps 1 and 2) and Map Phase (Step 3)

Grex applies the parallel prefix sum algorithm [31] to the bit string to com-
pute the starting position and length of each key in parallel as shown in Step
2 of Figure 2. To give an illustrative example of parallel split, we introduce
a data structure in Figure 3, which shows a temporary data structure, called
keyRecord, used for the parallel split and map phases. The pointer field points
to the beginning of a variable size key, e.g., a word or URL. The length field is
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KeyRecord

 pointer

length = 3

valid = !token(left) & token(this)

t   h  e      d  o  g       i

Figure 3: Key record data structure

used to store the length of a key. Also, the valid attribute is used to indicate the
beginning of a key. (This data structure is not necessary for fixed size data.)

An instance of keyRecord is referred to km in Figure 2 and stored in a register
by a thread. As shown in Step 2 of Figure 2, thread Ti,j knows that it has the
beginning of a token, if vec[TID(i, j − 1)] = 0 and vec[TID(i, j)] = 1 where
i ≥ 0 and j ≥ 1 and sets km[TID(i, j)].valid = T(rue) in Step 3 of Figure 2. It
also sets the km[TID(i, j)].pointer to the beginning of the key, while storing
the length of the key to km[TID(i, j)].length.

In Grex, thread Ti,j is assumed to have the beginning of a string, if j = 0
and vec[TID(i, j)] = 1. In fact, this is not always true, because a string can
be divided between two adjacent blocks as shown in the figure. Such a case,
if any, is handled by the boundary merge phase that will be discussed shortly.
The boundary merge phase is needed, since two different GPU thread blocks
cannot directly communicate with each other due to the current GPU hardware
design.

The time complexity of the parallel prefix sum, which is the most expensive
in the parallel split phase, is Θ(( n

N
)lgn) where n is the length of the bit string

indicating the input size in terms of the number of bytes and N is the total num-
ber of the GPU threads that can run at once. Thus, for large N , parallel split
is considerably faster than a sequential algorithm used in MapReduce for tok-
enization, which is Θ(n). However, existing MapReduce frameworks including
[3, 4, 7, 8, 9, 10, 11, 12] do not support parallel split.

Notably, a user only has to specify an istoken() function, such as the
ischar() function in Figure 2. Parallel split is supported by the underlying
Grex runtime system and hidden from the user. Since a user has to write
a function similar to istoken() in any existing MapReduce framework for se-
quential input split, parallel split does not increase the complexity of developing
a MapReduce application. Notably, all threads finish the parallel split phase
simultaneously, because they process the same number of bytes using the same
algorithm. Thus, no synchronization between them is required.

2. Map phase: A user specifies a User::map() function, similar to MapRe-
duce [3] and Hadoop [4]. Grex further processes the keys in shared memory tok-
enized during the parallel split step via the map tasks, which execute the map()
function in parallel. In word count, the parallel split and map phases are imple-
mented as a single kernel, since the map function is only required to write the
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t h e d o g i n s i d e t h e

Block 0 Block 1
Input

Merge to one key in 

global memory

Figure 4: Kernel 2 - Boundary merge phase

keys found in the parallel split phase to global memory. If km[TID(i,j)].valid
== T in Step 3 of Figure 2, thread Tij writes km[TID(i,j)].pointer into
keys[⌈TID(i,j)/2⌉] in global memory. Note that we divide the thread ID
by 2, since a block cannot have more keys than half the bytes assigned to the
block. A string, e.g., a word or URL, has at least one non-null character fol-
lowed by a null character that indicates the end of the string. As the TID of a
thread is unique, the threads that have valid pointers to the keys can write their
pointers to the global memory location independently from each other. Thus,
all the pointers to the beginnings of the keys are written to the global memory
at the same time with no need to synchronize the threads.

The input data structure in Figure 2 is part of a Grex buffer, which keeps the
input data and output of the map phase in global memory, respectively. Input is
evenly divided among the thread blocks and cached in the shared memory of each
block by Grex. Also, the keys data structure is the output buffer used to write
the output of the map phase. A user can specify buffers needed to store input,
intermediate, or output data in global memory. Grex caches them in shared
memory or texture cache in a transparent manner. In addition, temporary data
structures, such as vec and km in Figure 2, are created and managed by Grex.
In the current version of Grex, vec and km are stored in shared memory and
registers, respectively. After completing the execution of a kernel such as the
one for parallel split and map, Grex deallocates the temporary data structures
in shared memory.(Buffer management and caching is discussed in Section 4.2.)

In general, if the size of data is bigger than the shared memory size, the Grex
steps are executed iteratively. Hence, the job size is not limited by the shared
memory size. In addition, data upload to and download from the GPU in Grex
is overlapped with the computation in the GPU to reduce the I/O overhead.

Grex supports an optional feature called lazy-emit, in which the value is nei-
ther created nor held in memory before the user-specified phase. For lazy-emit,
a user only has to specify in which phase the value should be created and emitted
to memory and what value should be emitted by defining a User::emit(key)

function. For example, the emit() function for word count returns 1 for each
word. Also, a user can optionally implement a User::combine() function to do
partial reduction of intermediate <key, value> pairs produced in the map phase
for an associative and commutative reduce() function, similar to MapReduce.
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t h e d o g i n s i d e t h e

0 4 8 F 4 8 0 F

0 1 2 3 4 5 6 7 8 9 A B C D E F . .

1.Cache input buffer in texture cache

2.Move pointers in global memory for sorting

keys
sor t

keys

Figure 5: Kernel 3 - Sorting intermediate keys

3. Boundary merge phase: We have designed a simple yet effective parallel
method, called boundary merge, to check whether any key is split between
neighboring thread blocks and merge it to a single key. If there are B > 1
blocks, Grex executes a kernel using B − 1 threads to do boundary merge in
global memory, since there are B − 1 block boundaries. When the map phase
is completed, the result is written to global memory as discussed before. The
B−1 threads for boundary merge can start immediately when the kernel for the
parallel split and map phases completes. Also, they do not have to coordinate
or communicate with each other, since they do not share any data or other
resources with each other. Thus, they work independently in parallel.

To do boundary merge, thread i (0 ≤ i < B − 1) observes the end of the ith

block and the beginning of the (i+ 1)th block to check whether or not both of
them are valid (i.e., istoken() = true) as shown in Figure 4. If this condition
is satisfied, thread i merges them to a single key and eliminates the partial key
in the (i + 1)th block. Also, the thread decrements the number of the keys in
the (i+ 1)th block. At the end of the boundary merge step, the pointers to the
variable size tokens are stored in keys buffer in global memory as shown at the
bottom left in Figure 5.

4. Grouping phase: In this step, the intermediate <key, value> pairs are
sorted, similar to MapReduce and Hadoop. In this paper, parallel bitonic sorting
is used for grouping. For sorting, a user only has to specify how to compare keys
through the User::cmp() function. For example, a user can use the strcmp()

function in word count.

To decrease the memory access delay for parallel sorting, we bind the input
buffer in global memory to the on-chip texture cache as shown in Step 1 of
Figure 5. We use the texture cache rather than shared memory, since sorting
generally involves data accesses across thread blocks. For grouping in Grex, data
comparisons are done in the texture cache, which is read-only and managed
by the hardware. Actual movements of the pointers to variable size data, if
necessary for sorting, are performed by Grex in global memory as shown in
Step 2 of Figure 5. As a result, the pointers in the figure are sorted in non-
ascending lexicographic order of the keys, i.e., words in word count.

For grouping, Mars [7] and MapCG [8] create an index space to keep the
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Figure 6: Kernel 4 - Reduction

<key, value> pairs and apply hashing to find <key, value> pairs in global
memory. Our approach is more efficient than these methods, since it reduces
the memory consumption as well as the delay and contention for global memory
access by leveraging texture cache and lazy emit, while requiring no index space.

5. Reduce phase: Grex provides a User::reduce() API to let a user write a
reduce function specific to the application of interest. To significantly enhance
performance, Grex uses a large number of thread blocks to reduce <key, value>

pairs in a parallel, load balanced manner. Grex evenly distributes intermediate
<key, value> pairs to each reduce task to avoid load imbalance due to data
skews as discussed before. (Only one thread block is used in Figure 6 due to
the small data size.)

KeyRecord

pointer

count

first = !cmp(prev, this)

Figure 7: Key record data structure for reduction

In the reduce phase, Grex uses a temporary data structure in Figure 7. The
pointer field points to the beginning of a variable size key. The count field is
used to compute the frequency of a key’s occurrences in natural language or
web documents. Also, the first boolean attribute is used to indicate the first
occurrence of a key. An instance of this data structure is called kr. It is stored
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in a register by a thread. (This data structure is unnecessary for fixed size data,
similar to the temporary data structures used for the parallel split and map
phases.)

In Step 1 of Figure 6, each thread is assigned a word and it compares its
word to the word of the next thread (if any). A thread sets its bit in the
temporary bit string, vec, newly allocated in shared memory, if the two strings
are different. Using the bit string, the threads compute the exclusive parallel
prefix sum to calculate the total number of unique keys. In Step 2, thread Tij

sets kr[TID(i,j)].valid = T(rue), if it has a pointer to the first appearance
of a key or vice versa. Also, kr[TID(i,j)].pointer and kr[TID(i,j)].length

are set to the beginning of a unique key and the number of the occurrences, i.e.,
word count, of the key, respectively.5 Finally, each thread writes a pointer to a
variable size key, e.g., a word, to the keys buffer and a value, e.g., word count,
to the values buffer in global memory using the information in the temporary
kr data structure in Figure 6. Thus, the final output is <dog, 1>, <inside, 1>,
and <the, 2> in this example.

Grex also applies a variant of the boundary merge technique in the reduce
phase to produce correct final <key, value> pairs in global memory, if one group
of <key, value> pairs with the same key is divided over more than one thread
blocks due to load balancing among the reducers. An example code snippet of
boundary merge is given in Section 5.

4.2. Buffer Management

In Grex, a user can use buffers managed by the Grex runtime system for
efficient memory access in the GPU. A buffer in Grex is a data container that can
partially or entirely reside in global memory, texture cache, or shared memory
depending on the size and type of a buffer and the availability of shared memory
or texture cache space. Grex provides a number of buffering methods and user
APIs to enhance the performance by leveraging the GPU memory hierarchy.

To use a buffer, a user needs to specify the access mode and size of a buffer.
Grex provides two buffer types: 1) a constant buffer and 2) a buffer. A constant
buffer is stored in the constant memory. Its size should be fixed and known
at compile time as discussed before. We describe non-constant buffers in the
remainder of this subsection. A (non-constant) buffer is either read-only or read-
write. If the user specifies a buffer as read-only, Grex uses the texture cache to
cache the buffer. As the texture cache is managed by the hardware, a user does
not need to specify the size. Grex simply binds a read-only buffer to the texture
cache. Thus, data are loaded from the texture cache to shared memory by the
hardware, if the data are available in the texture cache. On the other hand, if
a buffer is read-write, Grex directly loads data from global memory to shared
memory instead of checking the texture cache first. In Grex, a user can also

5In the reduce phase, the length field is overloaded to indicate the word count. How-
ever, Grex is not tied to this overloading. Depending on a specific application of interest, a
temporary data structure different from keyRecord can be used.
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Algorithm 2 Grex buffer management

The following steps are executed in the CPU:

1. Invoke User::init() function. In this function the user enables/disables
buffers for the current phase and modifies their properties as needed.

2. Before starting to execute the first phase of a job, upload input data to
global memory.

3. Traverse the list of buffers to compute the total size of the shared memory
cache needed by the enabled buffers. Also, bind buffers marked as read-
only to the texture cache.

4. Launch the next MapReduce kernel with the calculated total cache size.

The following steps are executed in the GPU:

5. Initialize the shared memory cache assigned to each buffer in parallel.

6. Run the user-specified phase kernel.

7. Write the result of the kernel execution temporarily stored in in shared
memory, if any, to the corresponding read-write buffer in global mem-
ory. (To do this, each thread that has data to write to global memory
independently computes a unique address as discussed in Section 4.1.)

specify a specific buffer to become active during a specific MapReduce phase
via the User::init() callback function invoked and executed by Grex before
processing each phase.

To process I bytes of input data, a user needs to specify the size of the buffer-
/block, P , and the number of bytes processed by each GPU thread, D(≥ 1).
Thus, to process I bytes, Grex uses B = I

PD
blocks and T = P

D
threads/block.

By default, the size of the shared memory used to cache a fraction of a buffer in
each block is equal to the size of the per-block buffer in global memory. For ex-
ample, if the size of a per-block buffer is 256 bytes, 256 bytes of shared memory
in each thread block (if available) is used to cache the buffer by default. Grex
also provides an option by which a user can specify a different amount of shared
memory to be used to cache a buffer in each thread block.

In Grex, data are fetched to shared memory in sequence and the oldest data is
replaced, if necessary, to accommodate new data, since a considerable fraction
of MapReduce applications linearly scan input data to group and aggregate
them in parallel. The overall workflow of the buffer manager in Grex is given
in Algorithm 2. Grex buffer manager first calculates the total cache size needed
by each thread block by traversing the user defined buffers. After computing
the total size of the (shared memory) caches needed per thread block, Grex
launches the kernel to execute a MapReduce phase in the GPU.
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At the beginning of a phase, contiguous regions of shared memory in a thread
block is assigned to the buffers active in the phase and initialized as specified by
the user. Grex provides parallel cache initialization policies a user can choose
for a cache: 1) The default policy reads data from global memory into the
cache; 2) An alternative policy initializes every cache element to a constant value
specified by the user; 3) The no initialization policy leaves the cache (e.g., a cache
associated with an output buffer) uninitialized; and 4) The user value policy
initializes each cache element to the return value of user defined User::cache()

function that can be used to convert the input data. The selected policy is
enforced by Step 5 of Algorithm 2.

After initializing caches, the kernel for the corresponding MapReduce phase
is executed in Step 6 of Algorithm 2. After finishing the execution of a phase
kernel, Grex writes the resulting data in shared memory back to global memory
and deallocates shared memory. In this way, we aim to ensure that the result of
executing a phase is globally available to the following MapReduce phases, if any.
This approach allows the next MapReduce phase to fully utilize shared memory
too. Since most MapReduce applications performs group-by and aggregation
functions in parallel, the amount of results to be written back to global memory
is not likely to be bigger than the original input data size. Thus, the overhead
of write-back to global memory in Step 7 is expected to be tolerable. Moreover,
Grex supports lazy emit to further decrease the shared memory consumption
and the amount of data to write back to global memory.

In summary, Grex is designed to support the parallel split and load-balanced
map and reduce phases, while efficiently utilizing shared memory and texture
cache. In addition, Grex supports lazy emit and it is free of locks and atomics
different from the other GPU-based MapReduce frameworks [7, 8, 11, 12, 19].

In the future, GPUs may support a unified cache model. However, even in
a single cache model, it is important to carefully manage the cache. Our buffer
management scheme may become simpler and more efficient in such an archi-
tecture, because it is unnecessary to use different caches based on read/write
or read-only nature of a buffer. Also, if future GPUs allow a thread to directly
read data cached by a different thread block, boundary merge can be performed
not in the slow GPU DRAM but in the cache. Thus, it is possible for the per-
formance of Grex to further improve in such an environment. In addition, the
algorithmic approaches of Grex such as parallel split, even distribution of data
to the mappers and reducers, and late emit will be still applicable regardless of
the cache model.

5. Sample Grex Code

This section illustrate an example Grex code for word count to provide details
on handling variable size data. The basic structure of word count is applicable
to various text processing applications that require word or token extraction. A
variable data application example is preferred since a fixed size data processing
implementation is relatively trivial.
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In Code 1, Grex calls the user specified User::main() function to create
buffers and do system initialization. In this example, three (non-constant)
buffers and one constant buffer are created. A user can use the new buffer

<data type> (per block size) function call to create a buffer with a certain
data type and size per thread block. Grex creates a buffer in global memory
whose size is equal to the product of the per-block buffer size and the number
of the thread blocks as discussed in Section 4. Also, it caches the buffer in
shared memory of each thread block when the buffer is accessed at runtime. To
create a constant buffer, a user has to use the new const buffer <data type>

(total size) API as shown in the code. As a result of the Grex system call,
one system-wide constant buffer of total size is created in constant memory.

1 int Grex::User::main () {

2 // Create a per-block buffer that contains 256 bytes of input data.

3 input = new_buffer<char>(256);

4 // There are at most 256/2 words from 256 bytes of data due to the

5 // null char at the end of a string.

6 keys = new_buffer<char*>(128);

7 // Max no. of values is equal to max no. of words.

8 values = new_buffer<int>(128);

9 // Create a constant buffer to hold the upper-case to lower-case

10 // translation table

11 tr_map = new_cbuffer<char>(tr_table, 256);

12 // Store boundary key sizes for merging. There can be at most 2

13 // boundary words in a thread block.

14 keysize = new_buffer<char>(2);

15 ...

16 }

Code Snippet 1: Buffer setup

When Grex completes executing the main function, it reads the input data
from disk as shown in Code 2 before it starts running a MapReduce job in the
GPU. Data read from the input file are downloaded to global memory over the
PCIe bus that connects the host and GPU. The data is read and the job is
iteratively executed until the read input() function returns the End of File
(EOF). In this way, the GPU memory can be allocated and the job can be
executed in an incremental manner. Grex also overlaps the I/O across the PCIe
bus with the computation in the GPU, if any, to hide the I/O overhead.

1 size_t Grex::User::data(

2 Buffer *b, char *d, off_t offset, size_t size){

3 if(buffer->id()==input->id()) {

4 input_file.seek(offset);

5 return input_file.read(d, size);

6 }

7 return 0;

8 }

Code Snippet 2: Reading Input Data

Code 3 shows an example user initialization routine for the word count ap-
plication. Grex invokes the User::init() function before starting to execute
each phase kernel. In the function, the user needs to declare buffers that will be
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used in a specific phase and set the type of each buffer as either a read-write or
read-only buffer. A buffer becomes usable once it is enabled and remains valid
until it is explicitly disabled by the user.

When a buffer is enabled, it is set as a read-write buffer by default. A
user needs to explicitly set a buffer as read only via the read only() member
function as shown in Code 3. A read-only buffer is cached in texture memory
as discussed before.

Notably, there is no case statement for parallel split or boundary merge in
Code 3, because the execution of the parallel-split and boundary merge phases
plus the buffer management in those phases are handled by Grex. A user only
has to define the boundary merge function (e.g., Code 5). Also, in Code 3, the
values buffer declared in Code 1 is enabled in the reduce phase, because lazy
emit is applied in our word count example.

1 int Grex::User::init(Job_t &j, Task_t& t) {

2 switch ( t.phase ) {

3 case MAP:

4 // Do not initialize the cache for keys

5 // Initialize the cache for keysize as zeros

6 buffers.enable(input, keys, keysize);

7 keys.cacheFunc(CACHE_NO_INIT);

8 keysize.cacheFunc(CACHE_VALUE, 0);

9 break;

10 case GROUP:

11 // Specify keys as the output buffer

12 // Declare input as read-only (texture cache)

13 set_targets(keys);

14 input.writeEnable(false);

15 break;

16 case REDUCE:

17 // Specify keys as the output buffer

18 // Enable values

19 set_targets(keys);

20 buffers.enable(values);

21 break;

22 }

23 return 1;

24 }

Code Snippet 3: User initialization

1 __device__ void Grex::User::map() {

2 // Initialize active buffers

3 IBUFFERS(input, keys, keysize);

4 input[workerId] = tr(input[workerId]);

5 // Parallel split of the input buffer into words

6 KeyRecord kr = input.split(isWordChar());

7 // Emit words found in the input

8 keys.emit(kr.key, kr.valid);

9 // Emit key size only for boundary keys

10 keysize.emit(kr.size, input.is_boundary(kr));

11 }

Code Snippet 4: User map phase function
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In Code 4, the map phase is implemented as a device function executed in
the GPU. (Code 4 − Code 8 are all device functions.) In Code 4, the tr()

function is executed by the threads to convert the input data to lower-case by
referring to the translation table stored in the constant memory, while removing
non-word characters in parallel. In Code 4, the parallel split is invoked via the
input.split() function provided by Grex. The pointers to the keys found as
a result of executing the parallel split step is written to global memory by the
keys.emit() function. In Code 4, only the keys are generated due to lazy emit.

1 __device__ void Grex::User::mmerge() {

2 IBUFFERS(keys, keysize);

3 // Read two keys on the boundary of two adjacent thread blocks

4 char *k1 = keys.last_of_blk(workerId), *k2 = keys.first_of_blk(workerId+1);

5 int size1 = keysize.last_of_blk(workerId);

6

7 // If one word is spread across two adjacent blocks, merge parts

8 // into one key. This is the case if k1 ends where k2 begins

9 if ( k1 + size1 == k2 ) // Just delete the 2nd key to merge

10 keys.del_first_key(workerId+1);

11 }

Code Snippet 5: User function for boundary merge at the end of the map phase

The boundary merge function is shown in Code 5. The function is executed
in parallel using B−1 threads where B is the total number of the thread blocks.
Note that deleting the first key of the second block is enough for a thread to
merge the pieces of a key divided between the adjacent thread blocks, because
the last key in the first block already points to the beginning of the merged
word.

1 __device__ void Grex::User::reduce(){

2 IBUFFERS(keys, values);

3 // Parallel split of keys into two groups at points where two

4 // consecutive keys are different

5 ReduceRecord rr = keys.split(CompareKeys());

6 keys.emit(rr.key, rr.valid);

7 values.emit(rr.size, rr.valid);

8 }

Code Snippet 6: User reduce function

The reduce function in Code 6 splits the keys into groups and combines each
group with the same key into a single <key, value> pair. A thread executes
the user defined compareKeys() function to compare the key assigned to itself
with the key assigned to the next thread. It returns 0 if the two keys are equal.
Otherwise, it returns 1. Grex creates a bit string in shared memory, in which 1
indicates the beginning of a new group and contiguous 0’s following 1 indicates
a group, similar to the bit string in Figure 6. By applying the exclusive parallel
prefix sum, Grex computes the size of each key group as discussed in Section 4.
By doing this, the reduce function in Code 6 groups the keys and aggregates each
group with the same key into a single <key, value> pair, e.g., <word, count>
in word count. At the end of the reduce phase, actual values are generated and
written to global memory.
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Code 7 merges a key group divided between two adjacent thread blocks
due to load balancing. If there are B thread blocks, B − 1 threads are used
for boundary merge at the end of the reduce phase. Using the user defined
compare function (e.g., strcmp() in word count), a thread compares the last
key of a thread block and the first key of the next block. If they are same,
the frequency of the word is changed to the sum of the sizes of the first and
second key groups. This parallel process is executed iteratively until no group
size increases any further.

1 __device__ void Grex::User::rmerge(){

2 IBUFFERS(input,values);

3 char *k1=last_of_blk(workerId), *k2=first_of_blk(workerId+1);

4 int *v1=plast_of_blk(workerId), *v2=pfirst_of_blk(workerId+1);

5 if (compare(k1, k2)){

6 *v1+=*v2;

7 return 1;

8 }

9 else return 0;

10 }

Code Snippet 7: User function for boundary merge after the reduce phase

1 void Grex::User::end(){

2 compact(keys, values);

3 char *b_data = input.download();

4 char **b_keys = keys.download();

5 int *b_values = values.download();

6 display(b_keys, b_values);

7 }

Code Snippet 8: User end function

Finally, Grex invokes the User::end() function when all phases are exe-
cuted. The example User::end() function given in Code 8 downloads the keys
and values from the global memory in the GPU into the main memory in the
host.

6. Performance Evaluation

In this section, the experimental settings for performance comparisons among
Mars [7], MapCG [8], and Grex are described. Also, the performance evaluation
results are discussed.

We pick Mars and MapCG for performance evaluation, because they rep-
resent the state-of-the-art in terms of GPU-based MapReduce. In addition,
they are open source. Ji and Ma [11] have also developed a novel GPU-based
MapReduce framework. It uses atomic operations to avoid two pass execution
of a MapReduce job, similar to MapCG. However, [11] is not publicly available;
therefore, we cannot compare the performance of Grex to that of [11].

We have tested the performance of Grex using different generations of GPUs
for Mars and MapCG. The experiments for performance comparisons between
Grex and Mars were run on the NVIDIA GeForce 8800 GTX GPU, which was
used for performance evaluation by the developers of Mars [7]. The benchmarks
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comparing Grex against MapCG were executed on the NVIDIA GeForce GTX
460 GPU that supports atomic operations needed by MapCG. Using different
platforms for Mars and MapCG provides fair comparisons, since Mars’ design
was influenced by relatively restrictive programming support of older generation
GPUs, in which atomic operations are not available and coalescing memory
accesses has a significant impact on the performance. The host machine in both
cases has the AMD Athlon II X4 630 CPU, 4GB RAM, and 500GB hard disk.
Linux 2.6.32.21 is installed on the host.

6.1. Benchmarks

In this section, the benchmarks used for performance evaluation are de-
scribed. Table 2 summarizes the characteristics of the micro-benchmarks. They
are popular MapReduce applications and used for performance evaluation in
the Mars [7] and MapCG work [8]. By using the same benchmarks, we intend
to provide the fairness of our performance comparisons with Mars and MapCG.
Similar workloads are used for performance evaluation in [11] and [12] too.

1. Similarity Score (SS): Similarity score is a matrix application. The input
is a list of document feature vectors ~vi that represent the characteristics of given
documents. The output of this application is pairwise similarity scores of the
input documents

vi·vj

|vi|·|vj |
. Since the size of an input data is fixed in SS, no parallel

split phase is needed. Similarly, the size of groups in reduce phase is known and
fixed. Thus, the input split and boundary merge phases are not needed as
shown in Table 2. To compute the similarity score, we implement tiled matrix
operations, in which tiles (i.e., sub-matrices) are manipulated independently in
the map phase and the intermediate results are aggregated in the reduce phase.
The divisors and the dividends are calculated in the map phase. In the reduce
phase, we calculate the final values by doing the divisions.

2. Matrix Multiplication (MM): Since the input to MM is fixed sized, it
does not require the input split and boundary merge phases as summarized in
Table 2. We implement tiled matrix multiplication in the map phase and add
the partial sums of the tiles in the reduce stage.

3. String Match (SM): Given an input string, the string match application
finds the offset of the first character for each occurrence of the string in the
input file. Our implementation in Grex uses a constant buffer to store the
search string. Neither sequential nor parallel input split is needed, because a
match can be found without tokenizing the input data. In the map phase,
parallel string matching is performed. In Grex, boundary merge is performed
to find any matching string divided between the adjacent thread blocks. This
application does not require sorting or reduction, since the output buffer already
contains individual pointers to the matched strings.

4. Word Count (WC): This benchmark counts the frequency of each word’s
occurrences in the input file. The final output is <word, frequency> pairs sorted
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Name Input Split Map B. Merge Reduce L. Emit Data Size

SS fixed no yes no yes no 512, 1024, 2048 documents

MM fixed no yes no yes no 512, 1024, 2048 elements

SM variable no yes yes no no 32, 64, 128 MB

WC variable yes yes yes yes yes 32, 64, 128 MB

II variable yes yes yes no no 32, 64, 128 MB

PC variable yes yes yes yes no 32, 64, 96 MB

Table 2: Properties of the benchmarks

in non-ascending order of frequencies. This benchmark is required to run every
phase of MapReduce as shown in Table 2. Grex does parallel split and boundary
merge. In addition, Grex uses the lazy emit option to further decrease the
memory consumption and access delay by storing only the keys until the end of
the reduce phase.

5. Inverted Index (II): The inverted index application reads a group of web
documents and outputs every encountered link and the names of the web doc-
uments that include the link. Since the URL size is variable, this application
requires the parallel split, map, boundary merge, and group phases for Grex.
However, it needs no reduce phase.

6. Page View Count (PC): In the page view count benchmark, the input
is a group of web logs in the form of (URL, IP address, cookie) tuples and the
output is the number of distinct visits to each URL sorted in non-ascending
order. The input to this benchmark is variable sized; therefore, this application
requires the parallel split, map, boundary merge, and group phases. In addition,
it needs the reduce phase as summarized in Table 2.

We have tested three different sets of inputs for each application: small,
medium, and large, similar to Mars and MapCG. For Word Count and String
Match applications, the input data is created by merging various e-books. The
input for Page View Count application is created by randomly combining differ-
ent web logs. The input for Inverted Index is generated using a simple crawler.
The input for Matrix Multiplication and Similarity Score are randomly gener-
ated using the input generator provided by Mars [32].

6.2. Experimental Results

The performance evaluation results in terms of the speedup achieved by Grex
over Mars and MapCG are given in Figures 8 and 9, respectively. We also show
the throughput achieved by Grex for the large data sets in Table 2. A more
detailed discussion of the performance results follows.

1. Similarity Score (SS): For this benchmark, Grex achieves up to approx-
imately 2.4x speedup over Mars for the largest data set as shown in Figure 8.
It also provides roughly 2.5x speedup over MapCG for the medium data set
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Figure 8: Speedup of Grex over Mars (Delay of Mars: 86ms - 10901ms)
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Figure 9: Speedup of Grex over MapCG (Delay of MapCG: 53ms - 2389ms)

as shown in Figure 9. The performance loss we observe for the large data set
in Figure 9 is due to the increased input size that requires the reduce phase
to combine more partial results. The observed speedups are due to better use
of memory hierarchy. The throughput for the largest dataset with Grex is 56
GB/s from the task release to completion.
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2. Matrix Multiplication (MM): For the largest data set, which requires to
multiply two 2048 x 2048 matrices, Grex is 3.8x faster than Mars. Grex shows
2x speedup over MapCG for the small set; however, the speedup decreases
down to 1.5x for the large data set, similar to SS. Although SS and MM do not
need parallel split or lazy emit, Grex substantially enhances the performance
by taking advantage of the GPU memory hierarchy and tiling technique. For
the fairness of comparisons, tiling is used for the baselines as well as Grex. The
throughput of Grex is 92 GB/s for the large dataset. Both SS and MM do matrix
multiplication. However, SS requires vector multiplications and divisions, which
are more computationally demanding than multiplying numbers and adding the
partial results in MM. Hence, for SS and MM, Grex shows different performance
in terms of the throughput and speedup over Mars and MapCG.

3. String Match (SM): Grex achieves maximum 2.2x speedup over Mars for
the medium-size input and 3.7x speedup over MapCG for the largest data set.
Grex achieves the performance improvement due to parallel split and efficient
buffering using the shared memory and texture cache. The throughput of SM for
the large dataset is 36 GB/s. By comparing the throughput achieved by Grex
for SS, MM, and SM, we observe that processing variable size data is more
challenging than dealing with fixed size data is. As a result, Grex supports
significantly lower throughput than processing fixed size data.

4. Word Count (WC): Grex achieves up to 12.4x speedup over Mars. Also,
it achieves up to 4x speedup over MapCG. Among the tested benchmark ap-
plications, Grex achieves the highest performance improvement for word count.
This is because word count requires all the MapReduce phases and the amount
of data to process can be decreased only after the reduce phase begins. Since
we use English e-books for WC, data skews impair the performance of Mars
and MapCG. In contrast, Grex evenly divides intermediate <key, value> pairs
to the reduce tasks to avoid performance penalties due to skewed data distri-
butions. Further, Grex applies the parallel split method, while applying lazy
emit as well as caching to decrease the frequency of global memory access. The
throughput for WC in Grex is 14 GB/s.

5. Inverted Index (II): This benchmark requires the map and grouping
phases of MapReduce to invert links and group them together; however, it needs
no reduce phase. Due to parallel split, even data partitioning among map/re-
duce tasks, and efficient buffering, Grex is up to 1.7x and 2.3x faster than Mars
and MapCG, respectively. The measured throughput of II with Grex for the
large dataset is 11 GB/s. II deals with variable sized data. In addition, it has
no means to reduce the amount of data during the computation, because it only
inverts links without aggregating them at all. Thus, Grex achieves the lower
throughput than it did for WC.
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Figure 10: The time breakdown of Grex for the large data set

6. Page View Count (PC): For the large data set, Grex is 2x faster than
Mars and 1.3x faster than MapCG. This benchmark needs all the MapReduce
phases, similar to WC. However, Grex achieves relatively small performance
gains over Mars and MapCG, because dealing with variable-size URLs requires
more complex data processing than handling natural language words in WC.
For the large dataset, the throughput of Grex is 8 GB/s. The throughput is
lower than that of II, because PC is more compute-intensive than II is. In PC,
intermediate <key, value> pairs have to be sorted and aggregated in the reduce
phase.

Finally, Figure 10 shows the time breakdown of the Grex phases in terms of
percentage. I/O for moving input and output data between the CPU and GPU
takes approximately 10% of the total job execution delay on average with the
only exception of SM. In SM, however, the percentage of time spent for I/O is
exaggerated due to the artifact of a computationally simple map phase. Also,
SM needs neither a grouping phase nor a reduce phase. Although both MM
and SS are matrix benchmarks, the relatively complex reduce phase of SS takes
about 50% of the job execution time. Notably, textual data applications that
need the grouping phase, i.e., word count, inverted index, and page view count,
spend approximately 30%−60% of the job execution time for sorting. However,
parallel split and boundary merge phases together take less then 10% of total
execution time. From these results, we claim that the overhead of parallel split
and boundary merge is acceptable considering the fact that (either sequential
or parallel) input split is required to process variable size data. Moreover, we
observe that further performance gains can be yielded by accelerating the sort
phase, while decreasing the I/O overhead. A thorough investigation is reserved
for future work.

Overall, Grex has achieved substantial performance improvements compared
to Mars and MapCG, because it avoids executing the map and reduce phases
twice and effectively utilizes the GPU memory hierarchy, while supporting par-
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allel split and even load distribution among map/reduce tasks. Also, Grex
outperforms MapCG by avoiding serialized memory management and by sup-
porting parallel split, even data partitioning among map/reduce workers, lazy
emit, and efficient memory management.

7. Conclusion and Future Work

In this paper, we present a new GPU-based MapReduce framework called
Grex. We exploit the GPU hardware parallelism and memory hierarchy to sig-
nificantly enhance the performance especially in terms of the delay. We strive
to avoid creating possible performance bottlenecks or load imbalance due to
inefficient data distribution or data skews. At the same time, we avoid using
atomics and locks, which incur potentially high contention for memory access
and complexities for conflict resolution. To achieve these goals, we have de-
veloped a number of new methods for GPU-based MapReduce summarized as
follows:

• Grex supports parallel split that replaces the sequential split step provided
by most existing MapReduce frameworks;

• Grex partitions data to map and reduce tasks in a parallel, load-balanced
fashion;

• Grex supports efficient memory access by leveraging shared memory, tex-
ture cache, and constant memory; and

• It supports lazy emit to further decrease the frequency of global memory
access and the resulting delay.

We have actually implemented and experimentally evaluated Grex. The
results of the performance evaluation indicate up to 12.4x and 4.1x speedup
over Mars [7] and MapCG [8] that represent the current state of the art in
terms of GPU-based MapReduce computing.

Given the promising initial results, we will incorporate Grex with Hadoop
to efficiently process large amounts of data with minimal delays. We will also
investigate the portability of Grex to AMD GPUs.
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GPU: Conjugate Gradients and Multigrid, ACM Transactions on Graphics
22 (2003) 917–924.
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